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Abstract: Amino-functionalized mesoporous silica of different pore sizes and pore system 

dimensionalities is used as a host material for the inclusion of fluorescein (non-covalent 

host-guest interaction) and fluorescein isothiocyanate (covalent host-guest interaction). 

The parameters determining the achievable guest loading depend on the type of host-guest 

interaction. For covalent interaction, the loading is mainly determined by the accessibility 

of the adsorption sites, while a more complex situation was encountered in case of non-

covalent interactions. In addition to the accessibility of the adsorption sites, an 

interpretation of the results needs to take into account the confinement of the included 

guests, as well as the distribution of the adsorption sites. 

Keywords: mesoporous silica; host-guest; adsorption; interaction; amine; fluorescein; 

FITC 

 

1. Introduction 

The introduction of guests into nanoporous hosts with defined pore sizes is a versatile concept for 

producing materials with new properties and promising possibilities for various applications [1-4]. 

Examples include photonic antenna systems (host = zeolite L, guest = luminescent molecules) [4], 

drug delivery devices (host = mesoporous silica, guest = drug molecules) [5-7], and biocatalysts  

(host = mesoporous silica, guest = enzymes) [8]. The discovery of mesoporous silica with ordered 
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pores [9,10] has extended this field by allowing the incorporation of large guest species such as  

DNA [11], preformed quantum dots [12], or semiconducting polymers [13]. When preparing  

host-guest materials of this kind, questions regarding the ideal pore size and pore system arise. Using a 

model consisting of fluorescein and fluorescein isothiocyanate (FITC) as guests and various  

amino-functionalized mesoporous silica materials as hosts, we illustrate that the answer to these 

questions very much depends on the particular host-guest interaction. 

The pore size of a host material determines the accessibility of the adsorption sites. It is intuitively 

immediately clear that the accessibility increases with increasing pore size, thereby enabling the 

preparation of highly loaded host-guest materials. However, large pore sizes usually promote leaching, 

particularly in cases where the interaction between guest and host is weak. This leads to experimental 

problems, because the preparation of host-guest systems based on nanoporous materials usually 

includes washing steps to remove guest species adsorbed on the external particle surface. In case of a 

non-covalent interaction between guest and host, it is therefore necessary to optimize the accessibility 

of the adsorption sites without compromising the confinement. Confinement can be a crucial factor in 

determining the stability of host-guest systems, as shown by the inclusion of organic molecules into 

the narrow channels of zeolite L, where it has been observed that leaching can be suppressed under 

certain conditions, even when washing with a solvent in which the guests are well soluble [14]. 

When working with covalent host-guest interactions, leaching of the guests becomes much less of a 

problem. However, in terms of the synthesis of the respective host-guest systems, pore blocking effects 

by irreversible binding of guests to pore entrance sites have to be taken into account when choosing an 

appropriate host material. 

2. Results and Discussion 

2.1. Mesoporous Silica 

To study the effect of the pore size on the ability of the host materials to accommodate fluorescein 

and FITC, we have employed various mesoporous silicas. The key characteristics of the parent 

materials (before amino-functionalization), namely the pore diameter (dBJH), the BET surface area 

(SBET), the external particle surface area (SExt), the total pore volume (Vtot), and the primary mesopore 

volume (VP), are summarized in Table 1. Pore size distributions are given in Figure 1. It should be 

noted that the BJH method tends to underestimate the absolute pore size [15]. This is illustrated by 

comparison with values obtained using the geometrical method proposed by Kruk et al., which 

additionally takes into account the X-ray diffraction data and yields reliable results for well defined 

MCM-41 type systems [16]. Applying this method resulted in a pore diameter of 2.89 nm for  

MCM-41(s) and 3.76 nm for MCM-41. All materials feature particles of irregular morphology with 

particle sizes in the range of 1-2 µm. 

Apart from the pore sizes, there are further fundamental differences between the materials. While 

MCM-41(s), MCM-41, and SBA-15 have one-dimensional channel systems (hexagonal), the pore 

system of MCM-48 is three-dimensional (cubic) (Figure 2) [10]. SBA-15, on the other hand, has a 

property that is commonly not found in materials of the MCM-41 and MCM-48 type. The pore walls 

of SBA-15 contain micropores, depending to a certain extent on the synthesis conditions [17]. In our 

case, a micropore volume of 0.09 cm3/g was found. 
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Table 1. Properties of the parent mesoporous silica materials. 

 dBJH [nm] SBET [m2/g] SExt [m
2/g] Vtot [cm3/g] VP [cm3/g] 

MCM-41(s) 1.96 776 35 0.48 0.44 

MCM-48 2.52 1320 173 0.98 0.86 

MCM-41 2.82 872 66 0.74 0.67 

SBA-15 6.46 908 74 1.21 1.09 

 

Amino-functionalized materials were obtained by the well established reaction with  

3-aminopropyltrimethoxysilane (APTMS). Samples with low (approximately 0.45 µmol/m2) and high 

amino content (approximately 1.35 µmol/m2) were prepared by adding the corresponding amounts of 

APTMS to a suspension of the mesoporous silica in dry toluene. Indeed, analysis of the  

amino-functionalized samples revealed that grafting of APTMS was close to quantitative under our 

conditions, and led, as expected, to a reduction of the average pore diameter, pore volume, and BET 

surface area of the materials. The respective pore size distributions are shown in Figure 1. 

Figure 1. Pore size distributions (BJH, desorption isotherm) of parent and  

amino-functionalized mesoporous silicas. 
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Figure 2. X-ray diffraction patterns of parent MCM-41(s) (left panel), MCM-41(middle 

panel), and MCM-48(right panel). 

 
 

2.2. Loading with FITC and Fluorescein 

FITC is a popular amine labeling reagent, forming a robust thiourea upon reaction. In combination 

with mesoporous silica, FITC has been used to visualize the distribution of surface-grafted amino 

groups [18-20], as well as to prepare materials with pH sensing [21] and bioimaging  

capabilities [22-25]. Independent loading experiments with the same amino-functionalized sample 

gave FITC contents that were typically within ±10 %. The interpretation of the FITC loading 

experiments (Figure 3, left) is rather straightforward and can be reduced to an assessment of the 

accessibility of the amino groups [26]. Having the smallest pore size, MCM-41(s) is able to bind only 

small amounts of FITC. This is most likely due to pore blocking upon reaction of FITC with amino 

groups located close to the pore entrances (Figure 4). It should be noted in this context that the 

distribution of the grafted amino groups is most likely non-uniform, especially in materials with small 

mesopores, leading to higher grafting densities near the pore entrances [27-29], and thus further 

promoting pore blocking upon reaction with FITC. Such effects are less pronounced in MCM-41 as a 

consequence of the larger pores, leading to increased amounts of FITC-labeled amino groups. The 

relative amount of coupled FITC decreases upon increasing the amino content, because the probability 

of FITC binding to pore entrance sites increases (Figure 4). Given the pore size of MCM-48, it is very 

likely that pore blocking occurs in a similar manner as observed for MCM-41. Due to its  

three-dimensional channel system, the effect of pore blocking on the accessibility of the amino groups, 

and therefore on the amount of coupled FITC, is, however, less dramatic. Following this line of 

reasoning, one would expect to find the largest amounts of bound FITC in the amino-functionalized 

SBA-15. While this is indeed the case for high amino loading, the SBA-15 sample containing small 

amounts of grafted amino groups gave a comparatively low amount of coupled FITC. This is in 

agreement with a previous study that led to the conclusion that APTMS grafts preferentially to the 

intrawall micropores, thereby becoming unavailable for reaction with FITC [26]. 
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Figure 3. Amount of included FITC (left) and fluorescein (right) relative to the amount of 

surface-grafted amino groups for low (hatched bars) and high (black bars) amino contents. 

 
 

Figure 4. Schematic snapshots illustrating the reaction of FITC with amino-functionalized 

MCM-41(s) and MCM-41. 

 
 

In the case of fluorescein, the results of the loading experiments (Figure 3, right) and their 

interpretation are more complex due to the reversible interaction of the guest molecules with the host. 

As expected, the amounts of included fluorescein are much smaller compared to the amounts of bound 

FITC. Nonetheless, we found the results to be well reproducible. Independent loading experiments 

with the same amino-functionalized sample gave fluorescein contents that were within ±10 %. 

With pKa values of 4.4 (neutral fluorescein) and 6.7 (fluorescein monoanion) [30], we can expect 

protonation of surface-grafted amino groups and subsequent electrostatic interaction with fluorescein 

mono- and dianions. Fluorescein contents clearly show a dependence on the pore size that is different 

to the one observed for FITC, thus indicating that in addition to the accessibility of the amino groups, 

there must be further parameters determining the amount of adsorbed fluorescein. MCM-41 in 

particular is able to retain an uncharacteristically large amount of fluorescein. This can be explained on 

the basis that fluorescein molecules adsorbed in the channels are well protected against washing with 

ethanol, whereas in the case of MCM-41(s) most of the fluorescein molecules are located on or close 

to the exposed external surface. Similarly, a large pore diameter (SBA-15) leads to less confinement, 

rendering the adsorbed fluorescein molecules susceptible to removal by washing. In this context, it is 

interesting to note that the dependence of the leaching rate on the pore diameter of a host can 

potentially be used to control the release of substances [31]. Regarding the microporosity of SBA-15, 

we can conclude that based on the amount of retained fluorescein, adsorption in the intrawall 
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micropores, which would provide strong confinement, is unlikely. Again it is instructive to compare 

the performances of MCM-41 and MCM-48. The three-dimensional channel system apparently 

facilitates the removal of adsorbed fluorescein molecules during the washing process. 

In contrast to the loading experiments with FITC, the amounts of included fluorescein (relative to 

the amount of amino groups) are considerably higher in case of high amino contents. To explain this 

significant difference between low and high amino contents, we have to consider that site-isolated 

amino groups are more likely at low amino contents. While such site-isolated amino groups can 

effectively bind FITC, they are less capable of adsorbing and retaining fluorescein. At high amino 

contents, on the other hand, one can expect a certain degree of APTMS cross-linking, leading to 

surface-anchored clusters of aminopropyl moieties [32]. Such patches of closely spaced amino groups 

can effectively adsorb and retain fluorescein. 

3. Experimental Section 

3.1. Synthesis of Mesoporous Silica 

MCM-41 and MCM-41(s) [26]: 2.20 g of hexadecyltrimethylammonium bromide (CTAB, Fluka) 

was dissolved under slight warming (approx. 35 °C) in a mixture of 52 mL of H2O and 24 mL of 

aqueous ammonia (28 %, Fluka). An amount of 10 mL of tetraethoxysilane (TEOS, Fluka) was slowly 

added under stirring and the resulting gel was further stirred for 3 h at room temperature. The mixture 

was transferred to a Teflon-lined autoclave and heated at 110 °C for 48 h. The product was obtained by 

filtration, washed with at least 800 mL of H2O and dried overnight in air at room temperature. The 

structure directing agent (SDA) was removed by first heating at 300 °C for 2 h and subsequent 

calcination in air at 550 °C for 16 h. Heating rates of 2 °C/min were applied. 

MCM-41 featuring a smaller pore diameter (MCM-41(s)) was prepared accordingly, using 1.86 g of 

dodecyltrimethylammonium bromide (Fluka) instead of CTAB. 

MCM-48 [33]: An amount of 8.80 g of CTAB was dissolved under slight warming (approx. 35 °C) 

in 80 mL of H2O. After the addition of 10 mL of 2 M aqueous NaOH, 10 mL of TEOS was added 

dropwise under stirring. After further stirring for 30 min, the mixture was transferred to a Teflon-lined 

autoclave and heated at 100 °C for 72 h. The product was recovered by filtration, washed with at least 

1 L of H2O and oven-dried overnight at 80 °C. The SDA was removed by first heating at 300 °C for  

2 h and subsequent calcination in air at 550 °C for 8 h. Heating rates of 2 °C/min were applied. 

SBA-15 [34]: 2.20 g of Pluronic P123 (EO20PO70EO20, Mav = 5800, Aldrich) was dissolved in a 

mixture of 49 mL of H2O and 31 mL of 4 M aqueous HCl. To this clear solution, 5 mL of TEOS was 

slowly added under stirring. After further stirring for 20 h at approximately 35 °C, the mixture was 

transferred to a Teflon-lined autoclave and heated at 100 °C for 24 h. The product was obtained by 

filtration and washed with at least 1 L of H2O. After drying the material overnight in air at room 

temperature, the SDA was removed by heating in air at 500 °C for 16 h, with a heating rate of 1 °C/min. 
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3.2. Reaction with APTMS 

For the functionalization with 3-aminopropyltrimethoxysilane (APTMS, Fluka), 500 mg of calcined 

mesoporous silica was dispersed in 30 mL of dry toluene (Fluka, puriss.). After the addition of a 

calculated amount of APTMS (taking into account the surface area of the employed mesoporous silica 

and a quantitative grafting yield), the suspension was refluxed for 3 h. The functionalized product was 

recovered by filtration, washed with 100 mL of ethanol, and cured at 80 °C for 1 h. 

3.3. Loading with FITC and Fluorescein 

A calculated amount (1.5-fold excess relative to the amount of grafted amino groups) of FITC 

(fluorescein 5-isothiocyanate, Fluka) or fluorescein (free acid, Riedel-de Haën) was dissolved in  

25 mL of absolute ethanol. After the addition of 250 mg of amino-functionalized mesoporous silica, 

the suspension was stirred for 24 h at room temperature. The yellow product was recovered by 

filtration and washed with 50 mL of ethanol. After redispersion in 50 mL of fresh ethanol and stirring 

for 15 min, the final product was recovered by filtration, washed with 50 mL of ethanol and oven-dried 

at 80 °C for 1 h. 

The amount of included FITC or fluorescein was determined by dissolving the sample in 25 mL of 

0.2 M aqueous NaOH and measuring the UV-Vis absorption spectrum of the resulting clear solution 

after appropriate dilution. Repeated analysis of the same sample gave an average relative error of 3 %. 

An extinction coefficient of ε = 75'000 M–1cm–1 at λ = 490 nm was used for calculating the 

concentration [26]. 

3.4. Amino Group Analysis 

An amount of 15 mg of amino-functionalized mesoporous silica was stirred in 30 mL of 0.02 M 

aqueous NaOH until completely dissolved. A 100 µL aliquot of this solution was transferred into a 

cuvette (d = 1 cm) and 2 mL of phosphate buffer (0.2 M, pH 8.0) was added. After the addition of 

1 mL of fluorescamine solution (Sigma, 1 mM in acetone), the fluorescence spectrum was measured 

by excitation at 366 nm. The emission intensity at 480 nm was taken as a data point. A calibration line 

was prepared accordingly by using 100 µL aliquots of differently concentrated solutions of APTMS in 

30 mL of 0.02 M aqueous NaOH (containing 15 mg of the respective dissolved parent silica) [35]. 

Repeated analysis of the same sample gave an average relative error of 8%. 

3.5. Physical Measurements 

Nitrogen sorption isotherms were collected at 77 K using a Quantachrome NOVA 2200. Samples 

were vacuum-degassed at 80 °C for 3 h. The total surface area SBET was calculated by the BET method 

[36], whereas the external surface area SExt and the primary mesopore volume VP were determined 

from the high-pressure linear part of the αS-plot [37]. Pore size distributions were calculated from the 

desorption branches of the nitrogen isotherms using the BJH method [38]. The total pore volume Vtot 

was estimated from the amount of nitrogen adsorbed at a relative pressure of 0.95. A Perkin-Elmer 

LS50B spectrofluorometer was used for the fluorescamine assays and UV-Vis spectra were measured 
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with a Cary 1E spectrophotometer. Powder diffraction patterns were collected on a STOE StadiP 

diffractometer operating with monochromatized Cu Kα1 radiation. 

4. Conclusions 

The influence of the structural properties of mesoporous silica hosts on the adsorption of guest 

molecules strongly depends on the specific host-guest interactions. In the case of covalent interactions, 

the amount of adsorbed molecules is mainly determined by the accessibility of the adsorption sites. 

Host materials with large pore sizes and multi-dimensional channel systems are advantageous for 

maximizing the amount of adsorbed guests. 

In the case of non-covalent interactions, the spacing or density of the adsorption sites, as well as 

confinement effects have to be taken into account in addition to the accessibility. Finding a balance 

between the accessibility of the adsorption sites and confinement is crucial for the synthesis of host-

guest systems based on non-covalent interactions. A high accessibility facilitates the inclusion of guest 

species, but the subsequent lack of confinement causes high leaching rates. Low accessibility can 

similarly lead to high leaching rates, as guest molecules are preferentially adsorbed at sites on the 

external surface and on the pore surface close to the pore entrances. 
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