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Abstract. Automatically extracting relationships from biomedical texts
among multiple sorts of entities is an essential task in biomedical natural
language processing with numerous applications, such as drug develop-
ment or repurposing, precision medicine, and other biomedical tasks re-
quiring knowledge discovery. Current Relation Extraction systems mostly
use one set of features, either as text, or more recently, as graph struc-
tures. The state-of-the-art systems often use resource-intensive hence
slow algorithms and largely work for a particular type of relationship.
However, a simple yet agile system that learns from different sets of fea-
tures has the advantage of adaptability over different relationship types
without an extra burden required for system re-design.
We model RE as a classification task and propose a new multi-channel
deep neural network designed to process textual and graph structures in
separate input channels. We extend a Recurrent Neural Network with a
Convolutional Neural Network to process three sets of features, namely,
tokens, types, and graphs. We demonstrate that entity type and ontol-
ogy graph structure provide better representations than simple token-
based representations for Relation Extraction. We also experiment with
various sources of knowledge, including data resources in the Unified
Medical Language System to test our hypothesis. Extensive experiments
on four well-studied biomedical benchmarks with different relationship
types show that our system outperforms earlier ones. Thus, our system
has state-of-the-art performance and allows processing millions of full-
text scientific articles in a few days on one typical machine.

Keywords: Biomedical Relation Extraction · Graph Embedding · Deep
Neural Network · Ontology · UMLS.

1 Introduction

The job of a biomedical Relation Extraction (RE) system is to identify semantic
relationships among biomedical named entities such as genes, drugs, proteins, or
chemical substances. There can be a large number of such relationships among
different entities. Associations between genes and diseases, interactions among
proteins and chemicals, or relationships among drugs and their side effects are a
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few examples. RE plays an essential role in many biomedical applications such as
clinical decision-making or information retrieval. Furthermore, RE is an integral
component of Literature-Based Discovery (LBD) systems, commonly used to
generate hypotheses for drug repurposing or drug discovery.

The advent of modern Machine Learning (ML) paradigms led to a significant
boost in the performance of different RE systems, including Chemical-Protein In-
teractions (CPI) [19] or Chemical-Induced Diseases (CID) [14] to name a few. [27]
use Support Vector Machines (SVMs) [3] for modeling Protein-Protein Interac-
tion (PPI) and [14] use SVM and decision trees to model CID.

Deep Learning (DL) is the most recent and common class of ML techniques
that attempted to address RE. Many studies on PPI extraction use variants
of DL-based algorithms such as Recurrent Neural Network (RNN) [5]. [20, 9]
employed DL to develop an end-to-end system for adverse drug event and drug-
drug relationship detection. Using another DL-based algorithm named Convolu-
tional Neural Network (CNN) [8], [12] proposed segment CNN for RE in clinical
notes. [10] also made use of RNN to combine the feature vectors trained on
MEDLINE with the semantic information obtained from external Knowledge
Bases (KB) for relation and entity recognition.

Similar to our work, there are a few studies that attempted to integrate
different neural architectures. The purpose is to benefit from the advantages
and overcome the disadvantages of different shallow and deep algorithms. For
instance, [28] combined RNN and CNN in a hybrid model or [15] combined RNN,
CNN, and SVM as an ensemble system.

Contextualized language models help RE to obtain better results [11, 24].
However, they are considered highly resource-intensive algorithms. Dependence
on massive machinery infrastructure usually raises concerns about scalability
when considering large-scale RE. Aiming at developing a large-scale system,
we avoid using any resource-intensive, hybrid, or ensemble system. Instead, we
design a unified model that minimizes the load and complexity of the system
via integrating ontology graph and typing information such that it can process
millions of full-text articles in a reasonable time and on a sensible infrastructure.

We apply our method to four benchmarks with different biomedical relation-
ship types and linguistic characteristics individually to ensure that our model
handles agnostic datasets without requiring any particular tuning per dataset.
These datasets include ChemProt [6], DDI [18], i2b2 [23], and AGAC [25]. Our
method shows a substantial improvement (based on the F1 score) compared to
the current SotA RE systems.

2 Methods

Instead of moving towards a more complex DL approach which is less effective [7],
we use a simple architecture with several channels that allows us to integrate
various sources of data into the training stream without over-complicating the
problem.
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Meantime to ensure optimum system throughput, and to benefit from graph-
level and sentence-level information, we train an embedding space on a graph and
integrate it into a sentence-level deep neural model. This way, we can enhance
the system’s performance while letting it process more than a thousand sentences
a second. The required time would be higher by at least one order of magnitude
if we would implement it in a graph neural network.

Three sets of features are integrated into our model, namely tokens, entity
types, and graph structures extracted from ontologies in the form of graph em-
beddings. Assume the sentence S = t1, t2, ..., tn to consist of tokens ti and to
contain two named entities e1 and e2. We denote r as the relationship pointing
to a pair of named entities e1 and e2.

In contrast to tokens which are merely occurrences of linguistic units (i.e.,
words, punctuation marks, symbols, etc.), named entities in life sciences are
referred to well-recognized drugs, species, diseases, etc. They may consist of one
or more consecutive tokens. Consider the following example:

... of the PDE inhibitors tested, dipyridamole was most effective, with
IC50 values of 1.2 and 0.45 microM for inhibition of cAMP and cGMP
hydrolysis, respectively.

The named entities are printed in red and blue. For the sake of brevity, we
use entity to refer to a named entity from now on. In the ChemProt dataset,
CPR − 9 is the relationship between the two red entities. Note that there may
be other relationships among the blue entities as well.

The task is then to find r such that

argmaxr∈R p(r|S, ei, ej , T,G; θ) (1)

maximizes the probability of r where T is a set of associated entity types rep-
resented in t dimensional embedding space, and G is a graph consisting of all
entities and relations available in the training data. Tokens in S, as well as the
entities, are represented in d dimensional embedding space. G also is represented
as g dimensional embeddings vectors. R is a set of relationships, and θ are the
network parameters. We describe S, T , and G embeddings in more detail in
sub-sections 2.1, 2.2, and 2.3 accordingly.

2.1 Token embedding

The most efficient way for representing tokens in almost all NLP tasks is via
low-dimensional word vectors, also known as word embeddings. From a broad
perspective, word embeddings can be of two types, namely static or dynamic.
A static word embeddings algorithm (e.g., Word2Vec [13], Glove [16]) maps
each token to a unique low-dimensional vector irrespective of the context where
the token occurs. In contrast, a dynamic (i.e., contextual) word embeddings
algorithm (e.g., ELMo [17], BERT [4]) maps each token to several different low-
dimensional word vectors depending on their surrounding words. Due to the high
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computational demand of the latter, we only use static embeddings to ensure a
lean and scalable RE system. We use Word2Vec embeddings to represent S.

2.2 Type embedding

Typing information provides a mechanism for disambiguation when the system
is not confident about the relationship between two entities. We integrate type
embeddings into the system to examine their impact on the system performance.

In contrast to tokens, there are usually very few types available in a dataset.
Consequently, a shallow embeddings technique known as the one-hot encoding
(OHE) is sufficient for representing T .

2.3 Ontology graph embeddings

The idea in ontology graph embeddings is to map the graph of an ontology to
low-dimensional vectors such that similar components in the graph are close to
each other in the low-dimensional space. Therefore, in addition to isolated tokens
represented via token embeddings, the network benefits from the information
about the interaction of graph components and their neighbors. As the results
show in Section 3, the embeddings of the ontology graph is a beneficial feature
for RE. Graph structures provide three levels of features, namely node, link, and
graph as a whole. We only estimate and use node-level embeddings to prove
the concept and postpone the two other levels to further studies. To set up the
input graph for embeddings generation, we construct a graph where entities (i.e.,
genes, diseases, drugs, etc.) are the vertices, and their relationships are the edges.
Transforming this graph into a set of linear random walks (i.e., linearization) is
the first step for embeddings generation. After setting the number and the length
of random walks, we use a simple sampling agent to linearize the graph. The
graph is a directed graph, hence backward moves are not possible. Therefore,
at each vertex, the agent decides which outgoing edge to take using a uniform
distribution.

Two hyper-parameters, namely the number and the length of random walks,
control the agent’s walking behavior. The model uses a portion of training data
called the development data to tune these hyper-parameters. After transforming
the graph into a set of random walks, we assume each walk as a sequence and
use Word2Vec’s Skip-gram algorithm to estimate the embeddings.

2.4 UMLS graph embeddings

The ontology graph provides a beneficial means of structured data for learn-
ing algorithms. However, for some datasets, the ontology graph is not available.
A more robust way for generating ontology graph embeddings is to use exter-
nal resources such as the Unified Medical Language System (UMLS) or Open
Biomedical and Biological Ontology (OBO).
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We consider the UMLS as an ontology of biomedical concepts. It consists of
three main components, namely Metathesaurus, Semantic network, and Special-
ist lexicon. The Metathesaurus contains over four million biomedical concepts
and their associated terms from over 200 source vocabularies. The Semantic
network defines 133 broad types (e.g., disease, drug, disorder, etc.) and 54 rela-
tionships. It includes semantic types and semantic relationships such as ”clinical
drug A treats disease B or syndrome C”. Finally, the Specialist lexicon provides
lexical information for language processing.

Extracting the clusters of concepts from different vocabularies similar to
the UMLS’s Metathesaurus or extracting semantic typing information like the
UMLS’s Semantic network requires extensive querying among all available on-
tologies in the OBO Foundry. Given this constraint and for the sake of acces-
sibility and reproducibility, in this study, we use UMLS and postpone OBO
integration to further studies.

We extract the words and strings and their associations with their concepts
from the UMLS 2021 package. Extracting the concepts, semantic types, and
relationships, we construct a semantic graph. After the graph is constructed, a
similar mechanism as described in the last subsection projects the concepts and
relationships into an embedding space.

2.5 Architecture

Recent advances in DL have significantly enhanced RE. Here, we propose a
new DL architecture to improve RE over biomedical data (see Figure 1 for the
schema). This architecture complements an RNN with a CNN to extract two
types of information that are deemed critical in RE.

On the one hand, Gated Recurrent Unit (GRU) [2] as an advanced variant
of RNNs deals with strings with relatively long dependencies. GRUs in neural
networks are often used in form of bidirectional units (i.e., BiGRU). Given a
string, one GRU in a BiGRU unit extracts the textual features from right to
left and the other from left to right and the resulting vectors are concatenated.
CNN, on the other hand, is a great architecture for extracting keywords or
key-phrases [8]. The combination of BiGRU and CNN assures that the model
extracts the most informative sequential, local, and time-invariant features.

We hypothesize that combining GRU- and CNN-generated features pro-
vides RE with a more meaningful representation. Therefore, we propose a Bidi-
rectional Gated Recurrent Unit-Convolutional Neural Network (BiGRU-CNN)
multi-channel multi-input model for biomedical RE.

This architecture accepts a wide range of features. While tokens and their
sequences are valuable features for RE, as we demonstrate via extensive ex-
perimentation (please refer to Section 6), entity types and ontology graph em-
beddings facilitate RE as well. Type information helps RE to disambiguate the
detected relationships, while ontology embedding provides the model with im-
plicit but beneficial information about entities and their connections in their
ontology graph structure.
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Fig. 1. Data-agnostic biomedical RE system architecture.

The first channel in Figure 1 is fed with the isolated token embeddings. While
individual tokens provide strong signals for some relationships, the sequence of
tokens known as n-grams allows better recognition of some other relationships.
The combination of BiGRU and CNN ensures that both of these feature types
are extracted. The model concatenates the resulting vectors of BiGRU and CNN
to get the overall feature vector. The number of hidden layers for the BiGRU
network, sequence length, CNN activation function, the dropout rate, and the
optimizer are some of the hyperparameters for this channel.

More recent studies on RE use contextualized word embeddings. Compu-
tationally, such algorithms are highly demanding with hundreds of millions of
parameters. Therefore, to estimate the S embeddings in the first channel, we use
Word2Vec (Skip-gram) as a static word embeddings algorithm and train it on
the PubMed abstracts released by BioASQ [22].

The second channel accepts the type embeddings, and the third channel
receives the ontology graph embeddings. Sections 2.2, and 2.3 describe the pro-
cedure for estimating the embeddings representing T , and G required for these
channels. The number and length of random walks for the ontology graph em-
beddings and the embeddings vector size are two other hyperparameters specific
to these channels. Finally, the classifier on the top is a softmax function.

The hyperparameters in Table1 are reported to ensure reproducibility. All hy-
perparameters are optimized on the development set if available (the Chemprot
dataset only), otherwise on randomly extracted 20% of the training set.

Table 1. System hyper-parameters

Hyper-parameter Value Hyper-parameter Value

Emb. size d (tokens) 200 Optimizer adam
Emb. g (Ontology) 128 hidden layers 64
Num. random walks 100 CNN filters 32
Length of walks 16 CNN kernel size 4
Drop-out 0.05 CNN activation relu
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3 Implementation and Results

A key motivation for our study is to enable to process millions of full-text articles
while providing SotA accuracy. While many studies in RE focus on a particular
dataset, we aim towards designing a dataset-agnostic system. To test the sys-
tem, we selected four different benchmarks of relationship extraction tasks from
various biomedical domains. They include the Active Gene Annotation Corpus
(AGAC), the Informatics for Integrating Biology and the Bedside (i2b2), Drug-
Drug Interaction (DDI), and CHEMical-PROTein interactions (ChemProt). This
selection tries to reflect the thematic diversity, as well as the complexity of the
task in terms of sequence length, number of classes, linguistic genre, and vocab-
ulary. Training the models for different datasets takes from less than an hour to
at most three hours on a standard machine with a Core-i7 CPU and 16 GB ram.
Depending on the dataset and sequence length of the sentences, the models take
a second to make inference over one thousand sentences with an average length
of 70 to 120 tokens each. That makes relation extraction for the entire PubMed
feasible in a few days and only using one typical machine. Tables 2, 3, 4, and 5
report the results of the system on AGAC, DDI, i2b2, and ChemProt datasets
accordingly. The hyperparameters are tuned using the grid search strategy. The
maximum length of all strings for each dataset is set as the length of the se-
quences for that dataset. If required, Micro F1, Macro F1, or both are reported
to make comparison with earlier works possible.

Table 2. AGAC test results. The results of the current system are reported in the Micro
F1 score with two significant figures. Samples without relationships are extracted as
described in [21]

System Without none relation With none relation

Relation/Score P. (%) R. (%) F1 (%) P. (%) R. (%) F1 (%)

No-Rel - - - 95 93 94
COM 100 100 100 0 0 0
GOF 95 82 88 0.033 0.045 0.038
LOF 74 87 80 0.054 0.062 0.057
REG 100 25 40 0.031 0.042 0.035

Current system 84 72 78 87 87 87
[21] - - - 86 86 86

The results in this section are reported based on the ontology graphs gener-
ated via the data-driven approach. Although the UMLS-based ontology graphs
have a positive impact on the system performance, they yield inferior results
compared to the data-driven approach. The distinction between the UMLS-
based system and the data-driven approach is reported in the ablation study
in Section 6. The reason for this inferiority comes from the fact that the cov-
erage rate (i.e., the ratio of entities and relationships in a test set available in
the relevant graph embeddings) of the data-driven approach is higher than the
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Table 3. i2b2 test results. The results of the current system are reported with two
significant figures due to the number of test samples. Similar to Table 10 in [26],
a weighted F-Score is used to ensure a fair comparison. Since there are not enough
training data in some classes in the i2b2 dataset, following [26], we did not use TrWP,
TrIP, and TrNAP classes for training and development

System [26] Current system

Relation/Score P. (%) R. (%) F1 (%) P. (%) R. (%) F1 (%)

TrCP 68 65 66 73 34 47
TrAP 79 82 81 86 94 90
TeRP 87 87 87 83 94 88
TeCP 63 63 63 64 46 54
PIP 73 67 70 100 100 100

Macro/Micro score 74/- 73/- 73/- 81/89 74/89 76/89

Table 4. DDI test results. The results of the current system are reported with three
significant figures to account for the number of test instances. Similar to [1], the F1
score is Micro-averaged F1 score.

Relation/Score P. (%) R. (%) F1 (%)

Advise 81.9 90.0 85.8
Effect 86.0 85.3 85.6
Int 94.4 35.4 51.5
Mechanism 89.9 91.7 90.8

Current system 86.5 83.5 85.0
[1] 85.36 82.83 84.08

Table 5. ChemProt results. The results of the current and SotA systems are reported
in Macro/Micro F1 scores.

System [19] Current system

Relation/Score F1 (%) P. (%) R. (%) F1 (%)

CPR:3 71.48 71.8 53.4 61.2
CPR:4 81.28 78.8 87.9 83.1
CPR:5 70.90 81.2 65.7 72.6
CPR:6 79.86 78.0 88.4 82.9
CPR:9 69.87 85.2 69.6 76.6

Macro/Micro score - 79/78.8 73/76.6 75.2/77.7
Macro/Micro score 74.6/76.5 - - -
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UMLS-based approach. Including other biomedical knowledge graphs leads to
increasing the term coverage hence improving the performance. We postpone
this integration to further studies.

3.1 Ablation

This section reports the impact of each layer and several design decisions on
the system performance. We limit the parameters of this study to the BiGRU
and CNN base models and the result of adding the type and ontology graph
embeddings into the network. The ablation study is performed over all datasets
to eradicate possible bias as much as possible.

Table 6. Ablation results; the impact of adding each network layer on the system per-
formance. Statistically, significant changes are reported in bold. All scores are reported
as Micro F1 score for the sake of consistency.

Config Model-Dataset AGAC(%) DDI(%) i2b2(%) ChemProt(%)

1 Base CNN 71 76.1 80 70.9
2 Base GRU 72 77.2 81 72.8
3 1 + 2 73 78.6 82 74.1
4 3 + Type layer 75 81.4 85 75.4
5 4 + Ontology layer (UMLS) 77 83.2 88 77.4
6 4 + Ontology layer (data-driven) 78 85 89 77.7

The results in Table 6 show that the base BiGRU configuration consistently
outperforms the CNN one, although the performance of the combined model is
always higher than the sole BiGRU. It suggests that CNN captures some dis-
criminative features which BiGRU encoders commonly lose. Our error analysis
empirically shows that CNN does not work well for strictly directional relation-
ships. For instance, CNN makes a lot of mistakes in recognizing CPR:5 and
CPR:6 (Agonist and Antagonist relations) in the ChemProt dataset while it
recognizes CPR:3 (Upregulator and activator) slightly better than BiGRU. The
impact of type and ontology embeddings layers is also evident from the results.

4 Discussion

Biomedical relation extraction is a complex task. This complexity is partly due
to the linguistic ambiguity and variability inherent in the biomedical entities.
The difficulties involved in RE for different linguistic genres such as scientific
papers (e.g., ChemProt) versus clinical texts (e.g., i2b2) add to this linguistic
complexity. Another reason for such complexity is the wide range of ontologies
in life sciences which lead to the definition of numerous relationships’ types.
Yet another source of complexity is added to RE because relationships are often
directional connections between two entities. However, the text does not always
preserve the order of the entities.
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All studied datasets in this work are highly class-imbalanced that poses a
significant issue in multi-class classification tasks. This includes an imbalance
among classes as well as an imbalance between positive and negative instances
of each class. Class imbalance usually works in favor of the majority class via
disregarding the minority class at the training step. TeRP and TrAP in the i2b2
dataset are two evident examples of errors caused by class imbalance. TrCP and
TeCP are the worst-performing classes in this dataset; TeCP is often misclassified
with TeRP and TrCP is often misclassified with TrAP. In both cases, the class
to which the true classes are wrongly assigned belongs to the majority classes.

Another reason for making errors in classification is that in both cases the
misclassified classes are semantically similar to true classes; In the first case ”Test
Conducted to investigate Problem (TeCP)” and ”Test Reveal Problem (TeRP)”
and in the second case ”Treatment Cause problems (TrCP)” and ”Treatment
Administered Problem (TrAP)” are considerably similar. Our experiments on
various embeddings show that an embedding trained on biomedical data yields
fewer misclassified instances of this type.

The worst-performing class in the DDI dataset is also the minority class Int
which often is overshadowed by Effect. One reason for this is that Int is the
super-class denoting any interaction which conveys the same semantics as Effect
may do.

5 Conclusion

Relation Extraction is a fundamental task in biomedical text analytics. There
is a wide range of domains within biomedical and health sciences. Therefore
a universal model capable of extracting relationships across various biomedical
subdomains is highly desirable since it reduces the time and effort required to
design domain-specific architectures. Employing graph ontology and biomedical
types represented as embeddings, we designed a deep neural network for relation
extraction adaptable to various domains given the ontology and type informa-
tion encoded as embeddings layers. The network takes this information directly
from the datasets in a data-driven approach or indirectly from the UMLS as an
external resource. Our system obtains state-of-the-art results on four datasets
from different biomedical sub-domains, namely; Chemical Protein Interactions
(CPI), Drug-Drug Interactions (DDI), Gene functions, and clinical problems and
tests. Due to its uncomplicated yet quick encoders and classifier, it makes rela-
tion extraction feasible on a large volume of textual data and within a limited
time.
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A., Franke, K., Köppen, M. (eds.) Intelligent Systems Design and Applications.
pp. 53–62. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

28. Zhang, Y., Lin, H., Yang, Z., Wang, J., Zhang, S., Sun, Y., Yang, L.: A hybrid model
based on neural networks for biomedical relation extraction. Journal of Biomedical
Informatics 81, 83–92 (2018)


