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Abstract. We present some work in progress on the development of a
probabilistic chemical compiler, being able to make a plan of how to
create a three-dimensional agglomeration of artificial hierarchical cellu-
lar constructs. Such programmable discrete units offer a wide variety of
technical innovations, like a portable biochemical laboratory being able
to produce macromolecular medicine on demand. This paper focuses on
one specific issue of developing such a compiler, namely the problem of
first studying and then predicting the spatial transition from an origi-
nally one-dimensional lineup of droplets into a three-dimensional, almost
spherical arrangement, in which the droplets form a network via bilayers
connecting them and in which they are contained within some outer hull.
The network created by the bilayers allows the droplets to communicate
with their neighbors and to exchange chemicals contained within them,
thus enabling a complex successive biochemical reaction scheme.
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1 Introduction

Over the last decades, huge progress has been made in biochemistry. A large
amount of knowledge about the constituents and the processes within a cell
has been gathered [1]. Even a new research field, that of “synthetic biology”, has
evolved [2], in which natural objects like the DNA in cells are purposedly altered
or replaced in order to achieve some desired outcome, like producing some drug.
Still, some questions remain unanswered so far, like one of the basic questions
for the origin of life: Which constituent of a cell came first, the RNA [3] or the
cell membrane [4]?

In our approach, which we intend to follow within the European Horizon 2020
project ACDC, we do not consider fully equipped cells but the most simplified
cell-like structures, being droplets comprised of some fluid and surrounded by
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Fig. 1. Sketch of the initial and final states of the spatial rearrangement of droplets.

another fluid. As an additional feature, we also allow droplets being contained
within some outer hulls, playing the role membranes have for cells. Droplet gen-
eration, especially in the field of microfluidics, has been extensively studied over
the past years [5–8] and has become an easy-to-use technology after the intro-
duction of 3D printing technologies [9, 10]. A stream of fluid is broken up into
droplets within a T-junction or some other antechamber, as the form of spher-
ical droplets is energetically favorable when compared to a continuous stream
of fluid. Hereby the applied pressure should be neither too small nor too large,
but in a range so that the system is in the so-called dripping regime, in which
droplets of fluid are produced in equal time intervals [11]. The size of the droplets
can be controlled by the flow rates of the two fluids. In the experiments of our
collaborating group in Cardiff, the droplets leave the antechamber, then move
lined up in an almost one-dimensional ordering, and enter an expansion chamber
while several of them are surrounded by some newly generated hull. Within this
capsule, the droplets rearrange themselves in a three-dimensional way [11], as
shown schematically in Fig. 1.

This paper is organized at follows: in the next two sections, we describe
the steps to be taken before we can start developing a chemical compiler. For
this purpose, we first need to simulate the arrangement process and second to
compare the resulting configurations. In the last section, we give an outlook to
the development of the chemical compiler itself.

2 Simulating the arrangement process

In order to study this process and its outcome, we develop a computer simulation.
After a short overview of existing and widely used simulation techniques, we
present our plan for the generation of a new Monte Carlo Movement Simulation
Technique.

2.1 Simulation techniques for microfluidic systems

Over the past years, various approaches for simulating droplets moving in fluids
have already been developed, from macroscale approaches, in which not single
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droplets but only droplet densities are considered, to microscale approaches,
in which the state variables of the various droplets are changed gradually and
individually. Often the methods had been originally developed for other systems
but then adopted for the application to microfluidics.

One macroscale approach is the Lattice Boltzmann method [12, 13], with
which the time evolution of the density and velocity field of a fluid is simulated
on a two-dimensional or three-dimensional lattice. Alternately, collision steps and
streaming steps are applied. For the collisions, often the simplified Bhatnagar-
Gross-Krook relaxation term [14] is used. While part of the density remains at
its current lattice site, other parts are then usually allowed to flow to all sites
within a Chebyshev distance of 1, i.e., not only the directly neighboring sites
but also the diagonally displaced neighbors are used for flow directions. The
huge advantage of this model is that it is very fast and ideally suited for parallel
enablement, such that only small amounts of computing time are needed for
simulations. The disadvantages are that sometimes lattice artefacts occur and
that one has to find out about appropriate rules for flows in various directions.
Sometimes two lattices displaced by half a lattice unit in all spatial directions or
even more lattices are used instead of one lattice only. A further disadvantage is
that this method only considers densities of droplets but not the singular droplets
themselves. Thus, this method is not applicable for our investigations, as we need
to know about the exact locations and velocities of the various droplets.

On the other hand, the probably most microscopic but also most computer
time consuming method is Molecular Dynamics [15, 16]. Hereby, the forces be-
tween the various particles are considered. The velocities and the locations of
the particles are iteratively and simultaneously updated using specific problem-
dependent time integrators, which e.g. preserve the total energy of the system.
While this method is suited for considering our problem on an atomic or molec-
ular level, we are unable to use it due to the large system size on the one hand
and the lack of computing time on the other hand. Thus, we now turn our at-
tention to two types of simulation techniques with an intermediate requirement
for computing time, but also with the possibility to simulate the movements of
the various droplets in a way that their exact locations and velocities can be
determined exactly.

A wide variety of Monte Carlo simulation techniques has been applied to
microscopic simulations of discs in two dimensions and spheres in three dimen-
sions for decades, see e.g. [17]. A subclass of these techniques is called the Direct
Simulation Monte Carlo technique [18]. It can be applied to study movements
in systems for which the mean free path of a particle is of the same size or
larger than its representative physical length scale. The method assumes that
free movement phases and collision phases can be decoupled over time periods
that are smaller than the mean collision time. There are various ways to model
collisions [19], some of them seeming to be rather artificial. A widely used mod-
eling of collisions assumes the particles to be point particles. Then a small box
is created around a randomly chosen particle. One of the other particles within
this box is then randomly chosen for the simulation of a collision process. The
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velocities of the two particles are taken into account and the rules for a direct
collision of these particles if they were point particles are determined. However,
some randomness is added to the direction of the relative velocity vector before
updating the velocity vectors of the two particles in order to mimick also a non-
direct collision of extended particles in a random way. There are also other Monte
Carlo approaches like the Griesbauer method [20]. It introduces springs between
the various particles, such that we also consider this method not to be applicable
for our problem, as the various droplets move entirely independent of each other
at the beginning in the experiments, as can be observed in movies generated
by Jin Li [21]. Only at a later stage when they are already surrounded by some
hull, the droplets gradually settle down, reducing their individual behaviors, and
start to move coherently.

A further widely used approach called Dissipative Particle Dynamics [24–
26] attempts to relate macroscopic non-Newtonian flow properties of a fluid to
its microscopic structure. For the determination of the velocity of the particles,
three types of forces are considered which act on a particle. A particle inter-
acts with all other particles within some predefined cut-off distance. There are
conservative forces with which the particles interact, then there is a dissipative
force, and finally also a random force with zero mean is added. The dissipative
and random forces can be chosen in a way that they form a thermostat keeping
the mean temperature of the system constant. By choosing the random force be-
tween each pair of particles in a way that it acts antisymmetric on both particles
as required by Newton’s third law, the local momentum of the particles is con-
served. Also this technique is well suited for parallel enablement if using spatial
domain decomposition. The diameters of the various domains of course need to
be much larger than the cut-off distance. However, artefacts due to the spatial
decomposition can occur and the geometry of the experiments to be simulated
can become rather complex, such that we consider also this method not to be
applicable for our problem.

2.2 A new Monte Carlo Movement Simulation approach

Fig. 2. From left to right: Two droplets in a hull can either stay standalone or touch
each other, forming a bilayer to some smaller or larger extent, and either stay almost
spherical or lose their spherical shapes.

Summarizing, we intend to create our own simulation technique, with which
we want to simulate the experimentally found transition from an originally one-
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dimensional lineup of droplets into a three-dimensional arrangement. During this
rearrangement process, some droplets touching each other will form bilayers [27].
These bilayers can be broken up and reformed, depending on the stability of the
bilayers [28]. When bilayers are created, the droplets can lose their spherical
shape, as shown in Fig. 2. We will test various ways to simulate the formation,
change, and destruction of bilayers and the change of the shape of the cores
in a computationally not too expensive way. While the specific spatial setup of
an experiment with proposed values for widths and lengths of various parts of
the junction can be easily employed also in the Monte Carlo simulation, it is
a harder task to find appropriate values for the probabilities for deceleration
and acceleration of droplets as well as for bilayer formation and destruction
and also for some introduction of random movement. These values depend on
various experimental parameters, like pressure and viscosity, and also on the
various radius values of the droplets. We intend to adjust the parameters for
the Monte Carlo simulation in a way that the resulting configurations reflect the
three-dimensional arrangements of droplets as found in experiments.

3 Comparing resulting configurations

Fig. 3. Top: Two resulting three-dimensional arrangements of droplets filled with vari-
ous chemicals. Bottom: Corresponding bilayer networks between the droplets. We made
these bilayer networks visible by reducing the size of the droplets and printing a con-
necting edge between a pair of neighboring droplets if they have formed a bilayer.
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After this first part of our objective has been achieved, we have a closer look
at the resulting arrangements. As the experiments performed by Jin Li have
already shown [21], there is not the one and only resulting three-dimensional
packing of droplets. Instead, various arrangements are possible, as depicted in
Fig. 3. However, when looking closely at the resulting configurations, one finds
that they are not entirely random but often rather similar to each other and
that maybe even some configurations can be considered as part of a group of
configurations having several properties in common. Whether such groups of
configurations have an entirely identical backbone [29–31] in common or whether
they share some properties with some larger probabilities, as found for dense
packings of multidisperse systems of hard discs [32] will be seen. We also need
to question the influence of the excess of polydispersity of the radius values.

Fig. 4. Left: Overlap matrix with a structure dominated by iterated replica symmetry
breaking. Right: corresponding ultrametric tree.

Complex systems often exhibit the property of ultrametricity in configuration
space [22, 23]. A standard metric d has to obey to the triangle inequality

d(i, j) ≤ d(i, k) + d(k, j), (1)

with d(i, j) denoting the distance from node i to node j, i.e., a direct connection
cannot be longer than a detour via a third node k. For an ultrametric, this
inequality is replaced by the ultrametricity condition

d(i, j) ≤ max{d(i, k), d(k, j)}. (2)

If permuting the nodes i, j, and k, one finds that this condition is fulfilled if
the nodes are placed on the edges of equilateral triangles or isosceles triangles
with short base. A distance between two configurations can be defined using
an overlap measure between the configurations. The larger the overlap is, the
smaller is the distance. After the application of an appropriate permutation of
these configurations, which can e.g. be found with an optimization technique
leading to a clustered ordering of configurations [33], the overlap matrix can
exhibit a structure as schematically depicted in the left graphics of Fig. 4. In
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this example, one finds that the overall set of configurations is split in two
large groups of configurations. The overlap values of the configurations to other
configurations in the same group are larger than those to configurations in the
other group. Each group can then be split in four subgroups in this example,
which in turn exhibit even larger overlap values within each subgroup. The
subgroups are then split again. In statistical physics, one speaks of iterated
replica symmetry breaking if such a behavior is observed. Ideally, this replica
symmetry breaking property corresponds to ultrametricity, i.e., one can derive
also another representation by generating an ultrametric tree. The right graphic
in Fig. 4 shows such a tree. At the root, the tree splits into two branches, which
in turn split into four subbranches each. These subbranches then split again into
three subbranches each. The various configurations then form the leaves of the
tree on the right side.

As the property of ultrametricity was also found for a related hard disc
packing problem [34], we expect it will also turn up for this problem. As already
mentioned, ultrametricity is related to iterated replica symmetry breaking and
the possibility to generate ultrametric trees. For their generation, we will use the
neighbor-joining method, which is a standard tool to reconstruct phylogenetic
trees [35, 36], as well as finding a clustered ordering of configurations [33].

4 Final steps towards a probabilistic biochemical
compiler

If we have achieved this second part of our objective of understanding and pre-
dicting the outcome of an experimental setup, i.e., when the various groups of
three-dimensional arrangements of droplets have been generated, we will be able
to create a probabilistic chemical compiler in the final stage of this project. We
aim at creating plans for e.g. a step-wise generation of some desired macro-
molecules, which are gradually constructed from smaller units, contained in the
various droplets, with the successive chemical reactions enabled via the bilayers
formed between neighboring droplets. Thus, the compiler has

– to determine bilayer networks with which the desired reaction chains leading
e.g. to the macromolecules we want to produce can be performed and

– to design and to govern the experiment leading to such a bilayer network.

Such a compiler has been exemplarily already developed for one specific molecule
[37]. In this project, this compiler has to be generalized and also made proba-
bilistic because of the various possible outcomes in the rearrangement process.
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32. Müller, A., Schneider, J.J., Schömer, E.: Packing a multidisperse system of hard
disks in a circular environment. Phys. Rev. E 79, 021102 (2009).

33. Schneider, J.J., Bukur, T., Krause, A.: Traveling Salesman Problem with Cluster-
ing. J. Stat. Phys. 141, 767-784 (2010).
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