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Abstract
Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS)
like self-driving cars (SDC) because they are more efficient and less dangerous than field
operational test cases. Despite this, thoroughly testing SDCs in simulated environments
remains challenging because SDCs must be tested in a sheer amount of long-running
test cases. Past results on software testing optimization have shown that not all the test
cases contribute equally to establishing confidence in test subjects’ quality and reliabil-
ity, and the execution of “safe and uninformative” test cases can be skipped to reduce
testing effort. However, this problem is only partially addressed in the context of SDC
simulation platforms. In this paper, we investigate test selection strategies to increase the
cost-effectiveness of simulation-based testing in the context of SDCs. We propose an
approach called SDC-Scissor (SDC coSt-effeCtIve teSt SelectOR) that leverages Machine
Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in
SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the base-
lines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a
recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness.
Specifically, SDC-Scissor avoided the execution of 50% of unnecessary tests as well as
outperformed two baseline strategies. Complementary to existing work, we also integrated
SDC-Scissor into the context of an industrial organization in the automotive domain to
demonstrate how it can be used in industrial settings.
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1 Introduction

Cyber-Physical Systems (CPSs) leverage physical capabilities from hardware components
as well as computational and artificial intelligence from software components to operate in
complex and dynamic environments, potentially involving humans (Baheti and Gill 2011).
Specifically, CPSs continuously collect sensor data from the surrounding environment and
analyze them to control physical actuators at run-time (Baheti and Gill 2011; Academies of
Sciences 2017).

CPSs find application in many domains ranging from Robotics and Transportation to
Healthcare and are expected to drastically improve the quality of life of citizens and the
economy (Chen 2017). For instance, self-driving cars (SDCs), an emerging application of
CPS in transportation, are expected to impact our society profoundly by drastically reducing
human errors that currently cause more than 90% of driving accidents, improving passen-
ger comfort, and limiting pollution (Kalra and Paddock 2016). Currently, one of the main
factors limiting the widespread usage of SDCs is the lack of adequate testing. Releas-
ing SDCs equipped with defective software poses the risk that they might become erratic,
which has already led to some fatal crashes (Baheti and Gill 2011; Guardian 2018). Testing
automation is crucial for ensuring the safety and reliability of software, including the one
controlling SDCs (Kalra and Paddock 2016; Kim et al. 2019). However, most developers
rely on human-written test cases to assess SDCs’ behavior. This practice has several lim-
itations and drawbacks: (i) difficulty in testing SDCs in representative and safety-critical
scenarios (Guardian 2018; The-Washington-Post 2019; Ingrand 2019); (ii) difficulty in
assessing SDC’s behavior in different environments and execution conditions (Kalra and
Paddock 2016). As a consequence, SDC practitioners in the field are facing a fundamental
development challenge: observability, testability, and predictability of the behavior of SDCs
are highly limited (Guardian 2018; The-Washington-Post 2019; Ingrand 2019). Thus, new
testing practices and tools are needed to find SDC faults earlier during development and,
eventually, support the widespread usage of autonomous driving.

Simulation environments can potentially address several of the challenges mentioned
above (BeamNG GmbH 2022; Bondi et al. 2018; Dosovitskiy et al. 2017; Nvidia 2020)
since simulation-based testing is more efficient than and can be as effective as tradi-
tional field operational testing (Afzal et al. 2020; Dosovitskiy et al. 2017). Additionally,
simulation-based testing results are easier to replicate and can support established model-in-
the-loop (MiL), software-in-the-loop (SiL), and hardware-in-the-loop (HiL) development
strategies. Consequently, an increasingly large number of commercial and open-source sim-
ulation environments have been delivered to the market to conduct testing in the autonomous
driving domain (Dosovitskiy et al. 2017; BeamNG GmbH 2022) as well as other CPS
domains (Shin et al. 2018). For such reasons, our work focuses on simulation-based testing
in the context of SDCs.

1.1 Problem Statement and Research Questions

Simulation environments enable automated test generation and execution (Gambi et al.
2019). However, the potential size of the testing space of simulation environments is, in prin-
ciple, infinite, which poses several challenges and questions (What SDC test cases to select
to identify faults efficiently? Is it possible to characterize safety-critical SDC tests?) in exer-
cising the SDC behaviors adequately (Birchler et al. 2023, b, c; Abdessalem et al. 2018b;
Gambi et al. 2019). The time budget devoted to testing activities are usually limited, making
the identification of faults particularly challenging in the SDC domain since the execution



Empir Software Eng           (2023) 28:71 Page 3 of 55   71 

of simulation-based tests is considerably slower compared to other forms of tests (e.g., unit
and system tests of traditional software systems).

For instance, testing how an ego-car handles a driving scenario can easily take several
minutes (Panichella et al. 2021; Birchler et al. 2022, c); in contrast, running a unit or sys-
tem test of a traditional software system takes some (milli)seconds. It is important to point
out that simulation-based testing tests the subject on the system level, which involves all
components and not just a unit, and simulates the environment from which the test subject
takes its inputs. Therefore, it is paramount that developers test SDCs cost-effectively, for
example, by using test suites optimized to reduce testing effort or by improving existing
automated test generators’ efficiency without affecting their ability to identify faults (Yoo
and Harman 2010; Nucci et al. 2020; Abdessalem et al. 2018b).

In this paper, we investigate techniques to improve the cost-effectiveness of simulation-
based testing in the context of SDCs. Specifically, we focus on techniques that employ
Machine Learning (ML) models for supporting test case selection (TCS), addressing the
following main challenges: (i) to leverage test case characteristics as well as ad-hoc SDC test
case metrics to characterize best unsafe (fault revealing) and safe (not fault revealing) SDC
test cases; (ii) to identify suitable ML models that can reliably predict the SDCs’ behavior
before executing those test cases; (iii) to experiment with the usage of such ML strategies to
effectively distinguish unsafe test cases from safe ones; (iv) to integrate the proposed ML-
based approach into the context of an industrial organization in the automotive domain, thus
demonstrating its applicability in industrial settings.

We are interested in testing the safety of SDCs; therefore, we deem as relevant those
scenarios that expose a fault (e.g., an SDC drives out off the road). We call those scenarios
unsafe. Consequently, our TCS techniques exploit ML models to classify SDC test cases
that are unsafe (i.e., likely to expose a fault) or safe.

To address the aforementioned challenges, in this paper, we seek to answer the following
research questions:

– RQ1: To what extent is it possible to identify safe and unsafe SDC test cases before
executing them?
Answering RQ1 is important to understand whether, and to what extent, it is possible to
classify test cases for SDCs before executing them and by only considering static input
features (i.e., referred to as Road Characteristics). We investigate the use of ML models
for classifying test cases and study their application in the context of Lane Keeping, the
fundamental requirement in autonomous driving. Specifically, in testing lane-keeping
systems, unsafe scenarios cause self-driving cars to depart their lane (Gambi et al. 2019;
Birchler et al. 2022, c), and input features describe the geometry of a road as a whole
(i.e., Road Features).

– RQ2: Does SDC-Scissor improve the cost-effectiveness of simulation-based testing of
SDCs?
RQ2 investigates whether SDC-Scissor improves the cost-effectiveness of simulation-
based testing of SDCs, compared to baseline approaches. Hence, in the context of RQ2,
we investigated whether SDC-Scissor reduces the time dedicated to executing irrelevant
(safe) tests without affecting testing effectiveness.

– RQ3: What is the actual upper bound on the precision and recall of ML techniques in
identifying SDC safe and unsafe test cases when using static SDC features? In RQ1 and
RQ2, we focused on investigating the feasibility and cost-effectiveness of using SDC
Road Characteristics as features for the problem of classifying SDC test cases before
executing them. In RQ3, we explore a complementary aspect, which is investigating
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whether there is an actual upper bound on precision and recall of ML techniques in
identifying SDC safe and unsafe test cases when using static SDC features (available
before executing the tests). Hence, once we identified the best ML models for classify-
ing safe and unsafe test cases when compared to baseline approaches (in RQ1 and RQ2),
we focus on answering RQ3 by (i) designing additional SDC test case features, called
Diversity Metrics (compared to the previous features used in RQ1 and RQ2 for training
the ML models, these metrics are more complex than just computing simple road char-
acteristics of SDC test cases); and (ii) leveraging hyperparameter tuning strategies to
find the optimal configurations of the most promising ML models (as observed in RQ1
and RQ2).

We conducted our investigation using the freely available SDCs simulator BeamNG.tech
(BeamNG GmbH 2022) (elaborated in Section 2). We selected BeamNG.tech because it
can execute procedurally generated driving scenarios, and it was recently adopted as the
reference simulator in the ninth and tenth editions of the Search-Based Software Testing
tool competition1 (Panichella et al. 2021; Devroey et al. 2022).

Complementary to the investigation of the aforementioned research questions, we inves-
tigate the extent to which SDC-Scissor can be integrated into the context of industrial
organizations in the automotive domain. Specifically, to perform such an investigation, we
generate SDC test cases and assess the ability of SDC-Scissor to generate signals compati-
ble with the CAN Bus protocol (CIA 2017; Boumiza and Braham 2019; Gundu and Maleki
2022) used in the AICAS organization (details about the AICAS company, their protocol,
as well as the design and results of our integration study, are provided in Section 6).

1.2 Summary of Results & Paper Contributions

SDC-Scissor avoided the execution of 50% of unnecessary tests as well as identified more
failure triggering test cases compared to two baseline strategies.

SDC-Scissor outperformed the baseline across all test pools; with the Logistic model,
we achieved an accuracy of 70%, a precision of 65%, and a recall of 80% (Table 12) in
selecting unsafe tests.

Our assessment of SDC-Scissor shows that SDC-Scissor successfully selects test cases
independently from the AI engine used or different driving styles, with the Logistic model
providing the more stable results. Our results also show that the knowledge is not transfer-
able from one AI engine to another one, i.e., SDC-Scissor performed worse when training
ML models on data from a specific AI engine and testing on data from a different AI
engine. However, from the discussion of our results (in RQ3), we also observed that there
is an upper bound for the extent to which static SDC features can be used to predict SDC
testing outcomes. Finally, the integration of SDC-Scissor into the AICAS use case allowed
us to demonstrate that the proposed approach can automate the testing process of such a
large automotive company, coping with the need to complement their hardware-based sim-
ulation (based on the Can Bus protocol) with simulation-based testing automation. The
contributions of this paper can be summarized as follows:

– Selection of SDCs test cases (RQ1): We investigated new methods in the area of SDCs
for test case selection. We first compute SDC features that can be used to characterize
safe and unsafe test cases before executing them. Hence, we introduced SDC-Scissor

1https://sbst21.github.io/tools/

https://sbst21.github.io/tools/
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that leverages ML models to support test case selection for SDCs, to enhance testing
cost-effectiveness.

– SDC-Scissor’s Cost-effectiveness (RQ2): We compared the proposed approach against
two distinct baseline approaches to demonstrate the testing cost-effectiveness of SDC-
Scissor. The first one is a random baseline approach that selects tests randomly. The
second baseline selects tests based on their road length, which means that test cases
with long roads are preferred based on the intuitive assumption that long roads have a
higher probability of being unsafe.

– Offline v.s. Real-time Training (RQ2): We investigated two opposite setups for SDC
test case selection that leverage ML models trained on offline data (i.e., trained on a
large static dataset) and real-time data (i.e., dynamically generated tests).

– Upper-bound of SDC static features (RQ3): We empirically investigated whether
there is an actual upper-bound on the precision and recall of ML techniques in identi-
fying SDC safe and unsafe test cases when using static SDC features (available before
executing the tests).

– Integration of SDC-Scissor in an Industrial Use Case (analysis detailed Section 6):
We integrated SDC-Scissor into the development context of the AICAS use case,
demonstrating that the proposed tool can automate the testing process of such a large
automotive company.

To foster the replicability of our study, we built a large dataset of labeled test cases
(Khatiri et al. 2021) that can be used for replicating our results and promoting further
research. Furthermore, SDC-Scissor is publicly available on GitHub,2 which can be used
with the data to replicate our results.

Paper Structure The paper proceeds as follows: Section 2 provides some background about
CPS simulation technologies, regression testing, a discussion of the simulation-based test-
ing (of Lane Keeping) systems used in the context of our study, a discussion on automated
test generation in the context of SDCs, and a summary of the main terminology used in
our study. Section 3 presents the approach proposed in this paper. Section 4 describes the
empirical study design, while Section 5 presents its main results. Section 6 provides a
brief background on AICAS, the industrial organization involved in our study, details on
the Can Bus (i.e., their signal-based protocol), and elaborates on the design and results of
SDC-Scissor’s integration within the AICAS organization. Section 7 reflects on the results
reported in Section 5 and Section 6, providing complementary insights and providing a dis-
cussion on future work for researchers and SDC developers. Section 8 discusses related
work, while Section 9 discusses the threats that could affect the validity of our results.
Finally, Section 10 concludes the paper and outlines future research directions.

2 Background

This section introduces background elements to make this paper self-contained. It presents
the main approaches to SDC simulation (Section 2.1) and discusses automated testing of
Lane Keeping systems (Section 2.2). Finally, it concludes with a recap of the terminology
used in the rest of this paper (Section 2.3).

2https://github.com/ChristianBirchler/sdc-scissor

https://github.com/ChristianBirchler/sdc-scissor
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2.1 CPS Simulation Technologies

Several simulation technologies have been developed to support developers in various stages
of the design and validation of CPSs. Those technologies provide various levels of accu-
racy and realism at different execution costs, i.e., more accurate simulations generally
require larger computational power. In the domain of self-driving cars, developers resort to
abstract simulation models (González et al. 2018; Sontges and Althoff 2018; Althoff et al.
2017), rigid-body simulations (Loquercio et al. 2020; Zapridou et al. 2020), and soft-body
simulations (Gambi et al. 2019; Riccio and Tonella 2020) among others.

Basic simulation models, like MATLAB and Simulink models as well as abstract driving
scenarios (Althoff et al. 2017), have been mainly utilized for model-in-the-loop simulations,
benchmarking of trajectory planners, and Hardware/Software co-design. They implement
fundamental abstractions (e.g., signals, motion primitives) but target mostly non-real-time
executions and lack photo-realism, which limits their applicability for testing SDC systems.

Rigid-body simulations approximate the physics of bodies by modeling entities as unde-
formable bodies (Abdessalem et al. 2018b). Rigid-body simulations implement a very
coarse approximation of reality and can simulate only basic object motions and rotations.
Consequently, rigid-body simulations cannot simulate realistic and critical scenarios (e.g.,
car crashes, inertia) accurately, even when they are combined with rendering engines to
achieve photo-realistic simulations (Dosovitskiy et al. 2017; Bondi et al. 2018; Xu et al.
2019).

Soft-body simulations improve over rigid-body simulations and can simulate a wide
range of simulation cases in addition to primitive body motions and rotations. As stated by
Dalboni and Soldati (Dalboni and Soldati 2019), soft-body simulations can simulate body
deformations, anisotropic mass distributions, and inertia, which are essential in many CPS
domains. For SDCs, soft-body simulations are a better fit for simulating safety-critical driv-
ing scenarios (Gambi et al. 2019) and, like rigid-body simulations, they can be coupled with
powerful rendering engines to achieve photo-realism (e.g., BeamNG GmbH (2022)). Con-
sequently, in our work, we leverage soft-body simulations for simulation-based testing of
SDCs.

2.2 Simulation-Based Testing of Lane Keeping Systems

In this paper, we study how SDC-Scissor can optimize the testing of the software that con-
trols self-driving cars using physically accurate driving simulations. Specifically, we focus
on testing Lane Keeping systems (LKS) that implement one of the fundamental features of
autonomous driving.

Simulation-based testing requires creating relevant testing scenarios and reifying them
into concrete executions (Li et al. 2016). In accordance with current research on automated
testing of LKS (Panichella et al. 2021; Gambi et al. 2022), we consider scenarios that take
place on a sunny day on single, flat roads surrounded by plain green grass. Consequently,
tests take the form of the following driving task: driving without going off the lane from a
given starting position, i.e., the beginning of a road, to a target position, i.e., the end of that
road.

The roads defining these driving tasks are obtained by interpolating road points using
cubic-splines to obtain a smooth road spine, i.e., the road’s center line (see Fig. 1). Driving
simulators use the road spines to implement the actual driving tasks to execute.

In this context, unsafe tests correspond to virtual roads that expose problems in the ego-
vehicle while driving autonomously on them, for instance, causing it to drive off-road or
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Fig. 1 Virtual roads for testing Lane Keeping systems. The white dots represent the road points, the (cen-
tral) yellow lines represent the interpolated road spine, the triangles represent the starting locations, and the
squares represent the target locations

invade the opposite lane. As discussed in the next Section, SDC-Scissor extracts a set of fea-
tures from the road spine and road points that enable it to predict whether the corresponding
virtual road will expose a problem in the ego-vehicle before the test execution.

SDC-Scissor relies on the open-source testing infrastructure developed for the CPS
testing competition of the SBST (Search-Based Software Testing) workshop (Panichella
et al. 2021). This infrastructure can automatically implement executable simulations from
the road spines, execute them, and collect their results (e.g., pass/fail). We opted for this
infrastructure for two main reasons: (1) It utilizes BeamNG.tech (BeamNG GmbH 2022)
simulator; hence, it can execute physically accurate and photo-realistic driving simulations.
(2) It has already been used to benchmark several automatic test generators (see Panichella
et al. (2021) and Gambi et al. (2022)); hence, it enables us to study the generality of SDC-
Scissor. SDC-Scissor uses Frenetic (Castellano et al. 2021) as the main test generator, which
uses a genetic algorithm for defining road points on a cartesian plane.

The open-source testing infrastructure developed for the CPS testing competition
(Panichella et al. 2021) enables driving agents to drive simulated vehicles and get pro-
grammatic control over running simulations (e.g., pause/resume simulations, move objects
around). We consider two different driving agents as test subjects for our evaluation: The
first is the driving agent shipped with the BeamNG.tech, which we refer to as BeamNG.AI,
and the second, is an open-source trajectory planner, which we refer to as Driver.AI3

(Gambi et al. 2019). As explained by BeamNG.tech developers, a parameter called the “risk
factor” (RF) controls the driving style of BeamNG.AI: low RF values (e.g., 0.7) result in
smooth driving, whereas high RF values (e.g., 1.2 and above) result in an edgy driving
that may lead the ego-car to “cut corners”. Driver.AI instead analyzes the road geometry
and plans the car trajectory by computing for each turn the maximum safe driving speed
(v) using the standard formula for centripetal force on flat roads with static friction (μ)
(CNX 2021):

v = √
μ × r × g (1)

where r is the turn radius and g is the free-fall acceleration.

3https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/drivers.py

https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/drivers.py
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Driver.AI relies on the user to provide the value of the friction coefficient, as well as
information about the maximum acceleration and deceleration of the ego-car. In our eval-
uation, we estimated those values empirically following a trial-and-error approach. It is
important to mention that, at the moment, both BeamNG.tech and Driver.AI do not have
previous versions of their driving agents. This means that their behavior can only be altered
or investigated by experimenting with the parameters already discussed in the context of our
study. As a consequence, the target of our regression testing strategy is primarily focused
on enabling SDC test selection, with the main goal of reducing the effort required to detect
faults. For future work, assuming new versions of both BeamNG.tech and Driver.AI are
delivered, we plan to experiment with consecutive versions of these AI agents so that it is
possible to investigate the potential fault-detection capability of both of them.

2.3 Article Terminology

To avoid any confusion in terminology, it is important to note that in the rest of the paper,
we will refer to simulation-based test cases generated by SDC-Scissor as test cases. Test
cases are composed of virtual roads composed of a sequence of multiple road segments, as
exemplified in Fig. 1. Formally, road segments refers to (parametric) portions of roads of
test cases; hence, they can be straight segments (no curvature), left turns (positive curvature),
or right turns (negative curvature).

We refer to test cases that have been executed and evaluated in simulation as executed
test cases. Then, if a test is passed successfully, we refer to it as a passing test, and if it
failed, potentially revealing some issues with the system under test, we refer to it as a failing
test.

On the other hand, as we elaborate more in the next sections, SDC-Scissor automatically
assigns labels to the test cases regarding them being likely to fail or pass without executing
them. In this context, we refer to the test cases which are considered by SDC-Scissor to be
likely to pass as safe test cases and the ones that are considered likely to fail as unsafe test
cases.

Regarding the features used in SDC-Scissor, static (road) features refer to any test
case features that can be calculated without running any simulations, i.e., they are suit-
able for predicting test results (simulation results) before running simulation. As discussed
in detail in the next section, we propose to use two different sets of road features: road
characteristics and diversity metrics.

Regarding the experiments to answer RQ2, we will discuss offline experiments
that involves test selection from a previously generated (offline) pool of test cases in
Section 4.2.2. We conducted the offline experiment in two experimental setups that mimic
the issues of having a limited testing budget in the context of SDCs: 1) FIX, in which the
amount of total test cases that can be executed in the simulation environment is fixed to a
certain number. 2) REACH in which we continue executing the test cases until we reach a
certain number of failing tests.

As discussed later in Section 5.3, we complement RQ2 evaluations with real-time exper-
iments, in which we study the application of SDC-Scissor to automated test generation, i.e.,
the test pool is being generated in real-time, and only the unsafe tests are being kept and exe-
cuted. There, we have two experimental setups: 1) with a pre-trained ML model. 2) with
an adaptive ML model that could be retrained with the correct labels of the generated test
cases.
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3 The SDC-Scissor Approach

In this section, we first overview SDC-Scissor’s software architecture and its main usage
scenarios (Section 3.1); next, we describe the selected features used as inputs to SDC-
Scissor (Section 3.2); finally, we explain how SDC-Scissor uses these features to classify
test cases before executing them (Section 3.3).

3.1 SDC-Scissor Architecture Overview

SDC-Scissor supports two main usage scenarios: Benchmarking and Prediction. In the
Benchmarking scenario, SDC developers (or testers) leverage SDC-Scissor to determine the
best ML model(s) to classify SDC simulation-based tests as safe or unsafe. In the Predic-
tion scenario, instead, SDC-Scissor uses the most promising ML model(s) to classify newly
generated test cases.

SDC-Scissor Software Architecture (Fig. 2) implements these scenarios by means of five
main software components, which have the main following responsibilities and relations:

(i) SDC-Test Generator generates SDC simulation-based test cases.
(ii) SDC-Test Executor executes the tests and stores the test results, i.e., safe or

unsafe labels, to allow training of the ML models.
(iii) SDC-Features Extractor extracts the input features from the SDC

simulation-based test cases.
(iv) SDC-Benchmarker uses these features and collected labels to train the selected

ML models and determines which ML model best predicts the tests that are more
likely to detect faults.

(v) SDC-Predictor uses the trained ML models to classify newly generated test cases,
thus achieving cost-effective SDC simulation-based testing via test selection.

3.2 SDC Test Case Features

SDC Test Case Road Characteristics - Features Set 1 (Used in RQ1, RQ2, and RQ3). To
predict whether test cases are likely to result in safe or unsafe test cases before their exe-
cution, we use a set of simple static features extracted from the global characteristics (we
refer to Road Characteristics) of the virtual roads used as test cases. We extract two types

Fig. 2 Overview of SDC-Scissor’s software architecture
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Table 1 Road attributes extracted by the SDC-Features Extractor

Feature Description Range

Direct Distance Euclidean distance between start and finish (Meters) [0 – 489.9]

Length Total length of the driving path (Meters) [50.6 – 3317.9]

Num L Turns Number of left turns on the driving path [0 – 18]

Num R Turns Number of right turns on the driving path [0 – 17]

Num Straight Number of straight segments on the driving path [0 – 11]

Total Angle Cumulative turn angle on the driving path [105 – 6420]

In the table, we report for each feature their name, description, and range (based on the tests in the generated
datasets)

of Road Characteristics describing the main road attributes (see Table 1) and descriptive
statistics about the road composition (see Table 2). Exemplary road attributes we consider
are the total length of the virtual road, its starting and target positions on the map, and
the count of left and right turns. To calculate road statistics, instead, we adopt the follow-
ing procedure: (1) We extract the driving path that the ego-car must follow during the test
execution; this path defines the test case and contains the road segments that the ego-car
must traverse to reach the target position from the starting position. (2) We extract the met-
rics such as segment length, road angle, and pivot radius from the road segments. (3) We
compute descriptive statistics by applying standard aggregation functions (e.g., minimum,
maximum, average) on the collected road segment metrics.

SDC Test Case: Diversity Metrics - Features Set 2 (Used in RQ3) To predict whether test
cases are likely to result in safe or unsafe test cases before their execution, we also designed
a new set of road features called Diversity Metrics. Specifically, we calculate per road seg-
ment the area that is spawned between the direct line of a segment (start and end of the
segment) and the actual road. The concept of the diversity feature is also explained in Fig. 3,
where the green area represents the diversity of a single road segment. The curly braces

Table 2 Road statistics extracted by the SDC-Features Extractor

Feature Description Range

Median Angle Median turn angle on the driving path [30 – 330]

Std Angle Standard deviation of turn angles on the driving path [0 – 150]

Max Angle Maximum turn angle on the driving path [60 – 345]

Min Angle Minimum turn angle on the driving path [15 – 285]

Mean Angle Average turn angle on the driving path [52.5 – 307.5]

Median Radius Median turn radius on the driving path [7 – 47]

Std Radius Standard deviation of turn radius on the driving path [0 – 22.5]

Max Radius Maximum turn radius on the driving path [7 – 47]

Min Radius Minimum turn radius on the driving path [2 – 47]

Mean Radius Average turn radius on the driving path [5.3 – 47]

In the table, we report for each feature their name, description, and range (based on the tests in the generated
datasets)
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Fig. 3 Road diversity as area (green) between the road (black) and direct segment line (yellow)

indicate the segments of the road. A segment consists of road points marked as red dia-
monds. Furthermore, the yellow lines represent the direct paths between the start and end
points of each segment. Concretely, we used for the calculation of the area Shapely (Sean
2022), an open-source library for Python to perform geometric calculations. For each iden-
tified segment, we define a Shapely Polygon object that includes the road points and the
line representing the direct segment line. All classes of Shapely provide a similar interface
as well for calculating the area of a Shapely object. The previously constructed Polygon
has a property called area. With this approach, we retrieve the area (also known as diver-
sity in our context) of the segments. On this basis, we calculate two additional features; (i)
Full Road Diversity, and (ii) Mean Road Diversity. As described in Table 3,
the Full Road Diversity is computed by summing up all areas spawned by each
segment of a road, whereas the Mean Road Diversity feature is the mean value of all
areas of a single road. The main assumption for using these new features is that the road is
more diverse if the spawned area is greater and, therefore, unsafer.

3.3 The SDC-Scissor’s Workflow

As described in Section 2, SDC-Scissor’s leverages an existing, open-source, and extensible
SDC testing infrastructure to execute the test cases (SDC-Test Executor). Likewise, it
relies on existing test generation algorithms integrated with that infrastructure to automati-
cally generate the test cases to optimize (SDC-Test Generator). Hence, SDC-Scissor
can already be used to improve the cost-effectiveness of several test generators.
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Table 3 Diversity features extracted by the SDC-Features Extractor

Feature Description Range

Full Road Diversity The cumulative diversity of the full road composed of
all segments.

[0 − ∞]

Mean Road Diversity The mean diversity of the segments of a road. [0 − ∞]

In the table, we report for each feature their name, description, and range (based on the tests in the generated
datasets)

During Benchmarking, SDC-Scissor utilizes SDC-Test Generator and SDC-Test
Executor to collect the necessary data for training the ML Models, i.e., labeled test
cases; next, it relies on SDC-Benchmarker to determine the ML models that best clas-
sify the SDC test cases as safe or unsafe as described below. Given a set of labeled test
cases and the corresponding input features extracted by SDC-Features Extractor,
SDC-Benchmarker trains and evaluates an ensemble of standard ML models using the
well-established sklearn4 library. Next, it assesses each ML model’s quality using K-fold
cross-validation and the whole dataset. Finally, it identifies the best-performing ML models
according to Precision, Recall, and F-score metrics (Birchler et al. 2022) and outputs the
best (trained) models as well as the features needed to operate them.

SDC-Scissor can work with various ML models. In this study, we consider ML models
that have been successfully used for defect prediction or other classification problems in
Software Engineering (Bezerra et al. 2007; Kaur and Malhotra 2008; Panichella et al. 2015;
Sorbo et al. 2016; Rani et al. 2021; Panichella and Ruiz 2020). Specifically, we consider
Naive Bayes (that applies Bayes’ theorem to train a probabilistic classifier) (Caruana and
Niculescu-mizil 2006), Logistic Regression (that uses a logistic function to model the prob-
ability of observing a certain class) (Sammut and Webb 2011), J48 (that creates a decision
tree following the well-known C4.5 algorithm) (Frank et al. 2005; Sorbo et al. 2022), and
Random Forests (that uses an ensemble of decision trees) (Ho 1998).

During Prediction, SDC-Scissor takes as input the (trained) ML Models and the defini-
tion of the features needed to use them. Next, it generates new test cases using SDC-Test
Generator and utilizes SDC-Features Extractor to extract the necessary fea-
tures. Finally, it invokes SDC-Predictor for classifying safe or unsafe test cases before
executing them.

In the next section, we describe the studies we conducted to evaluate the benefits of using
SDC-Scissor for test selection in the context of SDCs. After that, we present and discuss the
achieved results.

4 Study Design

In this paper, we investigate Machine Learning-based test selection techniques for improv-
ing the cost-effectiveness of simulation-based testing of SDCs.

The first challenge (RQ1) we focus on is to investigate whether, and to what extent, it is
possible to classify test cases for SDCs as safe or unsafe before executing them, i.e., only
considering input features, such as the one discussed in Section 3 by conducting offline and

4https://scikit-learn.org/

https://scikit-learn.org/
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real-time experiments. Specifically, we investigate the use of ML models for classifying test
cases in the context of Lane Keeping systems (see Section 2).

The second challenge we focus on is devising techniques that effectively leverage
features extracted from SDC test cases to reduce testing costs while keeping testing effec-
tiveness high. Hence, we investigate whether SDC-Scissor improves the cost-effectiveness
of simulation-based testing of SDCs, compared to baseline approaches (RQ2).

A further aspect we investigate is whether there is an upper bound on the precision and
recall achieved by ML techniques in identifying SDC safe and unsafe test cases when using
static SDC features (available before executing the tests). Hence, we focus on investigating
whether fine-tuning the ML algorithms (e.g., calculating derived features and performing
hyper-parameter tuning) improves SDC-Scissor’s ability to discern safe test cases from
unsafe ones (RQ3).

Finally, to investigate the practical usefulness of SDC-Scissor, we integrated our tool
into the context of an industrial organization in the automotive domain (details of such an
investigation are reported in Section 6).

In the following sections, we describe the dataset used in our study and the steps we
followed to address these challenges.

4.1 SDC Test Cases Dataset Preparation

To enable the prediction of safe and unsafe SDC test cases, we used SDC-Scissor for execut-
ing the generated test cases and collected labels (safe/unsafe) from the test results (pass/fail).
As reported in Table 4, we generated a dataset with 14,175 data rows with full road features
that are obtained from simulations of 8,500 tests using two driving agents and four config-
urations. What can be observed from the table is that SDC-Scissor takes AI engines’ inputs
to generate the test cases, this lead to test cases having different configurations of roads
and, as a consequence, different sets of road segments composing them. The test cases, their
labels, and the SDC features characterizing them are the main data used for conducting our
experiments. An overview of the data is reported in Table 4.

4.2 ResearchMethod

We designed a set of experiments to answer our research questions:

Table 4 Dataset summary of SDC test cases on segment level and full road level (composed by segments)

Test Subject Feature Set Data Points

Unsafe Safe Total

BeamNG.AI cautious Full Road 312 (26%) 866 (74%) 1’178

BeamNG.AI moderate Full Road 2’543 (45%) 3’095 (55%) 5’638

BeamNG.AI reckless Full Road 1’655 (96%) 74 (4%) 1’729

Driver.AI Full Road 1’045 (19%) 4’585 (81%) 5’630

14’175

BeamNG.AI moderate Road Segment 2’543 (3%) 72’433 (97%) 74’976

Driver.AI Road Segment 2’494 (3%) 71’145 (97%) 73’639

148’615
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– Machine Learning-based Experiments (RQ1): The first set of experiments investigates
whether ML models trained with the selected SDC test case features can identify safe
and unsafe test cases before their execution.

– Offline Experiments (RQ2): The second set of experiments investigates if and how
much SDC-Scissor improves the cost-effectiveness of SDC simulation-based testing
compared to baseline approaches.

– Real-Time Experiments (RQ2): In these experiments, we train an adaptive model based
on data observed while executing the tests and compare it with a pre-trained model.

– Optimization Experiments (RQ3): The third set of experiments investigates how SDC-
Scissor performance improves by adding new SDC features and tuning ML Models
hyperparameters. Specifically, in RQ3, we focus on investigating whether there is an
actual upper bound on the precision and recall achieved by the ML techniques in iden-
tifying SDC safe and unsafe test cases when using static SDC features (available before
executing the tests).

4.2.1 Machine Learning-based Experiments (RQ1)

In the context of RQ1, we study whether ML models can be used to predict safe or unsafe
test cases and which combinations of features allow us to achieve more accurate predictions.
As discussed in Section 3, we integrated into SDC-Scissor several ML models, and in the
context of our work, we experimented with Logistic Regression (Tolles and Meurer 2016),
the J48 (Frank et al. 2005), the Random Forest (Ho 1998), and the Naive Bayes (Caruana
and Niculescu-mizil 2006) as ML models. We trained the ML models mentioned above
using a training and test sets split strategy for each of the configurations listed in Table 4
separately. We evaluated the performance of each ML model by computing the standard
metrics of precision, recall, and F-score (Baeza-Yates and Ribeiro-Neto 2011; Bezerra et al.
2007; Ceylan et al. 2006; Kaur and Malhotra 2008; Canfora et al. 2013; Panichella et al.
2015).

Rebalancing of Training Data Since unsafe scenarios are an exception –not the norm–
when generating random tests, the raw data we collected with SDC-Scissor is unbalanced
toward safe cases. Therefore, we re-balanced the training data (in the case of the training
and test sets split strategy) to avoid skewed distributions that would otherwise bias the ML
models towards one specific class. Specifically, we adopted random oversampling, a re-
balancing technique proven to be robust (Ling and Li 1998), to supplement the training data
with multiple copies of some of the minority classes.

Table 5 Model training dimensions

Dimension Description Dimension Configurations

Dataset Using different datasets to train BeamNG.AI (RF 1,1.5,2), Driver.AI,

the model and Combined Datasets

Training Set Changing training set size by 40% training set & 60% test set;

using different percentage split 50% training set & 50% test set;

for training and test sets 60% training set & 40% test set;

80% training set & 20% test set.
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Size of the Training Dataset To study how the training set size affects the ML models’
performance, we created balanced training datasets of increasing size (Table 5). However,
we generated the test datasets to evaluate the ML models by randomly sampling the data
point not included in the training datasets. Notably, we did not re-balance the test datasets
to preserve the underlying distribution classes in the data.

We also study the effects of different training strategies on each ML model’s perfor-
mance. To do so, we evaluated the ML models using standard K-fold cross-validation
(Refaeilzadeh et al. 2009). In particular, we set K = 10 (i.e., 10-fold cross-validation) and
utilize all the available data in each configuration.

4.2.2 Offline Experiments (RQ2)

To answer RQ2, we investigate whether SDC-Scissor improves the cost-effectiveness of
simulation-based testing of SDCs, compared to baseline approaches. The quality focus is to
understand whether SDC-Scissor reduces the time dedicated to executing safe (irrelevant)
tests without affecting testing effectiveness (i.e., its ability to identify unsafe tests) compared
to such baselines.

SDC-Scissor can use pre-trained models to classify safe and unsafe test cases. There-
fore, we designed experiments to analyze how using pre-trained ML models for selecting
(existing) test cases improves regression testing. For those experiments, we consider the
combinations of ML models and features that achieve the best results in the context of RQ1
(see Section 5.1). In addition, we contextualize the results achieved by SDC-Scissor using
a baseline approach that performs a random selection of test cases. Notably, random selec-
tion is considered one of the standard baselines for evaluating test selection strategies (Shin
et al. 2018; Yoo and Harman 2010). Finally, we also compare SDC-Scissor against a slightly
more intelligent baseline approach that selects test cases by ordering the test to be executed
considering their road length (in decreasing order). The conjecture of this second baseline
is that the longer the road, the higher the probability of observing a fault.

Studying the effectiveness of SDC-Scissor offline requires test cases and executions;
therefore, we used a dataset with known test execution times. Due to the lack of back-
ward compatibility of BeamNG.tech, we generated a new dataset for complementing our
evaluation (see Table 10) involving the usage of the most recent version of BeamNG.tech.
For all other evaluations, we used the data as reported in Table 6. In summary, the sepa-
rated new dataset consists of 3′559 with 2′225 safe and 1′334 failing tests labeled with the

Table 6 Offline experiment dataset: test pools with different distributions of unsafe cases, ranging from few
(5% of the testing data) to many (70% of the testing data)

Dataset Number of safe tests Number of unsafe tests

Complete Set 3095 2543

Training Set 2034 2034

Test Pool (95/5) 1061 55

Test Pool (80/20) 1061 265

Test Pool (60/40) 763 509

Test Pool (30/70) 218 509

The shown numbers do not reflect the target distribution of the corresponding test pool. The final distribution
is obtained by under-sampling the test data
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BeamNG.AI (RF 1.5). As reported in Table 6, we created a Training Set, accounting for
80% of the whole data set, and we used the remaining 20% of data for testing. We created
a balanced Training Set, but we purposely created four unbalanced Test Pools with differ-
ent distributions of unsafe cases, ranging from few (5% of the testing data) to many (70%
of the testing data). In creating our test pools, we under-sampled safe test cases (e.g., Test
Pool (30/70)) since the number of unsafe test cases was inferior to the total amount of test
cases in our complete dataset. Our conjecture is that using different Test Pool compositions
allows us to assess SDC-Scissor’s performance in various settings.

Experimental Setups of Offline Experiments We conducted the offline experiment in two
experimental setups, referred to as FIX and REACH. Since they mimic the issues of having
a limited testing budget in the context of SDCs, We believe they are representative. We
repeated the experiments in both setups 30 times to increase the confidence in the achieved
results.

The FIX setup investigates the benefits of using SDC-Scissor when the resources allo-
cated for testing are limited, i.e., the amount of test cases that can be executed in the
simulation environment is fixed to a value S (e.g., S = 5, 6, etc.). The process we followed
to experiment with the FIX setup is illustrated in Fig. 4 alongside the baseline processes.
The baseline approach draws tests from the test pool (randomly or by considering their road
length) and adds them to the test suite until the test suite reaches the target size S. SDC-
Scissor, instead, samples the tests from the test pool but adds them to the test suite only
if the ML model predicts that they are unsafe; as before, the process ends when the test
suite reaches the target size S. In this setup, more effective techniques select larger portions
of unsafe tests; therefore, we evaluate the performance of SDC-Scissor using the ratio of
unsafe to safe test cases in the final test suites compared to the baseline approaches.

Fig. 4 FIX experiment overview
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Fig. 5 REACH experiment overview

The REACH experiment, instead, investigates the ability of SDC-Scissor to reduce the
time to identify at least N unsafe test scenarios. In our experiment, we set N = 10 since the
time to identify that many unsafe test cases potentially requires the execution of many more
(safe) test cases. The process we followed to experiment with the REACH setup is illustrated
in Fig. 5 alongside the random baseline approach. As before, the baseline randomly samples
tests from the test pool and executes them until N unsafe tests have been identified. REACH,
instead, executes only those tests that are predicted to be unsafe by the ML models. In this
setup, more effective techniques identify N unsafe tests sooner; therefore, we consider the
number of true positives (TP),5 true negatives (TN), false positives (FP), and false negatives
(FN) predicted by the ML models. Having information about TP, TN, FP, and FN enables
us to count how many tests were needed to reach the goal, how long it took to do so, and
how much time was wasted in evaluating safe test cases.

4.2.3 Real-Time Experiments (RQ2)

We complement the previous Offline Experiments to answer RQ2, which focuses on apply-
ing SDC-Scissor to regression test case selection, with Real-Time Experiments in which we
study the application of SDC-Scissor to automated test generation.

We conducted the Real-Time Experiments according to the following procedure: (i)
SDC-Scissor to generate random test cases; (i) for each newly generated test case, SDC-
Scissor classifies it as safe/unsafe; and, (i) we filter out test cases classified as safe before
generating the next test case, whereas we executed the test cases classified as unsafe. As the

5True positives are tests predicted as unsafe and verified to be so; conversely, true negatives are tests predicted
and verified to be safe.
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test subject, we used BeamNG.AI in the moderate configuration (RF equal to 1.5) as this
configuration is a compromise between overly conservative and overly aggressive driving
styles.

A cost-effective test generator devotes more time to executing (likely) unsafe tests that
can expose defects rather than executing safe test cases, which might not contribute any
additional insight into the behavior of the SDC under test. Correctly identifying unsafe test
cases, therefore, is paramount and depends on the quality of the ML model used as a classi-
fier which, in turn, depends on the technique employed by the ML models and the data used
to train them. Particularly relevant in this context is whether the ML model is predefined and
fixed or allowed to be updated online as new data become available. The trade-off between
these two configurations is that ML models have little operational costs once trained but may
miss relevant behaviors; on the contrary, dynamically retrained ML models can cope with
missing training data but at the cost of additional time spent in retraining them. Therefore,
we compare the following two approaches:

– Pre-trained Model in which we used the best performing model identified during the
Machine Learning-based Experiments (Section 5.1). We trained this model using the
re-balanced dataset for the case of BeamNG.AI RF 1.5, as this is the configuration of
the test subject used for this experiment.

– Adaptive Model in which we also used the best performing model identified during
the Machine Learning-based Experiments (Section 5.1 but trained with only 60 ran-
domly generated test cases. After this initial training, we retrain the ML model after
executing the predicted unsafe test cases using the newly collected ground truth labels
for those test cases. Figure 6 illustrates this process. Notably, since the ML model may
be inaccurate, this process collects both positive and negative labels.

Fig. 6 Overview of the adaptive model configuration for the real-time experiments
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Table 7 Evaluation metrics for the real-time experiments

Metric Description Range

Number of Unsafe Test
Execution

The number of unsafe tests the approach
simulated during the experiment

0-N

Number of Safe Tests
Execution

The number of safe tests the approach simu-
lated during the experiment

0-N

Time Allocation How much time relative to the total time was
spent with an action

0-1

True Positives/Negatives Number of correct predictions for categories
safe and unsafe

0-Number of
Predictions

False Positives/Negatives Number of incorrect predictions for cate-
gories safe and unsafe

0-Number of
Predictions

As before, we contextualize the results achieved by SDC-Scissor using a baseline
approach that implements plain vanilla random generation, i.e., it does not filter the test
cases.

We ran each configuration on a dedicated machine equipped with an Intel Core i5-
6600K (3.5 GHz), 16 GB RAM, and an NVIDIA GeForce GTX 1070 GPU and set the test
generation time budget to six hours.

During each execution of the experiment, we stored all the tests generated by SDC-
Scissor so we could execute the test cases filtered out by SDC-Scissor post-mortem to
calculate metrics such as accuracy, precision, and recall.

Table 7 provides an overview of the metrics used for the evaluation of SDC-Scissor
across the various configurations. Those metrics include the count of unsafe tests found
during each experiment (true positives), true negatives, false positives, and false negatives.
Additionally, we consider how SDC-Scissor allocated the time budget to run safe and unsafe
test cases, generate test cases, and rebuild the ML models.

In the second study, SDC-Scissor leverages real-time data (i.e., dynamically generated
tests) and continuously (re-)trained ML models; this setup lets us evaluate the application of
the proposed technique for automated test generation. As described before, in both setups,
we compared the time-saving ability of SDC-Scissor with respect to the random selection
strategy as well as its ability to detect more faults while allocating lower test execution costs.

4.2.4 Optimization Experiments (RQ3)

RQ3 investigates whether there is an upper bound on the precision and recall of ML tech-
niques in identifying SDC safe and unsafe test cases when using SDC test case features
available before executing the tests. A range of different optimization algorithms can be
used to achieve potentially better results with respect to the default configuration of param-
eters of the ML models. Two of the most common hyperparameter tuning methods are
Random Search and Grid Search (Bergstra et al. 2011; Bergstra and Bengio 2012; Adnan
et al. 2022). Grid search performs better for spot-checking combinations that are known to
perform well. Therefore, we experiment with Grid search as a hyperparameter optimization
approach and investigate how SDC-Scissor’s performance improves when it employs fine-
tuned ML models. Specifically, with Grid Search, we experimented with several parameter
combinations for the best ML models using a 10-fold validation setting, as summarized
below.
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For the Decision Tree (J48) we covered all possible combinations of the following
parameters:

– C (confidenceFactor): Is the confidence factor, and we experimented with values
[0.001, 0.01, 0.05, 0.1, 0.5]

– M (minNumObj): Is the minimum number of instances in a leaf, and we experimented
with values [1, 10, 20, 50, 100]

– R (reducedErrorPruning): Reduced error pruning is an alternative algorithm for prun-
ing that focuses on minimizing the statistical error of the tree. We experimented with
the following values [yes, no]

– S (subtreeRaising): This is a specific method of pruning whereby a whole set of
branches further down the tree are moved up to replace branches that were grown above
it. We experimented with the following values of it [yes, no]

For the Random Forest, we covered all possible combinations of the following
parameters:

– I (numIterations): Is the number of trees in the forest, and we experimented with
values [5, 10, 100, 1000, 2000]

– K (numFeatures): Is the max number of features considered for splitting a node, and
we experimented with values [0, 10, 100, 500, 1000]

– depth: Is the maximum depth of the tree (0 unlimited), and we experimented with
values [0, 5, 10, 20]

– M (minNumObj): Is the minimum number of instances in a leaf , and we experimented
with values [1, 10, 20, 50, 100]

For the Gradient Boosting, we covered all possible combinations of the following
parameters:

– ’loss’ = [’log loss’, ’deviance’, ’exponential’]
– ’learning rate’ = [0.01, 0.1, 0.2, 0.4]
– n estimators’ = [10, 100, 1000]
– ’criterion’ = [’friedman mse’, ’squared error’, ’mse’]

For the Logistic Regression, we covered all possible combinations of the following
parameters:

– ’penalty’ = [’l1’, ’l2’, ’elasticnet’, ’none’]
– ’dual’ = [True, False]
– ’max iter’ = [10, 100, 1000]
– ’solver’ = [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’]

For the Support VectorMachine, we covered all possible combinations of the following
parameters:

– ’penalty’ = [’l1’, ’l2’]
– ’loss’ = [’hinge’, ’squared hinge’]
– ’dual’ = [True, False]

It is important to note that we perform Grid Search (with a 10-fold cross-validation strat-
egy) over all experiments (for a total of over 700 experimented combinations of parameters)
and use the best combination of features and ML model from Section 4.2.1.
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Section 5 elaborates on the achieved experimental results for all research questions, while
Section 7 reflects on the results reported in such section, providing complementary insights,
findings, and implications.

5 Results

This section presents the achieved results organized by research questions, while Section 7
discusses them in depth.

5.1 Machine Learning-Based Experiments (RQ1)

In this section, we discuss the results of RQ1. Specifically, we describe the results achieved
using the Road Characteristics listed in Section 3.2 as input features to build the ML
models.

5.1.1 Machine Learning-Based Experiments with Road Characteristics

We evaluated the ML models trained using Road Characteristics as the main SDC features
with four splits of training and test data, as summarized in Table 5. However, for the sake of
readability, we report here only the results achieved by the best-performing configuration,
i.e., 80% training and 20% for testing. The full results can be found in our replication pack-
age (Khatiri et al. 2021). Table 8 reports Precision, Recall, and F-score for both unsafe and
safe labels separately to study how the ML models can classify each case (i.e., the exper-
iments summarized in Table 5). It is important to note that in all experiments reported in
Table 5, we rebalanced the training data (as discussed in Section 4.2.1).

Table 8 Performance of the ML models trained using road features

Model Unsafe test cases Safe test cases

Prec. Recall F1 Prec. Recall F1

BeamNG RF 1.5

J48 69.2% 67.4% 68.2% 61.5% 63.5% 62.5%

Naı̈ve Bayes 79.3% 53.2% 63.6% 59.3% 83.1% 69.2%

Logistic 78.1% 65.3% 71.1% 64.8% 77.8% 70.7%

Random Forest 75.8% 62.7% 68.6% 62.5% 75.6% 68.4%

Driver.AI

J48 19.5% 64.1% 29.9% 82.9% 39.6% 53.6%

Naı̈ve Bayes 20.3% 78.5% 32.3% 85.8% 29.8% 44.2%

Logistic 22.7% 56.5% 32.4% 85.0% 56.3% 67.7%

Random Forest 22.3% 52.6% 31.3% 84.4% 58.2% 68.9%

The results refer to the split of 80/20 between training and test data. The best results are shown in boldface
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Regarding the BeamNG.AI dataset, with Risk Factor 1.5, the ML model performing the
best in terms of F-score is Logistic (with 71% for both labels), followed by Random Forest
(between 68%–69% for both labels). The other models, instead, achieved lower F-score
values.

Regarding the Driving.AI dataset, we observe that the ML models achieved lower accu-
racy (49.1%) than the BeamNG.AI dataset. This result can be explained by looking at how
unbalanced the Driver.AI dataset is since Driver.AI drives carefully, its dataset comprises
mainly safe scenarios, and the predictions of the ML models tested on it are biased toward
safe predictions.

Comparing the F-score achieved by the ML models against the Driver.AI and
BeamNG.AI datasets shows this problem more evidently: the ML models performed com-
parably well for safe and unsafe classes against the BeamNG.AI dataset, whereas they
performed well only for the safe test class in the case of Driver.AI. However, we can observe
some similarities between all ML models in terms of F-score values when trained on the
Driving.AI dataset and the BeamNG.AI dataset. For instance, for both datasets, Logistic
and Random Forest tend to achieve better results. In both cases, and especially in the case
of Driver.AI, most ML models struggle to classify safe test cases when compared to unsafe
test cases.

Finding 1. SDC-Scissor is able to classify safe and unsafe test cases in both the
BeamNG.AI and the Driving.AI datasets, with the Logistic and Random Forest mod-
els achieving the most reliable results in terms of F-score. However, all ML models
achieved very poor results on the Driving.AI dataset (49.1%) when compared to the
BeamNG.AI dataset. A result that we can justify by looking at the unbalance set of test
cases in the Driver.AI dataset.

5.1.2 Analysis of Relevant Features

Although the ML models trained using the road features can effectively classify the test
cases as safe or unsafe, it is crucial to know the level of contribution of each of these features.
We analyzed the road features for the BeamNG dataset discussed in Table 8 using two
popular feature evaluation methods: information gain and correlation. While the detailed
analysis results are reported in Appendix A, we summarise the main findings here.

Finding 2. The Road Characteristics extracted by SDC-Scissor contribute differ-
ently to identifying the safe and unsafe test cases. TheRoad Characteristics concerning
the pivot radius (min, mean, std, median), the sum of the turn angles, the number of left
and right turns, and the total length of the road are among the most important features,
which are all belonging to the set of road features.

5.1.3 Impact of Risk Factor (RF)

To make it more clear how SDC-Scissor’s performance is affected by varying RF values,
we compared its performance on BeamNG datasets with RF 1, 1.5, and 2 separately. While
we report the details in Appendix B, here we summarise the main findings.
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Finding 3. The accuracy of SDC-Scissor is influenced by their driving style and
the diversity of datasets. For example, for more aggressive driving agents, the accu-
racy achieved by the ML models was higher than for cautious driving agents. Hence,
predicting unsafe test cases is harder for cautious drivers than for reckless ones. Conse-
quently, improving the testing of SDCs is more challenging for less aggressive driving
agents.

5.1.4 Knowledge Transfer Between Different Driving Agents

We also studied the ability of the ML models to transfer knowledge from a driving agent
to another one by training ML models with one AI’s dataset (BeamNG RF 1.5) and test-
ing it with another AI’s dataset (Driver.AI) and vice versa. While we report the details in
Appendix C, here we summarise the main findings.

Finding 4.Our results show that the knowledge is not transferable from one driving
agent to another, i.e., SDC-Scissor performed worse when training ML models on data
from a specific driving agent and testing them on data from a different one. However,
MLmodels trained on the BeamNG data performed only slightly worse when evaluated
on the Driver.AI data.

5.2 Offline Experiments (RQ2)

In this section, we discuss the results of RQ2. Specifically, we focus on devising tech-
niques that effectively leverage features extracted from SDC test cases to minimize testing
costs while keeping testing effectiveness high. For this reason, we investigate whether SDC-
Scissor improves the cost-effectiveness of simulation-based testing of SDCs, compared to
baseline approaches (RQ2). Hence, we report the results of the FIX and REACH exper-
iments (detailed in Section 4.2.2). Additionally, we report the results of the comparison
between various ML models against the baseline approaches (described in Section 4.2.2) by
considering different test pool compositions.

5.2.1 FIX Experiment results

The goal of this experiment is to optimize the usage of the available resource in terms of test-
ing execution time and effectiveness. Figure 7 compares the ratio of unsafe tests selected for
execution using different ML models against the first baseline approach (random selection)
across different test pool compositions. As can be observed from the figure, the Logis-
tic model outperformed the baseline in all different test pool compositions (described in
Section 4). Figure 8 illustrates that with fewer unsafe test cases in the pool, we observe
improvements in the number of selected unsafe tests using ML models over the baseline.
In the pool with the least unsafe tests, the Logistic model finds 133% more unsafe tests
compared to the baseline approach. In the more balanced testing pool, Logistic finds 50%
more unsafe tests, while with the pool with more unsafe than safe tests, it identifies 30%
more unsafe tests. The Logistic model performs slightly better than the other models in all
compositions except one (0.3/0.7), where Random Forest performed the best.
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Fig. 7 Comparison logistic model and baseline across different test pool compositions

The confusion matrices in Table 9 further illustrate the concrete results in terms of
effectiveness with the various pool compositions. In the pool with only 0.05 unsafe tests
(Table 9-a), the Logistic model achieved 10 false negatives and 260 true negatives; this
means that the model avoided the execution of 549 safe tests (considering that safe test
cases take around 24 seconds in average to be executed), thus potentially reducing cost by
more than 200 minutes in total on the less critical scenarios. However, the false-positive
number is still high, with a cumulative 263 false-positives identified. As can be observed
in Table 9-b, for the Test Pool 0.7/0.3, the Logistic model achieved over 260 true posi-
tives and only 37 false positives. We observe that the precision correlates with the dataset
composition; indeed, for datasets having more unsafe tests, the precision for unsafe tests is
higher. For datasets having fewer unsafe tests, we obtain the opposite effect in the results.
Figure 7 shows that the ML model performance and the baseline depend on the test com-
positions. The baseline and ML models perform better in test pools with more unsafe tests.
Thus, according to our results, designing an appropriate test pool composition is of critical
importance to achieving accurate prediction results.

Finding 5. SDC-Scissor outperforms the random baseline approach in selecting
unsafe tests across all test pool compositions, which is critical for more effective testing
practices. In the test pool composition 0.3/0.7 (safe to unsafe), SDC-Scissor found 30%
more unsafe tests; in the test pool composition 0.95/0.05 (safe to unsafe), instead, it
found 133% more unsafe tests.

We assessed the cost-effectiveness of SDC-Scissor also against a second baseline whose
selection strategy is based on the road length. The assumption is that the longer the road
is the more likely it will be unsafe. In contrast to the random baseline, which selects the
tests randomly from the test set, the second baseline orders the tests according to the road
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Fig. 8 Number of executed unsafe scenarios during the experiments on a) Test Pool (0.05/0.95) b) Test Pool
(0.3/0.7) c) Test Pool (0.7/0.3)

length and selects the longest ones. In Table 10, the cost-effectiveness of SDC-Scissor is
compared to both baselines. The Random Forest and Logistic models have the best cost-
effectiveness compared to both baselines with a selection of 80% unsafe tests. On the other
hand, the SVM and Naive Bayes have a worse selection than both baselines selecting only
40% unsafe tests each, whereas the random and RL baselines select an average 42.6% and
60% unsafe tests, respectively.

Finding 6. SDC-Scissor outperforms a baseline approach that selects test cases
based on their road length. The baseline has a cost-effetiveness of 1.5 whereas the
Random Forest and Logistic provide a cost-effectiveness of 4.0 each.

Table 9 Confusion matrix for logistic model, cumulative over 30 rounds for a) Test pool (0.05/0.95), b) Test
pool (0.7/0.3)

a

Predicted class

Unsafe Safe

Actual Class
Unsafe 40 10

Safe 260 549

b

Predicted class

Unsafe Safe

Actual Class
Unsafe 263 48

Safe 37 81
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Table 10 Cost-effectiveness
(

#f ailing
#passing

)
of SDC-Scissor against a random baseline and a road length-

dependent baseline

Model Cost-effectiveness (percentage of failing tests)

SDC-scissor Random baseline RL baseline

Random Forest 4.0 (80%) 0.7419 (42.6%) 1.5 (60%)

Gradient Boosting 1.5 (60%) 0.7419 (42.6%) 1.5 (60%)

SVM 0.6667 (40%) 0.7419 (42.6%) 1.5 (60%)

Naive Bayes 0.6667 (40%) 0.7419 (42.6%) 1.5 (60%)

Logistic Regression 4.0 (80%) 0.7419 (42.6%) 1.5 (60%)

Decision Tree 0.4286 (30%) 0.7419 (42.6%) 1.5 (60%)

5.2.2 REACH Experiment

The goal of this experiment is to investigate whether the usage of ML models allows for
reducing the total test execution time. By reducing the total test execution costs, a testing
pipeline would be able to spend more testing time on more safety-critical test cases. The
task in this experiment was to identify, as early as possible, ten unsafe tests while minimiz-
ing the number of total executed test cases. To perform the various comparisons, for each
experimented strategy, we collected information about the number of test cases required to
reach ten unsafe cases as well as the cumulative cost (i.e., the execution time) to run all
the test cases (i.e., till the final unsafe scenario was identified). Further, we collected infor-
mation concerning the execution time for both safe and unsafe test cases. The conjecture
behind this analysis is that the testing cost concerning safe cases should as limited much as

Fig. 9 Comparing the logistic model with the baseline across the different test pools
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Fig. 10 Time spent for the execution of safe tests, Logistics vs. Baseline across different test pools

possible, whereas the test cost dedicated to unsafe cases is beneficial to identify flaws of
SDC in virtual environments.

Figures 9 and 10 provide an overview of the performance of the baseline compared to
the Logistic model (the best-performing model in previous experiments) across different
test pool compositions. Table 11 summarizes the results of the REACH experiment. We
observed that the Logistic model performed better across all test pool compositions. The
test costs strictly depend on the required numbered of tests to be executed before identifying
the minimum set of 10 unsafe tests. Although the difference in the number of required tests
tends to be higher in the pool with fewer unsafe tests (in the 0.05/0.95 pool between 171
to 98.5 tests, in the 0.7/0.3 between 14 to 11 tests), SDC-Scissor allows for reducing test
execution time dedicated to less critical tests when the test pool presents more unsafe tests.
Figure 11 show that in the smaller unsafe pool it is higher the test execution time dedicated

Table 11 Results of the REACH experiments comparing the logistic model and the baseline in various test
pool compositions (safe/unsafe test ratio)

Model/Pool Tests # Execution time

Safe Unsafe

Smart Selector

Test Pool (0.05/0.95) 98.5 4664 375

Test Pool (0.3/0.7) 19 475 376

Test Pool (0.5/0.5) 14 214 389

Test Pool (0.7/0.3) 11 54 379

Baseline

Test Pool (0.05/0.95) 171 8079 382

Test Pool (0.3/0.7) 35 1243 383

Test Pool (0.5/0.5) 18.5 439 391

Test Pool (0.7/0.3) 14 193 387

Execution time is reported in seconds, and the values are averaged across the experiment repetitions
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Fig. 11 Time spent on executing each safe and unsafe test case for different models in a) test pool (0.7/0.3)
b) test pool (0.05/0.95)

to less critical tests. The test execution time for these less critical tests is 85% higher in
the baseline than in the Logistic model. In the larger pool, the Logistic model selects 80%
unsafe tests, whereas the baselines only have 42.6% and 60%, respectively.

Finding 7. We investigate whether SDC-Scissor can reduce the number of exe-
cuted tests required to find at least N unsafe tests. Our results show that SDC-Scissor
outperformed the baselines across all test pools, with the Logistic model reducing
the unnecessary execution time dedicated to safe tests by selecting 80% unsafe tests,
whereas the baselines select 42.6% and 60% unsafe tests, respectively. SDC-Scissor
performed better compared to the baseline when test pools are characterized by fewer
unsafe tests.

In Section 7, we discuss further results of RQ2, providing additional insights on this
research question.

5.3 Real-Time Experiments (RQ2)

In this section, we present the results of the real-time experiments, where we compare the
results of a pre-trained model and a real-time model with the baseline approach.

Baseline vs. Pre-trained and Adaptive Models Figure 12 gives an overview of the results
achieved by the experimented models. We observe that the baseline executed a higher num-
ber of test cases (472). The pre-trained model runs more test cases (405) than the real-time
approach (378). Figure 12 summarizes our main observations, as elaborated in the next
paragraphs.

The pre-trained and real-time models apply a machine learning-based test selection,
which leads to numerous rejected (i.e., non-executed) test cases: real-time and pre-trained
experienced 588 and 309 rejected tests, respectively. The baseline uses 98% of the time
to execute test cases; only 2% is dedicated to generating test cases. The pre-trained and
real-time approaches use more time for test generation (6% pre-trained, 11% real-time
approach). In addition to the longer test generation process, these two approaches allocate
time for predictions and evaluation of tests (pre-trained 4%, real-time 5%), which the base-
line does not need to perform. Compared to the pre-trained approach, the real-time approach
continuously trains the machine learning model with new tests.
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a

b

Fig. 12 Comparison of the metrics for different real-time approaches in a 6-hour run a) generated test cases
distribution. b) spent time distribution across different tasks.

Interestingly, although the baseline executes more test cases, both pre-trained and real-
time approaches found more unsafe test cases (baseline 195, pre-trained 265, real-time 256).
The pre-trained model was able to find 35% more unsafe test cases, executing only 49% of
safe tests. In Fig. 12, we can observe that the baseline only spends 34% of the time running
unsafe tests, while 64% of the test time was spent on executing safe test tests. In contrast,
our proposed approaches dedicated more than 50% of the time to unsafe tests, which is
positive since, in a testing environment, the goal is to find more errors in less time (in our
case, it corresponds to exposing more weakness in SDC).

Finding 8. Our results show that even though the baseline approach executes more
test cases, both the real-time and the pre-trained (i.e., offline) models integrated into
SDC-Scissor are able to find more unsafe tests than the baseline. The time investment
of predicting the outcome of test cases and generating more tests is beneficial for test-
ing purposes. The pre-trained model was able to find 35% more unsafe tests than the
baseline, with the baseline only dedicating 34% of the time budget to assessing unsafe
tests. The offline model spends 52% running unsafe and only 38% on safe test cases.
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Table 12 Comparison between pre-trained and real-time models

Model Acc. Unsafe Safe

Prec. Recall Prec. Recall

Pre-trained Model 72.1% 65.2% 82% 81.2% 64%

Real-time Model 69% 67.7% 59.3% 69.9% 77%

Adaptive vs. Pre-trained Model Figure 12 shows that the testing time allocation for the
pre-trained and real-time models is similar, but the real-time model spends more time on test
generation (11%) than the pre-trained one (6%). The pre-trained model is based on the pre-
viously generated dataset with 5,643 (consisting of 3,559 valid test descriptions as described
in Section 4) test cases, whereas the real-time model started with generating an initial dataset
of 60 test cases as described in Section 4. Table 12 shows that the pre-trained model achieved
a higher accuracy (72.1%) than the real-time model (69%). The lower accuracy explains
the higher number of test cases generated by the real-time model (tests generated; real-time
962, pre-trained 714). Although the pre-trained model has higher accuracy in general and
higher unsafe recall, it only found 3.13% more unsafe tests than the real-time model.

Finding 9. The offline model achieved an accuracy of 72.1%, which is higher than
the real-time model (69%). A real-time approach can achieve similar results compared
to an offline model, with the real-time model finding only 3.13% fewer unsafe tests
than the offline model. In achieving such results, the real-time model only used an
initial set of 60 test cases, whereas the offline model leveraged 5,643 tests.

Training costs: Pre-trained and Adaptive Models v.s. Random Baseline From a qualita-
tive point of view, the cost of the training dataset is about 0 for the random baseline, while it
is > 0 for the pre-trained and adaptive Models. It is important to mention that, for all results
discussed in Section 5.3 and for the adaptive and pre-trained models, we did not include the
cost required for training the ML models on the training data. This choice was made since
the cost of training the best ML model can be considered negligible compared to the cumu-
lative cost of generating all tests and executing them. Indeed, the average cost to train the
Logistic Regression model (i.e., the best ML model) on 60 test cases is of about 0.139 sec-
onds, whereas the cost to train the same ML model on 5,643 tests (for the offline model)
is of about 0.685 seconds. However, since for other ML models or particular settings of the
same ML model (e.g., different from its standard configuration), we could achieve rather
higher training costs, we discuss this topic in the threat to validity.

Training Dataset Preparation: Pre-trained and Adaptive Models v.s. Random Baseline
It is important to report that the comparison of SDC-Scissor and the random baseline does
not take into account the time (i.e., the cost) required for the training dataset preparation
in the real-time experiments. From a qualitative point of view, the cost of the preparation
of the training data is about 0 for the random baseline (since no training is needed), while
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for the pre-trained and adaptive models, this has a non-negligible cost. The preparation of
the training data includes: (i) the time required for the design, implementation, and testing
of the road characteristics (i.e., one week of full-time work) into SDC-Scissor; (ii) and the
cost for the automated extraction of such features from all test cases (158 seconds). In total,
this required us (i.e., the first author of this work) around one week of work. Hence, while
both the pre-trained and adaptive models are more cost-effective than a random baseline
when selecting test cases, the training data preparation cost represents a very high cost to
be sustained upfront, which becomes beneficial only over a long period of test execution
time. In the context of regression testing, when a new update for a large component of
SDC software is developed, a well-prepared training dataset lowers the testing cost of that
component.

5.4 Optimization Experiments (RQ3)

In RQ3, we focus on investigating whether there is an actual upper bound of ML techniques
in identifying SDC safe and unsafe test cases when using static SDC features (available
before executing the tests). We performed Grid Search for the Random Forest, J48, Gradient
Boosting, Logistic, Naive-Bayes, and Support Vector Classifier to identify the best hyper-
parameters for each model. Table 13 summarizes the results of Grid Search by showing the
F-score (F1) for safe and unsafe test cases as well as the averaged F-score.

Table 13 Best ML model configurations after a Grid search

ML Technique Param. Config. F1 Weighted avg. F1

Safe Unsafe

Random Forest I=5, 35.1% 72.4% 57.8%

K=10,

depth=10,

M=50

J48 C=0.5, 42.6% 70.3% 59.5%

M=20

Gradient Boosting criterion=friedman mse, 77.0% 0.0% 48.0%

learning rate=0.01,

loss=log loss,

n estimators=10

Logistic dual=False, 76.0% 12.0% 52.0%

max iter=10,

penalty=none,

solver=saga

Naive-Bayes No parameters 71.0% 41.0% 60.0%

SVC dual=False,

76.0% 28.0% 58.0%loss=squared hinge,

penalty=l2
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Fig. 13 Confusion matrix for the Gaussian Naive Bayes model

The best two models regarding the averaged F-score are the Gaussian Naive Bayes (F1 =
60.0%) and the J48 Decision Tree classifiers (F1 = 59.5%). Although these two models
have similar averaged F-scores, they are distinct among the classes. Among the unsafe tests,
the J48 Decision Tree achieved an F-score of 70.3%, but for the safe tests, it achieved 42.6%.
In the case of the Naive Bayes model, we have among the unsafe tests an F-score of 41.0%
and 71.0% for the safe tests.

For the best two models according to their averaged F-score, we show their corre-
sponding confusion matrices in Figs. 13 and 14. Furthermore, a detailed overview of their
precision, recall, and F-scores among the classes are reported in Table 14.

Both confusion matrices show a similar distribution. The models identify most of the
true unsafe test scenarios with 1’677 and 1’650 cases, but in predicting the safe tests, the
models have a low true positive rate with 409 and 516 correct predicted safe tests.

Fig. 14 Confusion matrix for the J48 decision tree model
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Table 14 Best ML models with recall, precision, and F-score

ML Technique Precision Recall F1

Safe Unsafe Safe Unsafe Safe Unsafe

J48 49.8% 65.4% 76.0% 37.1% 42.6% 70.3%

Naive Bayes 66.0% 47.0% 75.0% 37.0% 71.0% 41.0%

6 Integration of SDC-Scissor in the Industrial Use Case

6.1 Experiments Involving an Industrial Use Case (AICAS)

We investigate the extent to which SDC-Scissor can be integrated into the context of
industrial organizations in the automotive domain, addressing one of the open questions
in simulation-based testing (Birchler et al. 2022, c; Gambi et al. 2019; Abdessalem et al.
2018b) for SDCs. We identified the AICAS company6 as an ideal use case for this investiga-
tion. AICAS develops JamaicaCAR, an OSGi-based technology for the automotive sector,
currently running in more than five million cars worldwide. A pressing challenge for AICAS
concerns the need to combine simulations and HiL testing protocols to optimize the testing
costs. Specifically, AICAS aims to reduce testing costs by automatically generating inputs,
i.e., signals, compatible with the Controller Area Network (CAN) Bus protocol (CIA 2017)
in simulated environments.

Based on the trajectories planned by the planning module of SDC, the control module
of SDC typically takes charge of the longitudinal and lateral control of the vehicle and
generates appropriate control commands (e.g., steering, acceleration, brake) that it sends to
the related hardware component of the SDC via the CAN Bus (see Fig. 15).

To allow validation of the described scenarios, AICAS provided us with devices under
test (DuT) equipped to communicate via the CAN Bus. We connected the devices to the
CAN bus and the CAN bus to a driving simulator that allowed us to generate the appropriate
signals (see Fig. 16). The devices act as a validation context for the described automotive
scenarios.

6https://www.aicas.com/wp/

https://www.aicas.com/wp/
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Fig. 15 Can bus in the context of an SDC

There are several main advantages of integrating test cases generated by SDC-Scissor in
the testing workflow of AICAS:

– Increased level of test automation: Currently, AICAS inputs are manually generated
or designed by testers and developers in its organization. The usage of an integrated
framework such as SDC-Scissor can enable the generation of test cases automatically,
increasing automation and diversity of generated SDC scenarios.

– Increased level of realism: Most of the manually entered signals inserted in the Can Bus
protocol by the testers and developers of the AICAS organization do not reflect a real
driving set of signals (e.g., the provided acceleration and steering angle of the vehicle
are not reflecting a real driving test scenario, which makes the used inputs in most cases
too random or unrealistic).

Fig. 16 AICAS’s Jamaica EDP validation setup
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Integration Steps To investigate the extent to which SDC-Scissor can be integrated into
the context of AICAS, we extended SDC-Scissor with a CAN Bus code pipeline (see the
full pipeline in Fig. 17), which automates the following steps:

– SDC Test Case Generation and Storage (Steps 1-2): As visualized in Fig. 18, we first
use SDC-Scissor to generate 3,559 SDC test cases (with BeamNG, with RF 1.5 - mod-
erate driving), execute them, and store the corresponding execution log in a JSON file
(i.e., the actual simulation.full.json containing all information concerning the generated
and executed tests by SDC-Scissor, see Fig. 18), which constitutes the dataset of our
experiments.

– SDC Test Data Conversion & Generation of CAN Playback Data (Steps 3-5): In this
stage, we convert (and visualized in Fig. 19) the execution log from the JSON file

Fig. 17 CAN Bus code pipeline integrated into SDC-Scissor
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Fig. 18 SDC-Scissor’s CAN bus code pipeline: SDC test case generation and storage

(i.e., simulation.full.json generated by SDC-Scissor to CAN Playback Data (i.e., the
file simulation.canplayback.*).

– Transmission of CAN-based Signals (Steps 6): The messages (i.e., the CAN Playback
Data) generated in the previous step are then transmitted to the CAN Device according
to defined timestamps, consistent with the one generated by SDC-Scissor while exe-
cuting SDC test cases. Specifically, referring to the specified used CAN database (i.e.,
< .dbc >), we converted SDC-Scissor test case data (i.e., < simulation.f ile.json >)
to CAN messages (i.e., < simulation.canplayback.csv >). Using a specified CAN
interface device, logged CAN frames are played back to external CAN bus devices.
These final steps allow us to finally send realistic SDC signals concerning the driving
scenarios to the CAN Device (i.e., SDC test cases generated by SDC-Scissor) in an
automated fashion).
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Fig. 19 SDC-Scissor’s CAN bus code pipeline: SDC test data conversion & generation of CAN playback
data

From a technological point of view, the definition and implementation of the pipeline in
Figure 17 required us to leverage the following libraries: (i) Python-CAN,7 which allows
controlling various CAN interface devices in the Python environment; (ii) the cantools,8

which support CAN database encoding and decoding actions (from the device to the
Simulator, and vice versa).

6.2 Industrial Use Case (AICAS): Integration Results

To investigate the extent to which SDC-Scissor can be integrated into the context of AICAS,
we extended SDC-Scissor with a CAN Bus code pipeline described in Section 6.1 and
shown in Fig. 17. The development and integration of this pipeline in the AICAS context
required around five months of work: considering the time to design the pipeline till its

7https://python-can.readthedocs.io/en/master/
8https://cantools.readthedocs.io/en/latest/

https://python-can.readthedocs.io/en/master/
https://cantools.readthedocs.io/en/latest/


   71 Page 38 of 55 Empir Software Eng           (2023) 28:71 

Table 15 Dataset summary

Property Value

Nr. SDC test cases generated by SDC-Scissor (BeamNG RF 1.5) 3,559

Total Simulation Time 12h 17m and 11s

Average Simulation Time 12.428 s

Max. Simulation Time 21.4 s

implementation and integration, including the time for running all the required experiments
reported in this article (this includes the generations of test cases by SDC-Scissor, their
execution, the analysis of the data, etc.).

Table 15 reports the details of the test cases generated by SDC-Scissor. Specifically,
we generated around 3,600 test cases, which required a total execution time of 12h, 17m,
and 11s, with an average simulation time of 12.428 seconds for each test case and a max.
observed simulation time of 21.4 seconds.

The most challenging steps of the integration of SDC-Scissor into the context of AICAS
are represented by the SDC Test Data Conversion & Generation of CAN Playback Data
(Steps 3-5, shown in Fig. 17) and the Transmission of CAN-based Signals (Steps 6, shown in
Fig. 17). The main aspect that made this task challenging was the need for signal conversions
and mapping between SDC-Scissor’s signals and CAN Playback Data. As shown in Fig. 20,
for each signal generated by SDC-Scissor, we had to generate a corresponding value mapped
with the CAN Playback module.

Based on the simulation-based signals generated by the implemented SDC-Scissor
pipeline, we were able to generate appropriate control commands (e.g., steering, accelera-
tion, brake), and send them to the related hardware component of the SDC via the CAN Bus.
Table 16 reports the details of SDC-Scissor’s integration process. Specifically, for all 3,600
generated test cases, which required a total execution time of 12h, 17m, and 11s, it required

Fig. 20 Mapping between SDC-Scissor’s signals and CAN Playback Data
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Table 16 Results of the Integration Process

Property Value

Nr. SDC test cases Generated by
SDC-Scissor

(BeamNG RF 1.5) 3,559

Total Conversion of Messages + Transmission of
CAN signals

52.391 s

Mean Time for Conversion of Messages + Transmis-
sion of CAN signals (per each SDC test case)

14.721 ms

Min Time for Conversion of Messages + Transmis-
sion of CAN signals (per each SDC test case)

7.892 ms

Min Time for Conversion of Messages + Transmis-
sion of CAN signals (per each SDC test case)

30.006 ms

a total of 52.391 seconds to SDC-Scissor for enabling the automated signal conversions,
mapping, and transmission of CAN messages.

As visualized in Fig. 21, it requires 14.721 ms on average to SDC-Scissor to translate
simulation-based signals into CAN-compatible signals. In comparison with the current man-
ual signal generation process, it requires on average 1-2 days for AICAS developers and
testers to design and then generate a sequence of CAN signals corresponding to 10-15 test
cases generated by SDC-Scissor (according to the qualitative assessment of our main con-
tact people within AICAS). In addition to the test automation enabled by SDC-Scissor in the
context of AICAS, the generation of a more realistic sequence of SDC signals (correspond-

Fig. 21 Performance of conversion and transmission time
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ing to signals of a realistic SDC car driving in a virtual test case) is vital for the identification
of safety-critical scenarios to be executed and tested via the CAN Bus protocol.

7 Discussion

This section discusses additional factors that can influence the results of the various research
questions, providing more insights and findings about them. Moreover, it also provides a
concrete discussion on directions for future research in the field.

7.1 Discussion of Experiments Using Road Characteristics as Input Features
to theMLModels

As we have observed from the conducted experiments in RQ1, SDC-Scissor is able to clas-
sify safe and unsafe test cases in both the Driving.AI dataset and the BeamNG.AI dataset,
with the Logistic and Random Forest models achieving the most reliable results in terms
of F-score values for labels. Moreover, we also observed that the Road Characteristics
extracted by SDC-Scissor contribute differently to identifying the safe and unsafe test cases.
The Road Characteristics concerning the pivot radius (min, mean, std, median), the sum of
the turn angles, the number of left and right turns, and the total length of the road are among
the most important features, which are all belonging to the set of road features.

In the context of RQ1, there are other factors that can impact the results of SDC-Scissor,
such as (i) the risk factor (RF) of the SDCs; (ii) the ability of the ML models to trans-
fer knowledge from a driving agent to another one (i.e., between BeamNG RF 1.5 dataset
and the Driver.AI dataset); finally, (iii) we complement the previous Offline Experiments,
which focus on applying SDC-Scissor to regression test case selection, with Real-Time
Experiments in which we study the application of SDC-Scissor to automated test generation.

7.2 Further Remarks and Future Directions

This work can have relevant implications for developers and researchers. Hence, this final
discussion reflects further remarks on the results of all questions, with a specific focus on
future directions of RQ3 and RQ4 for developers and researchers.

For what concerns developers, the designed tool allows identifying specific problems
that need to be carefully monitored in simulation environments at the time of testing. These
include, for instance, the need for coping with testing multiple hardware versions and diver-
sified test inputs to verify correctness with realistic test inputs. Also, it is of paramount
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importance to be able to generate inputs that lead to a different safety-critical situation in a
safe manner (i.e., without harming humans). SDC-Scissor allows to generate and identify
test cases that can cause the SDC to fail by using different safety criteria (in the context
of this work, we focus on the line-keeping feature as the main safety criterion, but further
criteria can be easily integrated and tested).

The integration of SDC-Scissor into the AICAS use case allows us to demonstrate that
the proposed approach can automate the testing process of such a large automotive company,
coping with the need to complement their hardware-based simulation (based on the Can
Bus protocol) with simulation-based testing automation. Specifically, SDC-Scissor allows
addressing two pressing challenges of AICAS such as the need for (i) an Increased level
of test automation (e.g., AICAS inputs are manually generated or designed by testers and
developers in its organization) with test cases automatically generated to increase the diver-
sity of generated SDC scenarios; (ii) and the need of Increase level of realism, since most
of the manually entered signals inserted in the Can Bus protocol by the testers and develop-
ers of the AICAS organization do not reflect a real driving set of signals (e.g., the provided
acceleration and steering angle of the vehicle are not reflecting a real driving test scenario,
which makes the used inputs in most cases too random or unrealistic).

To enable the detection and fixing of SDC bugs during the evolution of SDCs, developers
can focus on configuring SDC-Scissor to test different combinations of simulators, and AI
agents in diversified testing cases, to identify faults in the AI engine and the connected
hardware of the system. Of course, we expect that test cases for assessing and detecting
SDC bugs can vary between different organizations. To perform such new experiments,
SDC-Scissor can be used to generate new test cases by increasing the level of realism of
the generated simulation by including obstacles in the generated tests. This is to observe the
behavior of the SDCs as well as the ability of SDC-Scissor to identify safe and unsafe test
cases in the context of more articulated test cases.

From the discussion of the results of RQ3, we identified that there is an upper bound of
the extent to which static SDC features (i.e., features available before executing the tests)
can be used to predict SDC testing outcomes. This represents a relevant topic for both devel-
opers and researchers for future investigation. From one side, we may argue that novel
static SDC features need to be designed to achieve better results (in terms of precision,
recall, and F-score). On the other side, we also observed in RQ3 how the usage of different
SDC features and hyperparameter optimization strategies do not lead to drastically better
results. Given the complexity of the simulation environment and its simulated physics, we
argue that to cope with the upper bound of static SDC features, better results can be achieved
by combining static metrics and runtime SDC metrics (i.e., metrics available during the
execution of SDC test). The rationale of such implication is that there is limited informa-
tion that can be used to derive if SDC test cases will fail or not before their execution, and
achieving better results requires designing metrics that are available during the execution
of test cases. For instance, one could consider using the average distance, speed, and steer-
ing angle in the proximity of an SDC failure (namely, a crash or a violation of the safety
criterion, such as the lane-keeping feature).

For what concerns researchers, this work triggers activities towards better testing and
analysis of SDCs. First and foremost, given the identified safe and unsafe test cases, it can
be used to derive higher-order (Jia and Harman 2009) SDC-specific mutation operators. For
example, the integration of obstacles and different fault detection strategies related to other
safety criteria (different from the lane-keeping feature) during the execution of test cases
could lead to mutants that change the test case outcome towards more faulty SDC behaviors.
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More complicated would be dealing with runtime adjustments of SDC test cases, which
may require to be instantiated by perturbing the SDC behavior during the testing process.

Also, the work could foster the development of specific static analysis tools for SDC,
looking for SDC-specific recurring problems observed in failing test cases. Complementary
empirical research could be directed to investigate the difficulty (e.g., duration) of fixing
SDC-specific bugs and developing tools guiding developers in allocating the appropriate
development effort to various types of SDC bugs. In the context of SDCs, the usage of SDC-
Scissor can help researchers (and developers) have a deep knowledge of SDC bugs and their
root causes, which is potentially facilitated by their high reproducibility. Specifically, being
able to reproduce a bug is crucial during bug triaging and debugging tasks but not always
possible in field testing (Bettenburg et al. 2007; Huang et al. 2013; Zimmermann et al. 2010;
Panichella 2015).

Fixing or addressing SDC-specific bugs and automatically assessing the correctness of
the SDC behavior represent a critical challenge for developers and researchers. Hence,
future studies should look at further safety-related bugs due to the uncertainty of SDC
behavior, concerning, for instance, the effect of different SDC initializations in the SDC test
case outcomes. During our experiments, we also noticed a non-deterministic behavior of the
test outcomes, also known as flaky tests. Concretely, depending on the definition of a fail-
ing test for SDC-Scissor, we observed 1% to 5% flaky test cases, which we discarded when
creating our dataset. Future research should address the concern of having flaky tests in vir-
tual environments since they lower the reliability of simulation-based tests of safety-critical
systems such as SDCs.

Finally, SDC developers heavily rely on different experts (they need to have both soft-
ware and hardware knowledge) to assess the correctness of SDC test outcomes. As the
judgment of the experts highly depends on their experience and domain knowledge, such
human oracles may not be reliable or can be considered subjective. This human-based
assessment can be supported by reproducible SDC test regression frameworks, such as
SDC-Scissor, to mitigate the effect of subjective assessments of the correctness of SDC test
outcomes.

8 RelatedWork

SDC-Scissor improves CPS testing cost-effectiveness by identifying and discarding likely
irrelevant (i.e., safe) tests. Therefore, SDC-Scissor’s main application areas are (automated)
test generation and test regression selection. Specifically, SDC-Scissor employs Machine
Learning models to classify tests as safe or unsafe before their execution. Research has
yielded many approaches to reduce testing efforts (Elberzhager et al. 2012; Zhang et al.
2020). These approaches can be classified into the following categories: test case selection
(Chen and Lau 1996), test suite reduction, test case minimization (Rothermel et al. 1998),
and test case prioritization (Rothermel et al. 1999). Test case selection identifies subsets
of available tests relevant (or necessary) for testing a given change in the code; test suite
reduction removes redundant test cases from existing test suites, thus leading to smaller test
suites that can execute faster; test case minimization removes irrelevant statements from the
tests, reducing their size; finally, test case prioritization approaches rank test cases by the
likelihood of detecting faults such that their execution can lead to finding faults soon.

Most of the available approaches focus on regression testing and do not employ Machine
Learning (Yoo and Harman 2012). Only recently (Pan et al. 2022), we observed a positive
increment in the number of proposed approaches that rely on ML to select and prioritize
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test cases; however, those approaches focus mostly on traditional software systems (e.g.,
Roper (2019)), and the problem of reducing testing effort for Cyber-Physical Systems
remains open (Sadri-Moshkenani et al. 2022). In particular, compared to traditional soft-
ware systems, CPS face additional challenges due to their continuous interactions with the
environment and the tight coupling between the hardware and software components com-
prising them. Hence, standard testing approaches are ineffective, inefficient, or inapplicable
(Briand et al. 2016).

Testing of CPSs typically follows the X-in-the-loop paradigms (Matinnejad et al. 2013)
which involves a great deal of simulation and takes the form of the model in the loop (MiL),
software in the loop (SiL), and hardware in the loop (HiL), depending on the level of abstrac-
tion adopted to represent the CPS’s software and hardware components and the relevant
environmental elements. Considering the specific requirements of X-in-the-loop testing,
researchers proposed various optimization techniques tailored for CPSs. We discuss the
most relevant examples in the following and point interested readers to Sadri-Moshkenan’s
survey for a more detailed discussion (Sadri-Moshkenani et al. 2022).

Effective CPS testing requires the generation of test cases that effectively stress the sys-
tem under tests to systematically find critical and challenging test cases (Gambi et al. 2019).
However, many of the proposed approaches (e.g., Panichella et al. (2021), Gambi et al.
(2022), Gambi et al. (2019), and Li et al. (2020)) rely on randomization to generate tests
and require the execution of all the generated tests. As we showed in our evaluation, with-
out proper support (e.g., SDC-Scissor), those approaches struggle to efficiently identify
relevant scenarios. Abdessalem and co-authors, instead, augmented traditional evolutionary
search algorithms commonly used for automated test generation with Machine Learning
models to improve the cost-effectiveness of CPS testing. They evaluated their approaches
on SDC collision avoidance. Specifically, Abdessalem et al. (2016) used Artificial Neural
Networks to predict test cases’ fitness without executing them. By doing so, They could
avoid the lengthy execution of test cases that might not contribute much towards achieving
testing goals (i.e., finding problems in the system under test). More recently, Abdessalem
et al. (2018a) employed a Decision Tree to guide the test generation. In particular, during the
test generation, Abdessalem et al. train a Decision Tree that can identify regions of the test
input space that likely lead to generating critical test cases. Compared to Abdessalem et al.’s
work, we adopt a similar approach but investigate the use of different Machine Learning
models to classify tests as safe or unsafe. Additionally, we apply SDC-Scissor to a different
problem, i.e., testing the SDC Lane Keeping system.

In traditional settings, test selection and prioritization are performed by computing test
similarity or test adequacy (i.e., code coverage). However, given the complexity of test
inputs for CPSs (e.g., simulated environments), computing those metrics is technically
challenging. Consequently, new similarity metrics and procedures to compute them have
been proposed. For instance, Arrieta et al. (2016, 2018a) proposed to measure the simi-
larity between the test cases based on the so-called signal values of all the states for the
simulation-based test cases. Traditional test adequacy metrics may not be adequate for CPSs
that are based on Artificial Intelligence and Deep Learning. Because of this, current research
efforts focus on identifying domain-specific heuristics to select test cases. For instance,
Arrieta et al. (2018b) and Shin et al. (2018) proposed to select the test cases based on
high-level objectives such as requirement coverage, the risks of damaging CPS Hardware
components, and test execution times.

Compared to those studies, we investigate a different CPS domain and different test
selection objectives.
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Regarding test selection objectives, we focus on improving the cost-effectiveness of
simulation-based tests to assess safety requirements. In contrast, previous studies priori-
tized the execution of tests based on their fault-detection capability (Arrieta et al. 2019), or
selected tests based on signals diversity (Arrieta et al. 2016, 2018a, b), that require test exe-
cution. Since, in the SDC domain, executing simulation-based tests is prohibitive, we face
the challenge of selecting test cases before their execution. Consequently, our techniques
consider only the initial state of the car and the road features (e.g., geometry, lane markings),
as those features are available without executing the tests in the simulator.

9 Threats to Validity

Threats to internal validity may concern, as for previous work (Gambi et al. 2019; Birchler
et al. 2022, c), the cause-effect relationships between the technologies used to generate the
scenarios and their elements and the corresponding results, which strictly depends on the
realism of our scenarios. Indeed, we did not recreate all the elements that can be found on
real roads (e.g., weather conditions, etc.). However, to increase our internal validity, we used
both BeamNG.AI and Driver.AI as test subjects. They both leverage a good knowledge of
the roads, which means that they do not suffer from the limitations of vision-based lane-
keeping systems. For future work, we plan to leverage the new BeamNG features, which
allow experimenting with test cases composed of traffic lights as well as other cars and static
objects. Moreover, we plan to experiment with consecutive versions of BeamNG.AI and
Driver.AI (when they are available), so that it is possible to investigate the potential fault-
detection capability of both of them. Currently, this is not possible since both BeamNG.AI
and Driver.AI do not have previous versions of their driving agents. Furthermore, since
testing involves an underlying assumption that there will be no malicious attack on the
system, future work should be conducted on more cautious driving AIs. The goal should
also be to detect unsafe scenarios with a lower risk factor. A reckless driving style can be
considered malicious behavior, which is, to a certain extent, provoked by the configuration
RF2.

The current implementation of the diversity feature does not take into account the actual
length of the road. Theoretically, it is possible that a short road can have a higher diversity
than a longer one, which also contradicts an assumption that a long road is generally unsafer
since there is more space to encounter an unsafe state of the vehicle.

Given the performances of the ML techniques used in our experiments may depend on
the setting of their hyper-parameters. We initially leveraged their default settings, knowing
that the obtained results could represent a lower bound for the classification performances.
Then, we experimented with Grid search as a hyperparameter optimization approach (RQ3)
to investigate potential optimal combinations of parameters for the selected ML models.
Finally, threats to external validity concern the generalization of our findings. Although the
(i) number of experimented test cases in our study is relatively larger (Gambi et al. 2019);
and (ii) we experimented with different AI engines (i.e., BeamNG.AI and Driver.AI) and
integrated SDC-Scissor into the development context of the AICAS use case (demonstrating
that the proposed tool can automate the testing process of such a large automotive company)
compared to previous studies; we cannot claim that our results can be generalized to the
universe of general open-source CPS simulation environments in other domains. Therefore,
further replications are desirable, and so are further studies considering more data as well
as other CPS domains.
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As discussed in Section 7, for all results in Section 5.3, for both the Adaptive and Pre-
trained Models, we did not include the cost required for training the ML models on the
training data. This choice was made since the cost of training the best ML model can be
considered negligible compared to the cumulative cost of generating all tests and execut-
ing them. However, this could be a threat to the external validity of our results, since for
other ML models or particular settings of the same ML model (e.g., different from its stan-
dard configuration), we could achieve rather higher training costs. Another threat could be
related to the evaluation metrics used in our study, which could provide biased performance
measures such as precision, recall, and F-score. Hence, for future work, we plan to leverage
additional metrics such as the MCC (Matthews Correlation Coefficient), being reported as a
well-known measure for unbiased performance measurements. To minimize potential exter-
nal validity, in conducting our experimental evaluation, we followed the guidelines by In
addition, we considered an additional baseline approach that selects test cases by ordering
the test to be executed considering their road length (in decreasing order).

10 Conclusions and FutureWork

Regression testing for SDCs is particularly challenging due to the cost of running many
driving scenarios in simulation. To improve the cost-effectiveness of regression testing, we
introduced a test case selection approach, called SDC-Scissor, that relies on a set of SDC
road features extracted from driving scenarios prior to running the tests in the context of the
BeamNG SDC simulation environment. Then, SDC-Scissor uses ML approaches to select
the test cases having a higher likelihood of experiencing unsafe situations.

We empirically investigated the performance of SDC-Scissor and compared it with
baseline approaches (RQ1). Our assessment of SDC-Scissor shows that SDC-Scissor suc-
cessfully selects test cases independently from the AI engine used or different risk levels
(i.e., different driving styles), with the Logistic model providing the most stable results.
Interestingly, our results also show that the knowledge is not transferable from one AI engine
to another one, i.e., SDC-Scissor performed worse when training ML models on data from
a specific AI engine and testing on data from a different AI engine.

Our findings also suggest that SDC-Scissor can reduce the number of executed tests
required to find at least 10 unsafe tests (RQ2). Specifically, SDC-Scissor outperformed the
baseline across all test pools. It selected unsafe cases using the Logistic model with an accu-
racy of 70%, a precision of 65%, and a recall of 80%. In terms of running time, we observed
that SDC-Scissor is able to select test scenarios in a cost-effective manner compared to two
random baseline approaches (RQ2). We experimented with Grid search as a hyperparameter
optimization approach (RQ3) to investigate potential optimal combinations of parameters
for the selected ML models (RQ3). Our results show that there is an upper bound of an aver-
age F-score of 60% with the J48 and Naive Bayes classifiers. Complementary, compared
to previous studies, we integrated SDC-Scissor into the development context of the AICAS
use case, demonstrating that the proposed tool can automate the testing process of such a
large automotive company.

As future work, we plan to replicate our study on further SDC datasets, AI engines,
and SDC features. Moreover, we plan to perform new empirical studies on further CPS
domains to investigate how SDC-Scissor performs when safety criteria concern new types
of safety-critical faults different from those investigated in this study. Finally, we want to
investigate different meta-heuristics and multi-objective approaches (Canfora et al. 2013,
2015) to enable test case generation based on the designed feature sets.
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Appendix A: Analysis of Relevant Features (RQ1)

Although the ML models trained using the road features can effectively classify the test
cases as safe or unsafe, it is crucial to know the contribution of each of these features. For
instance, more profound knowledge of the features may help to define better-suited feature
sets. Hence, we analyzed in detail the road features for the BeamNG dataset discussed
in Table 8. Table 17 reports the results of using two popular feature evaluation methods:
information gain and correlation. We order the features based on their evaluation scores and
set a threshold (0.01 for information gain and 0.1 for correlation) for each evaluation method
to select only the features with the highest contribution. It can be seen from Table 17-A
and B that the ordering and the relative score of the features are similar in most of the top
cases among the two methods. Specifically, the top eight features are precisely the same in
both methods, with a slight change in the order between ranks 2 to 4. Additionally, we note
that the remaining features above the thresholds differ in just one feature, i.e., “std angle”,
which ranked in correlation score lower than the information gain (rank 14 vs. 10).

Overall, we observe that almost all road features contributed to distinguishing safe versus
unsafe test cases. Also, among the statistical features that we reported in Table 2, features
concerning the pivot radius tend to be more critical and relevant for the distinction of the
classes. The minimum and average radius of the pivots are among the most contributing
features, while the statistics concerning the turn angles start appearing only from rank 10.

Table 17 Feature Selection Rankings according to A) Information Gain Analysis, B) Correlation Analysis

A B

Rank Feature Inf. Gain Rank Feature Correlation

1 min pivot off 0.140 1 min pivot off 0.342

2 mean pivot off 0.087 2 total angle 0.332

3 total angle 0.085 3 num l turns 0.330

4 num l turns 0.084 4 mean pivot off 0.326

5 num r turns 0.077 5 num r turns 0.316

6 std pivot off 0.067 6 std pivot off 0.270

7 median pivot off 0.050 7 median pivot off 0.257

8 length 0.039 8 length 0.222

9 num straights 0.013 9 num straights 0.138

10 std angle 0.011 10 max angle 0.109

11 max angle 0.011 11 min angle 0.104

12 min angle 0.010 12 max pivot off 0.063

13 max pivot off 0.003 13 direct distance 0.053

14 direct distance 0.003 14 std angle 0.048

15 median angle 0.002 15 median angle 0.025

16 mean angle 0.000 16 mean angle 0.017
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Appendix B: Impact of Risk factor (RF) on Classification
Performance (RQ1)

In Table 18, we report the precision, recall, and F-score for unsafe and safe labels regarding
the BeamNG.AI datasets (with different risk factors), to make it more clear how SDC-
Scissor ability to classify tests is accurate on both labels, with varying RF. With different
risk factors, we can observe that the ML models’ accuracy improved for increasing RF lev-
els. For instance, with RF 2 SDC-Scissor reached a precision of 99.7% for unsafe predicated
tests. The dataset composition seems to be the key factor explaining this result since setting
the risk factor to higher values resulted in significantly more unsafe cases. Conversely, a
small number of safe cases improved accuracy and precision for unsafe cases, counterbal-
anced by a decrease in the precision of safe predictions. Finally, we can observe a similarity
between the ML models’ F-scores for safe and unsafe classes for the BeamNG.AI RF 1.5
case. This result can be explained by looking at how evenly distributed the safe and unsafe
classes are, which illustrates the importance of having unbiased datasets for training and
testing the models.

This result supports the observation that the more the SDC under test drives safely, the
harder it becomes to predict unsafe test cases.

Table 18 Performance of the ML models trained using road features

Model Unsafe Test Cases Safe Test Cases

Prec. Recall F1 Prec. Recall F1

BeamNG RF 1

J48 37.6% 69.8% 48.9% 84.2% 58.0% 68.7%

Naı̈ve Bayes 36.7% 92.1% 52.5% 93.7% 42.5% 58.5%

Logistic 43.3% 87.3% 57.9% 92.7% 58.6% 71.8%

Random Forest 40.7% 79.4% 53.8% 88.6% 58.0% 70.1%

BeamNG RF 1.5

J48 69.2% 67.4% 68.2% 61.5% 63.5% 62.5%

Naı̈ve Bayes 79.3% 53.2% 63.6% 59.3% 83.1% 69.2%

Logistic 78.1% 65.3% 71.1% 64.8% 77.8% 70.7%

Random Forest 75.8% 62.7% 68.6% 62.5% 75.6% 68.4%

BeamNG RF 2

J48 98.7% 91.5% 95.0% 28.2% 73.3% 40.7%

Naı̈ve Bayes 98.7% 94.3% 96.4% 36.7% 73.3% 48.9%

Logistic 99.6% 82.8% 90.4% 19.7% 93.3% 32.6%

Random Forest 99.7% 92.7% 96.1% 36.8% 93.3% 52.8%

The results refer to the split of 80/20 between training and test data. The best results are shown in boldface
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Appendix C: Transfer Knowledge of MLModels When Using Different
Driving Agents (RQ1)

We also studied the ability of the ML models to transfer knowledge from a driving agent
to another by training ML models with one AI’s dataset and testing it with another AI’s
dataset. Specifically, we used BeamNG RF 1.5 dataset to train the ML models and used the
Driver.AI test set, generated from the same set of virtual roads, to evaluate them, and vice
versa. We considered three RF values ranging from cautious (RF 1.0) to moderate (RF 1.5)
to reckless (RF 2.0). Using different values for the risk factor enables us to study the effec-
tiveness of SDC-Scissor concerning various SDCs’ driving styles. To study the generality
of our techniques, instead, we consider a second test subject, Driver.AI. Specifically, we
tested Driver.AI with the same test cases used for testing BeamNG.AI in the moderate con-
figuration. This way, we can directly compare the results achieved by both test subjects. As
is possible to observe in Table 19 the knowledge from one driving agent is not transferable
to another one. Table 19 shows that the ML models trained on Driver.AI and evaluated on
BeamNG performed significantly worse than the same models trained on BeamNG exclu-
sively (from 67.9% to 41% on average). However, when training the ML models on the
BeamNG.AI dataset and evaluating them using the Driver.AI datasets, the ML models per-
formed only slightly worse (between 49.1% and 47.8% on average). Interestingly, when
using both datasets together, the results show a compromised solution between the accuracy
achieved when training on the different AI engines separately: BeamNG 67.9%, Driver.AI
49.1%, and Combined datasets 55.5%.

Table 19 ML Models’ accuracy on mixed datasets

Model Training Acc. Test Acc.

BeamNG (Training)/Driver.AI (Test)

J48 87% 46%

Naive Bayes 67% 56%

Logistic 72% 45%

Random Forest 100% 44%

Driver.AI (Training)/BeamNG (Test)

J48 84% 44%

Naive Bayes 66% 35%

Logistic 81% 45%

Random Forest 100% 43%

Driver.AI & BeamNG Combined

J48 71% 53%

Naive Bayes 61% 49%

Logistic 64% 60%

Random Forest 87% 56%
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