
Science of Computer Programming 226 (2023) 102926
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Original software publication

Cost-effective simulation-based test selection in self-driving 

cars software

Christian Birchler a,∗, Nicolas Ganz a, Sajad Khatiri b,a, Alessio Gambi c, 
Sebastiano Panichella a

a Zurich University of Applied Sciences, Switzerland
b Software Institute - USI Lugano, Switzerland
c University of Passau, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2022
Received in revised form 11 January 2023
Accepted 12 January 2023
Available online 18 January 2023

Keywords:
Self-driving cars
Software simulation
Regression testing
Test case selection
Continuous integration

Simulation environments are essential for the continuous development of complex cyber-
physical systems such as self-driving cars (SDCs). Previous results on simulation-based 
testing for SDCs have shown that many automatically generated tests do not strongly 
contribute to the identification of SDC faults, hence do not contribute towards increasing 
the quality of SDCs. Because running such “uninformative” tests generally leads to a waste 
of computational resources and a drastic increase in the testing cost of SDCs, testers 
should avoid them. However, identifying “uninformative” tests before running them remains 
an open challenge. Hence, this paper proposes SDC-Scissor, a framework that leverages 
Machine Learning (ML) to identify SDC tests that are unlikely to detect faults in the 
SDC software under test, thus enabling testers to skip their execution and drastically 
increase the cost-effectiveness of simulation-based testing of SDCs software. Our evaluation 
concerning the usage of six ML models on two large datasets characterized by 22’652 tests 
showed that SDC-Scissor achieved a classification F1-score up to 96%. Moreover, our results 
show that SDC-Scissor outperformed a randomized baseline in identifying more failing 
tests per time unit.
Webpage & Video: https://github .com /ChristianBirchler /sdc -scissor

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

* Corresponding author.
E-mail address: birchler.chr@gmail.com (C. Birchler).
https://doi.org/10.1016/j.scico.2023.102926
0167-6423/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.scico.2023.102926
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2023.102926&domain=pdf
https://github.com/ChristianBirchler/sdc-scissor
http://creativecommons.org/licenses/by/4.0/
mailto:birchler.chr@gmail.com
https://doi.org/10.1016/j.scico.2023.102926
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Metadata

Table 1
Code metadata.

Code metadata description

Current code version v2.1.2
Permanent link to code/repository used for this code version https://github.com/ScienceofComputerProgramming/SCICO-D-22-00093
Legal Code License GNU General Public License (GPLv3)
Code versioning system used Git
Software code languages, tools, and services used Python 3.9, BeamNG.tech v0.24.0.2
Compilation requirements, operating environments and dependencies Windows 10
If available, link to developer documentation/manual https://sdc-scissor.readthedocs.io/en/latest/
Support email for questions birchler.chr@gmail.com, spanichella@gmail.com

1. Introduction

Cyber-physical systems (CPSs) are complex systems that leverage physical capabilities from hardware components [1]
and find applications in various domains including Robotics, Transportation and Healthcare. For instance, in the automotive 
domain, self-driving cars (SDCs) are one emerging example of CPS, expected to impact the transport system of our society 
profoundly. Specifically, human driving errors cause more than 90% of car accidents [2] and SDCs have the potential to 
reduce such errors and eliminate most of these accidents. However, the recent fatal crashes involving SDCs suggest that the 
advertised large-scale adoption of SDCs appears optimistic [1].

Automated testing of SDCs (and in general CPS) to ensure their proper behavior is still an open research challenge [3]. We 
argue that enabling cost-effective testing automation in Continuous Integration (CI) pipelines for SDCs is critical to address 
the safety and reliability requirements of SDCs [2,4]. However, current SDC testing practices have several limitations: (i) 
difficulty in testing SDCs using representative, safety-critical tests [5]; (ii) difficulty in assessing SDC’s behavior in different 
environmental conditions [2].

To deal with such safety-related challenges, there is an increasing interest in adopting agile development paradigms 
within the CPS safety-critical domains [6,7] to identify hazards and elicit safety requirements iteratively [8]. Consequently, 
researchers proposed the usage of Digital-Twins1 technologies to simulate and test CPSs in a diversified set of scenarios 
[9–13] to support testing automation [14,15], regression testing [12,16], and debugging [17,18] activities. In this context, 
simulation-based testing has been suggested as a promising direction to improve the SDC testing practices [19–21] because 
simulation environments enable efficient test execution, reproducible results, and testing under critical conditions [22]. 
Additionally, simulation-based testing can be as effective as traditional field operational testing [3,23]. However, the testing 
space of simulation environments is infinite, which poses the challenge of exercising the SDC behaviors adequately [24,25]. 
Given the limited budget devoted to testing activities, it is paramount that developers test SDCs in a cost-effective fashion: 
using test suites optimized to reduce testing effort (time) without affecting their ability to identify faults [26,27,25].

To increase SDC testing cost-effectiveness, we propose SDC-Scissor (SDC coSt-effeCtIve teSt SelectOR), a framework that 
leverages Machine Learning (ML) approaches for identifying tests that are unlikely to detect faults and skips them before 
their execution, hence, reducing the time spent in executing tests. Specifically, we refer to tests that do not expose a fault 
as safe and deem them irrelevant. On the contrary, we consider tests that expose a fault (e.g., an SDC drives out of the road) 
as relevant and refer to them as unsafe.

SDC-Scissor exploits six ML models trained on SDC simulation-based tests features that can be computed before the 
actual test execution (i.e., input features) to classify whether the tests are safe or unsafe [12,16].

We originally proposed employing Machine Learning to classify simulation-based tests and select them in [12] for making 
the testing of SDCs more cost-effective. This paper extends our original work by making the following contributions:

• A structural refactoring and extension of SDC-Scissor framework to provide an extendable open API (e.g., facilitating the 
integration of other SDC simulation environments, or an interface to implement an own AI or an own test generator) as 
well as the possibility of using the z coordinate (defining a road position in three-dimensional space), which increases 
the level of realism of generated tests (given the non-flat roads).

• An extension of original datasets that include new configurations of the test subject (i.e., risk factors RF1, RF1.5, and 
RF2) and additional 14’107 simulations-based tests.

• We extended the automated, ML-based approach integrating more ML models trained on features of SDC simulation-
based tests to classify whether SDC tests are safe or unsafe (computed before the actual test execution);

• An empirical study comparing the cost-effectiveness of the proposed approach with a randomized baseline as well as 
a Mean Decrease in Gini analysis to describe the most important SDC features used by the ML models in identifying 
unsafe tests.

1 A digital twin is a virtual representation of a real-time digital counterpart of a physical object or process.
2

https://github.com/ScienceofComputerProgramming/SCICO-D-22-00093
https://sdc-scissor.readthedocs.io/en/latest/
mailto:birchler.chr@gmail.com
mailto:spanichella@gmail.com


C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Fig. 1. The SDC-Scissor’s architecture.

Fig. 2. The SDC-Scissor’s main APIs.

• To enable future studies, we made SDC-Scissor compatible with the recent version of BeamNG.tech (v0.24.0.2), which 
allows the generation of more diverse tests, with the possibility to test multiple cars simultaneously.

Through a large empirical study concerning the usage of six ML models on two large datasets characterized by around 
23’000 SDC simulation-based tests, we assessed the performance of SDC-Scissor in optimizing simulation-based testing. 
Our evaluation showed that SDC-Scissor achieved a higher classification F1-score (between 56% and 96%) with the best 
performing ML models and outperformed a randomized baseline in identifying failing tests as well as in reducing the time 
spent running uninformative (i.e., safe) tests.

2. The SDC-Scissor tool

In this section, we give an overview of SDC-Scissor’s software architecture and its main usage scenarios (Fig. 1); we 
describe the simulation environment it uses (i.e., BeamNG.tech) and its main APIs (Fig. 2); finally, we discuss in details the 
components, the approach and the technologies behind SDC-Scissor.

2.1. SDC-Scissor architecture overview & main scenarios

SDC-Scissor supports two main usage scenarios: Benchmarking and Prediction. In the Benchmarking scenario, developers 
leverage SDC-Scissor to determine the best ML model(s) to classify SDC simulation-based tests as safe or unsafe. In the 
Prediction scenario, instead, developers use those model(s) to classify and select newly generated test cases.

SDC-Scissor Software Architecture implements these scenarios by means of the following software components (Fig. 1): 
(i) SDC-Test Generator generates random SDC simulation-based tests, and (ii) SDC-Test Executor executes them. 
3



C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Table 2
Full Road Attributes extracted by the SDC-Features Extractor.
Feature Description Range

direct_distance Euclidean dist. between start and end (m) [0 – 490]
road_distance Tot. length of the driving path (m) [50.6 – 3,317]
num_l_turns Nr. of left turns on the driving path [0 – 18]
num_r_turns Nr. of right turns on the driving path [0 – 17]
num_straights Nr. of straight segments on the driving path [0 – 11]
total_angle Cumulative turn angle on the driving path [105 – 6,420]

The test results produced by SDC-Test Executor are recorded and used to label tests as safe or unsafe; (iii) SDC-
Features Extractor extracts input features of the executed SDC tests, while (iv) SDC-Benchmarker uses these 
features and corresponding labels as input to train the ML models and determine which model best predicts the tests 
that are more likely to detect faults in SDCs; finally, (v) SDC-Predictor uses the ML models to classify newly generated 
test cases and enables test selection.

2.2. BeamNG.tech’s simulation environment

SDC-Scissor uses BeamNG.tech to execute SDC tests as physically accurate and photo-realistic driving simulations. 
BeamNG.tech can procedurally generate tests [24] and was recently adopted in the ninth edition of the Search-Based Soft-
ware Testing (SBST) CPS testing tool competition [28].

BeamNG.tech is organized around a central game engine that communicates with the physics simulation, the UI, and the 
BeamNGpy API.2 The UI can be used for game control and manual content creation (e.g., assets, scenarios). For example, 
developers can use the world editor to create or modify the virtual environments that are used in the simulations; testers, 
instead, can create test scripts implementing driving scenarios (i.e., the tests). The API, instead, allows the automated gener-
ation and execution of tests, the collection of simulation data (e.g., camera images, LIDAR point clouds) for training, testing, 
and validating SDCs. It also enables driving agents to drive simulated vehicles and get programmatic control over running 
simulations (e.g., pause/resume simulations, move objects around). The game engine manages the simulation setup, camera, 
graphics, sounds, gameplay, and overall resource management. The physics core, instead, handles resource-intensive tasks 
such as collision detection and basic physics simulation; it also orchestrates the concurrent execution of the vehicle sim-
ulators. The vehicle simulators —one for each of the simulated vehicles— simulate the high-level driving functions and the 
vehicle sub-systems (e.g., drivetrain, ABS).

We employ the BeamNG.AI3 lane-keeping system as the test subject for our evaluation: the driving agent is shipped 
with BeamNG.tech and drives the car by computing an ideal driving trajectory to stay in the center of the lane while 
driving within a configurable speed limit. As explained by BeamNG.tech developers, the risk factor (RF) is a parameter that 
controls the driving style of BeamNG.AI: low-risk values (e.g., 0.7) result in smooth driving, whereas high-risk values (e.g., 
1.7 and above) result in an edgy driving that may lead the ego-car to cut corners [12].

2.3. The SDC-Scissor’s approach and technology overview

SDC-Scissor integrates the extensible testing pipeline defined by the SBST tool competition4 in its SDC-Test Execu-
tor. We use the SBST tool competition infrastructure since it allows us to (i) seamlessly execute the tests in BeamNG.tech 
and (ii) distinguish between safe and unsafe tests based on whether the self-driving car keeps its lane (non-faulty tests) or 
depart from it (faulty tests) [24]. Consequently, SDC-Scissor can accommodate various SDC-Test Generators for gener-
ating SDC simulation-based tests. In this paper, we demonstrate SDC-Scissor by using the Frenetic test generation [29], one 
of the most effective tool submitted to the SBST tool competition.

SDC-Scissor predicts whether the tests are likely to be safe or unsafe before their execution using input features that
SDC-Features Extractor extracted. Specifically, this component extracts Full Road Features (FRFs), i.e., a set of SDC 
features that describe the global characteristics of the tests. Those features include the main road attributes (see Table 2) 
and road statistics concerning the road composition (see Table 3). Road statistics are calculated in three steps: (i) extraction 
of the reference driving path that the ego-car has to follow during the test execution (e.g., the road segments that the car 
needs to traverse to reach the target position); (ii) extraction of metrics available for each road segment (e.g., length of road 
segments); and (iii) computation of standard aggregation functions on the collected road segments metrics (e.g., minimum 
and maximum).

SDC-Scissor relies on the SDC-Benchmarker to determine the ML model that best classifies the SDC tests that are 
likely to detect faults. It follows an empirical approach to do so: given a set of labeled tests and corresponding input fea-

2 beamngpy is available on PyPI and Github (https://github .com /BeamNG /BeamNGpy).
3 https://wiki .beamng .com /Enabling _AI _Controlled _Vehicles #AI _Modes.
4 https://github .com /se2p /tool -competition -av.
4

https://github.com/BeamNG/BeamNGpy
https://wiki.beamng.com/Enabling_AI_Controlled_Vehicles#AI_Modes
https://github.com/se2p/tool-competition-av


C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Table 3
Full Road Statistics extracted by the SDC-Features Extractor.
Feature Description Range

median_angle Median turn angle on the driving path (DP) [30 – 330]
std_angle Std. Deviation of turn angles on the DP [0 – 150]
max_angle Max. turn angle on the DP [60 – 345]
min_angle Min. turn angle on the DP [15 – 285]
mean_angle Average turn angle on the DP [52.5 – 307.5]
median_pivot_off Median turn radius on the DP [7 – 47]
std_pivot_off Std. Deviation of turn radius on the DP [0 – 22.5]
max_pivot_off Max. turn radius on the DP [7 – 47]
min_pivot_off Min. turn radius on the DP [2 – 47]
mean_pivot_off Average turn radius on the DP [5.3 – 47]

tures, SDC-Benchmarker trains and evaluates an ensemble of standard ML models using the well-established sklearn5

library. Next, it assesses ML models’ quality using either 10-fold cross-validation or a testing dataset; and, finally, selects the 
best performing ML models according to Precision, Recall, and F1-score metrics [12]. Noticeably, SDC-Scissor can use many 
different ML models; however, in this work, we consider Naive Bayes [30], Logistic Regression [31], Random Forests [32], 
Gradient Boosting [33], Support Vector Machine [34], and Decision Tree [35]. We do so because these ML models have been 
successfully used for defect prediction or other classification problems in Software Engineering [36,37].

Finally, the SDC-Predictor uses the ML models to predict the likelihood that newly generated SDC tests are safe 
or not. Specifically, developers have the possibility to select the ML models recommended by the SDC-Benchmarker
(considered most accurate), or they can select other models of their choice.

2.4. SDC-Scissor’s main APIs

SDC-Scissor was refactored and is now more modularized into components that offer APIs for enhancing better exten-
sibility of the tool, as shown in Fig. 2. The CLI component is where the user directly interacts with the tool, as described 
in Section 3. Furthermore, other test generators can be integrated by implementing the relevant API of the SDC-Test 
Generator component. The main goal of the refactoring was to enable SDC-Scissor to work with other simulators for 
the future (e.g., CARLA). For this purpose, we define Simulation APIs for simulators. The current version of SDC-Scissor 
provides an implementation of the API for the BeamNG.tech simulator. SDC-Scissor also provides a ML Component and API 
for the training and testing of the machine-learning models. This allows SDC-Scissor to experiment easier on more diverse 
test selection approaches for the research on simulation-based regression testing on SDCs.

3. Using SDC-Scissor

SDC-Scissor tool is openly available and can be used as a Python command-line utility via poetry6 or pip. In the 
following sections, it will be explained how SDC-Scissor can be installed and used for Benchmarking and Prediction as shown 
in Fig. 1.

3.1. Installation

git clone https://github.com/ChristianBirchler/sdc-scissor.git
cd sdc-scissor
poetry install
poetry run sdc-scissor [COMMAND] [OPTIONS]

To simplify SDC-Scissor’s usage, we also enable to execute it as a Docker7 container:

docker build --tag sdc-scissor .
docker run --volume "$(pwd)/results:/out" --rm

sdc-scissor [COMMAND] [OPTIONS]

As we detail below, SDC-Scissor’s command-line supports the execution of the main usage scenarios described in Sec-
tion 2.2 by taking appropriate commands and inputs (see Fig. 3).
3.2. Benchmarking

Test generation. To generate SDC tests by running the Frenetic generator within a given number of desired tests, SDC-
Scissor requires the following command:

5 https://scikit -learn .org/.
6 https://python -poetry.org/.
7 https://www.docker.com.
5

https://scikit-learn.org/
https://python-poetry.org/
https://www.docker.com


C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Fig. 3. The SDC-Scissor’s fine-grained view.

poetry run sdc-scissor generate-tests -c {number of tests to generate}

Automated test labeling. SDC-Scissor labels tests as safe and unsafe by executing them in BeamNG.tech. Since 
BeamNG.tech cannot be run as a Docker container, labeling tests can only be run locally (i.e., outside Docker). This la-
beling facility allows developers to create datasets that can be used for the training and validation of ML models (e.g., 
ML-based prediction of unsafe tests) in the context of Benchmarking. Generating a labeled dataset requires a set of already 
generated SDC tests and the execution of the following command:

poetry run sdc-scissor label-tests -t /path/to/tests --rf {risk factor} --oob {OOB criteria}

If the car drives out of the lane to a certain percentage, also referred to as the out-of-bound (OOB) criteria, then the test 
is labeled as unsafe. Based on the arguments for the risk factor and OOB, the tests will be labeled. With different values for 
those arguments, the tests can be labeled differently and, therefore, also affect the ML-based predictions.

Feature extraction. The ML models require as inputs features as described in Table 2 and Table 3. SDC-Scissor extracts 
those features from the tests and stores them in a separate CSV file with the following command:

poetry run sdc-scissor extract-features -t /path/to/tests

ML models evaluation. For identifying the models that SDC-Scissor could use for the prediction, SDC-Scissor implements 
a 10-fold cross-validation strategy on the labeled dataset. The following command tells SDC-Scissor to benchmark all the 
configured ML models:

poetry run sdc-scissor evaluate-models --csv /path/to/road_features.csv

3.3. Prediction

For the prediction use case scenario, we generate new tests with the same command as in Section 3.2. The goal is to 
predict the test outcome before executing them. For this reason, we generate new tests for which we do not know the 
oracle yet.

Test outcome prediction. SDC-Scissor classifies unlabeled tests, i.e., it predicts their outcome, using a trained ML model 
with the following command:

poetry run sdc-scissor predict-tests -t /path/to/tests

Random baseline evaluation. SDC-Scissor allows to select tests using a random strategy that provides a baseline evalua-
tion with the following command:

poetry run sdc-scissor evaluate-cost-effectiveness -csv /path/to/road_features.csv

4. Empirical evaluation

In this paper, we seek to answer the following research questions:

• RQ1: To what extent is it possible to predict safe and unsafe SDC test cases?
• RQ2: To what extent SDC-Scissor is cost-effective compared to a random baseline?
• RQ3: To what extent are different road features relevant to predict safe and unsafe SDC test cases?

We are interested to investigate the extent to which predicting unsafe SDC test cases before executing them (RQ1) is 
possible in a practical sense (e.g., do we achieve a reasonable precision, recall, and F-measure?). More importantly, we also 
investigate whether SDC-Scissor allows reducing testing cost dedicated to the execution of so-called irrelevant tests (RQ2), 
i.e., test cases not leading to actual faults. To achieve these objectives, as described below, we, first of all, constructed a 
dataset of SDC test cases that can be used to experiment with such research questions. Hence, we specifically investigated 
the usage of SDC road features to predict SDC test outcomes as well as investigate the ability of SDC-Scissor to outperform a 
6



C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Table 4
Datasets Summary.

Dataset Test Data Points

Subject Unsafe Safe Total

Dataset 1 BeamNG.AI cautious 1’318 (28%) 3’397 (72%) 4’715
BeamNG.AI moderate 1’502 (34%) 2’908 (66%) 4’410
BeamNG.AI reckless 1’680 (34%) 3’302 (66%) 4’982

Dataset 2 BeamNG.AI cautious 312 (26%) 866 (74%) 1’178
BeamNG.AI moderate 2’543 (45%) 3’095 (55%) 5’638
BeamNG.AI reckless 1’655 (96%) 74 (4%) 1’729
Total 9’010 (40%) 13’642 (60%) 22’652

Table 5
Performance of the best three ML models with dataset split 80/20. The best 
results are shown in boldface.
Dataset RF Model Prec. Recall F1-score

Dataset 1 RF 1 Logistic Regression 40.3% 55.5% 46.7%
Naïve Bayes 40.3% 49.8% 44.6%
Random Forest 38.9% 57.5% 46.4%

Dataset 1 RF 1.5 Logistic Regression 45.8% 60.9% 52.3%
Naïve Bayes 40.2% 92.5% 56.1%
Random Forest 41.3% 30.5% 35.1%

Dataset 1 RF 2 Logistic Regression 39.4% 53.6% 45.5%
Naïve Bayes 34.6% 100.0% 51.4%
Random Forest 38.3% 53.3% 44.6%

Dataset 2 RF 1 Logistic Regression 43.3% 87.3% 57.9%
Naïve Bayes 36.7% 92.1% 52.5%
Random Forest 40.7% 79.4% 53.8%

Dataset 2 RF 1.5 Logistic Regression 78.1% 65.3% 71.1%
Naïve Bayes 79.3% 53.2% 63.6%
Random Forest 75.8% 62.7% 68.6%

Dataset 2 RF 2 Logistic Regression 99.6% 82.8% 90.4%
Naïve Bayes 98.7% 94.3% 96.4%
Random Forest 99.7% 92.7% 96.1%

random baseline. Finally, we also discuss the most important features (RQ3) used for enabling the prediction in the context 
of our work.

Dataset construction. We evaluated SDC-Scissor conducting a large study on two datasets, referred to as Dataset 1 and 
Dataset 2, that contain over 22, 000 SDC tests (see Table 4). We adopted the following experimental setup to obtain compre-
hensive and unbiased training datasets. For Dataset 1, we randomly generated 13, 207 valid tests using Frenetic [29] as well 
as collected input features and executed them to collect labels. For the Dataset 2, instead, we generated 8, 545 tests using 
AsFault [24].

AI engine and risk factor considered. It is important to note that in executing all those tests, we experimented with 
different BeamNG.AI risk factors as it influences the ego-car driving style. Specifically, we considered three configurations: 
cautious (RF 1.0), moderate (RF 1.5), and reckless (RF 2.0) driver. Using different values for the risk factor enabled us to 
study the effectiveness of SDC-Scissor on various SDCs’ driving styles. We empirically validated our expectations by running 
the cautious, moderate, and reckless drivers to generate both Dataset 1 and Dataset 2 tests. From Table 4 we can observe that 
the number of unsafe tests increased with increasing values of BeamNG.AI’s risk factor. This result seems to suggest that 
the risk factor may influence the safety of BeamNG.AI and the outcome of tests. However, we would like to make the note 
that for Dataset 1, the ratio of safe (66%) and unsafe (34%) tests between moderate (RF 1.5) and reckless (RF 2.0) drivers is 
identical.

ML models and training process considered. To assess the performance of SDC-Scissor in optimizing simulation-based 
SDCs testing via test selection (i.e., in selecting unsafe tests before executing them), for both Dataset 1 and Dataset 2, we 
experimented with the ML models mentioned in Section 2.3 trained and validated using an 80/20 data split.

4.1. Results

Prediction (RQ1). As reported in Table 5, on Dataset 1 SDC-Scissor accurately identified unsafe test cases, with F1-score 
ranging between 35.1% and 56.1%. On Dataset 2, instead, SDC-Scissor identified unsafe test cases with F1-score ranging 
between 52.5% and 96.4%.

Cost-effectiveness (RQ2). In the context of regression testing, we want to select only relevant test scenarios so that 
the testing cost (execution time) is reduced. We evaluated the cost-effectiveness of SDC-Scissor by computing the ratio of 
selected unsafe test scenarios and the overall test execution time. Thus, the cost-effectiveness score is computed as
7



C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Table 6
Cost-effectiveness (= number of unsafe tests selected

simulation time of all selected tests ) of SDC-
Scissor against a random baseline on Dataset 1 with RF 1.5.
Model Cost-effectiveness

SDC-Scissor Random Baseline

Random Forest 0.29% 0.22%
Gradient Boosting 0.40% 0.19%
SVM 0.35% 0.19%
Naive Bayes 0.24% 0.22%
Logistic Regression 0.37% 0.22%
Decision Tree 0.23% 0.26%

Fig. 4. Mean Decrease in Gini when using RF 1.0. The top 10 features are visualized (simulation time attributes included).

C E = number of selected unsafe tests

simulation time of all selected tests
.

We compared the cost-effectiveness of SDC-Scissor with a random baseline test selector. In the case of SDC-Scissor, the 
models were trained on 80% of Dataset 1 RF 1.5. SDC-Scissor selected from the remaining 20% 10 tests that are most likely 
to be unsafe, whereas the random baseline selector picks 10 tests at random. As shown in Table 6, SDC-Scissor has only in 
the case of the Decision Tree model a worse cost-effectiveness of 0.23% against the baseline with a cost-effectiveness score 
of 0.26%. For the Gradient Boosting, Support Vector Machine, and Logistic Regression classifiers we have the highest differences 
of more than 0.1%. Overall, we observed a better cost-effectiveness score of SDC-Scissor compared to a random baseline test 
selector. In general, with our approach, we detect more unsafe tests as the baseline per time unit.

Feature Importance (RQ3). To better understand the features that contribute more to the prediction of safe and unsafe 
tests, we computed the Mean Decrease in Gini (also called Mean Decrease in Impurity) [38–40] considering the designed 
road features. As shown in Fig. 4, Fig. 5 and Fig. 6, we can find the (top 10) features considered as important for the 
identification of safe and unsafe tests, for different risk factors (RF1.0, RF1.5, and RF2). It is interesting to observe from 
such features that the three top most important features vary depending on the specific configuration of the driving agent 
(i.e., RF). This observation suggests that certain characteristics of the road play an important role in the safety of the SDC, 
depending on the driving style (i.e., each RF). Specifically, for RF 1.0, the top three most important road features are the 
Direct Distance, Road Distance, and Median Angle. For RF 1.5, the top three most important road features are the Road Distance, 
8



C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Fig. 5. Mean Decrease in Gini when using RF 1.5. The top 10 features are visualized (simulation time attributes included).

Direct Distance, and Median Pivot Off, while for RF 2.0, the top three most important road features are the Road Distance, 
Direct Distance, and Mean Pivot Off. Hence, for less cautious driving styles (for RF > 1.0), the most important feature is always 
represented by the Road Distance, followed by the Direct Distance feature and the Mean/Median Pivot Off feature. Finally, for 
a more cautious driving style (for RF = 1.0), the most important feature is represented by the Direct Distance, followed by 
the Road Distance and the Median Angle features. In a practical sense, this means that for a more cautious driving style (for 
RF = 1.0), the safety of the SDC is influenced by the direct/road distance and the turn angle on the driving path (i.e., the 
distance and the presence of turns are together influencing the SDC behavior). Complementary, for a less cautious driving 
style (for RF > 1.0), the safety of the SDC is influenced by the direct/road distance and the average/median radius of the 
road segments turned on the test track (i.e., the distance and the radius of specific road segments are together influencing 
the SDC behavior).

4.2. Threats to validity

SDC-Scissor is an ML-based test selector that depends on the data for training the models. The datasets were labeled 
with the internal BeamNG.AI of the used BeamNG simulator. The use of a single AI engine may introduce a threat to validity 
because the results might be biased since no other experiments with different AI were considered. Furthermore, we do not 
know how BeamNG.AI behaves with different weather conditions, which would increase the level of realism. The use of 
different simulators with different physical behavior could alter the results because BeamNG is a soft-body physics simulator 
with high fidelity that simulates deformations of multiple parts of the car, such as the chassis, engine, transmission, tires, 
etc., whereas other simulators like CARLA use a rigid-body physics engine. Furthermore, the ML models are trained with the 
default configurations. The prediction performances might be improved so that the results change and the ranking of the 
models vary.

5. Conclusions

This paper presented SDC-Scissor, an ML-based test selection approach that classifies SDC simulation-based tests as likely 
(or unlikely) to expose faults before executing them. SDC-Scissor trains ML models using input features extracted from 
driving scenarios, i.e., SDC tests, and uses them to classify SDC tests before their execution. Consequently, it selects only 
those tests that are predicted to likely expose faults. Our evaluation shows that SDC-Scissor successfully selected unsafe test 
9



C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
Fig. 6. Mean Decrease in Gini when using RF 2.0. The top 10 features are visualized (simulation time attributes included).

cases across different driving styles and drastically reduced the execution time dedicated to executing safe tests compared 
to a random baseline approach.

As future work, we plan to replicate our study on further SDC datasets, AI engines, and more advanced SDC features to 
study how the results generalize in various autonomous systems domains. Additionally, given our close contacts with the 
BeamNG.tech team, we plan the integration of SDC-Scissor into BeamNG.tech environment to enable researchers and SDC 
developers to use SDC-Scissor as a cost-effective testing environment for SDCs. Finally, we plan to investigate the use of 
SDC-Scissor in other CPS domains, such as drones, to investigate how it performs when testing focuses on different types 
of safety-critical faults. Specifically, it is important to investigate approaches that are more human-oriented or are able to 
integrate humans into-the-loop [36,37], via multi-objective optimizations [41,42].

Last but not least, our empirical research has some practical implications. It is our understanding that SDC-Scissor could 
be used in an industrial context to identify relevant test scenarios. When it comes to different levels of testing like Software-
in-the-loop or Hardware-in-the-loop, SDC-Scissor provides a platform to conduct those experiments without manual human-
based interaction. The testing costs can be reduced, and the fault detection rate is increased compared to a random test 
selector.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests:

Christian Birchler reports financial support was provided by European Commission. Nicolas Ganz reports financial support 
was provided by European Commission. Sajad Khatiri reports financial support was provided by European Commission. 
Sebastiano Panichella reports financial support was provided by European Commission. Alessio Gambi reports financial 
support was provided by German Research Foundation.

Acknowledgements

We gratefully acknowledge the Horizon 2020 (EU Commission) support for the project COSMOS (DevOps for Complex 
Cyber-physical Systems), Project No. 957254-COSMOS) and the DFG project STUNT (DFG Grant Agreement n. FR 2955/4-1).
10



C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
References

[1] R. Baheti, H. Gill, Cyber-physical systems, Impact Control Technol. 12 (1) (2011) 161–166.
[2] N. Kalra, S. Paddock, Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res., Part A, 

Policy Pract. 94 (2016) 182–193, https://doi .org /10 .1016 /j .tra .2016 .09 .010.
[3] A. Afzal, C. Le Goues, M. Hilton, C.S. Timperley, A study on challenges of testing robotic systems, in: 2020 IEEE 13th International Conference on 

Software Testing, Validation and Verification (ICST), IEEE, 2020, pp. 96–107.
[4] J. Kim, S. Chon, J. Park, Suggestion of testing method for industrial level cyber-physical system in complex environment, in: International Conference 

on Software Testing, Verification and Validation Workshops, 2019.
[5] F. Ingrand, Recent trends in formal validation and verification of autonomous robots software, in: International Conference on Robotic Computing, 

2019, pp. 321–328.
[6] F. Zampetti, R. Kapur, M.D. Penta, S. Panichella, An empirical characterization of software bugs in open-source cyber-physical systems, J. Syst. Softw. 

192 (2022) 111425, https://doi .org /10 .1016 /j .jss .2022 .111425.
[7] A.D. Sorbo, F. Zampetti, C.A. Visaggio, M.D. Penta, S. Panichella, Automated identification and qualitative characterization of safety concerns reported 

in uav software platforms, ACM Trans. Softw. Eng. Methodol. (2022).
[8] J. Cleland-Huang, M. Vierhauser, Discovering, analyzing, and managing safety stories in agile projects, in: 26th IEEE International Requirements Engi-

neering Conference, RE 2018, Banff, AB, Canada, August 20-24, 2018, 2018, pp. 262–273.
[9] Z. Huang, Y. Shen, J. Li, M. Fey, C. Brecher, A survey on ai-driven digital twins in industry 4.0: smart manufacturing and advanced robotics, Sensors 

21 (19) (2021) 6340, https://doi .org /10 .3390 /s21196340.
[10] K. Bojarczuk, N. Gucevska, S.M.M. Lucas, I. Dvortsova, M. Harman, E. Meijer, S. Sapora, J. George, M. Lomeli, R. Rojas, Measurement challenges for cyber 

cyber digital twins: experiences from the deployment of Facebook’s WW simulation system, in: F. Lanubile, M. Kalinowski, M.T. Baldassarre (Eds.), 
ESEM ’21: ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, Bari, Italy, October 11-15, 2021, ACM, 2021, 
pp. 2:1–2:10.

[11] A. Piazzoni, J. Cherian, M. Azhar, J.Y. Yap, J.L.W. Shung, R. Vijay, Vista: a framework for virtual scenario-based testing of autonomous vehicles, in: 2021 
IEEE International Conference on Artificial Intelligence Testing, AITest 2021, Oxford, United Kingdom, August 23-26, 2021, IEEE, 2021, pp. 143–150.

[12] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, S. Panichella, Cost-effective simulation-based test selection in self-driving cars software with sdc-scissor, in: 
The 29th IEEE International Conference on Software Analysis, Evolution, and Reengineering, 2022.

[13] V. Nguyen, S. Huber, A. Gambi, SALVO: automated generation of diversified tests for self-driving cars from existing maps, in: 2021 IEEE International 
Conference on Artificial Intelligence Testing, AITest 2021, Oxford, United Kingdom, August 23-26, 2021, IEEE, 2021, pp. 128–135.

[14] M. Alcon, H. Tabani, J. Abella, F.J. Cazorla, Enabling unit testing of already-integrated AI software systems: the case of apollo for autonomous driving, 
in: F. Leporati, S. Vitabile, A. Skavhaug (Eds.), 24th Euromicro Conference on Digital System Design, DSD 2021, Palermo, Spain, September 1-3, 2021, 
IEEE, 2021, pp. 426–433.

[15] F. Wotawa, On the use of available testing methods for verification & validation of ai-based software and systems, in: H. Espinoza, J. McDermid, X. 
Huang, M. Castillo-Effen, X.C. Chen, J. Hernández-Orallo, S.Ó. hÉigeartaigh, R. Mallah (Eds.), Proceedings of the Workshop on Artificial Intelligence 
Safety 2021 (SafeAI 2021) Co-Located with the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021), Virtual, February 8, 2021, in: CEUR 
Workshop Proceedings, vol. 2808, 2021, CEUR-WS.org, http://ceur-ws .org /Vol -2808 /Paper _29 .pdf, 2021.

[16] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, A. Panichella, Single and multi-objective test cases prioritization for self-driving cars in virtual 
environments, ACM Trans. Softw. Eng. Methodol. (2022).

[17] S.C. Smith, S. Ramamoorthy, Attainment regions in feature-parameter space for high-level debugging in autonomous robots, in: IEEE/RSJ International 
Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 - Oct, 1, 2021, IEEE, 2021, pp. 6546–6551.

[18] D. Roy, C. Hobbs, J.H. Anderson, M. Caccamo, S. Chakraborty, Timing debugging for cyber-physical systems, in: Design, Automation & Test in Europe 
Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5, 2021, IEEE, 2021, pp. 1893–1898.

[19] A. Afzal, D.S. Katz, C. Le Goues, C.S. Timperley, Simulation for robotics test automation: developer perspectives, in: 2021 14th IEEE Conference on 
Software Testing, Verification and Validation (ICST), IEEE, 2021, pp. 263–274.

[20] C.S. Timperley, A. Afzal, D.S. Katz, J.M. Hernandez, C.L. Goues, Crashing simulated planes is cheap: can simulation detect robotics bugs early?, in: 11th 
IEEE International Conference on Software Testing, Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13, 2018, IEEE Computer Society, 
2018, pp. 331–342, http://doi .ieeecomputersociety.org /10 .1109 /ICST.2018 .00040.

[21] D. Wang, S. Li, G. Xiao, Y. Liu, Y. Sui, An exploratory study of autopilot software bugs in unmanned aerial vehicles, in: Proceedings of the 29th ACM 
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2021, pp. 20–31.

[22] A. Gambi, T. Huynh, G. Fraser, Generating effective test cases for self-driving cars from police reports, in: Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, ACM Press, 2019.

[23] A. Dosovitskiy, G. Ros, F. Codevilla, A.M. López, V. Koltun, CARLA: an Open Urban Driving Simulator, Conference on Robot Learning, vol. 78, Machine 
Learning Research, 2017, pp. 1–16, http://proceedings .mlr.press /v78 /dosovitskiy17a .html.

[24] A. Gambi, M. Mueller, G. Fraser, AsFault: testing self-driving car software using search-based procedural content generation, in: 2019 IEEE/ACM 41st 
International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), IEEE, 2019.

[25] R.B. Abdessalem, S. Nejati, L.C. Briand, T. Stifter, Testing vision-based control systems using learnable evolutionary algorithms, in: 2018 IEEE/ACM 40th 
International Conference on Software Engineering (ICSE), IEEE, 2018, pp. 1016–1026.

[26] S. Yoo, M. Harman, Using hybrid algorithm for Pareto efficient multi-objective test suite minimisation, J. Syst. Softw. 83 (4) (2010) 689–701.
[27] D.D. Nucci, A. Panichella, A. Zaidman, A.D. Lucia, A test case prioritization genetic algorithm guided by the hypervolume indicator, IEEE Trans. Softw. 

Eng. 46 (6) (2020) 674–696, https://doi .org /10 .1109 /TSE .2018 .2868082.
[28] S. Panichella, A. Gambi, F. Zampetti, V. Riccio, Sbst Tool Competition 2021, International Conference on Software Engineering, Workshops, ACM, 2021.
[29] E. Castellano, A. Cetinkaya, C.H. Thanh, S. Klikovits, X. Zhang, P. Arcaini, Frenetic at the SBST 2021 tool competition, in: International Workshop on 

Search-Based Software Testing, IEEE, 2021, pp. 36–37.
[30] R. Caruana, A. Niculescu-mizil, An empirical comparison of supervised learning algorithms, in: Proc. 23 Rd Intl. Conf. Machine Learning (ICML’06, 2006, 

pp. 161–168.
[31] C. Sammut, G.I. Webb (Eds.), Logistic Regression, Springer US, Boston, MA, 2010, p. 631.
[32] T.K. Ho, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20 (8) (1998) 832–844, https://doi .org /

10 .1109 /34 .709601.
[33] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Lightgbm: a highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. 

Syst. 30 (2017).
[34] S. Suthaharan, Support vector machine, in: Machine Learning Models and Algorithms for Big Data Classification, Springer, 2016, pp. 207–235.
[35] S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE Trans. Syst. Man Cybern. 21 (3) (1991) 660–674.
[36] S. Panichella, A.D. Sorbo, E. Guzman, C.A. Visaggio, G. Canfora, H.C. Gall, How can I improve my app? Classifying user reviews for software maintenance 

and evolution, in: International Conference on Software Maintenance and Evolution, IEEE, 2015, pp. 281–290.
11

http://refhub.elsevier.com/S0167-6423(23)00008-4/bib2D824FE629EF6D431F32FC998E235115s1
https://doi.org/10.1016/j.tra.2016.09.010
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibA8AB962DBF96EC522B9041258DF4B37Fs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibA8AB962DBF96EC522B9041258DF4B37Fs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibEC2CCDF84AB053EEED950E48B556EA0Es1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibEC2CCDF84AB053EEED950E48B556EA0Es1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib51225D644795019025EE25FE28E01159s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib51225D644795019025EE25FE28E01159s1
https://doi.org/10.1016/j.jss.2022.111425
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibF2146041674060D6546722274B5132FAs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibF2146041674060D6546722274B5132FAs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibF26F8797E050760F8C68FF9CFFA49EEDs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibF26F8797E050760F8C68FF9CFFA49EEDs1
https://doi.org/10.3390/s21196340
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib46A9F06DA41BBAD73656CE4CD1745600s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib46A9F06DA41BBAD73656CE4CD1745600s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib46A9F06DA41BBAD73656CE4CD1745600s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib46A9F06DA41BBAD73656CE4CD1745600s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib6AED8BE55AC01084C176353458EA13CEs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib6AED8BE55AC01084C176353458EA13CEs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib2AC12A9DBBF1EAA7CE73C1445D133667s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib2AC12A9DBBF1EAA7CE73C1445D133667s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibB19A78672E1BFF148A89512295FEB260s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibB19A78672E1BFF148A89512295FEB260s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibEFEF0291E61752C2DA710E1CB98D2DF6s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibEFEF0291E61752C2DA710E1CB98D2DF6s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibEFEF0291E61752C2DA710E1CB98D2DF6s1
http://ceur-ws.org/Vol-2808/Paper_29.pdf
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5D50192A50F7A48086668F9B96FEB9E6s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5D50192A50F7A48086668F9B96FEB9E6s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib72FE89B78F220E2A687187D6F616D846s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib72FE89B78F220E2A687187D6F616D846s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib544BDF535B8D08FB4C5F183CBA79593As1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib544BDF535B8D08FB4C5F183CBA79593As1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib57F830C2BAB8AA3B960DD931394EDB14s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib57F830C2BAB8AA3B960DD931394EDB14s1
http://doi.ieeecomputersociety.org/10.1109/ICST.2018.00040
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib29CAB2033392C543633529EB45EAACDCs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib29CAB2033392C543633529EB45EAACDCs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib6CB1EA32F973D55BA586F345D9D662CAs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib6CB1EA32F973D55BA586F345D9D662CAs1
http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib4DB21CE698D745C5F68041CF4E337991s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib4DB21CE698D745C5F68041CF4E337991s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib266ED423D32114F36EB11A4644BC431Ds1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib266ED423D32114F36EB11A4644BC431Ds1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib7F286A666EB759DD9D5445DC1E79F79Es1
https://doi.org/10.1109/TSE.2018.2868082
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibD95CE58FF8803105B732F8955F056405s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibFF7BA58BE9D7BC69715C7F4086319BBDs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibFF7BA58BE9D7BC69715C7F4086319BBDs1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib865F8D49B8D153C731451F0559F5752Ds1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib865F8D49B8D153C731451F0559F5752Ds1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib385303FCEF97C7FA2DCF4A50C2D3E6CEs1
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib25FB005CE7A17FBD284FE9451A39B453s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib25FB005CE7A17FBD284FE9451A39B453s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib4057296014443BF6919F689245B85C06s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bibA40A48E07726C427A5B4D45866A8B559s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib2D9119899515E60508CE27A6D97B1D9As1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib2D9119899515E60508CE27A6D97B1D9As1


C. Birchler, N. Ganz, S. Khatiri et al. Science of Computer Programming 226 (2023) 102926
[37] A. Di Sorbo, S. Panichella, C.V. Alexandru, J. Shimagaki, C.A. Visaggio, G. Canfora, H.C. Gall, What would users change in my app? Summarizing app 
reviews for recommending software changes, in: Proc. Int’l Symposium on Foundations of Software Engineering (FSE), 2016, pp. 499–510.

[38] F. Martinez-Taboada, J.I. Redondo, Induction of decision trees, PLoS ONE (2020).
[39] C. Gerstenberger, D. Vogel, On the efficiency of gini’s mean difference, Stat. Methods Appl. 24 (4) (2015) 569–596, https://doi .org /10 .1007 /s10260 -015 -

0315 -x.
[40] A. Trautsch, S. Herbold, J. Grabowski, Static source code metrics and static analysis warnings for fine-grained just-in-time defect prediction, in: 2020 

IEEE International Conference on Software Maintenance and Evolution (ICSME), 2020, pp. 127–138.
[41] G. Canfora, A.D. Lucia, M.D. Penta, R. Oliveto, A. Panichella, S. Panichella, Multi-objective cross-project defect prediction, in: Sixth IEEE International 

Conference on Software Testing, Verification and Validation, ICST 2013, March 18-22, 2013, IEEE Computer Society, Luxembourg, Luxembourg, 2013, 
pp. 252–261.

[42] G. Grano, C. Laaber, A. Panichella, S. Panichella, Testing with fewer resources: an adaptive approach to performance-aware test case generation, IEEE 
Trans. Softw. Eng. 47 (11) (2021) 2332–2347, https://doi .org /10 .1109 /TSE .2019 .2946773.
12

http://refhub.elsevier.com/S0167-6423(23)00008-4/bib36C78B84F455612EB6C1C6F107E33EA0s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib36C78B84F455612EB6C1C6F107E33EA0s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib19682C332033AEAAD50DE69846D58427s1
https://doi.org/10.1007/s10260-015-0315-x
https://doi.org/10.1007/s10260-015-0315-x
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5A50E9509C6567512C3EC977FC2D2479s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5A50E9509C6567512C3EC977FC2D2479s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5679FBAD2ED7E15B933E23B12C0EC063s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5679FBAD2ED7E15B933E23B12C0EC063s1
http://refhub.elsevier.com/S0167-6423(23)00008-4/bib5679FBAD2ED7E15B933E23B12C0EC063s1
https://doi.org/10.1109/TSE.2019.2946773

	Cost-effective simulation-based test selection in self-driving cars software
	Metadata
	1 Introduction
	2 The SDC-Scissor tool
	2.1 SDC-Scissor architecture overview & main scenarios
	2.2 BeamNG.tech’s simulation environment
	2.3 The SDC-Scissor’s approach and technology overview
	2.4 SDC-Scissor’s main APIs

	3 Using SDC-Scissor
	3.1 Installation
	3.2 Benchmarking
	3.3 Prediction

	4 Empirical evaluation
	4.1 Results
	4.2 Threats to validity

	5 Conclusions
	Declaration of competing interest
	Acknowledgements
	References


