arXiv:2212.14693v1 [cs.CY] 22 Dec 2022

A Learned Simulation Environment to Model Student
Engagement and Retention in Automated Online
Courses

N. Imstepf !, S. Senn ', A. Fortin 2, B. Russell 2, and C. Horn *
L Zurich University of Applied Sciences, ICLS, Schloss 1, 8820 Widenswil, Switzerland
2 Kikodo Education Technology Sarl, Av. Louis Ruchonnet, Lausanne 1003, Switzerland

Abstract

We developed a simulator to quantify the effect of exercise ordering on both
student engagement and retention. Our approach combines the construction of
neural network representations for users and exercises using a dynamic matrix
factorization method. We further created a machine learning models of success and
dropout prediction. As a result, our system is able to predict student engagement
and retention based on a given sequence of exercises selected. This opens the door
to the development of versatile reinforcement learning agents which can substitute
the role of private tutoring in exam preparation.

Keywords: education technology, student modeling, deep reinforcement learning.

1 Introduction

Survey data reveals that 50% of US and UK households would like to hire a tutor, but cannot afford it
[10]. This issue is especially acute in the context of high-stakes testing such as GCSE and SAT/ACT
which can have a determining effect on life outcomes of students, while results in such tests are also
strongly influenced by the ability to hire a quality private tutor [6, 11].

Furthermore, a major concern for sustained economic growth today is the shortage of skilled workers
[3]. Online learning combined with new approaches in education technology may help solve this
challenge by improving access to the highest quality independent learning materials and processes.
Global Al usage in education is estimated to have an annual growth rate of 36.6 percent during
2022-2030 and is predicted to reach $25.77 billion by 2030 [16].

Classical classroom teaching often suffers from large percentages of disengaged students for which
the presented material is either too difficult or too easy [8]. This problem is exacerbated by the
diversity of the existing knowledge of the class. Thus, the promise of personalized learning is to
optimize the learning path for each student individually, and therefore maximize learning, retention,
and ultimately exam performance for each student.

While past Al-based approaches have used models trained by supervised learning, we propose to
use intelligent agents which are able to continuously learn throughout the complete student journey.
Training such agents requires the development of a simulator (aka digital twin) for student actions,
which is the topic of this paper. It forms the basis for a natural next step, the development of an
autonomous digital tutor.

Our main contributions are:

* An end-to-end approach to optimizing student interactions in online learning;

* A novel dynamic matrix factorization method to learn neural representations of users and
exercises from user data;

Preprint. Under review.

m Real World
Simulator \ é‘ J -
User Models il
Success prediction O RL agent —— \;\
train apply Optimal exercise selection

Chumiprediction specific to each user

Figure 1: Overview of our proposed modeling chain.

* A demonstration of how Model-Based reinforcement learning can be enabled by learning
the components of a simulator.

The benefits of this approach translate into a more engaging learning experience for the students,
higher performance, and increased retention rates.

2 Method

Our aim is to build a simulator that allows us to quantify the effect of different exercise orders on
student engagement and retention. This could then be used to understand and improve the individual
learning path of each student. In particular, such an approach provides the basis for the development
of autonomous, intelligent agents to be deployed in automatic online courses. Using these agents, one
can dynamically optimize student engagement and retention as a function of past interactions. The
corresponding modeling chain is illustrated in Fig. 1. It comprises four main steps, (1) data gathering
and pre-processing, (2) learning of neural representations for users and exercises, (3) modeling of
success and dropout probability (4) construction of the student interaction simulator. All steps are
described in detail below.

2.1 Collection and processing of student interaction data

The user question submission data was based on the Python learn-to-code site www.kikodo.io. For
each user, a time series of "events" was used, where each event is the submission of a single exercise,
and the outcome of that submission. Although additional metadata were present in the original data,
only the correctness or incorrectness of the submission was considered.

The exercises on this specific e-learning site are structured simply into "workbooks", which are
themselves grouped by topic. Each workbook contains a number of questions in the range of 10-100.
Prior to the preparation of this study all learners had questions within a workbook presented to them
in a random order.

The users of the site have been anonymized in all reporting and analysis.

2.2 Dynamic matrix factorization

Developing a neural network model to select the best exercise for a given user requires representations
of users and exercises. A common way to calculate these from user-exercise interaction data
is collaborative filtering (CF) as used in recommender systems [17]. While standard user-based
and item-based CF just take the user-item' matrix to derive representations, matrix factorization
actively optimizes the representations of both users and items at the same time to minimize the
average prediction error [7]. The predicted scores per exercise can be computed as S = UE,
where S € R™ ™ is the user-exercise score matrix, U € R™*! contains the user’s latent factors
and E € RYX™ the exercise’s latent factors, and n = number of users, m = number of exercises,
I = number of latent factors. The predicted exercise score for user v and exercise e can then be

'In our case the items are the exercises.

Table 1: Performance comparison for different success prediction model variants

Model type Number of last exercises used RMSE
Random Forest 3 0.238
SVM 3 0.246
XGBoost 3 0.243
Random Forest 10 0.227
SVM 10 0.237
XGBoost 10 0.239
computed as:
Sue =Y UusEpe)
fe[]

This ensures that our representations for users and exercises are consistent with each other. The
problem then consists in optimizing the objective function

ar%I%aXHS*SAHJrMHUH+/\2\|EH 2)

where the last two terms provide regularization, and A;, and A\ are hyperparameters. To perform
the optimization, we use the gradient descent algorithm in its convenient implementation in the deep
learning library PyTorch[15].

In practice, however, where most users only complete a single course with a relatively small number
of exercises contained in a limited time period, the standard MF approach described above faces the
problem that for any two separate time periods the overlap of users and exercises is small. Which
amounts to a kind of continuous cold start problem[9]. To tackle it we propose dynamic matrix
factorization, which dynamically extends the user-exercise matrix each time a new user or exercise
appears in the interaction stream (adding a new row or column with values corresponding to an
average exercise or user, respectively). We perform a small number of gradient descent training steps
after each new observed interaction. This has three important consequences:

* It allows us to derive representations for new users and new exercises already after a single
recorded interaction, effectively solving the continuous cold start problem;

* Additional observations will help to gradually improve the representations over time;
* Information learned from past users-exercise interactions can continuously flow into the
representations of new users and exercises.

Our experiments confirm that representations indeed improve over time by comparing the performance
of downstream models (see Sect. 2.3) at different numbers of user interactions.

2.3 Success and dropout prediction

To model a user’s interaction when presented with a new exercise, we need to predict her/his
performance on the exercise as well as her/his decision to drop out, i.e. not to finish the exercise, and
quite the course.

We use machine learning to predict these outcomes from the historical data. As the input for the score
prediction model, we concatenate the following into a single vector:

Uty €t—my St—my+o+y €t—1,St—1, €t (3)
where u,; and e; are the user and exercise representations learned in Sect. 2.2, and s, is the performance
score. The performance of different machine learning algorithms is shown in Tab. 1. The random
forest model using the representations of the last n = 10 exercises as input was selected for down
stream tasks.

As the input for the dropout prediction model, we concatenate the following into a single vector:

Uty €t—my St—ny--+y €t—1, St—1, €t, St (4)

Up-sampling of the minority class was used to deal with class imbalance. The performance of the
dropout prediction model is shown by the ROC curve in Fig. 2.

Churn model receiver operating characteristic

1.0 1 g
,/
7’
,/

0.8 Rt
2 -7
© 7
< PR
2061 g
= -,
w 7’
8 L
é 0.4 ,,,

R
’/
0.2 4 R
/’,
PR ROC curve (area = 0.893)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 2: Performance of dropout prediction model, measured by the ROC curve[4].

2.4 Student interaction simulator

Given the models learned in Sect. 2.3 it is now possible to construct a student interaction simulator.
It receives the information about the next exercise the student should solve as input and returns a
dropout decision as well as a performance score for the given exercise. It also returns a reward which
can be used to train a potential learning agent tasked with selecting the next exercise to present to the
student. In order to guide the student towards a desired target performance score S¢,rger and minimize
the dropout probability, pdropout, We define the reward function as:

R= Z [(Se - Starget)Q + a(l - pdropout)] (5)

where s, is the student’s performance score for exercise e. We compared the interaction with the
simulation environment of two different strategies and observed the rewards they achieve

* Applying the same exercise order as in the historical data.
* Applying an Al-agent trained with PPO [21].

The results are shown in Fig. 3. We observe that the Al agent is able to choose orders of exercises
with consistently higher reward per user. This shows a clear potential for Al agents trained with our
approach to improve learning outcomes in automated online courses.

3 Related work

Education offers a large number of opportunities for applications of artificial intelligence [18]. The
advancement of digitization and learning management systems produces an increasing amount of
data [22]. Analyzing it is the subject of the field of educational data mining [20, 19]. E.g. it was
found that dedicated feedback can enhance students’ motivation [2]. Machine learning (ML) has
been applied in digital education in different ways, mostly using classical ML approaches [13]. A big,
mostly untapped potential for reinforcement learning exists in e-learning [12]. Previous studies have
mostly focused on student engagement [2], assuming that retention will follow. A number of studies
focus on the prediction of student performance [1], as well as the prediction and reduction of student
dropout [23]. The usefulness of recommendation systems for designing smart learning management
system for digital learning has been shown in several studies, where the most popular methods are
collaborative filtering and content-based filtering [14]. Recently, student profiling models have found
increased attention, mostly using deep learning [5]. However, to date, no ML model exists which is
able to actively steer the complete learning path of individual students in e-learning courses.

4 Conclusions

We developed a simulator for the automatic selection of exercises for individual students in automated
online courses. We first use our dynamic matrix factorization method to derive neural representations

Strategy Performance Comparison

—— historical data
2501 RL agent
o 200
1<
O
)
T 150
©
=]
g 100 A
1o
1%
<
50 1 /
0 .
0 20 40 60 80 100

Number of Users

Figure 3: Comparison of accumulated scores of episode rewards over time achieved if exercises are
chosen like given in the historical data (blue) and by the RL agent (orange). In each episode, a new
user is randomly selected.

for users and exercises, which provide the input features for success and dropout prediction models,
trained via supervised machine learning. The resulting models could successfully be used in a
simulator which enables the training of reinforcement learning agents. Initial tests show potential for
such agents to optimize the learning path for each individual student in automated online courses.
Next, we plan to incorporate the optimization of feedback, coding hints and assessments into the
automated learning path and test our Al agent in a real-world setting.

Acknowledgements

We thank Innosuisse for the support within 58831.1 INNO-ICT.

References

[1] M. Anoopkumar and A. Rahman. A comprehensive survey on educational data mining and
use of data mining techniques for improving teaching and predicting student performance. In
Education, 2015.

[2] Sarra Ayouni, Fahima Hajjej, Mohamed Maddeh, and Shaha Al-Otaibi. A new ML-based
approach to enhance student engagement in online environment. PLOS ONE, 16(11):e0258788,
November 2021.

[3] James Bessen. Employers aren’t just whining—the “skills gap” is real. Harvard Business Review,
25, 2014.

[4] Tom Fawecett. An introduction to roc analysis. Pattern recognition letters, 27(8):861-874, 2006.

[5] Chong Guan, Jian Mou, and Zhiying Jiang. Artificial intelligence innovation in education:
A twenty-year data-driven historical analysis. International Journal of Innovation Studies,
4(4):134-147, December 2020.

[6] Judith Ireson. Private tutoring: How prevalent and effective is it? London Review of Education,
2004.

[7] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30-37, 2009.

[8] June Kronholz. Can khan move the bell curve to the right? Education Next, 12, No. 2, 2012.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold start problem
in recommender systems. Expert Systems with Applications, 41(4, Part 2):2065-2073, 2014.

Rebecca Montacute and Carl Cullinane. Parent power 2018: How parents use financial and
cultural resources to boost their children’s chances of success. https://www.suttontrust.
com/wp-content/uploads/2019/12/Parent-Power-2018.pdf, September 2018.

Raeal Moore, Edgar Sanchez, and Maria Ofelia San Pedro. Investigating test prep impact on
score gains using quasi-experimental propensity score matching. act working paper 2018-6.
ACT, Inc., 2018.

Abdallah Moubayed, Mohammadnoor Injadat, Ali Bou Nassif, Hanan Lutfiyya, and Abdallah
Shami. E-Learning: Challenges and Research Opportunities Using Machine Learning & Data
Analytics. IEEE Access, 6:39117-39138, 2018.

Hussan Munir, Bahtijar Vogel, and Andreas Jacobsson. Artificial Intelligence and Machine
Learning Approaches in Digital Education: A Systematic Revision. Information, 13(4):203,
April 2022.

Dina Fitria Murad, Yaya Heryadi, Bambang Dwi Wijanarko, Sani Muhamad Isa, and Widodo
Budiharto. Recommendation System for Smart LMS Using Machine Learning: A Literature
Review. In 2018 International Conference on Computing, Engineering, and Design (ICCED),
pages 113-118, Bangkok, Thailand, September 2018. IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024-8035. Curran Associates, Inc., 2019.

psmarketresearch. Ai in education market research report. https://www.psmarketresearch.
com/market-analysis/ai-in-education-market, December 2022.

Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems
Handbook, pages 1-35. Springer US, Boston, MA, 2011.

Ido Roll and Ruth Wylie. Evolution and revolution in artificial intelligence in education.
International Journal of Artificial Intelligence in Education, 26(2):582-599, June 2016.

Cristobal Romero and Sebastian Ventura. Data mining in education. WIREs Data Mining and
Knowledge Discovery, 3(1):12-27, 2013.

Cristobal Romero and Sebastian Ventura. Educational Data Mining: A Review of the State
of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 40(6):601-618, November 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. Technical Report arXiv:1707.06347, arXiv, August 2017.
arXiv:1707.06347 [cs] type: article.

Filippo Sciarrone. Machine Learning and Learning Analytics: Integrating Data with Learning.
In 2018 17th International Conference on Information Technology Based Higher Education
and Training (ITHET), pages 1-5, Olhao, April 2018. IEEE.

Mariela Mizota Tamada, José Francisco de Magalhdes Netto, and Dhanielly P. R. de Lima.
Predicting and reducing dropout in virtual learning using machine learning techniques: A
systematic review. 2019 IEEE Frontiers in Education Conference (FIE), pages 1-9, 2019.

https://www.suttontrust.com/wp-content/uploads/2019/12/Parent-Power-2018.pdf
https://www.suttontrust.com/wp-content/uploads/2019/12/Parent-Power-2018.pdf
https://www.psmarketresearch.com/market-analysis/ai-in-education-market
https://www.psmarketresearch.com/market-analysis/ai-in-education-market

	1 Introduction
	2 Method
	2.1 Collection and processing of student interaction data
	2.2 Dynamic matrix factorization
	2.3 Success and dropout prediction
	2.4 Student interaction simulator

	3 Related work
	4 Conclusions

