
www.embedded-world.eu

Real Time Motion Tracking for Augmented

Reality with TOF Camera and Vulkan Rendering

Marcel Wegmann
Institute of Embedded Systems
ZHAW School of Engineering

Winterthur, Switzerland

Prof. Dr. Matthias Rosenthal
Institute of Embedded Systems
ZHAW School of Engineering

Winterthur, Switzerland

Abstract— Augmented Reality is the concept of enhancing the
real world with virtual objects or information with projections
into a viewfinder or through specialized goggles. Simpler forms of
Augmented Reality – like a heads-up display in a car – do not need
to estimate the camera’s motion, an object, or the user. However,
more elaborate implementations of Augmented Reality need to
track things and, more importantly, the camera’s movement itself.
The applications in which Augmented Reality could be leveraged
range from social interaction over pedestrian navigation to various
use cases in different professions. Multiple companies already
have shown closed source or custom-tailored programming
interfaces, either running on smartphones or shipped with
industry-targeted goggles. The tracking of real-world objects or
surfaces is possible with the provided interfaces, but the
algorithms behind the different functions are corporate secrets.
This paper describes an approach for an end-to-end pipeline in a
prototype of an Augmented Reality platform without using
commercial interfaces. A time-of-flight camera provides a depth-
image that allows reconstruction of the recorded scene as a cloud
of SIFT features. Frame-by-frame analysis of the point cloud
estimates the camera’s motion by highly parallel processing and a
three-dimensional extension of the RANSAC algorithm. An
accelerometer and a gyroscope provide additional data, fused with
a Kalman filter to improve the motion estimation. A regular color
camera acts as a viewfinder, and Vulkan renders the result to a
monitor. Enhancing the matching quality of SIFT features
between consecutive frames of a time-of-flight camera using a
three-dimensional RANSAC algorithm led to over two times as
many correct matches.

Keywords—AR, augmented reality, time-of-flight camera, tof,
RANSAC, SIFT, Kalman Filter

I. INTRODUCTION
Augmented Reality - or AR – is the concept of projecting

virtual objects into the real world. Phone screens, tablet
computers, and specialized goggles render virtual objects over
the camera image or display them on translucent screens. A form
of Augmented Reality is a heads-up display, for example, in cars
to project the current speed and navigation information to the
windshield or in airplanes for comprehensive avionic
information.

In contrast, Virtual Reality – or VR – limits itself to entirely
virtual worlds, into which the user dives. While Virtual Reality

hardware is already available through off-the-shelf goggles,
which lets users meet other people and play games in virtual
worlds, Augmented Reality is mainly limited to smartphone
applications. Currently, it lacks specialized off-the-shelf
hardware, other than niche products specialized for specific
industries.

Augmented Reality faces numerous technical challenges.
Projecting a virtual object – for example, a flowerpot – into the
real world requires the system to recognize a table and find an
unoccupied location. Apart from placing decoration or furniture,
a pair of Augmented Reality goggles could project helpful
information into the air. A mechanic could have virtual
schematics or instructions floating beside his work, while
another virtual monitor displays a video phone call with the
customer. Hand detection and gesture control would enable
interaction with virtual objects. Another example could be
pedestrian navigation, projecting arrows to the street.

AR goggles need to react in real-time to any motion of the
user’s head. Any latency would break immersion as virtual
objects lose the connection with their anchor point in the real
world. A flowerpot would jump on the table, and arrows on the
street would start to float and collide with walls. Fast and reliable
motion tracking of the system itself is vital for avoiding visual
glitches.

Time-of-Flight (TOF) cameras provide depth information on
its image, by measuring the distance on each camera pixel. The
information provided by a TOF camera allows reconstructing
the scene and estimating the motion of the camera between two
camera frames.

II. CONCEPT
For demonstration of the developed motion estimation

algorithm, a full AR pipeline was created, containing video
capturing, stream-processing, sensor-fusion, and 3D rendering,
implemented on a Nvidia Jetson Xavier AGX platform. The
stream-processing reconstructs the camera image into a 3D
cloud from which the rigid motion from the prior frame is
estimated. The sensor-fusion mixes the estimated motion from
the TOF camera with data of an IMU for enhancing the
accuracy.

III. MOTION ESTIMATION FROM TOF IMAGE
The TOF camera captures both a black-and-white image and

a corresponding depth map of the same frame. To gain linearity,
lens- and radial correction are required and applied to the image
and the depth map. For estimating the motion between
concurrent camera frames, individual feature points in both
B/W-images need to be matched. This study utilizes the SIFT
algorithm for feature extraction, but any other feature-point
extractor should work, if a method for brute-force matching
generates a significant subset of correct feature pairs.

Fig. 1. Sample B/W-Image with drawn feature points, part of of a sequence in

which the camera got rotated.
Green dots: Frame k-1
Red dots: Frame k
Lines: Brute-Force matches

As visible in Fig. 1, the brute-force matcher generated both
correct and false matches, that need to be identified for reliable
processing. Correct matches follow a rigid motion in 3D, which
is a combination of rotation and translation. Identifying the
correct matches also allows improving the matching quality of
the bad matches, as gained information helps rematching the
clouds.

A. ToF depthmap to 3D transformation
Mapping the image feature point clouds into 3D space by

utilizing the TOF depth map, allows analysis of the matches
regarding the rigid motion. A TOF depth map contains radial
data, that needs to be rectified first, either by knowing the angle
for each pixel or by measuring the cosine individually for each
pixel by a measurement on a flat surface.

After rectification, the de-projection of 2D feature points
into a 3D map is linear, based on a distance calibration for the
depth map and a focal length calibration on the TOF camera’s
optics.

B. Rigid Motion from three points
In three-dimensional space, at least three matched point-

pairs are required to determine the applied rotation and
translation between two consecutive point clouds 𝑃𝑘 and 𝑃𝑘−1.
The following method also allows calculating the rigid motion

on more than three matches. The calculation is a multi-step
algorithm described in the following, with 𝑝𝑖,𝑘⃗⃗ ⃗⃗ ⃗⃗ being the 𝑖-th
point of the 𝑘-th cloud and n being the number of matched point-
pairs.

1) Calculate center points 𝑐 of both point clouds:

ck⃗⃗ ⃗ =
∑ pi,k⃗⃗⃗⃗⃗⃗ n

i=1

n
 ck−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

∑ pi,k−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗n
i=1

n

2) Calculate centered point clouds 𝑄𝑘 and 𝑄𝑘−1:
qi,k⃗⃗ ⃗⃗ ⃗⃗ = pi,k⃗⃗⃗⃗⃗⃗ − ck⃗⃗ ⃗  ; qi,k−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = pi,k−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − ck−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  i  =  1,  2,  3,   …  ,  n
3) Compute the covariance matrix of centered point clouds:

S = [

∙
𝑞1,𝑘

 ∙

∙
 𝑞2,𝑘

 ∙

∙
 𝑞3,𝑘

 ∙
 ⋯] ∙ [

∙
𝑞1,𝑘−1

 ∙

∙
 𝑞2,𝑘−1

 ∙

∙
 𝑞3,𝑘−1

 ∙
 ⋯]

𝑇

4) Compute the singular value decomposition (SVD) of S:
𝑆 = 𝑈Σ𝑉𝑇

5) Calculate the rotation matrix R:

R = V(
1 0 0
0 1 0
0 0 𝑑𝑒𝑡(𝑉𝑈𝑇)

)𝑈𝑇

The term 𝑑𝑒𝑡(𝑉𝑈𝑇) in the intermediate matrix corrects the
result, if the SVD led to a reflection instead of a rotation. This
would be numerically sound but would not reflect the real
behavior.

6) Compute the translation:
t = c𝑘⃗⃗ ⃗ − 𝑅c𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

The mathematical proof of this method can be found in [3].

C. 3D RANSAC algorithm
Random Sample Consensus (RANSAC) is a well-known

algorithm in 2D panoramic stitching to find good matches and
allows correcting bad matches with new information. The
standard approach uses regular images without depth map and
allows finding the homology between two projections. Having
brute-force matched features with 3D coordinates, and knowing
that good matches fulfill a rigid motion, allows extending the
RANSAC algorithm.

As three points are required for calculating a rigid motion in
3D space, to each point-pair two additional point-pairs get
randomly assigned, ensuring that each point-pair gets checked at
least once. On each group of three point-pairs, the SVD
algorithm gets performed to find the rigid motion individually
for each point-pair trio.

Each point-pair trio results in an individual rigid motion, that
then gets tested on all brute-force matches. If a tested brute-force
match fulfills the rigid motion calculated from the point-trio, it
gets assigned to a list. The result with the most matches in the
list wins the competition with the list containing the subset of
correct matches. An additional calculation of the rigid motion
using all the correct matches at once allows improving the
estimated rigid motion from the brute-force matcher.

A significant portion of data points, namely all false
matches, would be left out, if no further action would be taken.
The rigid motion from the random sample consensus allows
discarding all the brute-force matches and re-matching the data-
points based on their position in 3D space. Due to noise and

www.embedded-world.eu

changes in perspective, it is not guaranteed that every point can
be assigned to a suitable counterpart. The rematched set of point-
pairs allows further improvement of the rigid motion, by
performing the calculation on this larger set of matches. The
result of this final step is the optimal rigid motion to extract from
this set of features and used as the output of the TOF motion
extractor.

IV. SENSOR FUSION WITH IMU
In any augmented reality platform, multiple sources for

rotation and position estimation need to be combined, allowing
more accurate readings. As a secondary data source, a low cost
6-axis IMU is used. One possibility to perform sensor fusion for
motion estimation is the use of a Kalman filter. A Kalman filter
is a model-based predictor-corrector algorithm, whose model
describes the relations between multiple inputs and outputs. The
used notation for the Kalman filter is as follows:

Prediction:

𝑥 𝑘|𝑘−1 = 𝐹𝑘−1𝑥 𝑘−1

𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘−1

Correction:

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

𝑥 𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾𝑘(𝑧 𝑘 − 𝐻𝑘𝑥 𝑘|𝑘−1)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1

In which 𝑥 is the system-state vector, containing positions,
velocities, and accelerations for all three dimensions as well as
the orientation and the rotation speed. F is the state-transition-
model, translating the prior state to the prediction. P is the
estimate covariance, Q the covariance of the process noise, K the
Kalman gain, H the observation model and R the covariance of
the observation noise. The vector 𝑧 contains the sensor data of
the current iteration.

Rotational motion information from the gyroscope and the
TOF algorithm get transformed into quaternions, to only have
four values and numerical stability in the Kalman filter’s system-
state vector. The required Hamilton Product got implemented in
matrix form for the state-transition-model F.

𝑥𝑜𝑟𝑖,𝑘|𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐹𝑜𝑟𝑖 ∙ 𝑥𝑜𝑟𝑖,𝑘 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

(

𝑟𝑎
𝑟𝑏
𝑟𝑐
𝑟𝑑

)

𝑘|𝑘−1

= [

𝑟�̇� −𝑟�̇� −𝑟�̇� −𝑟�̇�
𝑟�̇� 𝑟�̇� 𝑟�̇� −𝑟𝑐̇
𝑟�̇� −𝑟�̇� 𝑟�̇� 𝑟�̇�
𝑟�̇� 𝑟�̇� −𝑟�̇� 𝑟�̇�

] ∙ (

𝑟𝑎
𝑟𝑏
𝑟𝑐
𝑟𝑑

)

𝑘−1

As both sensory inputs, gyroscope and TOF algorithm,
provide the rotation speed, the correction step is duplicated, and
the two inputs are chained one after another. For completeness,
the rotation speed is also part of the system-state vector and
translated in the state-transition-model with a 3x3 identity
matrix.

For translation, the standard procedure is utilized for each
dimension separately, estimating the position, velocity, and
acceleration. This step is performed for each dimension once, as

motion in one direction does not affect the motion in the other
direction.

𝑥𝑡𝑟𝑎𝑛𝑠,𝑘|𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐹𝑡𝑟𝑎𝑛𝑠 ∙ 𝑥𝑡𝑟𝑎𝑛𝑠,𝑘 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

(
𝑝
𝑣
𝑎
)

𝑘|𝑘−1|

= [
1 Δt

Δt2

2
0 1 Δt
0 0 1

] ∙ (
𝑝
𝑣
𝑎
)

𝑘−1

Merging the three 3x3 translation system-state matrices with
the orientation and rotation speed matrices as sub-matrices, the
resulting state-transition-model is of dimension 17x17.

𝐹 =

[

𝐹𝑡𝑟𝑎𝑛𝑠,𝑥 0 0 0 0

0 𝐹𝑡𝑟𝑎𝑛𝑠,𝑦 0 0 0

0 0 𝐹𝑡𝑟𝑎𝑛𝑠,𝑧 0 0

0 0 0 𝐹𝑜𝑟𝑖 0
0 0 0 0 𝐼3𝑥3]

For translational motion, the piecewise white noise model
was used for the process noise, while for the rotation, values got
estimated heuristically.

V. IMPLEMENTATION
The described methodology was implemented and tested on

a Nvidia Jetson Xavier (8GB) system, using a PiEye Nimbus 3D
camera as data source. The processing system features a 6-core
ARM64 CPU and a 384-Core Volta GPU, that can be utilized
with Nvidia CUDA. Its 8GB of LPDDR4x RAM can both be
accessed by the CPU and GPU, allowing the use of shared
variables to avoid time-costly memory copy commands. The
Nvidia Jetson Xavier system is mounted on a custom baseboard,
allowing an additional color camera to be used via FPDLink
III.[4]

As the PiEye Nimbus 3D camera relies on a Raspberry Pi as
its host system, a simple UDP/IP server-client socket between
the Nvidia Jetson Xavier and the Raspberry Pi serves as video
input. The TOF camera lens correction and the radial
recalculation to achieve linearity in the data is solved by multiple
lookup tables that get accessed by CUDA kernels. For the
extraction and matching of SIFT features [1], and for the 3x3
matrix SVD on CUDA [2], third-party libraries have been used,
the surrounding algorithmics were developed in C++ and
CUDA.

The implementation parallelizes the algorithm, wherever
possible using CUDA. The limited resolution of the used TOF
camera limits the number of extracted features, so that –
depending on the scene – around 300-500 parallel SVDs get
performed. The estimated TOF motion is fused with the IMU
data in the Kalman filter for the sake of having a complete
pipeline. For demonstration, a virtual rectangle gets drawn into
a viewfinder window using Vulkan. The rectangle reacts to the
spatial position and orientation of the camera head, as it were a
stationary object in the real-world space.

The processing time for the entire pipeline lies around 15ms,
which would be sufficient for 60fps. Although, the frame rate of
the TOF camera limits the system to 15-20fps. The performance
may drop when using a higher resolution TOF camera.

VI. RESULTS

A. 3D RANSAC algorithm and rigid motion extraction
The 3D RANSAC feature matching was tested without

motion, and against rotational motion as well in translational
motion alongside and perpendicular to the optical axis. Across
multiple frames during the motion, the total number of extracted
features, the number of correctly paired brute-force matches and
the number of RANSAC matches are compared in Fig. 2. Both
regular image noise and depth noise of the TOF camera
influence the matching performance negatively. The threshold is
the size of a sphere, in which a matched feature is considered
correct.

Fig. 2. Comparison of the feature matching performance between the brute-

force matcher and the RANSAC algorithm without motion.
Blue dots: Total features
Red dots: RANSAC matches
Grey dots: correct Brute-Force matches

The chosen threshold of 0.0005 translates to a sphere of
about 4.4cm in diameter of real-world space. On this threshold,
the matching performance in motion was tested and the
measurements listed in Fig.3.

TABLE I.

Measurement (avg) Rotation Translation X Translation X

Total Features 435.9 400.0 488.4

Brute-force Matches 117.9 104.2 112.6

RANSAC Matches 280.2 262.5 284.3

Fig. 3. Per-Frame average perfocmance of the feature matching approaches

As visible in Fig. 2 And Fig. 3, the RANSAC algorithm
consistently leads to an improvement of the matching quality of
more than 100% compared to the brute-force matches. A direct
comparison is shown in Fig 4, where in contrast to Fig. 1 the
RANSAC features are shown.

The motion extraction of the TOF camera can easily be
compared to the IMU by performing rotation different axis as
shown in Fig 5. The rotation speed extraction roughly follows
the gyroscope output but is tainted by more noise. Fig. 6 shows
the extracted velocity of two consecutive translational motions
– forth and back – in a single direction.

From the results, it becomes apparent that the camera noise
of the TOF camera bleeds into the speed and rotation estimation.
The low resolution of about 205x265 pixels of the lens corrected
image and the slow frame rate of about 15-20fps negatively

influence the result as well. As visible in Fig. 6, noise spikes
negatively influence the integration results.

Fig. 4. Sample B/W-Image with drawn feature points, part of of a sequence in

which the camera got rotated. Note that only features, whose have
gotten matched by the brute-force-matcher got drawn, but there are
more in the database. At the end of every line, there should’ve been a
green dot.
Green dots: Frame k-1
Red dots: Frame k
Lines: RANSAC matches

Fig. 5. Comparison of rotation output between the TOF algorithm (red) and the

IMU (blue) when rotating the camera head in each axis.

Fig. 6. Plot (purple) and integration (integration) of the translational motion in

two separate directions. In each direction, a fast motion and a slow
motion were performed and measured.

www.embedded-world.eu

B. Kalman filter for sensor fusion
The Kalman filter outputs were only tested in a rough

manner, as there was no equipment available for reference
measurements. Like with the results of the TOF camera
algorithm, the camera head was rotated and translated around
and along the three axes. Fig. 7 shows how the Kalman filter for
rotation speed provides a stable rotation output. The rotation
speed outputs follow the gyroscope more closely, than the TOF
camera, which lies in the measured noise values of the two data
sources.

Fig. 7. Plot of the rotation speed (top three) and the rotation (bottom row) of

the Kalman filter. Top three: Blue: Gyroscope, red: TOF rotation and
green: Kalman Filter output.
Bottom row: red: x-axis, purple: y-axis, blue: z-axis.

For translational motion, the Kalman filter gets tainted by the
hysteresis of the accelerometer. The generated offset provided
by the hysteresis leads the acceleration to drift away, which leads
the accelerometer’s raw double integration for the position to
quickly diverge, as seen in Fig. 8. The Kalman filter is able to
correct that, but its output is worse than the raw integration of
the TOF camera algorithm.

Fig. 8. Plot of the translational motion. On top the position, in the middle the
velocity and on bottom the acceleration. In blue, the accelerometer and
raw integrations for velocity and position. In red: ToF camera velocity
output and its raw integration. In green: Kalman filter output.

ACKNOWLEDGMENT
I am thankful to my supervisor, Prof. Dr. Matthias

Rosenthal, for allowing this deep dive into Augmented Reality
and the support given during this thesis. Furthermore, I am
grateful for the support and advice from the ZHAW InES
HPMM team. Special thanks, especially to Lukas Neuner, for
his valuable inputs during this thesis and for proof-reading this
document. Additional thanks are given to Alexey Gromov for
his support in setting up the Jetson Xavier and proofreading this
document.

I am thankful for the chance of gaining further experience in
CUDA, Vulkan and for the time given to learn new topics in the
math involved in three-dimensional rendering.

In addition, I thank all my friends and family members for
giving support and motivation.

REFERENCES
[1] M. Björkman, N. Bergström and D. Kragic, "Detecting, segmenting and

tracking unknown objects using multi-label MRF inference", CVIU, 118,
pp. 111-127, January 2014. ScienceDirect

[2] Ming Gao* and Xinlei Wang* and Kui Wu* and Andre Pradhana and
Eftychios Sifakis and Cem Yuksel and Chenfanfu Jiang, “GPU
Optimization of Material Point Methods” ACM Transactions on Graphics
(Proceedings of SIGGRAPH ASIA 2018), vol. 37, Nr 6

[3] Olga Sorkine-Hornung and Michael Rabinovich. Ethz note: Least-squares
rigid motion using svd, January 2017.

[4] Alexey Gromov. Optimal Platform for Embedded Supercomputers.
Master’s thesis, ZHAW, Zurich University of Applied Sciences,
Switzerland, 2020

