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Abstract: This study investigates the treatment of surfaces with jet plasma at atmospheric pressure
in the presence of acrylic acid as a resource-saving and efficient approach to joining polymers on
polystyrene (PS) and polyamide 12 (PA 12) surfaces. Acrylic acid was added in order to introduce
functional groups to the polymer surfaces. XPS analysis revealed a high density of oxygen-containing
groups, e.g., carboxylic acid groups, on the polymer surfaces, the detailed composition depending
on the polymer. The AFM measurements indicated that the modification of polyamide resulted in
morphological changes and an increase in surface roughness due to polymer recrystallization. When
the surface-modified polymers were brought in contact under a load, significant adhesion between
the polymer surfaces was measured. In particular, PS and PA 12, which are otherwise difficult to join
by gluing, could readily be connected in this way. The joint polymers could be separated intentionally
by immersion in water, thus enabling the recycling of the materials. The resistance of the joint to
water depends on the polymer system, with polyamide providing strikingly higher resistance than
polystyrene. Accordingly, treating the joint polymers with water allows debonding on demand,
particularly when PS is involved. Exposure of modified polymer surfaces to solutions of metal ions
increased the resistance of joint polymers to water.

Keywords: polymer surface modification; nitrogen plasma at atmospheric pressure; polymer surface
analysis; reversible bonding; adhesion

1. Introduction

Plasma treatment at low pressures with gases such as oxygen, nitrogen, helium,
hydrogen, argon, and ammonia, or mixtures of the stated gases, is frequently employed
in polymers to modify their surfaces. Depending on the type of plasma and the polymer,
functional groups, such as hydroxyl, carbonyl, carboxyl, amine, nitro, and peroxide groups,
are introduced to the surfaces [1–10]. Often, such treatments are performed with the aim
of improving the performance of adhesives. However, surface modification with oxygen
plasma was also employed for joining polymers directly, also called autohesion [11,12],
i.e., without an adhesive [13]. The resulting adhesion was strong and even exceeded the
strength of the substrates.

Nonetheless, the joint could be easily separated within seconds by exposure to water,
thus allowing detachment of the substrates on demand. Further modification of such
polymer surfaces with acrylic acid with a wet chemical process increased the density of
functional groups. These groups were able to coordinate with copper(II) ions, leading
to an increase in adhesion and resistance toward water [14]. Accordingly, the joint poly-
mers could not be detached with the use of water anymore. However, separation could
be achieved by exposing the joint polymers to strong complexing agents, such as EDTA
(ethylenediaminetetraacetate). However, limits in the reproducibility of this method are
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mentioned [14], which might be associated with the two-step process (first plasma treat-
ment, followed by a reaction in a solution). In any case, a one-step process would be more
straightforward, as well as the use of a jet plasma operating at atmospheric instead of
low pressure, as atmospheric-pressure plasmas can be readily scaled up to meet industrial
production demands and eliminate the need for a vacuum [15–22].

The corona discharge process in air, which is also referred to as corona treatment, has
been utilized to treat polymers with plasmas at atmospheric pressure, as documented in
previous studies [23–25]. Recently, the emergence of atmospheric-pressure jet plasma has
widened the scope for conducting experiments under atmospheric conditions with diverse
gases and has further enabled the blending of primary gases with organic compounds to
graft functional groups onto polymer surfaces [26–32].

Accordingly, this study explores the modification of surfaces with a plasma jet at
atmospheric pressure and acrylic acid as a supplementary agent. The emphasis was placed
on the plasma process, particularly in comparison to the wet chemical modification that has
been previously reported [14]. The primary gas chosen for the plasma modification was
nitrogen to prevent the complete oxidation of acrylic acid. The impact of the treatment on
the adhesion of PS and PA 12 in PS–PS, PA 12–PA 12, and PS–PA 12 joints and the resistance
of the joints towards water were investigated. In addition, the influence of metal ions on
adhesive properties was explored. The results of this study could pave the way for the
development of efficient adhesive systems that facilitate recycling, in some cases, by the
detachment of joints upon exposure to water.

2. Materials and Methods
2.1. Materials

Acrylic acid, manganese (II) acetate tetrahydrate, cobalt (II) acetate tetrahydrate, cop-
per(II) acetate monohydrate, zinc (II) acetate dihydrate (Sigma Aldrich, St. Louis, MO,
USA), iron (II) acetate anhydrous, nickel (II) acetate tetrahydrate (VWR International
GmbH, Darmstadt, Germany), absolute ethanol (Alcosuisse, Rüti bei Büren, Switzer-
land), polystyrene (GP 585 X, from Synthos Chemical Innovations, Oswiecim, Poland,
Mn = 56,079 g/mol, Mw = 218,167 g/mol), and polyamide 12 (Grilamid L 16 nat, from
EMS-Chemie, Domat-Ems, Switzerland, Mn = 30,560 g/mol, Mw = 47,110 g/mol) were
used as received.

2.2. Fabrication of Polymer Substrates

Polymer substrates of 80 mm × 10 mm × 4 mm dimensions were prepared by injection
molding, followed by hot pressing, as described before [14]. The PS samples were cooled at
room temperature in an upright position, while the PA 12 samples were cooled in liquid
nitrogen. The final 1.2 mm thick samples were cut into 7 mm × 7 mm and 20 mm × 20 mm
squares using a wire cutter for PS and punched into circular discs with diameters of 8 mm
and 16 mm using a punching iron for PA 12.

2.3. Plasma Treatment at Atmospheric Pressure in the Presence of Acrylic Acid

An atmospheric jet plasma device (Plasmatreat XYZ400, Plasmatreat GmbH, Stein-
hagen, Germany) was used for the surface treatment. The plasma generation involved pass-
ing nitrogen gas (30 L/min) through a gliding arc discharge at a frequency of 23 kHz and
voltage of 280 V. The Plasmatreat XYZ400 device comprised a plasma head (PFW10PAD)
and a robot capable of moving the plasma head in the x-, y-, and z-axis, allowing for a
uniform and highly reproducible application of plasma to the surface. For the pretreatment
step, the substrate was treated with nitrogen plasma at a distance of 10 mm with lines
spaced 1 mm apart at a speed of 250 mm/s in three passes. Thereafter, acrylic acid was
added to the nitrogen plasma. The acrylic acid was evaporated (30 g/h) by pumping (Mitos
P-Pump Advanced, Dolomite Microfluidics, Royston, UK) it into nitrogen at 80 ◦C and
then by introducing the acrylic acid-loaded nitrogen flow (5 L/min) directly into the nozzle
of the plasma head. The presence of acrylic acid was indicated by a change in plasma color.
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2.4. Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) was conducted as described previously [14]. The
surface roughness was calculated by integrating the entire 10 µm × 10 µm scan area. In
some images, peaks were trimmed to facilitate a better comparison of the structures.

2.5. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) was performed as reported previously [14].
In order to correct the charge on the insulating polymer samples, the binding energy scale
was calibrated with the adventitious C 1s peak at 285 eV, and the C 1s signals were fitted
with the help of a database reference [33]. The information depth was estimated using
three times (99.7% of all photoelectrons) the inelastic mean free path calculated by QUASES
(QUASES-IMFP-TPP2M, V. 3.0, Odense, Denmark) using a non-relativistic model [34].

2.6. Adhesion Tests

For the adhesion tests, a centrifugal adhesion test analyzer (LUMifrac) from LUM
GmbH (Berlin, Germany) was employed, as described earlier [13,14]. The polymer sub-
strates were joined together in a hot press at 60 ◦C for 1 min with a load of 200 kg. After
bonding, the joint area (A) was measured manually using a digital measuring microscope
(VHX-6000 V3.0.0.116, Keyence International, Mechelen, Belgium) and Photoshop (V24.0.0,
Adobe, Dublin, Ireland). The samples were stored at room temperature in a dry atmosphere
until they were tested in the LUMifrac device. Up to eight samples were inserted together
in the measuring chamber.

2.7. Debonding Experiments

In order to investigate the detachment of joint polymer surfaces, a digital microscope
(VHX-6000 V3.0.0.116, Keyence International, Mechelen, Belgium) was used. The samples
were placed in a Petri dish and kept in position with tweezers (Figure S1). Immediately
after filling the Petri dish with water, an optical recording was commenced at a rate of
15 frames per second for 15 min. Thereafter, the frames were recorded at 2 min intervals.
The detachment time was determined by the evaluation of the recorded frames.

2.8. Metal(II)-Ion Loading

Solutions comprising 0.025 M salts of MnII, FeII, CoII, NiII, CuII, and ZnII acetate were
prepared in ethanol, resulting in the complete dissolution of the compounds. The polymer
surfaces were exposed to a droplet of the respective solutions. After 10 s of exposure, the
samples were rinsed with 10 mL of ethanol to remove the excess ions. Finally, the samples
were blown dry with air and stored in a dry atmosphere.

3. Results and Discussion
3.1. Effect of Plasma Modification on Surface Structure and Chemistry

The PS and PA 12 surfaces were modified using an atmospheric jet plasma method,
which generates plasma at ambient pressure through a gliding arc discharge. The plasma
is ejected to the surface via a fast gas flow through a nozzle. Acrylic acid was directly
introduced into the plasma jet, leading to plasma-assisted deposition onto the polymer
surfaces (see Figure 1). A robot passed the plasma jet over the surface multiple times at
constant speed and distance.
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The AFM images in Figure 2 illustrate the surface of PS before and after the plasma 
treatment. The roughness of the surfaces was calculated using the underlying 3D data of 
the AFM measurements. The non-modified samples (Figure 2a), produced by injection 
molding and hot pressing, had a smooth surface (roughness 0.93 nm), which did not 
change significantly after the plasma treatment (roughness 1.18 nm) (Figure 2b). Addi-
tionally, the morphology of the surface remained essentially the same after the plasma 
treatment, without aggregates, distortions, or stains. Thus, the products generated by the 
treatment appear to be thin and evenly distributed since they do not cover the underlying 
structure of the substrate. 

 
Figure 2. AFM images of PS before and after atmospheric plasma jet treatment. The images have an 
edge length of 10 µm. (a) Unmodified PS surface with a roughness of 0.93 nm (Sq). (b) PS surface 
after exposure to a plasma containing acrylic acid at atmospheric pressure, with a roughness of 1.18 
nm (Sq). 

Figure 2 displays the AFM images of PA 12 surfaces. Untreated surfaces of PA 12 
(Figure 3a) exhibited higher roughness (2.6 nm) than that of PS (0.93 nm). This might be 
due to the semi-crystalline nature of PA 12, where semi-crystalline domains could lead to 
structural features. After the plasma treatment (Figure 3b), a significant increase in rough-
ness of PA 12 (from 2.6 nm to 20.1 nm) was observed, which was attributed to heat-in-
duced recrystallization [35] under the action of the plasma, which resulted in larger and 

Figure 1. Diagram of the experimental setup for plasma treatment at atmospheric pressure in the
presence of acrylic acid.

The AFM images in Figure 2 illustrate the surface of PS before and after the plasma
treatment. The roughness of the surfaces was calculated using the underlying 3D data of
the AFM measurements. The non-modified samples (Figure 2a), produced by injection
molding and hot pressing, had a smooth surface (roughness 0.93 nm), which did not change
significantly after the plasma treatment (roughness 1.18 nm) (Figure 2b). Additionally,
the morphology of the surface remained essentially the same after the plasma treatment,
without aggregates, distortions, or stains. Thus, the products generated by the treatment
appear to be thin and evenly distributed since they do not cover the underlying structure
of the substrate.
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Figure 2. AFM images of PS before and after atmospheric plasma jet treatment. The images have an
edge length of 10 µm. (a) Unmodified PS surface with a roughness of 0.93 nm (Sq). (b) PS surface
after exposure to a plasma containing acrylic acid at atmospheric pressure, with a roughness of
1.18 nm (Sq).

Figure 2 displays the AFM images of PA 12 surfaces. Untreated surfaces of PA 12
(Figure 3a) exhibited higher roughness (2.6 nm) than that of PS (0.93 nm). This might
be due to the semi-crystalline nature of PA 12, where semi-crystalline domains could
lead to structural features. After the plasma treatment (Figure 3b), a significant increase
in roughness of PA 12 (from 2.6 nm to 20.1 nm) was observed, which was attributed to
heat-induced recrystallization [35] under the action of the plasma, which resulted in larger
and more prominent crystals. However, apart from the recrystallization phenomena, no
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further changes, such as the agglomeration of acrylic acid, were observed, indicating that
the applied acrylic acid layer on PA might also be thin and uniform.
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Figure 3. AFM images of PA 12 before and after atmospheric plasma jet treatment. The images have
an edge length of 10 µm. (a) Unmodified PA 12 surface with a roughness of 2.6 nm (Sq). (b) PA
12 surface after modification with a plasma containing acrylic acid at atmospheric pressure, with a
roughness of 20.1 nm (Sq).

The chemical composition of the surfaces was analyzed with XPS. The high-resolution
carbon 1s (C 1s) spectra, as shown in Figure 4, reveal that PS itself, an apolar polymer,
does not possess a considerable number of polar functional groups (Figure 4a). However,
after the plasma treatment, a significant increase in functional groups was observed on
the surface (Figure 4b). The most prominent functional groups were C-O (24.1% of all C
atoms) and COOH, which could also indicate ester groups (26.8% of all C atoms), with C=O
(2.8% of all C atoms) also being present. The high concentration of COOH suggests the
successful deposition of acrylic acid onto the surface. In contrast, PA 12, a polar polymer,
exhibited functional groups even before modification (Figure 4c). Specifically, 9.7% of
all C atoms were present as C-N links, with an additional 8.0% as NCO or C=O groups,
matching the theoretical values of PA 12 (8.3% of all C atoms each). The modification
with acrylic acid resulted in a substantial increase in functional groups (Figure 4d), with
the proportion of C-N and C=O/NCO groups rising to 13.1% and 22.8% of all C atoms,
respectively. Furthermore, 17.9% of all C atoms were present as COOH and 5.7% as C-O
groups. Again, the marked increase in COOH attests to the involvement of acrylic acid on
the surface.

A comparison between the modified PS and PA 12 surfaces indicates that a greater
number of functional groups is present on the PA 12 surface and that the proportion
of these functional groups varies depending on the base material. This suggests that
functionalization depends on the base material and is not simply a result of the deposition
of a layer of products derived from acrylic acid on the surface.

As a side note, the fact that the signal of the π-π* shake-up satellite of PS can be detected
before and after modification thus implies that the deposited layer upon modification is
thinner than the information depth of XPS, which is approximately 11 nm for PS (calculated
with QUASES).
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carbon in PS. C-C aliph: aliphatic carbon in PS.

3.2. Adhesion of Joints and Resistance towards Water

As PS and PA 12 could be modified with acrylic-acid-containing plasma, the bonding
capabilities between the combinations PS–PS, PA 12–PA 12, and PS–PA 12 could be explored.
Note that the surfaces of the pristine polymers are incompatible [36,37] due to the apolar
nature of the former and the polar nature of the latter.

A significant adhesion was established in all modified cases by bringing the samples
in contact under a load. The adhesive strength was determined with a LUMifrac adhesion
analyzer [38,39], which measures up to eight specimens in parallel by exerting butt tensile
force via an increased rotational speed in the rotating measuring chamber at room tempera-
ture. Upon bond failure, a sensor is triggered by the detachment of a copper weight, and
the corresponding force is recorded.

Figure 5 displays the strength of the joints, where PS–PS represents the combination
of two PS specimens, PA 12–PS is the combination of one PS and one PA specimen, and
PA 12–PA 12 represents the combination of two PA 12 specimens all treated with the
plasma jet. The difference in adhesive strength of the PA 12–PS system hardly differed
statistically from the PS–PS system, indicating successful surface functionalization for both
polymers. The adhesive strength of the PA 12–PA 12 system was somewhat lower but still
in a similar range.

The resistance of the joint samples to water was investigated by exposure to water in a
Petri dish under a microscope. The images were taken in specific intervals. This allowed
the evaluation of the detachment by optical observation of the images. The results are
presented in Table 1. The table reveals the time required for the joint to detach. Noteworthy,
the detachment time depended significantly on the material combinations. For example, the
system with two PS specimens (PS–PS) detached after an average of 11 s, while the system
with PS and PA 12 specimens (PA 12–PS) took an average of 113 s to detach. The system
with two PA 12 surfaces (PA 12–PA 12) showed very high detachment times (>10,000 s).
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Table 1. Detachment time of three different material combinations of joint materials. PS–PS represents
two PS specimens, PA 12–PS is a combination of one PS and one PA specimen, and PA 12–PA 12 is
two PA 12 specimens. Each experiment was performed on two samples.

Material 1st Sample [s] 2nd Sample [s] Average [s]

PS–PS 18 5 11
PA 12–PS 128 98 113

PA 12–PA 12 >72,000 25,400 -

In conclusion, the strength of the joints was in the same order of magnitude regardless
of the substrate combination, while the detachment time varied significantly based on the
material pairings. This suggests that the surface groups of plasma-treated PA 12 may form
stronger bonds, which are more stable against disruption in water. However, the high
roughness of the PA 12 surfaces may also limit the contact area between the substrates
and, thus, the number of chemical interactions between the surfaces of the two substrates.
Accordingly, when PA 12 is involved, fewer but stronger chemical interactions between
the substrates might be established, which leads, coincidentally, to a similar mechanical
strength compared to PS, where somewhat weaker but more bonds might be formed. The
above-reported XPS measurements imply that the surfaces of PS and PA 12 contain different
functional groups. It basically cannot be excluded that bonds of different strengths might
be established with regard to the two polymers. However, other explanations might also
be consistent with the results, as it still remains unclear which functional groups would
cause stronger and weaker bonds between the surfaces.

3.3. Effect of Adsorbed Metal Ions on the Joints

In the case of the polymer surfaces modified with acrylic acid via a wet chemical
process [14], the adsorption of copper(II) ions enhanced the adhesion strength of the
joints and their resistance to water. The underlying mechanism involves, most likely,
the formation of coordination bonds of copper(II) ions with oxygen-containing surface
groups, in particular, carboxylate groups [14,40]. In order to investigate if these phenomena
also occur upon related surface modification by atmospheric-pressure plasma, one side
of a polymer, preferably PS, was exposed to a solution of copper(II) ions before contact
with another substrate. Subsequently, the XPS measurements indicated the presence of
5.4 atomic percent (At%) copper on PS and 5.2 At% copper on PA 12 surfaces (Figure S2).
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The detachment times of PS–PS, PA 12–PS, and PA 12–PA 12 and the adhesive strength of
PS–PS were assessed.

Table 2 reveals that the detachment times of the PS–PS and PS–PA 12 substantially
increased in the presence of copper(II) (in the case of PA 12–PA 12, the detachment time was
on the edge of the observation period also without copper(II) treatment). For instance, the
average detachment time increased from 11 s to 358 s for PS–PS and from 113 s to 14,400 s
for PA 12–PS. The results presented in Figure 6 suggest that the addition of copper(II) ions
did not significantly increase the adhesive strength of PS–PS.

Table 2. Detachment time of three different material combinations of joint substrates with adsorbed
copper(II). PS–PS represents two PS substrates, PA 12–PS is a combination of one PS and one PA
specimen, and PA 12–PA 12 is two PA 12 specimens. Each experiment was performed on two samples.

Material 1st Sample [s] 2nd Sample [s] Average [s]

PSPS Cu 196 520 358
PAPS Cu 2800 26,100 14,400
PAPA Cu >61,000 >61,000 -
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Figure 6. Comparison of adhesive strength measured with a LUMifrac device between PS–PS without
and with copper(II) ions adsorbed to the surface before bonding. PS–PS represents a joint of two
PS specimens. Each experiment was performed with four samples. The error bars indicate the
standard deviation.

The lack of adhesive strength enhancement by incorporation of copper(II) in contrast
to the modification with acrylic acid in the wet chemical process [14] might be attributed to
the lower copper(II) loading on the surface than in the related wet chemical process.

In comparison, the specimens grafted with acrylic acid in a wet chemical process
yielded 31 At% copper(II) adsorption [14]. Therefore, no further adhesion strength experi-
ments were conducted.

In addition to the copper(II) ions, the impact of manganese(II), iron(II), cobalt(II),
nickel(II), and zinc(II) on the joint strength and detachment time was also tested. However,
none of these metal ions led to a better performance than what occurred with copper(II),
although the detachment time significantly increased upon treatment with any of the
metal(II) ions compared to the surfaces without metal ions. This is consistent with the
strength of the coordination bonds reported by Irving and Williams [41].

4. Conclusions

The treatment of polymers with nitrogen plasma at atmospheric pressure in the
presence of acrylic acid is a promising alternative to the related wet chemical methods. This
was demonstrated with PS and PA 12, where a high density of functional groups on the
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surface was generated with this method. The process offers advantages over traditional
wet chemical methods, including reduced usage of chemical substances, faster processing
times, higher reproducibility, and scalability to large-scale industrial processes. The nature
and quantity of the functional groups’ properties depend on the polymer. Moreover,
semi-crystalline polymers can exhibit recrystallization effects, which can increase surface
roughness. The functional groups at the surface of each polymer allowed the joining of
PS and PA 12 with considerable adhesive strength without using adhesives. Importantly,
incompatible polymers, such as PS and PA 12, could also readily be joined. The detachment
time upon exposure to water strongly depends on the involved polymers, with differences
of several orders of magnitude. While the use of metal(II) ions does not appear to impact
the strength of the joints, it has a notable effect on detachment times.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16072673/s1, Figure S1: Setup of the debonding experiment;
Figure S2: XPS survey spectra of copper(II) loaded surfaces.
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