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Abstract—In this paper, we report on our use of cloud-robotics
solutions to teach a Robotics Applications Programming course
at Zurich University of Applied Sciences (ZHAW). The usage of
Kubernetes based cloud computing environment combined with
real robots – turtlebots and Niryo arms – allowed us to: 1) min-
imize the set up times required to provide a Robotic Operating
System (ROS) simulation and development environment to all
students independently of their laptop architecture and OS; 2)
provide a seamless “simulation to real” experience preserving
the exciting experience of writing software interacting with the
physical world; and 3) sharing GPUs across multiple student
groups, thus using resources efficiently.

We describe our requirements, solution design, experience
working with the solution in the educational context and areas
where it can be further improved. This may be of interest to
other educators who may want to replicate our experience.

Index Terms—Cloud Robotics, Kubernetes, Robotic Applica-
tions, Edge Computing.

I. INTRODUCTION

The School of Engineering at ZHAW has been offering

the “Robotic Applications Programming” (RAP) course to

bachelor students since 2021. The course is intended for IT

Bachelor students as a way to 1) learn how to program applica-

tions using ROS-based robots, and 2) leverage interdisciplinary

knowledge acquired during the study programme (e.g., AI,

computer vision, distributed systems, cloud, Operating Sys-

tems, web- and mobile-development) and integrate them to

achieve autonomous robotic behavior. We focus on ROS as

it is currently the most used framework, it is Open Source,

and has ever-increasing capabilities with many contributions

of advanced algorithm implementations and robotic simulation

packages [5], [4].

The course is organized in three main sections as follows:

(1) students first learn robotics (e.g., basic robotic Hardware,

robot models and visualization, coordinate frames and trans-

formations, controllers) and ROS fundamentals (communica-

tion primitives and building ROS packages); (2) additional

base capabilities are learned (e.g., SLAM, navigation, per-

ception, arm motion planning and control); and (3) finally

these are combined to build a practical application for the

yearly challenge. We do not explicitly consider mechanical

engineering aspects nor system integration aspects that com-

plete the robotics engineering field. This year’s challenge is

inspired by the DARPA Subterranean Challenge1: students

will have to write software to control an autonomous mobile

1https://www.subtchallenge.com/

manipulator – a simulated Summit XL2 with a UR-5 arm3

– in an unknown environment performing mapping, pose

estimation and collection of known objects and returning all

objects to the starting location.

During the course of the semester, students apply the

theoretical concepts they learn in class to lab sessions; the

earlier lab sessions use simulated robots for quick software

development cycles and the later lab sessions run the same

software to control real robots - 6 turtlebot3’s are used for

SLAM/navigation and 3 Niryo arms are used for grasping.

In order for the students to concentrate on course content

and minimize the time for system set up and configuration,

we needed to prepare some teaching infrastructure. We had

the following key requirements:

• R1: Provide a consistent collaborative environment for

group work across multiple access devices (tablets, lap-

tops with different Operating Systems and CPU architec-

tures);

• R2: Support Simulation with a realistic simulated-to-real

time ratio and frame-rate;

• R3: Support transitioning from the simulated environ-

ment to real world robots with minimal effort

The main contribution of this paper is the system design

which meets these requirements. Possible technologies are

described, evaluated and the design choices for the final

solution are discussed.

The paper is structured as follows. In section II, we review

related work broadly classifying solutions into simulation

focused solutions, hardware focused solutions and hybrid

solutions. Section III describes our solution including the

basic components and how they fit together. In section IV

we discuss our experience using the platform in the classroom

environment. Section V discusses open issues with the current

solution and finally there is a conclusion in section VI.

II. RELATED WORK

The interest in robotics engineering has been growing

rapidly over the last few years. For hobbyists, students and

professionals, the amount of robotics practitioners has steadily

grown and with it the available educational content. At the

same time, educational institutions at all levels are working

hard to adapt their instructional programs and learning paths

2https://robotnik.eu/products/mobile-robots/summit-xl-en-2/
3https://www.universal-robots.com/products/ur5-robot/



to integrate robotic technologies. For instance, Educational
Robotics (ER) is a modern teaching practice that the teacher
engages in, using robots as a tool for designing and integrating
the educational process. ER was identified as an educational
resource through which students acquire knowledge of dif-
ferent disciplines and improve their attitude and interest in
STEAM disciplines (Science, Technology, Engineering, Arts
and Mathematics) [1], [3].

Depending on the educational level and the requirements for
professional knowledge of robotic application development,
different teaching and learning approaches can be identified.
Here, we categorize them as follows: i) simulation-based;
ii) hardware-based; and iii) combination of simulation- and
hardware-based solutions.

Simulation-based learning leverage software tools and
programming languages to simulate the behavior of robots
without direct interaction with a physical robot. Under this
category we include web robotics as a way of learning online
using a web-based platforms for simulating robots, as e.g.
in [2]. This latter is gaining momentum with offerings such
as The Construct4 or AWS RoboMaker5 which are cloud-
based simulation services that enable robotics developers to
run, scale, and automate simulation without managing any
infrastructure. Simulation based solutions are clearly useful
and serve some important educational needs; however, the
models on which they are based always have some limitations
which can become apparent in a real world context. Further,
adopting a simulation only approach does not give students
experience with some of the more practical considerations
associated with working with physical devices.

Hardware-based learning focuses on direct interaction and
programming of physical robots. In some simple domains and
for simple applications students can safely interact directly
with the hardware without necessarily first simulating the
application behavior. One example of this is the LEGO®
Robot Programming for kids program6 where kids build a
robot, program it and interact with it; programming in this
environment is based on a set of predefined tasks the robot
can execute. Similar solutions based on compositions of
predefined tasks resulting in more complex behaviours exist
(e.g., the Blockly interface of the Niryo Ned robotic arm7).
Such solutions, however, lack flexibility and the extensibility
and customization capabilities required for real world robotics
scenarios. To develop more realistic applications the use of
programming languages such as Python, C++, MATLAB or
ROS is a must. Moreover, in complex environments, where
access to hardware is not always possible or too expensive, it
becomes also mandatory to test the application behavior in a
simulated environment first.

Hybrid learning combining simulation and hardware-
based learning is a solution in which the robotic applica-
tion can be tested in a simulated environment and deployed

4https://www.theconstructsim.com/
5https://aws.amazon.com/robomaker/
6https://www.lego.com/en-gb/categories/coding-for-kids
7https://niryo.com/robotic-solution-education-research/

on the physical devices in either a two-steps process or
in hybrid manner. In the two-steps process where we keep
simulations (first step) separate from testing on real hard-
ware (second step). In doing so we have the advantages of
less costs, reduced risks of damaging expensive hardware,
reduced risks of damages to third persons and things. In a
hybrid approach, concepts like digital-twin gain importance
for developing robotic applications/tasks. A digital copy of a
robotic hardware can be used for visualization and control of
the robot. In advanced solution, a digital-twin can be placed
into a simulated environment while the actions and tasks are
physically executed on the hardware. In this way, the simulated
environment will provide inputs to the application in terms of
environment (e.g., obstacles), sensing information (e.g., light,
temperature), which allows to test applications in a close-to-
real environment.

As the complexity of robotic applications is growing
steadily, with the adoption of advanced analytic solutions
such as AI, Semantic Navigation, Autonomous motion, new
needs appeared in terms of computation, networking and
storage resources. To cope with them, Cloud-Robotic solutions
are gaining traction in several domains. The possibility for
remotely controlling robotic systems further reduces costs
for deployment, monitoring, diagnostic and orchestration of
any robotic application. This, in turn, allows for building
lightweight, low cost and smarter robots as the main com-
putation and communication burden is brought to the cloud.
Since 2010, when the Cloud Robotics term first appeared,
a number of projects (e.g., RoboEarth [8] ) investigated the
field pushing forward both research and products to appear
on the market. Companies started investing in the field as
they recognized the huge potential of cloud robotics. This
lead to open source cloud robotics frameworks appearing in
recent years. An example of these is the solution from Rapyuta
Robotics8. Similarly, commercial solutions for developers have
seen the light with the big players in the Cloud field joining the
run (e.g., Amazon Robomaker and the Google Cloud Robotics
Platform9).

In our robotic application programming course, the ob-
jective is to teach students the use of ROS and application
development addressing problems which typically arise in a
robotics context, e.g. navigation and mapping, grasping of
objects and perception. The students should be able to develop
and perform testing using only simulation environments before
using their code on the physical robots. Further, embracing the
Cloud Robotics paradigm, some components of the robotic
application will run on the physical robots, while others will
run on the cloud or the edge of the network. The objective
of our system setup is that students can seamlessly transition
their applications from the simulation environment to the real
world context, while not having to address the troublesome
issues associated with framework setup and networking which
arise in such distributed systems.

8https://www.rapyuta-robotics.com/
9https://cloud.google.com/cloud-robotics/



III. SOLUTION DESIGN AND IMPLEMENTATION

A. Possible Solutions

As the students required low-friction interaction with a
simulation environment, a centralized hosted solution was
required. Given that it had to run our specific labs and interact
with networks specific to our environment, an off-the-shelf
solution was not possible. Hence, we had different options for
the hosted part of our solution:

• Virtual Machines: In this approach a dedicated VM is
provided for each robot with ROS and an X-Windows
session running in the VM Operating System;

• Containers running in dedicated Virtual Machines: In this
approach a dedicated VM is provided for each robot with
ROS and an X-Windows session running in containers
within the VM;

• Containers running with Kubernetes: In this approach a
container is created on the Kubernetes cluster for each
robot - this container runs X-Windows and the necessary
ROS processes.

The first approach was disregarded quickly as it is not
sufficiently flexible for the educational context - students
would have to install too many components and may need
to perform non trivial troubleshooting in case of problems,
typically with software dependencies. The second approach
had the benefit that the solution could be developed, packaged
into a container and tested a priori; the students could then
easily install it on the provided VM using standard container
management tools (Docker in this case). However, a limitation
of this approach was that it required a dedicated GPU for each
robot - while this was somehow manageable for one delivery
of the course, with increased demand for GPUs within the
organization, solutions which provided more efficient use of
GPUs were preferred.

The Kubernetes based solution was attractive from the
perspective of using modern, widely used container solutions,
not needing to manage dedicated VMs and potentially making
more efficient use of GPUs. Hence, we proceeded to realize a
Kubernetes based solution.

B. The ZHAW RAP Education Platform

The ZHAW RAP Platform was built on the following
technologies:

• Openstack Cloud Infrastructure Platform: this is our base
platform on which supports management of compute and
storage resources within our environment;

• K3S Container Platform: this is a lightweight Kubernetes
distribution which for us provided a good balance be-
tween ease of deployment and management, and modest
resource utilization;

• Cinder CSI Driver: this is a specific storage driver
which binds Kubernetes storage volumes to volumes in
Openstack;

• Rancher: the Rancher platform has multiple uses - we
use it for user management and resource management on
the Kubernetes cluster;

• Nvidia T4 GPUs: We use server grade GPUs in our
cluster.

The above are complex technologies with comprehensive
documentation - it is not in the scope of this paper to
include all aspects of bringing up a cluster comprising those
technologies; rather the focus is on specific aspects which
relate to providing the functionalities required to deliver the
Robotics Educational content.

1) Building containers: Building a container which can run
in this context is non trivial. We used a base container which
was designed for running GPU backed X-Windows sessions on
a Kubernetes cluster10. This base container had already solved
problems associated with running headless X-Windows on a
GPU and providing a GPU-accelerated Web interface to this
using noVNC.

In our case, it was simply necessary to add Robotic specific
packages, including ROS and Gazebo. This resulted in a
working container which students could use in their lab ses-
sions. We developed a more sophisticated git based workflow
in which we create specific containers for each lab session,
tailored to the focal point of the lab (e.g., running SLAM in
a simulated environment, investigating grasping mechanisms
in simulation, investigating grasping with real robots, working
with vision algorithms with real device input etc).

The one specific consideration which had to be borne in
mind related to nvidia driver versions: versions used in the
container build process had to be consistent with those used
on the Kubernetes cluster: this meant that we had to ensure
that the VM on which we were performing the container
build had the same driver version as those installed on the
cluser - also, we explicitly pinned the driver versions on
the Kubernetes nodes, ensuring that they were not upgraded
automatically. This is some inflexible and means that GPU
oriented containers will need to be rebuilt whenever they need
to be deployed to a VM with newer nvidia driver versions.
Going forward, it means there will be friction associated with
deploying GPU applications to nodes and it is likely we will
need to label nodes in the Kubernetes cluster with the nvidia
driver versions and use this information accordingly when
scheduling GPU workload to the cluster.

2) Managing GPU resources: As noted above, one of
the key drivers for this approach is to support sharing of
GPUs. Sharing nvidia GPUs in containerized environments
is evolving with the release of Multi-instance GPUs (MIG)11

which is a promising solution which will support accurate
control of GPU resources. Our approach, however, was to use a
simpler solution based on technologies with which we already
had experience.

The nvidia-docker runtime provides access to GPUs
for containers running on a host – any container running with
this runtime will have access to the GPU: it does not provide
fine-grained control over these resources, however, meaning

10https://github.com/ehfd/docker-nvidia-glx-desktop
11https://www.nvidia.com/en-us/technologies/multi-instance-gpu/



that any single container can consume all the resources of a
single GPU.

We performed some rudimentary experimentation to de-
termine how many sessions could share a single GPU: this
comprised launching different numbers of concurrent sessions,
running the robotics tools and determining when the user
experience was not sufficiently responsive and the frame rate
of the rendering started to drop. We found that it was possible
to run 2 concurrent sessions on a single GPU with appropriate
performance for this context.

It was then necessary to devise a solution by which we
could limit the amount of sessions active on a single node.
The solution involved specifying required CPU and memory
resources for each pod such that no more than two could be
scheduled concurrently on any node - this was combined with
use of the Kubernetes taint/tolerance mechanisms to ensure
that only this workload could be scheduled to these nodes.
This did mean that there were specific VMs which could
only be used with workloads which could tolerate these taints,
effectively limiting the use of these VMs and their GPUs
to this educational activity. In future we may consider other
alternatives in which this workload could preempt other use of
the GPUs such that they could be used when no educational
activities are taking place.

3) Networking and communication considerations: In our
network configuration where the robotic hardware is on an
internal network which is not externally accessible and the
Kubernetes cluster is externally accessible, bidirectional com-
munications could only be initiated by the robots. For ROS
messages exchange between the hardware and the cloud/edge
elements, a combination of a rosbridge_server12 com-
ponent on the cloud side and multiple rosduct13 instances
running on the devices was used. For instance, in the pick
and place setup the rosduct instances were running on
a Raspberry Pi for controller messages, coordinate frames
messages from the robotic arm, and the pointcloud and
color images from the camera. The rosduct instances
connect a websocket on the rosbridge having a Kuber-
netes Ingress as entrypoint. In the navigation and mapping
case, the rosduct instances were running directly on the
Turtlebot 3 to exchange controller messages, messages from
the lidar, coordinate frames and joint states messages with
the rosbridge_server. The move_base component is
running on the Turtlebot 3 Burger, whereas the map_server
ROS node, the visualization node and the application logic
are running on the edge. Similarly, for the pick and place
application, the controllers and moveit run on the Niryo
arm and there is a Realsense D435 camera connected to a
Raspberry Pi 3, while the application logic, the visualization
component, object recognition and grasp generation logic all
run on the Kubernetes nodes.

12https://github.com/icclab/rosbridge suite
13https://github.com/icclab/rosduct

Fig. 1. Distributed system setup for pick and place application.

IV. DEMONSTRATION AND EVALUATION

Seven groups of three students on average shared the
infrastructure we created to either run ROS applications in
pure simulation (see Figs. 2) or in a mixed simulation and
hardware setup. In particular, the hardware that was integrated
for the mixed scenarios was the Niryo arm, a Raspberry Pi v3
with a Realsense D435 camera for the pick and place tasks
and the Turtlebot 3 Burger for navigation and mapping of an
unknown environment (see Fig. 1).

In all of the labs, the students were easily able to deploy
their lab environment on the Kubernetes cluster and start
working on their tasks. To obtain some indicator of how well
the system performed we measured the amount of Frames-
Per-Second (FPS) which were obtained in the rendering -
this gave a good estimate of how interactive the system was
when all groups were working on the shared infrastructure.
One component that heavily influences the system load is the
Gazebo14 simulator. Frame rates of 34 - 60 FPS were observed
in Gazebo, with the lower values being recorded during
computationally heavy task executions. A second parameter
we observed is the real time factor, which measures how fast
the simulation time is running with respect to wall clock time.
We observed that this parameter had values in the range of 0.80
- 0.98, with also in this case the lower end values observed
in case of computational heavy tasks execution. This shows
that the simulation environment operated slightly slower than
the real world environment but the difference was small and
hence not an issue in the lab environment.

V. OPEN ISSUES AND CHALLENGES

The solution described above meets many of the course
requirements. However, some limitations remain which mean
it cannot be used in all possible scenarios.

1) Networking and Security: In our configuration, the phys-
ical devices and the Kubernetes cluster were in different
network zones; further, as different policies applied to these
zones, there were traffic restrictions between these network
zones. This gave rise to some challenges in our context but,
more generally, it is representative of many scenarios and as
such it was important for us to find some solutions which can
work within these constraints.

14https://gazebosim.org/



(a) Gazebo simulator

(b) RViz visualization

Fig. 2. Cloud-native simulation environment.

More specifically, the devices were on an internal network
which was not externally accessible; conversely, the Kuber-
netes cluster was externally accessible. In this configuration,
bidirectional communications could only be initiated by the
devices. Another limitation of our solution is that the Kuber-
netes cluster only supports HTTPS connections on port 443;
TCP connection to arbitrary ports are not supported. While this
is generally supported in Kubernetes 15, our Kubernetes cluster
is multi-purpose and hence there are limitations on introducing
more sophisticated Kubernetes configurations, especially those
which provide external connectivity. This specific limitation
meant that communications using ROSTCP was not possible
in our context.

2) Container Images: The container images which were
built for this lab contained many substantial components - X-
Windows and a window manager, ROS, RViz, Gazebo and
development tools; as such, the resulting container images
were large (>10GB). Working with such large container
images does generate some friction - container build times can
be slow as can be pulling/pushing to/from remote registries.
Slower container launch times could impact user experience;
in our case, we ensured that each Kubernetes worker node
was pre-seeded with the appropriate lab container image. More
sophisticated solutions supporting this exist such as Fledged16

or Dragonfly17 but we have not investigated these as yet.
3) ROS Connectivity Solution: As noted above, the current

solution is based on a customized rosbridge websocket on
Kubernetes pods and customized rosduct components on
the robots. While this worked for the scope of our course, the
solution can be further improved. We observed frequent un-

15https://kubernetes.github.io/ingress-nginx/user-guide/exposing-tcp-udp-
services/

16https://github.com/senthilrch/kube-fledged
17https://d7y.io/

expected disconnections from the websocket - the websocket
was reestablished quickly so it was not unusable but it led to
some performance degradation. Also, there were issues with
some CBOR (Concise Binary Object Representation) encoding
causing errors in the use of rosduct in combination with
the rosbridge server - this requires further investigation as
it can help reduce the amount of data transferred, ultimately
making the system more responsive.

VI. CONCLUSION

In this paper, we described our platform to support the
teaching activities for Robotic Application Programming at
ZHAW. The platform supports development of robotics appli-
cations and testing/validation in a simulation context before
deploying to real world robots. All of this can be done
within the same environment accessed through a browser. We
discussed the design choices made and the technologies we
adopted to minimize the set up times and to support seamless
“simulation to real” experience. The final setup was shown to
provide good performance for the students while efficiently
consuming shared GPU resources. Issues with the current
solution which require further work have been identified and
will be addressed for the next delivery of the module.
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[1] Schina, D., Esteve-González, V., & Usart, M. An overview of teacher
training programs in educational robotics: characteristics, best prac-
tices, and recommendations. Educational Information Technologies, 2020.
https://doi.org/10.1007/s10639-020-10377-z
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