
VersaMatch: Ontology Matching with Weak Supervision
Jonathan Fürst

NEC Laboratories Europe
Zurich University of Applied Sciences

jonathan.fuerst@zhaw.ch

Mauricio Fadel Argerich
NEC Laboratories Europe

Universidad Politécnica de Madrid
mauricio.fadel@alumnos.upm.es

Bin Cheng
NEC Laboratories Europe

Springer Nature
bin.cheng@springernature.com

ABSTRACT
Ontology matching is crucial to data integration for across-silo
data sharing and has been mainly addressed with heuristic and
machine learning (ML) methods. While heuristic methods are of-
ten inflexible and hard to extend to new domains, ML methods
rely on substantial and hard to obtain amounts of labeled training
data. To overcome these limitations, we propose VersaMatch, a flex-
ible, weakly-supervised ontology matching system. VersaMatch
employs various weak supervision sources, such as heuristic rules,
pattern matching, and external knowledge bases, to produce labels
from a large amount of unlabeled data for training a discriminative
ML model. For prediction, VersaMatch develops a novel ensemble
model combining the weak supervision sources with the discrim-
inative model to support generalization while retaining a high
precision. Our ensemble method boosts end model performance by
4 points compared to a traditional weak-supervision baseline. In ad-
dition, compared to state-of-the-art ontology matchers, VersaMatch
achieves an overall 4-point performance improvement in F1 score
across 26 ontology combinations from different domains. For re-
cently released, in-the-wild datasets, VersaMatch beats the next best
matchers by 9 points in F1. Furthermore, its core weak-supervision
logic can easily be improved by adding more knowledge sources
and collecting more unlabeled data for training.

PVLDB Reference Format:
Jonathan Fürst, Mauricio Fadel Argerich, and Bin Cheng. VersaMatch:
Ontology Matching with Weak Supervision. PVLDB, 16(6): 1305 - 1318,
2023.
doi:10.14778/3583140.3583148

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/nec-research/VersaMatch.

1 INTRODUCTION
Organizations have generated large amounts of data over the past
years, a trend which will continue: IDC estimates that by 2025
the datasphere will reach 160 Zettabytes [61]. Still, data is usually
collected with ad-hoc methodologies and kept in silos, resulting
in highly heterogeneous, non-integrated data sets. This greatly
increases the effort and complexity to use data and limits its value.

Hence, there is an increasing demand to break data silos for
broader data utilization, both within and across organizations,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583148

specifically in data marketplaces [25]: large enterprises need to
integrate and link data from different departments to construct a
unified knowledge graph for more advanced customer analysis;
cities and retail businesses might share their data in synergy for
better retail demand prediction for businesses and better traffic
management for cities; data scientists might search for relevant
data sets to train machine learning (ML) models. In all of these
scenarios, a harmonized data presentation layer on top of data silos
is essential for data integration, linkage, and discovery.

In the past, ontologies have been introduced as a formal and
standardized way to describe concepts and their relationships for
harmonized data presentation, initially in the semantic web commu-
nity [18] and recently in the context of knowledge graphs, such as
Amazon’s Product Knowledge Graph [19]. Further, there has been
an uptake in expressing ontologies using ontology languages such
as the Web Ontology Language (OWL) for data integration and
sharing in a much wider range of domains, e.g., Health, Smart City,
and Industry 4.0 [28, 31]. Ontology matching (OM) aims to find
correspondences (e.g., equality) between concepts across ontologies.
Since many ontologies already exist and new ones are defined and
extended over time (often in a decentralized way), enabling OM at
scale is crucial to data harmonization and integration across silos.

Three types of systems can perform OM from different perspec-
tives: ontology/schema matchers that utilize the specific syntax of
classes and their relationships; entity matchers that treat each class
as a generic entity with a set of flat attributes; knowledge graph
alignment tools that process ontologies as a generic graph (see Sec-
tion 7). There are mainly two sets of core methods behind these sys-
tems: heuristics-based and learning-based. Heuristics-based meth-
ods [24, 35, 51] have shown superior performance in many of
the yearly Ontology Alignment Evaluation Initiative (OAEI) chal-
lenges [54]. However, they are inflexible and hard to extend to other
domains. E.g., specialized matchers have been designed for specific
domains such as biology [14]. Most important, these matchers can-
not benefit from learning a better matching model from data since
their performance is limited by their designed heuristics and match-
ing strategy. In contrast, learning-based approaches are not limited
by defined heuristics, but rely on substantial training data to train
advanced ML models [21, 36, 40, 49]. Thus, their performance is
limited by the amount of available labeled data.

To address the labeling bottleneck, others have proposed active
learning [45, 48] to train ML models with a few selected samples
that domain experts annotate. Still, active learning struggles to boot-
strap due to a random selection strategy initially, and its efficiency
is affected by the highly imbalanced data found in ontology match-
ing [50]. Lately, weak supervision systems such as Snorkel [59] can
generate high-quality training data for unlabeled data based on a set
of user-defined labeling functions that provide noisy supervision

1305

https://doi.org/10.14778/3583140.3583148
https://github.com/nec-research/VersaMatch
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583148
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3583140.3583148&domain=pdf&date_stamp=2023-04-20

signals (e.g., based on heuristics or external knowledge) by com-
bining their signals in a generative model. The aggregated outputs
are then used to train a traditional, discriminative ML model. Weak
supervision has shown to be a promising approach to address the
labeling bottleneck [2, 20]. However, directly applying weak supervi-
sion into OM does not lead to good performance due to the following
gaps we identified:

First, the discriminative ML model used for final prediction has
problems in a highly imbalanced task such as OM, as it cannot
generalize well to long tail and rare matching patterns. For such rare
patterns, generative models have favorable performance, as has also
been shown recently for information extraction—another highly
imbalanced task [7]. Second, there are obstacles for domain experts
to write labeling functions efficiently and collaboratively because
of the lack of a common view/interface through which matching
information is available to compare and judge the similarity of two
ontology concepts. Without a common view, labeling functions are
not transferable and reusable across datasets [2]. Third, in OM, often
highly-precise labeling functions are available for few of the concept
combinations (e.g., based on existing alignments/knowledge bases
or strong heuristics, such as logical inference). In our experience,
their outputs might be omitted in the generative modeling process
when several, less precise functions with opposite outputs exist.

To address these gaps, we propose VersaMatch, a novel weak
supervision system for OM. VersaMatch matches concepts across
ontologies through (1) a self-contained, enriched, and homogenized
alignment profile for each ontology concept; (2) an efficient Min-
Hash LSH based blocking designed for OM using the information
from the alignment profiles; (3) generating labels (i.e., match/no-
match) for all remaining combinations of ontology concepts from
a core set of generic hard and soft labeling functions into a label
generator; (4) training a discriminative ML model with these labels
combining lexical, semantic and structural features; (5) combining
weak supervision sources and discriminative model into an ensem-
ble to classify concept combinations into match and no-match.

Compared with existing OM approaches, VersaMatch removes
the need to design and configure multiple heuristic matchers/-
matching strategies and eliminates the effort and cost of collecting
extensive training data. Compared with a common weak super-
vision approach [59], VersaMatch can sustain a high recall and
a high precision with the same set of transferable labeling func-
tions. We evaluate VersaMatch on 26 ontology combinations with
≈ 10M class pairs, taken from a wide range of existing benchmark
datasets and in-the-wild industry datasets. VersaMatch achieves
a 4 points improvement in F1 score on average, compared with
state-of-the-art ontology matchers across all datasets with our core
weak-supervision logic consisting of only 14 functions with a total
of 262 lines of code. Even for new, in-the-wild datasets, VersaMatch
achieves an improvement of 9 points in F1, indicating its applicabil-
ity in the context of a data marketplace. Our experimental results
show further that VersaMatch is easily extendable, and its perfor-
mance can be further improved by adding more weak supervision
sources based on domain knowledge or more unlabeled data. We
summarize the main contributions of this paper as follows:

• We design and implement VersaMatch, a novel end-to-end OM
system with several building blocks to customize general weak

supervision to the OMproblem: self-contained alignment profiles
provide a uniform interface for blocking, labeling and training;
a MinHash LSH based blocking approach designed for OM pro-
vides high recall with few candidate pairs; a set of transferable
soft and hard weak supervision functions produces high-quality
weak labels across different domains; a comprehensive feature
representation of lexical, structural, and semantic distances al-
lows learning from highly imbalanced data.

• For prediction, VersaMatch develops a novel ensemble model
combining the soft and hard generative model outputs with the
discriminative model for higher recall while sustaining precision
levels (i.e., our model supports generalization, while retaining
precision). Our classification ensemble improves performance
by 4 points in F1 compared with the approach in Snorkel [59], a
popular weak-supervision framework.

• Our experimental evaluation uncovers multiple interesting find-
ings: blocking helps to reduce not only complexity but also
improves matching results; training with generated weak la-
bels achieves results on-par with a model trained on manually,
expert-created labels; and our ensemble of label generator and
discriminative model provides better and more robust perfor-
mance over different data sets. Overall, VersaMatch shows a
substantial 4-point improvement over the next best entity, on-
tology and schema matcher across all datasets, and a 9 point
improvement on in-the-wild data.
The paper is structured as follows. In Section 2 we define the OM

problem and outline its challenges. Section 3 provides an overview
of VersaMatch, while Section 4 and Section 5 describe our prepa-
ration and matching phase respectively. We present results in Sec-
tion 6 followed by related work in Section 7 and our conclusion in
Section 8.

2 ONTOLOGY MATCHING PROBLEM
The goal of ontology matching is to find semantic mappings be-
tween concepts in different ontologies. We formally define it as
follows [23, 46, 52]. Ontologies encode knowledge in form of con-
cepts and relationships in a defined language 𝐿. Here, we assume
that ontologies are modeled in the Web Ontology Language (OWL)
and stored in syntax formats, such as RDF/XML, Turtle, and N-
Triples. For each ontology O in language 𝐿, a function 𝑓 (O) defines
all matchable elements (e.g., classes, properties or instances). Given
two ontologies, a source ontology O𝑠 and a target ontology O𝑡 , the
matching task is to determine mappings between the matchable
elements in both ontologies, as shown in Figure 1. Mappings are
4-tuples of the form ⟨𝑒𝑠 , 𝑒𝑡 , 𝑟 , 𝑝⟩ where:

• 𝑒𝑠 ∈ 𝑓 (O𝑠) and 𝑒𝑡 ∈ 𝑓 (O𝑡) represent matchable elements
from both ontologies.

• 𝑟 ∈ 𝑅 defines the semantic relation, e.g., equality/sameAs
(≡) , subsumption (⊑) and supersumption (⊒). Here we only
consider 𝑅 = {≡}.

• 𝑝 is a probability value that represents the confidence of
the mapping.

Our goal is to automate OM through machine learning, i.e., we
train a ML model that discriminates between mappings and non-
mappings. Further, we focus here to 𝑓 (O) returning classes to
enable a wide comparison with related work and datasets.

1306

Figure 1: Depicted are selected classes from two ontologies
and the corresponding matches between them, based on [22].
The blue lines denote an equality/sameAs relationship, while
the orange line denotes subsumption (from left to right.)

2.1 Challenges
Although several approaches for automated OM exist (see Section 7),
there are still several challenges, especially with learning-based
approaches:
[C1] Lack of labeled data for training. 𝑁 ∗𝑀 combinations of ele-

ment pairs exist between two ontologies, 𝑁 and𝑀 being the
number of matchable elements in O𝑠 and O𝑡 respectively.
Manual labeling requires extensive human effort and is of-
ten done by domain experts. Active learning can support
labeling, but requires ≈ 1000 user queries for typical entity
matching datasets [15].

[C2] Limited flexibility to adapt to new datasets and domains.
Many state-of-the-art matchers use multiple carefully de-
signed matching heuristics and strategies that need to be
configured (e.g., based on ontology size or domain) for high
recall and precision. Many matchers specialize on domains
and baseline datasets. This can lead to unstable and lim-
ited performance for in-the-wild datasets or across domains.
A flexible ontology matcher should adapt to a wide range
of ontologies, being able to deal with more noise and low
coverage for some of the matchable elements.

[C3] High imbalance between matches and non-matches. From
the 𝑁 ∗ 𝑀 element combinations, most are non-matches.
Machine learning models need several data samples for each
class (i.e., match, non-match) to learn how to characterize
and predict them. Because there are few positive samples
in the OM problem, ML models struggle to generalize, espe-
cially to long-tail samples [50].

[C4] O(𝑁 ∗𝑀) complexity of combinations of element pairs. The
size of resulting combinations becomes too complex for
larger ontologies, especially with more sophisticated match-
ing features such as word embeddings. We need blocking
techniques [55] designed explicitly for OM to make systems
scale and enable interactive matching.

3 VERSAMATCH OVERVIEW
VersaMatch builds on recent advances in weak supervision [59],
which we adapt and integrate into a flexible method for OM that

combines both (1) matching knowledge, provided in the form of
heuristic rules, and (2) machine learning to achieve a hybrid match-
ing approach in the form of a novel classification ensemble. Ver-
saMatch is carried out via the following steps, split into two phases,
preparation and matching (see Figure 2), and mapped with the cor-
responding identified challenges.

(1) Alignment Profile Construction.We create a self-con-
tained, homogeneous alignment profile for each class ele-
ment within its overall context (i.e., its properties, neigh-
bors in the ontology, statistical properties of its data in-
stances if available). We also enrich information contained
in the raw ontology with additional external context de-
rived from natural language processing (NLP) and general
knowledge bases (e.g., synonyms, word stems, Wikidata)
and pre-compute word and sentence embeddings. [C1, C2]

(2) MinHash LSH Blocking. The overall naive combination
of class pairs is of O(𝑁 ∗𝑀) complexity, which slows down
labeling and model training. Therefore we design a Min-
Hash locality-sensitive hashing (LSH) based blocking step,
primarily to process larger ontologies. LSH uses the class
context information in the previously constructed align-
ment profiles that we store in MinHash buckets. The output
is a significantly reduced number of candidate pairs. [C4]

(3) Weakly-Supervised Labeling. We create probabilistic
labeled data from the candidate combinations of class pairs
based on their constructed alignment profiles using a set
of generic soft and hard labeling functions that encode
supervision sources. Each labeling function can judge if
a pair of classes match or it can abstain. Soft functions
have noisy outputs whose accuracy only needs to be >

50% as in Snorkel [59], whereas hard labeling functions
produce highly precise outputs (> 90%) that tend to be
sparse (i.e., with many abstains). Labeling functions can
be flexibly removed or added. The output of all labeling
functions is then used in a generative process that combines
the aggregated outputs to a single probabilistic label for
each covered combination. [C1, C2]

(4) Discriminative ML Model. We train a supervised, dis-
criminative machine learning model with the covered prob-
abilistic labels obtained in the previous step. As training
data, we create a feature vector based on multiple lexical,
structural, and semantic distances for each pair of classes,
using state-of-the-art word embeddings. We then apply
the trained model to all candidate pairs (both covered and
abstained combinations of the label generator). [C3]

(5) Classification Ensemble. Last, we ensemble the genera-
tive label model’s outputs and the trained discriminative
ML model’s, utilizing each combinations probability and
coverage information. The output is an ontology alignment
between source and target ontology covering all candidate
pairs while achieving higher recall and precision than the
generative or discriminative model alone. [C2]

4 PREPARATION PHASE
We create alignment profiles for each class (4.1) and then a filtered
set of candidate class pairs with MinHash LSH blocking (4.2).

1307

1. Alignment
Profiles

Construction

2. MinHash
LSH

Blocking

Source
Ontology

Target
Ontology

Source
Alignment

Target
Alignment

3. Weakly
Supervised
Labeling

5. Classification
Ensemble

CA1 CB1 0
CA1 CB2 1
CA2 CB1 ?
... ...

CA1 CB1 0
CA1 CB2 1
CA2 CB1 1
... ...

Preparation Phase Matching Phase

CA1 CB1 ?
CA1 CB2 ?
CA2 CB1 ?
... ...

4. Discriminative
ML Model

training labels
CA1 CB1 0
CA1 CB2 1
CA2 CB1 1
... ...

Figure 2: VersaMatch Overview. (1) The preparation phase builds alignment profiles for all source and target ontology classes
and then removes unlikely class combinations based onMinHash LSH blocking. (2) For matching, we apply a weakly-supervised
and a discriminative, machine learning based model jointly in a classification ensemble to the reduced set of combinations.

4.1 Alignment Profile Construction

Ci

n1

n2

n3

domain

secondary texts

background knowledge

MinHash

Superclasses, Subclasses

Properties

class name

primary texts relatedSynonym

label

seeAlso

comment

equivalent classes

synonyms

split

acronyms

stemming

TF-IDF

embeddings

...

Figure 3: Alignment Profile. The alignment profile dynam-
ically adapts to the information available in the specific
ontologies and provides an easy and common interface for
blocking, labeling function developers and model training.

Alignment profiles enable a comparison of two ontology ele-
ments within their context, i.e., considering their properties, in-
stances and relationships. We also enrich them with data from open
knowledge bases. E.g., a class named ‘ConfPaper’ might have the
label ‘Conference Paper’, with ‘Publication’ as a super class, and
‘report’ and ‘composition,’ as synonyms. The self-contained and ho-
mogeneous profiles serve as common interface for all further steps,
from blocking and labeling to ML model training and classification.
Their simple interface allows an effortless writing of labeling func-
tions (see Section 5.1) and they are transferable between arbitrary
ontologies in the same language 𝐿. Last, they reduce the execution
time of labeling and prediction as compute intense operations such
as word embeddings are only computed once.

As illustrated by Figure 3, the profile includes not only basic
information such as domain, comments, name, properties, and their
ranges but also other context and structural information in terms of
how it is related to other neighboring nodes in the overall ontology
andwhat are the statistical features of its individuals if available.We
also enrich the profile with information from external knowledge
bases, such as WordNet [57] and Wikidata [69], to retrieve external,
background context information (e.g., synonyms, descriptions). We
design the profiles to dynamically adjust to the underlying ontolo-
gies through a set of canonical attributes. E.g., the primary_texts
attribute contains all available “first-class” properties, such as “la-
bel” or “equivalent classes” available in the ontology language 𝐿,
while secondary_texts contains “second-class” properties such as
“comment”. Further, we automatically prepare multiple variations
(e.g., acronyms, splits) and pre-compute word embeddings.

4.2 MinHash LSH based Blocking
Blocking reduces the number of candidate pairs (e.g., entities, data
records) that are considered for subsequent more compute intense
operations, such as labeling or matching. Recently, MinHash LSH
based blocking has shown to be efficient for related problems (e.g.,
entity matching) [63]. MinHash LSH groups similar pairs accord-
ing to their Jaccard similarity. Jaccard’s lexical similarity works
well with noisy data; however, it has two main drawbacks: (1) a
potentially different, similarity threshold needs to be selected for
distinct combinations of datasets, and (2) it only represents lexical
similarity and disregards semantic or structural similarity.

To address these drawbacks, we create MinHash [8] signatures
for each class in both ontologies with 𝑆O𝑠

= {𝑆𝑠1, 𝑆𝑠2, . . . , 𝑆𝑠𝑛} and
𝑆O𝑡

= {𝑆𝑡1, 𝑆𝑡2, . . . , 𝑆𝑡𝑚}, where 𝑛 and𝑚 are the number of classes
in O𝑠 and O𝑡 respectively. We then store signatures of 𝑆O𝑡

in a
Locality Sensitive Hashing (LSH) [34] index to efficiently query it
with signatures in 𝑆O𝑠

. This MinHash LSH data structure enables
constant lookup times to find similar classes across ontologies and
takes linear time to construct. The MinHash signatures are built
from the alignment profile information. Specifically, we concatenate
the available dataset/ontology independent data (e.g., primary/sec-
ondary texts and their variances and synonyms). We then remove
common stopwords found in the NLTK database [4], to reduce the
probability of adding spurious matches. We add the remaining data
to MinHash, using w-shingling of𝑤 = 1, effectively omitting the
order and context of tokens and solely using single words as simi-
larity basis. This design choice is sensible because there exists no
logical sentence order in the alignment profile compared to tradi-
tional text documents. E.g., the class name might be followed by its
synonym. We want such tokens of two classes with a high overlap
e.g., 𝑆𝑠1 = {𝑐𝑎𝑟, 𝑎𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒} and 𝑆𝑡1 = {𝑎𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒, 𝑐𝑎𝑟 } to result
in a high similarity, independently of the token order.

The MinHash LSH index needs to be initialized with the number
𝑏 and size 𝑟 of bands in which we split the MinHash signatures.
The probability that MinHash signatures become candidate pairs
depends on 𝑏 and 𝑟 and follows an S-curve, with the similarity
threshold 𝑡 being at the steepest point. The threshold can be esti-

mated with 𝑡 =
(︂
1
𝑏

)︂ 1
𝑟 [38]. To choose values for 𝑏, 𝑟 and thereby

𝑡 , we exploit that OM is more narrowly defined than general en-
tity matching or record linkage. In OM, there can only be a single
valid match for each class at maximum. I.e., out of 𝑁 ∗𝑀 combi-
nations, where 𝑁 and 𝑀 are the number of classes in O𝑠 and O𝑡
respectively, at mostmin(𝑁,𝑀) matches exist. Thus, we can set the
LSH parameters to reach a minimum number of returned candidate

1308

pairs, starting from a high Jaccard similarity threshold and relaxing
it by a stepsize 𝑆 with further iterations until sufficient candidate
pairs 𝑁𝐶 are returned. In our experiments with multiple ontologies
(see Section 6), we find that 𝑁𝐶 ≥ 5 ∗min(𝑁,𝑀) provides a good
trade-off between size and recall across different ontologies. We
stop at a smaller coverage of 2% when the number of LSH returned
matches saturate for multiple consecutive steps. This algorithm has
a linear complexity of O(𝑁 +𝑀) for each tried Jaccard threshold.

We mitigate MinHash’s restriction to lexical similarity through
the enriched information in the alignment profile. The profiles
contain information from linguistic and general knowledge bases
and models such as synonyms, stemming, root, and acronyms. They
also contain structural features, such as super and sub-classes (see
Section 4.1 for details), transformed into lexical features for which
Jaccard similarity is a good measure. Note that achieving semantic
similarity with LSH has also been addressed slightly differently by
DeepER [21], which applies LSH directly over word embeddings
of entity attributes. We have found this approach to not work as
well for ontologies, as it cannot take advantage of the structure and
constraints defined by ontologies and their modeling language 𝐿.

5 MATCHING PHASE
The matching phase comprises the creation of a generative labeling
model based on multiple weak supervision signals (5.1), the training
of a discriminative MLmodel (5.2), and their classification ensemble
to retrieve the overall matches (5.3), see also Figure 4.

5.1 Weakly-Supervised Labeling
VersaMatch labels class combinations from O𝑠 and O𝑡 into match
and non-match using multiple soft and hard weak-supervision func-
tions that access the respective alignment profiles for supporting
their decision. With weak supervision, we can generate training
labels for—potentially large amounts of—unlabeled data based on
imprecise or limited supervision signals. These signals can be mod-
eled in a generative process that de-noises the labels based on their
agreements and disagreements for each class pair [60]. We combine
all soft and hard weak supervision signals into a label generator to
produce probabilistic labels for ML model training.

Labeling Functions (LFs). Labeling functions encode an in-
dication if two classes are equivalent or not and can be flexibly
modified or extended by users. Each LF 𝑓 : 𝑋 → 𝑌 ∪ ∅ takes a class
pair 𝑥 ∈ 𝑋 , where 𝑥 = (𝑐𝑠 , 𝑐𝑡) as input and outputs the latent label
𝑦 ∈ 𝑌 or abstains from voting. In VersaMatch, labeling functions
directly access the information in the alignment profile created
in Step (1), which provides an easy and self-adapting interface.
Functions can base their decision on domain knowledge, general,
experience-based heuristics, or available knowledge bases. For ex-
ample, Listing 1 shows a labeling function that matches two classes
based on the intersection of their synonyms from the WORDNet
knowledge base [57]. As a basis, we create a core set of functions
that we generally find applicable for various domains and matching
problems (see Table 3). By creating a new function, this core set
can be flexibly extended with domain-specific matching heuristics
(e.g., domain-specific background knowledge). Further, through
its alignment profile abstraction, VersaMatch automatically adapts

@soft
def Primary_texts_synonyms(r):

synonyms_x = set(r.primary_texts_synonyms_x.values())
synonyms_y = set(r.primary_texts_synonyms_y.values())
common = synonyms_x & synonyms_y
if len(common) >= 1:

return 1
return -1

Listing 1: Labeling Function uses WORDNet Synonyms and
returns a match if both names share a common synonym.

to the information contained in an ontology (e.g., to the available
properties). The labeling functions themselves stay the same.

Label Generator. VersaMatch uses the set of weak supervision
sources to compute probabilistic labels for the generated combina-
tion of classes. Beyond Data Programming [59], a popular weak-
supervision framework, we abstract weak-supervision sources to
two types of labeling functions (LFs). Soft labeling functions corre-
spond to the traditional LF concept in [59], while our hard labeling
functions encode precise weak-supervision sources but usually only
with sparse outputs, i.e., with low coverage. For instance, a soft LF
could label a pair of classes that share the same string as a name as
a “match”, producing numerous false positives due to the ambiguity
of language; while a hard LF could label a pair of classes as a “match”
if and only if they are known to be a match in a knowledge base.
For all other pairs that are not known, the LF will abstain, produc-
ing a low number of votes. Such low-coverage, but high-precision
functions are common in OM and cannot be handled well by the
generic generative process as they do not participate in enough
outputs to adequately model their accuracy. This practically can re-
sult in their votes being canceled out by other functions. Therefore,
we handle them separately: (1) For the soft functions, we learn a
generative model following the approach in [59], while (2) for the
hard functions we apply a majority voting model due to the small
number of functions and their sparse outputs.

For the generative model, consider 𝑛 labeling functions and𝑚
class pairs, resulting in the labeling matrix Λ in Equation 1.

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑦11 𝑦12 𝑦13 . . . 𝑦1𝑛
𝑦21 𝑦22 𝑦23 . . . 𝑦2𝑛
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑦𝑚1 𝑦𝑚2 𝑦𝑚3 . . . 𝑦𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1)

Given the observed Λ, VersaMatch learns a generative model
with parameters 𝜃 to produce probabilistic estimates of the latent
labels 𝑦 𝑗 with 𝑗 = 1, 2, ...,𝑚 by modeling the LF accuracies, propen-
sities, and their dependencies. More details can be seen in [59].
Through this generative process, the noise and variance in accu-
racy and coverage of each single labeling function are taken into
account, putting more weight on high accuracy labeling sources
and less on low accuracy ones.

For the hard LFs, we instead derive a prediction �̂�ℎ𝑎𝑟𝑑 through
majority voting across the outputs of the hard LFs (see Equation 2).

�̂�ℎ𝑎𝑟𝑑𝑖 = argmax
𝐾∑︂
𝑘=1

𝑓𝑘 (𝑥𝑖) (2)

Note, that in our experience, there are usually not many hard out-
puts available for a single class pair, as functions usually cover

1309

CA1 CB1 ?
CA1 CB2 ?
CA2 CB1 ?
...

CA1 CB1 0
CA1 CB2 1
CA2 CB1 ?
... Classification

Ensemble

CA1 CB1 0
CA1 CB2 1
CA2 CB1 1
...

F2 ([s1 , s2 ... si])

F2 ([s1 , s2 ... si])

Fn ([s1 , s2 ... si])

prediction,
probability

prediction,
probability,
coverage

non abstained
data points

pred prob cov
CA1 CB1 0 0.7 0.4
CA1 CB2 1 0.6 0.3
...

weakly-supervised training pred prob
CA1 CB1 0 0.9
CA1 CB2 1 0.7
CA2 CB1 1 0.8
...

Discriminative
ML Model

Figure 4: Detailed working of VersaMatch matching phase. A set of flexible labeling functions processes the after blocking
remaining class combinations into a label generator. We use its weak-supervision signals to train a discriminative machine
learning model. The outputs of the label generator and the discriminative model are then ensembled for final prediction.

different categories of matches (e.g., based on domain knowledge
bases or logical inference). With such a small set, computing a gen-
erative model for the set of hard functions 𝐹ℎ𝑎𝑟𝑑 = {𝑓1, 𝑓2, . . . , 𝑓𝑘 }
is not sensible as LFs cannot be properly modeled.

For the final training labels, we combine soft and hard models
into an overall label generator :

�̂�𝑡𝑟𝑎𝑖𝑛𝑖 =

{︄
�̂�ℎ𝑎𝑟𝑑𝑖 if 𝐹ℎ𝑎𝑟𝑑 (𝑥𝑖) ≠ ∅
�̂�𝑠𝑜 𝑓 𝑡𝑖 otherwise

(3)

where �̂�ℎ𝑎𝑟𝑑 is the output of the majority model of the hard LFs and
�̂�𝑠𝑜 𝑓 𝑡 is the output of the generative model of the soft LFs. Thus, to
predict the label for two ontology concepts 𝑥𝑖 = (𝑐𝑠 , 𝑐𝑡), we select
�̂�ℎ𝑎𝑟𝑑𝑖 if the output vector of the hard LFs for 𝑥𝑖 is not empty, i.e.,
at least one hard LF exists and takes a vote for the given data point.

Post-processing of probabilistic labels. The outputs of the
label generator are probabilistic labels for each covered pair of
classes from the source and target ontology. We then (1) transform
the probabilistic labels into deterministic labels and (2) filter out
low confidence labels based on a confidence threshold. E.g., if a pair
of classes has a label with a 0.55 probability of matching and our
threshold is 0.7, we do not use this label for our next step.

5.2 Discriminative ML Model
There are few mappings (i.e., few positive samples) in any OM
task. This constraint reverberates in our ML model design as we
must use a relatively small number of features because of the curse
of dimensionality [3]. We design multiple features to represent
each pair of classes capturing their lexical, semantic and structural
similarity and then select an optimal subset using recursive feature
elimination based on ANOVA F-values (see Table 1).

We measure the lexical distance between each pair of classes
by using multiple distance functions (e.g., cosine, euclidean) to
represent better similarities between classes, which has been bene-
ficial for similar tasks [42]. We also borrow the concept of TF-IDF
(Term Frequency-Inverse Document Frequency) from information
retrieval and adapt it to OM in the following way. First, we calculate
the term frequency 𝑓 for all the terms in each ontology. Then, for
each pair of classes 𝑐𝑠 , 𝑐𝑡 from ontologies O𝑠 and O𝑡 we obtain the
shared terms in their names (𝑡1, 𝑡2, ..., 𝑡𝑛) and calculate a score 𝑠𝑐𝑠 ,𝑐𝑡

Table 1: Used features for class-pairs. Features express lexical,
semantical and structural similarity between two classes.

Type Feature

Lexical

Shared words count
Shared words percentage
Levenshtein distance for class names
Shared synonyms count
Shared synonyms percentage
TF-IDF score

Semantic (Word
Embeddings-
based)

Cosine distance for labels (USE)
Cosine distance for class names (USE)
Euclidean distance for class names (USE)
Cosine distance for class names (spaCy)
Euclidean distance for class names (spaCy)
Cosine distance for primary texts (spaCy)
Cosine distance for second. texts (spaCy)
Cosine distance for synonyms (spaCy)
Cosine distance for prefix texts (spaCy)

Structural Cosine distance for superclasses (spaCy)
Cosine distance for subclasses (spaCy)

based on 𝑓1, 𝑓2, . . . , 𝑓𝑛 in the following manner:

𝑠𝑐𝑠 ,𝑐𝑡 =

𝑛∑︂
𝑖=1

(1
𝑓𝑖,𝑠

+ 1
𝑓𝑖,𝑡

) (4)

where 𝑓𝑖,𝑠 and 𝑓𝑖,𝑡 represent the term frequencies in the ontologies.
To represent semantic similarity, we use word embeddings for

semantic text vectorization. As existing embedding models have
been trained on different corpora with different linguistic proper-
ties (e.g., a Bag-of-Words context-based model captures the domain
and lexical aspect; a paraphrase-relationship-based model captures
semantic similarities [39]), we utilize multiple embedding mod-
els. Multiple models have also achieved higher accuracy for other
tasks [64]. Specifically, we employ Google’s Universal Sentence
Encoder (USE) [11] and spaCy [33] to compute embeddings. Our
experiments with BERT models [16], showed no improvement. We
suspect that this is because USE has explicitly been designed, among
others, for semantic sentence similarity, whereas BERT has a much
wider application range (e.g., text classification, query answering).

To encode structural information (i.e., class relationships) , we
calculate the distance between the word embeddings of the primary
and secondary texts for the immediate superclass of class 𝐴 and
the word embeddings of the same texts for the superclass of class
𝐵. We also do the same for the immediate subclasses of 𝐴 and 𝐵.

1310

MLModel Training. With the encoded alignment pairs and the
generated labels, we train a supervised, discriminative ML model
that can classify any given pair of classes as match or non-match.
We exploit the ability of ML models to find patterns in the training
data to filter out the noise present in the weak supervision signals
and generalize beyond the logic contained in the labeling functions.
This allows VersaMatch to classify all data points, including those
not classified by our weakly-supervised labeling step, i.e., data
points in which the label generator abstained from voting.

5.3 Classification Ensemble
For final classification, we combine the soft and hard predictions
with the predictions of the weakly-supervised, discriminative ML
model in a classification model in Equation 5. The goal of our
ensembling technique is to support generalization through the
discriminative model, while sustaining high recall and precision.
In this setting, the soft and hard LFs act as a safety net to ensure
a more precise classification of long-tail samples, for which the
discriminative model has problems to generalize due to the lack of
training samples. The outputs of the ensemble are defined as:

�̂� 𝑓 𝑖𝑛𝑎𝑙𝑖 =

{︄
�̂�ℎ𝑎𝑟𝑑𝑖 if 𝐹ℎ𝑎𝑟𝑑 (𝑥𝑖) ≠ ∅
argmax

∑︁𝐾
𝑘=1 𝜔𝑘,𝑖 𝑝𝑘,𝑚 (𝑥𝑖) otherwise

(5)

Where 𝑝𝑘,𝑚 is the decision output matrix of the soft LFs and the dis-
criminative ML model (Equation 6), and 𝜔𝑘,𝑖 is the weight assigned
to each point 𝑖 and classifier 𝑘 .

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑝1,1 (𝑥𝑖) 𝑝1,2 (𝑥𝑖) · · · 𝑝1,𝑀 (𝑥𝑖)
𝑝2,1 (𝑥𝑖) 𝑝2,2 (𝑥𝑖) · · · 𝑝2,𝑀 (𝑥𝑖)

.

.

.
.
.
.

. . .
.
.
.

𝑝𝐾,1 (𝑥𝑖) 𝑝𝐾,2 (𝑥𝑖) · · · 𝑝𝐾,𝑀 (𝑥𝑖)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Note that for ontology sameAs matching, there will be only two
classes (𝑀 = 1, 2) and two classifiers (𝐾 = 1, 2) consisting of the
(aggregated) soft LFs and the discriminative ML model. However,
our method can be extended to more complex ensemble approaches
such as bagging [6], where multiple ML models are trained on
different sub-sets of the data.

Defining the weight of each classifier-data point combination is
a problem of active research [44]. In VersaMatch, we exploit the LF
coverage for each point as an indicator of the weight to be assigned
to the generative label generator and the discriminative model.
Specifically we compute 𝜔𝑘,𝑖 =

𝑁𝑖

𝑁𝑘
where 𝑁𝑘 is the combined

number of “voters” (LFs + the discriminative model) and 𝑁𝑖 is the
number of voters that take a vote for a single data point. E.g., there
might be 4 soft LFs in total with two abstaining from a data point,
thus the soft LF weight results in: 2

4+1 and the discriminative model
weight results in: 1

4+1 . These weights are then multiplied with the
respective probabilities vector and the resulting vectors are added
to compute the ensemble of probabilities. We then select the class
corresponding to the highest value with argmax. Note, that if there
is also an output of a hard LF, we select this output instead (�̂�ℎ𝑎𝑟𝑑𝑖).

6 EXPERIMENTAL EVALUATION
We describe datasets, baselines and explore different questions
defined in our experimental design through experiments.

Datasets: we select two long-running datasets, conference and
anatomy, from theOntologyAlignment Evaluation Initiative (OAEI),
in which state-of-the-art ontology matchers have competed every
year since 2005 (22 matching tasks over eight ontologies) [54]. We
further take two ontologies, Atmonto and AIRM-O, from the air
traffic management domain as a realistic scenario of two larger
ontologies of the same domain that have been developed inde-
pendently and according to [67] “. . . pose a challenge to automatic
matching”. Last, we select a set of IoT ontologies published as part of
a challenge of the web and information extraction community [30],
which is the topic of an ongoing AI competition KE4WoT [65]. For
the OAEI data, we use the provided reference alignments; for the
air traffic data, we use a manually created alignment [67], while
for the KE4WoT data, we extract an alignment based on matching
information published by the challenge organizers and manual in-
spection of the ontologies. We provide this new dataset with this
paper [26]. Table 2 summarizes our datasets.

Table 2: Datasets used in our evaluation.

Dataset Description Ontologies #classes #matches

Conference OAEI-2020 Conference
track involves 7 ontologies
from the same domain (con-
ference organization) [54].

CMT, Con-
fOf, Confer-
ence, Edas,
Ekaw, Iasted,
Sigkdd

491 259

Anatomy OAEI-2020 Anatomy track
is a real world case that con-
tains 2 large ontologies de-
scribing human and mouse
anatomy [54].

NCI The-
saurus
(Human),
Mouse

6048 1516

AirTraffic NASA and Eurocontrol air
traffic management ontolo-
gies describe classes, prop-
erties, and relationships rel-
evant to the domain of air
traffic management.

Atmonto [62],
AIRMO [68]

1069 32

AI4EU IoT ontologies part of
AI4AI KE4WoT [65] and
WWW’18 challenge [53].

SAREF, M3-
lite, FIESTA-
IoT, dogont

2061 72

Sum 15 9669 1876

Baseline Systems: first, we select the following state-of-the-art
ontology matching systems as baseline systems for comparison: (1)
LogMap; (2) AML [24]; (3) YAM++ [51] (unsupervised mode). They
are the top-ranked matchers for the first two datasets according to
results on OAEI. They are all unsupervised, i.e., they rely on a set of
matching heuristics and potentially post-processing/filtering steps.
Second, we select a set of 5 tabular schema matchers (COMA 3.0 [1,
17], Cupid [43], Distribution Based [75], JaccardLevenMatcher and
Similarity Flooding [47]) based on their implementation in Valen-
tine [37], an experimental suite that bundles multiple matchers.
Last, we also select three supervised entity matchers, Magellan [36],
DeepMatcher [49] and DITTO [40], based on their popularity in the
entity matching domain and to compare VersaMatch to traditional
supervised ML methods.

Metrics: in our experiments, we use precision, recall, and F1
score to evaluate our approach. Compared to accuracy, precision
and recall evaluate the proportion of actual positive samples in all
the predicted positive ones and the proportion of actual positive

1311

samples found from the total positive samples, respectively. F1
score combines these two and offers a way to measure if a system is
biased—if it is biased to output negative samples, then its precision
might be very high but its recall low and vice versa.

6.1 Experimental Design
Our experiments are designed to explore the following questions
with detailed evaluation results reported in the follow-up sections.

First, we evaluate the effectiveness of our weak supervision-based
approach to label input data for OM.We try to answer twomain ques-
tions: (1) whether weak-supervision provides sufficiently accurate
labels and how much data it can cover; (2) whether additional weak-
supervision sources improves the overall labeling performance and
how well VersaMatch adapts to newly-added weak supervision
sources to improve the quality of generated labels. The results of
these questions reflect the flexibility of VersaMatch in the knowl-
edge dimension, called improve-by-expanding-knowledge, meaning
the performance of VersaMatch can be further improved by adding
additional, domain-specific knowledge via the same mechanism.

Second, we investigate how VersaMatch learns and generalizes from
the weak labels generated by our set of weak-supervision sources. We
explore which ML algorithm works best and the gain compared to
the label generator. We also explore if more generated weak labels
could further improve the learning capability. The corresponding
results reflect the flexibility of VersaMatch in the data dimension,
called improve-by-adding-more-unlabeled-data, meaning the per-
formance of ML models can be improved by simply adding more
unlabeled datasets, which are easy to obtain.

Third, we validate the effectiveness of combining both generative
and discriminative ML models to predict the final matching results.
Wemeasure if the results from the classification ensemble are better
than taking either model alone. This result reflects the flexibility of
VersaMatch in the model dimension, called improve-by-combining-
models, meaning we can improve the final matching results by
taking advantage of both generative and discriminative ML models.

Last, we compare VersaMatch with the selected baseline systems
over four datasets to see if we can go beyond their performance by
using our core set of provided weak supervision sources. This helps
us see the overall performance of VersaMatch and its potential to
provide well-performing OM at scale across different datasets.

6.2 Label Generator
Analysis of Labeling Functions. We start with basic experiments
to analyze the performance and coverage of labeling functions (LFs).
We use 14 LFs in VersaMatch of which 2 are hard functions. Table 3
summarizes them including their Lines of Code (LoC). We can make
the following observations: First, the required effort to program an
LF is relatively low in LoC. The average lines of code per LF are
about 20, and most of them consist of less than 50 lines of code
and contain a rather simple logic (e.g., they check for equality of
alignment profile attributes). Second, the coverage of LFs, i.e., the
percentage of the class pairs covered by each LF, varies tremen-
dously. Notice that 10 out of 14 LFs cover < 2% of the class pairs, and
only 1 LF has a coverage > 50%. Most of our LFs are conservative,
and provide votes only when they are certain about the cases. This
is why the precision of the majority of LFs is high (macro average

80%). Figure 5 shows the fraction of class pairs covered by different
numbers of LFs in the combined dataset. We notice that about 40%
of the class pairs are not covered by any LF, resulting in the label
generator not being able to predict/label those points. Last, we can
see two hard functions. DomainKB uses alignment info which is
known to be true from a domain specific knowledge base, which
is common in many application scenarios; Subclasses_equal en-
codes a logical inductive inference (if all subclasses are equivalent,
the parent classes must be too).

0 1 2 3 4 5 6 7 8 9 10
Number of labels

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
n

of
 d

at
as

et

9302 9343

2746

666
8 2 21 88 56 43 3

Figure 5: LF coverage across datasets (without anatomy).

Adding Knowledge Sources. To explore how additional knowl-
edge supports the label generator, we separate LFs into different
categories based on their “knowledge source”. E.g., the “Name”
category contains functions that only perform simple lexical com-
parisons between names of two classes, the “Embedding” category
contains functions accessing more advanced models such as Univer-
sal Sentence Encoder [11]. We perform the same set of experiments
on all datasets so that we can examine how adding new knowledge
sources changes the label quality across datasets. Figure 6 shows
the label generator’s average performance results and coverage for
all four data sets with increased knowledge sources. We compute
F1, precision, and recall with ground truth data. Coverage measures
the percentage of the class pairs that the label generator can label.

Overall, the following observations can be seen in Figure 6. First,
adding knowledge sources helps improve F1 and recall of the label
generator gradually and consistently. This indicates that the label
generator can de-noise the signals from labeling functions and then
consolidate them to achieve better label quality. Second, by adding
more knowledge sources, the label generator can cover and label
≈ 20 times more class pairs, increasing from 0.02 to 0.37. More
important, as more class pairs are covered, overall quality of the
generated labels is also improved: F1 score increases by 16%, from
0.62 to 0.72, and recall increases by 40%, from 0.51 to 0.71. Only
precision slightly decreases after we add the 4th source. Overall,
VersaMatch balances precision and recall with growing number of
knowledge sources, reflected by an increasing F1 score.

6.3 Discriminative ML Model
Based on the weak labels generated by the label generator we train
and evaluate a discriminative ML model via a set of experiments.

Model Selection. Using the features described in Table 1, we
evaluate four machine learning models: (1) Logistic Regression (LR),
(2) Random Forests (RF), (3) XGBoost (XGB), and (4) a Neural Net-
work (NN). The NN consists of 3 dense hidden layers of 256 neurons

1312

Table 3: Core Labeling Function Evaluation Analysis. (see [26] for the implementation of these functions)

Labeling Function Description Type Cov. Prec. LoC

Name_equal Matches classes if they have the exact same name. soft 1.11 % 87.8 % 3

Split_equal Splits names (e.g., based on camel case names) for match. soft 0.78 % 70.2 % 65

Class_name_spacy Matches based on spacy distance. soft 11.82 % 88.2 % 7

Split_stemmed_equal Splits names and stemmes them for match. soft 0.47 % 85.7 % 22

Primary_texts_equal_0 Matches based on exact matches of primary texts (label, equivalent classes...) soft 1.16 % 87.6 % 7

Primary_texts_leven Matches based on Levenshtein distance of primary texts soft 23.03 % 75.5 % 34

Primary_texts_use Matches based on USE distance of primary texts. soft 51.34 % 84.5 % 33

Primary_texts_synonyms Matches based on overlap in synonyms. soft 1.01 % 79.1 % 9

Acronyms Matches acronyms based on regex, such as VLDB and Very Large Data Bases. soft 0.16 % 50.0 % 22

Superclasses_equal Matches based on superclasses equality. soft 0.26 % 54.0 % 18

Subclasses_equal Matches based on subclasses equality. hard 0.02 % 100 % 18

DomainKB Matches based on domain knowledge alignments (Uberon alignments [32]). hard 3.20 % 97.4 % 5

Wikidata Matches based on WikiData KB info. soft 0.10 % 79.2 % 13

Root_nouns Matches based on equality of word roots. soft 1.10 % 88.3 % 6

Name Properties Structure tf–idf Embeddings Public KB
Added Knowledge

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ul
t

F1 Precision Recall Coverage

Figure 6: Adding knowledge sources. We iteratively add
knowledge sources, i.e., “Name” contains only simple
distance-related functions, “tf-idf” accesses additionally
term frequency–inverse document frequency knowledge etc.

and was implemented using Keras and Tensorflow. This selection
covers a wide range of ML models used in related works [19, 49]
for supervised learning approaches. We carry out a group of ex-
periments to measure the performance of these ML models in each
dataset so that the trained ML model can adapt to the characteristic
of each dataset. This design is on purpose because VersaMatch can
always generate weak labels to train the discriminative ML models
adapting them to new datasets. The whole process does not involve
extra human effort. In each experiment, the training is done over
part of the dataset for the class pairs with available weak labels,
while the test is performed over the whole dataset for all class pairs.

Table 4 shows the performance results of all models over each
dataset. First, model performance varies largely across datasets with
different trade-offs between precision and recall. RF shows the best
F1 score for three out of four datasets, and only for Anatomy, its
performance is slightly behind XGB. Second, the most advanced and
compute-intensive model (NN) cannot outperform simpler models,

such as LR and RF. There are two reasons behind that: (1) the derived
features from the structured alignment profiles enable those simple
models to learn effectively and (2) the learning capability of NN is
limited due by the lack of samples (especially positive samples). A
similar pattern, where a NN underperforms for structured data, has
been reported in related entity matching works [19]. We select RF
as the best model and use it for further analysis of VersaMatch.

Table 4: Comparison of results for different discriminative
models across all datasets (macro average).

Dataset Model F1 Precision Recall No. Labels and Features

AI4EU

LR 0.76 0.92 0.65 7781 weak labelsRF 0.80 0.96 0.68
XGB 0.77 0.77 0.78 17 featuresNN 0.78 0.88 0.69

Conference

LR 0.69 0.83 0.59 2546 weak labelsRF 0.75 0.83 0.68
XGB 0.73 0.71 0.76 17 featuresNN 0.68 0.82 0.58

AirTraffic

LR 0.52 0.86 0.38 2714 weak labelsRF 0.60 0.93 0.44
XGB 0.58 0.63 0.53 17 featuresNN 0.45 0.83 0.31

Anatomy

LR 0.83 0.98 0.72 190510 weak labelsRF 0.82 0.98 0.71
XGB 0.86 0.93 0.80 17 featuresNN 0.79 0.97 0.67

Weak Label vs. Golden Label. Using Random Forest as the
selected discriminative ML model, we further explore how learning
could be improved when training with more generated weak labels
and also compare that to training it with ground-truth golden labels.
We create 10 stratified folds with 75% train and 25% test size for all
datasets combined. For each fold, we then train the RF model with
different training data sizes, starting with only 5% of the combined
training data at first and then increasing train size in steps of 5%
until we use the full 75%. The same experiment is carried out for
two cases: 1) training with the weak labels and 2) training with
the golden labels. Figure 7 plots the average value and standard

1313

error confidence interval of F1, precision, and recall for both cases.
We can observe the following. First, increasing training data helps
improve ML model performance, and the improvement can be seen
from all 3 metrics for both weak and golden labels. The improve-
ment is substantial initially when increasing from 5% to 40%, but
later becomes negligible. Second, training with weak labels achieves
nearly the same F1 score as with golden labels and even provides
higher recall, meaning that our approach with weak supervision
can capture more true matches in its prediction result. This is pre-
ferred in many practical cases because often, the predicted matches
will be further verified by domain experts. Surprisingly, training
with weak labels sometimes leads to an even higher F1 score than
training with golden labels. We suspect that this is because the label
generator might label some non-matches as matches, which still
positively impacts the model training as other actual matches have
a high similarity to the wrongly labeled non-match.

0.2 0.4 0.6 0.8 1.0
Training Data Share

0.5

0.6

0.7

0.8

0.9

R
es

ul
t

Type F1 Precision Recall Labels golden weak

Figure 7: Performance of Random Forest ML model over
increased training data size for weak and golden labels.

6.4 Model Ensemble
The discriminative model is trained with labels generated by the
generative model over non-abstain data covered by the core LFs.
After that, we can apply it directly to the abstain data, not covered
by any LF. This is because the discriminativemodel can learn hidden
patterns in the data and generalize its prediction capability from
the non-abstain data to the abstain data. In VersaMatch, the model
ensemble is designed to take advantage of both the label generator
and the discriminative model to provide the best prediction results
for the entire dataset. To examine the benefit of the model ensemble,
we perform a set of experiments to measure the performance of
all these three models in terms of F1, precision, and recall in two
different cases: one with only the non-abstain data covered by LFs
and the other with all data, including both the non-abstain data
and the abstain data that LFs do not cover.

Table 5 reports the performance results. No result is provided
for the label generator over all data because it does not apply to the
abstained data. Our model ensemble achieves the best performance
in terms of F1 score and recall in both cases. Especially for all
data, the ensemble model in VersaMatch gains 4 points on F1 score
compared to the best discriminative model. In this case, the LG
output is used for 48% of class pairs, while the DM is used for 52%
of class pairs. These results clearly show the benefit of combining
both models to predict the final matching result.

Table 5: Performance of Label Generator (LG), Discriminative
Model (DM), Ensemble Model (EM).

all non-abstain

F1 P R F1 P R

LG 0.86 0.82 0.90

DM 0.74 0.93 0.63 0.84 0.93 0.77

EM(VersaMatch) 0.78 0.82 0.74 0.86 0.82 0.90

6.5 Comparison with Baselines
Overall Performance. Last, we compare VersaMatch against state-
of-the-art matchers on our test datasets, among them also two en-
tity matchers, Magellan [36] and DeepMatcher [49] (see Table 6).
Overall, VersaMatch achieves the best F1 score for 3 out of 4 datasets.
Only for the anatomy dataset, AML is ahead by 2 points. How-
ever, AML performs a post-matching coherence/repair step, which
greatly improves its performance. When run without this repair
step, AMLNoRepair only achieves 0.81 F1, 11 points lower than Ver-
saMatch’s 0.92. Currently, VersaMatch has no coherence/repair
functionality. Therefore, we suspect that our results can be further
improved with similar functionality. More importantly, we see that
for the two in-the-wild datasets (AirTraffic & AI4EU), VersaMatch
achieves 8 and 9 points higher F1 than the other methods. One
reason could be that existing methods have been well-tuned to the
two datasets published by OAEI in its past competitions but fail
to provide the same competitive performance over new datasets.
VersaMatch’s big performance gain over these new datasets demon-
strates its flexibility and adaptation capabilities based on its align-
ment profile, a set of core labeling functions, and the ensemble of
generative and discriminative models for final classification. Over-
all, we see that VersaMatch achieves its high F1 score through a
substantially higher recall (8% better than the 2nd), while sustaining
a competitive precision.We trace this behavior to several features of
our design. First, the enriched information in our alignment profile
allows labeling functions to take different perspectives and knowl-
edge into their decision. Second, our label generator can consolidate
the weak signals from various labeling functions to achieve a better
trade-off between recall and precision. Last, as seen from Table 5,
our ensemble model is able to leverage both the performance of
the learned label generator for the non-abstained points and the
performance of the discriminative model for the abstained points.

Schema Matchers. We evaluate the 5 schema matchers con-
tained in Valentine [37] by transforming all alignment profiles of O𝑠
and O𝑡 into two tables with where each column represents a differ-
ent class and the rows contain the attributes of the alignment pro-
files. On average, this leads only to a performance of 0.114± 0.0163
in F1 (in Table 6 we provide detailed results for two of the 5 tested
schema matchers). There are no matches found for the anatomy
dataset as the column names (based on the class names) are IDs
that do not provide any meaningful similarity comparison.

Entity Matchers. We evaluate Magellan, DeepMatcher and
DITTO by providing them with two flattened tables of the on-
tologies, with one class per row, while columns correspond to at-
tributes of the alignment profiles. We use the Magellan blocker

1314

Table 6: VersaMatch vs. Baselines. VersaMatch achieves highest F1 score on 3 datasets, while for Anatomy, AML can only achieve
2 point higher results with an additional repair step, not implemented in VersaMatch.

Anatomy Conference AirTraffic AI4EU Overall

F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall

Ontology Matchers

VersaMatch 0.92 0.96 0.88 0.78 0.79 0.76 0.60 0.68 0.53 0.81 0.84 0.79 0.78 0.82 0.74

AML 0.94 0.96 0.93 0.76 0.83 0.70 0.51 0.80 0.38 0.68 0.70 0.65 0.74 0.82 0.66

AMLNoRepair 0.81 0.77 0.86 0.71 0.84 0.62 0.50 0.75 0.38 0.68 0.70 0.65 0.68 0.76 0.63

Yam++ 0.85 0.96 0.77 0.63 0.74 0.55 0.47 0.91 0.31 0.71 0.68 0.75 0.67 0.82 0.60

LogMap 0.88 0.91 0.84 0.73 0.84 0.64 0.48 1.00 0.31 0.70 0.72 0.68 0.70 0.87 0.62

Schema Matchers Distribution Based 0 0 0 0.11 0.07 0.41 0.10 0.06 0.28 0.24 0.16 0.56 0.11 0.07 0.31

JaccardLevenMatcher 0 0 0 0.15 0.10 0.41 0.10 0.06 0.28 0.24 0.16 0.56 0.12 0.08 0.32

Entity Matchers DeepMatcher 0.24 0.33 0.19 0.63 0.67 0.58 0.20 0.47 0.10 0.70 0.82 0.63 0.44 0.60 0.38

Magellan 0.61 0.87 0.47 0.58 0.77 0.50 0.37 0.97 0.24 0.73 0.93 0.61 0.57 0.89 0.45

DITTO 0.74 0.91 0.63 0.46 0.58 0.40 0.00 0.00 0.90 0.50 0.55 0.51 0.43 0.51 0.61

(mean recall 0.81, see Table 7) and then create 5 stratified random-
ized folds per ontology combination with 50% train, 25% validation,
and 25% test data, using gold labels for training. For DITTO, we
use RoBERTa [41] and 40 epochs. We run all of DITTO’s different
optimization techniques, and select the parameters which give the
best result on the validation data. As shown in Table 6, all entity
matchers have a much lower performance than VersaMatch, despite
being trained with 50% gold training data. Also, in terms of F1, their
performance is lower than all OM methods. Some of our suspected
reasons are: OM datasets are more imbalanced than EM data, and
even less positive samples are available (usually < 0.1% of combina-
tions are matches). This phenomenon is most apparent in DITTO,
which works better than the other EM for the large anatomy dataset,
but cannot learn a precise model for AirTraffic, due to the small
number of positive training data (32 matches overall, see Table 2).
Another difficulty is that ontology properties are heterogeneous
and not always aligned (e.g., ‘label’ in O𝑠 might need to be com-
pared with ‘class name’ in O𝑡). Last, entity matchers are agnostic to
the ontology structure and semantics (e.g., they treat ‘superclasses’
just as another attribute, but are unaware of its meaning).

6.6 Blocking and Runtime
Blocking Impact.While blocking filters out highly unlikelymatches,
it also impacts the final predictions. We first evaluate the perfor-
mance of our blocking method for all 4 datasets in terms of sample
reduction and recall (see Table 7). Overall, our MinHash LSH based
approach can reduce about 95% of the total class combinations but
still achieves a high overall recall score of 0.90, speeding up the
training and prediction process by nearly 20 times. The performance
varies slightly across datasets due to the nature of MinHash LSH
hashing, the information contained in the alignment profiles (i.e.,
the ‘features’ used in our blocking approach), and our developed
threshold selection algorithm (see Section 4). E.g., as the AirTraffic
dataset contains some exotic matches with little additional descrip-
tive data in their properties, they are filtered out after our blocking
phase despite being matches. To examine the prediction impact of
blocking, we further evaluate VersaMatch without blocking (see
Table 8). Blocking does not hurt the final matching result, but instead

results in a 2 point higher F1 score. Investigating precision and recall
results, we see that blocking achieves higher precision for 3 out
of 4 datasets, while VersaMatchNoBlocking achieves only a slightly
higher recall in 2 out of 4 datasets. Two observations could reason
this result: 1) blocking helps to alleviate the class imbalance that
affects the training; 2) blocking removes some exotic and challeng-
ing true matches, which can be considered outliers, so the training
data is less noisy and more efficient for machine learning.

Runtime Analysis Table 8 also summarizes VersaMatch’s ex-
ecution times. We used an Intel Xeon Silver 4208 CPU, a NVIDIA
GeForce RTX 2080 Ti GPU and 128GB of RAM. We perform 3 runs
per combination. The time distribution for the different steps is:
Alignment Profile Construction 10.32 %; Blocking 19.51 %; Label
Generation 39.15 %; ML Model Training 29.75 % and Classification
Ensemble 1.27 %. Especially for larger ontology pairs (anatomy),
traditional ontology matchers are faster (< 2min). However, compa-
rable supervised methods such as the tested entity matchers require
an execution timemuch larger than ours (e.g., DITTO training alone
required on average 1947s with 40 epochs across all datasets).

Table 7: Blocking efficiency compared to Magellan Blocker.

Combtotal Combversa Combmag Recallversa Recallmag

AI4EU 181148 11290 10785 0.89 0.94

Conference 98688 7738 9729 0.91 0.83

AirTraffic 140910 3250 3510 0.81 0.72

Anatomy 9066176 465091 14600 0.98 0.76

Unweighted Average 0.90 0.81

7 RELATEDWORK
Ontology & Schema Matching (SM & OM). LogMap [35] first
computes a set of anchor mappings, based on nearly exact string
similarities with a confidence value assigned. Next, LogMap repeat-
edly applies repair and discovery steps to refine and discover new
mappings. Agreement Maker Light (AML) [24] employs iteratively
different string-equivalence based matchers and background knowl-
edge from existing knowledge bases such as WordNet. In each step,

1315

Table 8: VersaMatch performance with and without blocking.

VersaMatchBlocking VersaMatchNoBlocking

F1 Prec. Recall Time (s) F1 Prec. Recall Time (s)

AI4EU 0.81 0.84 0.79 112.8±1.2 0.77 0.71 0.83 328.2±2.7
Confer. 0.78 0.79 0.76 81.5±0.8 0.75 0.74 0.76 144.1±3.2
AirTraffic 0.60 0.68 0.53 98.1±2.9 0.58 0.60 0.56 254.2±3.5
Anatomy 0.92 0.96 0.88 663.5±32 0.92 0.96 0.88 10630±106
Mean 0.78 0.82 0.74 239.0 0.76 0.75 0.76 2839.1

AML aggregates values using a weighted average. YAM++ [51]
can use either heuristics or supervised machine learning (Decision
Tree, SVM) to classify between match and no-match. The matching
output is then put through a similarity propagation process and
constraint checking in a second step. OntoEmma [70] enriches on-
tologies with external natural language information, generates a
feature vector, and uses it for supervised ML model training.

These works either rely on a set of carefully designed heuris-
tics and repair steps or a set of labeled data to enable OM. Our
results show that this leads to performance drops, especially for un-
known datasets (e.g., AI4EU for heuristics based matchers). These
drops can only be avoided by re-designing matching heuristics or
providing new labeled data—both associated with high effort. In
contrast, VersaMatch adapts weak-supervision to OM, including
an enriched alignment profile that flexibly adapts to the specific
dataset and the information available. Incomplete coverage of our
labeling functions is compensated in our classification ensemble by
a trained discriminative model. This achieves robust performance
across different datasets without additional user effort.

Entity Matching (EM). EM aims to identify which records refer
to the same real-world entity. Most recent EM works rely on some
form of machine learning: Magellan [36] (traditional supervised
learning) and DeepMatcher [49] (deep learning) entity matchers lay
the grounds for BigGorilla [12], an open-source ecosystem for data
preparation and integration. Similar to DeepMatcher, DeepER [21]
develops a deep learning-based entity resolution system, including
LSH based blocking. DeepER uses existing word embeddings and
allows to tune the data representation (features) to the specific
matching task. Several works address the label data bottleneck
through crowd-sourcing & active learning [15, 29], pre-trained
transformer-based language models [9, 40], generative similarity
distribution modeling [72], transfer learning [76] and last weak-
supervision [73].

As our experiments show, the assumptions made in entity match-
ing solutions do not fully apply for OM (e.g., they assume a large
amount of training data for both positive and negative samples,
attributes in both datasets are assumed to be aligned, they are ignor-
ing the structure and constraints in ontologies), leading to inferior
results compared to VersaMatch and other ontology matchers. For
our blocking approach, we are inspired by the LSH based block-
ing of DeepER. However, our method achieves dataset adaptation
through our alignment profile abstraction, which contains all the
information and variances needed for effective blocking for OM.
Pandas [73] presents some initial efforts closest to ours in that it
aims to adapt weak supervision to entity matching but focuses

more on providing an integrated development environment (IDE)
to ease the design of labeling functions.

Knowledge Graphs Alignment. A Knowledge Graph (KG)
describes real-world entities and their interrelations in a graph. A
KG can be seen as an instance of an ontology, often with a lower
level of formalization [56]. As such, KG alignment is related to
OM. There are two main paradigms in KG alignment. TransE [5]
introduced the paradigm of translation-based embeddings, which
uses relation triples and seed alignments to align KGs. Several other
works improve upon TransE: MTransE [13] to align KGs in differ-
ent languages and [74], which incorporates attribute information.
The second paradigm is based on Graph Neural Networks (GNNs)
and builds embeddings by passing messages between graph nodes,
encoding each node’s neighborhood information: [71] uses Graph
Convolutional Networks (GCNs) to align KGs in different languages,
utilizing not only structural information but also attributes infor-
mation, [77] utilizes Graph Attention Networks (GATs) [66] to ag-
gregates neighborhood information with the attention mechanism
to automatically weight nodes with higher relevance.

Ontologies define the schema while KGs mostly contain instance
data. This causes ontologies to be sparser than KGs and to usu-
ally not be fully connected, two characteristics that the works
mentioned above depend on. Another limitation is the need for
user-provided seed alignments for each pair of KGs, which is not an
easy task when the user is not familiar with the data domain. With
VersaMatch, we avoid this dependency through a flexible, weakly-
supervised matching approach based on homogeneous alignment
profiles, making our approach directly applicable to new datasets.

8 CONCLUSION AND FUTUREWORK
VersaMatch is to our knowledge the first to adapt weak-supervision
to OM. To enable this adaption, we designed multiple building
blocks from homogeneous alignment profiles and a MinHash based
blocking method to a generic set of labeling functions and discrimi-
native ML model features. To support generalization while retain-
ing precision, we created a novel classification ensemble of weak
supervision sources and a ML model, achieving higher accuracy
and flexibility than any of these models on their own. VersaMatch
achieves, on average, a 4-point higher F1 score than state-of-the-art
matching systems across four representative datasets consisting of
26 ontology combinations and > 10M class pair combinations with
a generic, core set of labeling functions, applicable to a wide range
of datasets. For new, in-the-wild data, VersaMatch is even 9 points
ahead of the next best matcher. Thanks to the alignment profile
and labeling function abstractions, we achieve these results with a
fraction of effort needed for traditional supervised ML.

In the future, we will extend VersaMatch to match other data
sources such as relational or semi-structured data to ontologies. We
further plan to (1) extend VersaMatch with more advanced graph
embeddings (e.g., EmbDI [10], EP [27]) on top of initially sparsely
connected ontologies to find further matches and (2) train the dis-
criminative model with a more comprehensive feature vector and
larger datasets (e.g., recently, Intermediate Training of BERT has
shown to be effective for product matching [58]). A third direction
for future work is the combination of weak supervision with active
learning to avoid the bootstrapping problem of active learning.

1316

REFERENCES
[1] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. 2005.

Schema and ontology matching with COMA++. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. 906–908.

[2] Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cas-
sandra Xia, Souvik Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al.
2019. Snorkel drybell: A case study in deploying weak supervision at industrial
scale. In Proceedings of the 2019 International Conference on Management of Data.
362–375.

[3] Richard Bellman. 1961. Adaptive control processes: a guided tour princeton
university press. Princeton, New Jersey, USA (1961), 96.

[4] SG Bird and Edward Loper. 2004. NLTK: the natural language toolkit. Association
for Computational Linguistics.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[6] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[7] Eran Bringer, Abraham Israeli, Yoav Shoham, Alex Ratner, and Christopher Ré.

2019. Osprey: Weak supervision of imbalanced extraction problems without
code. In Proceedings of the 3rd International Workshop on Data Management for
End-to-End Machine Learning. 1–11.

[8] Andrei Z Broder. 2000. Identifying and filtering near-duplicate documents. In
Annual Symposium on Combinatorial Pattern Matching. Springer, 1–10.

[9] Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer
architectures-a step forward in data integration. In 23rd International Conference
on Extending Database Technology, Copenhagen, 30 March-2 April 2020. OpenPro-
ceedings.

[10] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating embeddings of heterogeneous relational datasets for data integration
tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. 1335–1349.

[11] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[12] Chen Chen, Behzad Golshan, Alon Y Halevy, Wang-Chiew Tan, and AnHai
Doan. 2018. BigGorilla: An Open-Source Ecosystem for Data Preparation and
Integration. IEEE Data Eng. Bull. 41, 2 (2018), 10–22.

[13] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2016. Multilingual
knowledge graph embeddings for cross-lingual knowledge alignment. arXiv
preprint arXiv:1611.03954 (2016).

[14] Xi Chen, Weiguo Xia, Ernesto Jiménez-Ruiz, and Valerie V Cross. 2014. Extend-
ing an ontology alignment system with BioPortal: a preliminary analysis.. In
International semantic web conference (posters & demos). Citeseer, 313–316.

[15] Sanjib Das, Paul Suganthan GC, AnHai Doan, Jeffrey F Naughton, Ganesh Krish-
nan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon Park.
2017. Falcon: Scaling up hands-off crowdsourced entity matching to build cloud
services. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1431–1446.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[17] Hong-Hai Do and Erhard Rahm. 2002. COMA—a system for flexible combination
of schema matching approaches. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases. Elsevier, 610–621.

[18] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon
Halevy. 2003. Learning to match ontologies on the semantic web. The VLDB
journal 12, 4 (2003), 303–319.

[19] Xin Luna Dong. 2018. Challenges and innovations in building a product knowl-
edge graph. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2869–2869.

[20] Jared ADunnmon, Alexander J Ratner, Khaled Saab, Nishith Khandwala, Matthew
Markert, Hersh Sagreiya, Roger Goldman, Christopher Lee-Messer, Matthew P
Lungren, Daniel L Rubin, et al. 2020. Cross-modal data programming enables
rapid medical machine learning. Patterns 1, 2 (2020), 100019.

[21] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity
resolution. Proceedings of the VLDB Endowment 11, 11 (2018), 1454–1467.

[22] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko, and
Cássia Trojahn. 2011. Ontology alignment evaluation initiative: six years of
experience. In Journal on data semantics XV. Springer, 158–192.

[23] Jérôme Euzenat, Pavel Shvaiko, et al. 2007. Ontology matching. Vol. 18. Springer.
[24] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F Cruz,

and Francisco M Couto. 2013. The agreementmakerlight ontology matching sys-
tem. In OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems". Springer, 527–541.

[25] Raul Castro Fernandez, Pranav Subramaniam, and Michael J Franklin. 2020. Data
Market Platforms: Trading Data Assets to Solve Data Problems [Vision Paper].

arXiv preprint arXiv:2002.01047 (2020).
[26] Jonathan Fuerst, Mauricio Fadel Argerich, and Bin Cheng. 2023. VersaMatch

Data and Code. Retrieved 2023-02-15 from https://github.com/nec-research/
VersaMatch

[27] Alberto García-Durán and Mathias Niepert. 2017. Learning Graph Represen-
tations with Embedding Propagation. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California,
USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 5125–5136.

[28] Celia Garrido-Hidalgo, Jonathan Fürst, Bin Cheng, Luis Roda-Sanchez, Teresa
Olivares, and Ernö Kovacs. 2022. Interlinking the Brick Schema with Building
Domain Ontologies. In Proceedings of the Twentieth ACM Conference on Embedded
Networked Sensor Systems. 1026–1030.

[29] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan
Rampalli, Jude Shavlik, and Xiaojin Zhu. 2014. Corleone: Hands-off crowdsourc-
ing for entity matching. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 601–612.

[30] Amelie Gyrard, Manas Gaur, Swati Padhee, Amit Sheth, and Mihaela Juganaru-
Mathieu. 2018. Knowledge Extraction for the Web of Things (KE4WoT) WWW
2018 Challenge Summary. In Companion Proceedings of the The Web Conference
2018. 1935–1936.

[31] Amelie Gyrard, Antoine Zimmermann, and Amit Sheth. 2018. Building IoT-based
applications for smart cities: How can ontology catalogs help? IEEE Internet of
Things Journal 5, 5 (2018), 3978–3990.

[32] Melissa Haendel, Georgios Gkoutos, Suzanna Lewis, and Chris Mungall. 2009.
Uberon: towards a comprehensive multi-species anatomy ontology. Nature
precedings (2009), 1–1.

[33] Matthew Honnibal and Ines Montani. 2017. spaCy: Natural language understand-
ing with Bloom embeddings, convolutional neural networks and incremental
parsing. (2017).

[34] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[35] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011. Logmap: Logic-based and
scalable ontology matching. In International Semantic Web Conference. Springer,
273–288.

[36] Pradap Konda, Sanjib Das, AnHai Doan, Adel Ardalan, Jeffrey R Ballard, Han Li,
Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir Prasad, et al. 2016. Mag-
ellan: toward building entity matching management systems over data science
stacks. Proceedings of the VLDB Endowment 9, 13 (2016), 1581–1584.

[37] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsifodi-
mos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
468–479.

[38] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2020. Mining of
massive data sets. Cambridge university press.

[39] Omer Levy and Yoav Goldberg. 2014. Dependency-based word embeddings.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). 302–308.

[40] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (Sept. 2020), 50–60. https://doi.org/10.14778/3421424.3421431

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[42] Emilia López-Iñesta, Francisco Grimaldo, and Miguel Arevalillo-Herráez. 2017.
Learning similarity scores by using a family of distance functions in multiple fea-
ture spaces. International Journal of Pattern Recognition and Artificial Intelligence
31, 08 (2017), 1750027.

[43] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. 2001. Generic schema
matching with cupid. In vldb, Vol. 1. 49–58.

[44] Andrés Masegosa, Stephan Lorenzen, Christian Igel, and Yevgeny Seldin. 2020.
Second order PAC-Bayesian bounds for the weighted majority vote. Advances in
Neural Information Processing Systems 33 (2020), 5263–5273.

[45] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sar-
wat. 2020. A comprehensive benchmark framework for active learning methods
in entity matching. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data. 1133–1147.

[46] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. 2007. Repairing
ontology mappings. In AAAI, Vol. 3. 6.

[47] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity flood-
ing: A versatile graphmatching algorithm and its application to schemamatching.
In Proceedings 18th international conference on data engineering. IEEE, 117–128.

[48] Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan, and Samuel
Madden. 2014. Scaling up crowd-sourcing to very large datasets: a case for active
learning. Proceedings of the VLDB Endowment 8, 2 (2014), 125–136.

1317

https://github.com/nec-research/VersaMatch
https://github.com/nec-research/VersaMatch
https://doi.org/10.14778/3421424.3421431

[49] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. 19–34.

[50] Stephen Mussmann, Robin Jia, and Percy Liang. 2020. On the importance of
adaptive data collection for extremely imbalanced pairwise tasks. arXiv preprint
arXiv:2010.05103 (2020).

[51] DuyHoa Ngo and Zohra Bellahsene. 2012. YAM++: a multi-strategy based ap-
proach for ontology matching task. In International Conference on Knowledge
Engineering and Knowledge Management. Springer, 421–425.

[52] Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt. 2010. A
probabilistic-logical framework for ontology matching. In Twenty-Fourth AAAI
Conference on Artificial Intelligence.

[53] Mahda Noura, Amelie Gyrard, Sebastian Heil, and Martin Gaedke. 2019. Au-
tomatic Knowledge Extraction to Build Semantic Web of Things Applications.
IEEE Internet Things J. 6, 5 (2019), 8447–8454.

[54] Ontology Alignment Evaluation Initiative. 2019. Conference track. Retrieved
2020-07-03 from http://oaei.ontologymatching.org/2019/conference

[55] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1–42.

[56] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489–508.

[57] Ted Pedersen, Siddharth Patwardhan, Jason Michelizzi, et al. 2004. WordNet::
Similarity-Measuring the Relatedness of Concepts.. In AAAI, Vol. 4. 25–29.

[58] Ralph Peeters, Christian Bizer, and Goran Glavaš. 2020. Intermediate training of
BERT for product matching. In CEUR Workshop Proceedings, Vol. 2726. RWTH,
1–2.

[59] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2019. Snorkel: Rapid training data creation with weak supervi-
sion. The VLDB Journal (2019), 1–22.

[60] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-
pher Ré. 2016. Data programming: Creating large training sets, quickly. Advances
in neural information processing systems 29 (2016).

[61] David Reinsel, John Gantz, and John Rydning. 2017. Data age 2025: the evolution
of data to life-critical don’t focus on big data; focus on the data that’s big. IDC,
Seagate, April (2017).

[62] Richard M. Keller, NASA. 2018. The NASA Air Traffic Management Ontology
(atmonto). Retrieved 2021-11-21 from https://data.nasa.gov/ontologies/atmonto/
ATM

[63] Rebecca C Steorts, Samuel L Ventura, Mauricio Sadinle, and Stephen E Fienberg.
2014. A comparison of blocking methods for record linkage. In International
conference on privacy in statistical databases. Springer, 253–268.

[64] Nguyen Huy Tien, Nguyen Minh Le, Yamasaki Tomohiro, and Izuha Tatsuya.
2019. Sentence modeling via multiple word embeddings and multi-level compar-
ison for semantic textual similarity. Information Processing & Management 56, 6
(2019), 102090.

[65] AI4EU Trialog. 2021. Knowledge Extraction for the Web of Things (KE4WoT).
Retrieved 2022-05-16 from https://www.ai4eu.eu/ke4wot

[66] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[67] Audun Vennesland, Richard M Keller, Christoph G Schuetz, Eduard Gringinger,
and Bernd Neumayr. 2019. Matching Ontologies for Air Traffic Management: a
Comparison and Reference Alignment of the AIRM and NASA ATM Ontologies..
In OM@ ISWC. 1–12.

[68] Vennesland, A., Neumayr, B., Schuetz, C. G., Savulov, A., Wilson, S., Gringinger,
E., Gorman, J. 2017. AIRM-O – ATM Information Reference Model Ontology.
Retrieved 2021-11-21 from https://airm-o.github.io/airm-o/

[69] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[70] Lucy Wang, Chandra Bhagavatula, Mark Neumann, Kyle Lo, Chris Wilhelm, and
Waleed Ammar. 2018. Ontology alignment in the biomedical domain using entity
definitions and context. In Proceedings of the BioNLP 2018 workshop. 47–55.

[71] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual
knowledge graph alignment via graph convolutional networks. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
349–357.

[72] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. Zeroer: Entity resolution using zero labeled examples. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1149–1164.

[73] Renzhi Wu, Prem Sakala, Peng Li, Xu Chu, and Yeye He. 2021. Demonstra-
tion of Panda: A Weakly Supervised Entity Matching System. arXiv preprint
arXiv:2106.10821 (2021).

[74] Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, and Bing Xie. 2020. Cot-
sae: Co-training of structure and attribute embeddings for entity alignment. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 3025–3032.

[75] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc,
and Divesh Srivastava. 2011. Automatic discovery of attributes in relational
databases. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. 109–120.

[76] Chen Zhao and Yeye He. 2019. Auto-em: End-to-end fuzzy entity-matching
using pre-trained deep models and transfer learning. In The World Wide Web
Conference. 2413–2424.

[77] Renbo Zhu, Meng Ma, and Ping Wang. 2021. RAGA: Relation-Aware Graph
Attention Networks for Global Entity Alignment.. In PAKDD (1). Springer, 501–
513.

1318

http://oaei.ontologymatching.org/2019/conference
https://data.nasa.gov/ontologies/atmonto/ATM
https://data.nasa.gov/ontologies/atmonto/ATM
https://www.ai4eu.eu/ke4wot
https://airm-o.github.io/airm-o/

	Abstract
	1 Introduction
	2 Ontology Matching Problem
	2.1 Challenges

	3 VersaMatch Overview
	4 Preparation Phase
	4.1 Alignment Profile Construction
	4.2 MinHash LSH based Blocking

	5 Matching Phase
	5.1 Weakly-Supervised Labeling
	5.2 Discriminative ML Model
	5.3 Classification Ensemble

	6 Experimental Evaluation
	6.1 Experimental Design
	6.2 Label Generator
	6.3 Discriminative ML Model
	6.4 Model Ensemble
	6.5 Comparison with Baselines
	6.6 Blocking and Runtime

	7 Related Work
	8 Conclusion and Future Work
	References

