loMiRCA: Root cause analysis in loT-extended
5G microservice environments

Zeno Heeb, Onur Kalinagac, Wissem Soussi and Giirkan Giir
Institute of Applied Information Technology (InIT)
Zurich University of Applied Sciences (ZHAW)
Winterthur 8401, Switzerland
heebzen1@students.zhaw.ch,{name.surname}@zhaw.ch

ABSTRACT

Softwarized services in converged networks are evolving from
monolithic applications to distributed architectures, often compris-
ing numerous microservices. At the same time, with the massive
proliferation of IoT devices, much more complexity and diversity
are added to such critical infrastructures. In that regard, Root Cause
Analysis (RCA) is an important part of a running distributed service
ecosystem to keep the applications available and manageable by
finding the root causes of errors and malfunctions. This paper pro-
vides a topology graph based anomaly detection and RCA solution
for the microservice architecture in edge-to-cloud environments
entailing microservices in combination with IoT.

CCS CONCEPTS

« Networks — Network manageability; Mobile networks; Net-
work performance analysis; Network reliability.

KEYWORDS

Root cause analysis, critical infrastructure management, microser-
vices, 5G and Beyond, edge-to-cloud continuum

ACM Reference Format:

Zeno Heeb, Onur Kalinagac, Wissem Soussi and Giirkan Giir. 2023. IoMiRCA:
Root cause analysis in IoT-extended 5G microservice environments. In The
38th ACM/SIGAPP Symposium on Applied Computing (SAC °23), March 27-
April 2, 2023, Tallinn, Estonia. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3555776.3577840

1 INTRODUCTION

Supported by the evolving ICT infrastructure and novel network
technologies, the deployment of connected services is moving from
physical machines to virtual ones (VMs) as well as containers. Ad-
ditionally, modern services are in general split into multiple smaller
services that communicate with each other for better scalability and
granular management. In future networks like 6G, this architectural
pattern is expected to become dominant with the emergence of
novel concepts such as cloud-native operation, highly-specialized
networks, edge-cloud continuum, and Native AL

Concurrently, communication and networking infrastructure
has emerged as a key critical infrastructure for all human activities

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC °23, March 27-April 2, 2023, Tallinn, Estonia

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9517-5/23/03.

https://doi.org/10.1145/3555776.3577840

Figure 1: IoMiRCA algorithm and used data.

ranging from digitally connected services such as e-banking to
leisure activities such as streaming. This phenomenon was ampli-
fied with the recent COVID-19 lock-downs, which led to ubiquitous
remote working and consumption of connected services over wired
and wireless networks [2]. To identify a faulty service in a such a
diverse, pervasive and fragmented system for service and network
management can be time-consuming and thus calls for automated
approaches [3]. This work proposes a Root Cause Analysis (RCA)
scheme, namely IoMiRCA, running on top of a 5G infrastructure in
a Kubernetes environment. We focus on a service architecture that
includes Internet of Things (IoT) devices closely integrated into
the network as typical in 5G and future network use cases [4] and
leverage the extended MUD (Manufacturer Usage Description) file
provided by a recent proposal called TRAILS [1]. The MUD stan-
dard essentially contains information about the allowed connection
between domains and ports or further restrictions of the commu-
nication protocols [5]. Since the graph-based RCA approaches are
widely applicable and provide good results, we focus on a graph-
based approach in this work. To develop our IoMiRCA system, we
use the MicroRCA [7] as a base approach and then broadly extend
it for our scheme.

2 SYSTEM IMPLEMENTATION
2.1 IoMiRCA architecture

The procedure shown in Figure 1 starts with the collection of clean
base data, necessary for the RCA algorithm to execute. The base
data thereby only have to be collected once at the beginning before
the rest of the algorithm loops as long as the [oMiRCA run. They

©Zeno Heeb, Onur Kalinagac, Wissem Soussi and Girkan Gir 2023. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published in SAC '23: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, http://dx.doi.org/10.1145/3555776.3577840.

SAC *23, March 27-April 2, 2023, Tallinn, Estonia

I NN

2 o oo 2
O=>0F =>04@#>04@

Figure 2: Detailed procedure of the RCA algorithm.

are later updated with new values in an improved sliding window
approach. In the next step, we have the event handling part, which
is for automatic fault injection into the services and therefore part
of the test environment. It does not have a direct impact on the
rest of the algorithm. The next step is anomaly detection which
uses BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) clustering algorithm on the current latency values in
combination with the ones from the base data. Only if an anomaly
is detected, the RCA is done. Otherwise, we loop back to the metrics
collection and the next iteration starts. If we have an anomaly, the
RCA is done using all the metrics from the base data as well as the
extended MUD information to pinpoint the root cause. This MUD
information is taken from the TRAILS [1] proposal that contains
the extended MUD file from [6]. A more detailed description of this
RCA approach can be found in Section 2.3.

2.2 Metrics collection

The metrics used in this approach are collected using the Istio! ser-
vice mesh for information about the latency of the communication
between microservices. Additionally, we include the CPU, memory
and network usage on the container level, collected by Google’s
cAdvisor? and on the node level, collected by the node-exporter3.
All these metrics are collected and stored by Prometheus®, and later
on requested by our algorithm.

2.3 IoMiRCA RCA algorithm

In the first step in Figure 2 the destination nodes of anomalous
edges, detected in the anomaly detection part, are taken into the
graph. In the second step, all the outgoing communication, as well
as the connection to the host node of the K8s cluster, are also
taken into the anomalous subgraph. In the third step, we calculate
the edge weights. The weights for connections to host nodes are
calculated considering the node metrics, while the other weights are
based on the correlation to the anomalous edge. In the fourth step,
we consider the IoT devices. Every connection from an anomalous
service to or from an IoT device is taken into the subgraph (including
the IoT device itself). In the fifth step, all the other connections
to or from this IoT device are included in the subgraph because
these connections could be MUD violations and therefore indicate
!https://istio.io/

Zhttps://github.com/google/cadvisor

3https://github.com/prometheus/node_exporter
“https://prometheus.io/

Zeno Heeb, Onur Kalinagac, Wissem Soussi and Giirkan Gir

something is wrong with the IoT device. The detailed description
of the weight calculation is provided in Section 2.3.2. In the sixth
step, we calculate the personalization weight for the PageRank
algorithm. Thereby only the anomalous service, as well as the
directly connected IoT devices to such a service, have this special
weight as these are considered the most likely root cause. Finally,
in the last step, we run the PageRank algorithm on our weighted
anomalous subgraph with additional personalization values.

2.3.1 Personalization calculations. The calculation for the person-
alization weights in the MicroRCA is to multiply the average edge
weight (in and out) with the correlation [7]. With their average
edge weight approach, we observe the problem that if the anomaly
comes from one communication exchange the value should not
change independently of how many other good connections exist.
Furthermore, we have a different subgraph since we ignore the
outgoing edges. To find a better solution, we tested four different
methods with advantages in specific scenarios.

(1) Use the BIRCH algorithm which was also used for anom-
aly detection to detect some anomalies in the container and
node level metrics. If there is an anomaly the personaliza-
tion value is set higher since this consolidates the suspicion
that something is wrong with this service. This is used in
combination with the max value of the outgoing edges.

(2) Use the correlation between the latency of the communica-
tion and the container/node level metrics.

(3) Use the correlation from the method before but in a com-
bination with the maximum value of the outgoing edge to
include the propagation of the anomaly.

(4) Use a simple check condition to detect if there is a big change
in the metrics compared to the metrics from the last loop.
If such a change is detected, this results again in a higher
personalization value since this is not the normal behaviour
of the service. This penalty is then again combined with the
max value of the outgoing edges.

2.3.2 Personalization and edge weight calculation for loT devices.
For non-IoT services, the weights of the edges in the graph are
calculated based on the information if it is a connection to a host
node (node metrics considered), if it is a communication that is
discovered as anomalous in the anomaly detection part («, a pa-
rameter that is used for setting weights and personalizations to an
anomalous value by using this theoretical threshold, is taken as
weight) or if it is a not anomalous connection to a service (correla-
tion of latencies). Thereby « is the weight of an anomalous edge
that has to be fine-tuned for each environment (default: 0.55).

Because of the missing communication and device resource met-
rics mentioned in Section 2, we have to use a different approach
to define the weights of communications to an IoT device. Instead
of using the communication information as well as the device re-
sources we focus on the information given by the MUD and the
connected services:

(1) If the communication is not supposed to be there according
to the MUD rules, the weight is increased since this indicates
that something is going wrong on the device.

(2) If a service is anomalous and very likely the root cause ac-
cording to the data, this situation reduces the probability

©Zeno Heeb, Onur Kalinagac, Wissem Soussi and Girkan Gir 2023. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published in SAC '23: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, http://dx.doi.org/10.1145/3555776.3577840.

loMiRCA: Root cause analysis in loT-extended
5G microservice environments

of the IoT device being the root cause. This works also con-
versely where the probability of the IoT is higher if there is
no indication that the service is the root cause. Furthermore,
if multiple services are anomalous to an IoT device this also
increases the probability that something is going wrong with
the IoT device.

The same reason for the missing information also counts for the
personalization calculation. As for the weight calculation, we do
not have any information for the default personalization calculation
and then have to rely on the information we have for the connected
services. Therefore the personalization of an IoT device is calculated
considering the personalization value of all connected services. This
generally results in a personalization value if at least one connected
service is anomalous. But this is intended since IoT devices are
considered as critical in our environment. Additionally, the MUD
rules are also considered to add some penalty value if a violation
occurs.

3 PERFORMANCE EVALUATION

3.1 Testbed

In our testbed, different OpenStack VMs are deployed as virtual
network functions (VNF) using the Open Source Mano (OSM). In
this cluster, we further deploy an adapted version of the sock-shop
environment that consists of multiple microservices that communi-
cate with each other. The most important adaption to the sock-shop
environment is the additional services to include and simulate an
IoT device. This simulated device sends the temperature to the mi-
croservices and as a result, changes the prices in the shop. User
traffic and fault generation (response latency, memory and CPU
stress) on containers are performed using locust® tool and the
Chaos Mesh® platform, respectively.

3.2 Experimental Results

In Table 1, you can see an extract of calculated personalization val-
ues and suggested root causes from our [oMiRCA while doing fault
injections on three services. In Table 1, ‘C’ is used for the catalogue
service, ‘T’ for the IoT device (temperature-sensor) and T’ for the
iot-handler service. Thereby we have done each RCA instance
once with the evil-iot-handler deactivated (no MUD violation)
and once enabled (MUD violation). Furthermore, four different per-
sonalization functions (Pn) mentioned in Section 2.3.1 are used in
these calculations but for the sake of brevity, only the results for
the fourth approach are shown in Table 1.

As shown in Table 1, the algorithm works with the fourth ap-
proach pretty accurately to analyse the root cause if there is no
IoT device in the anomalous subgraph. This is also the case for
other approaches. However, as soon as we have IoT device(s) in the
anomalous subgraph, the accuracy of the root cause prognosis gets
lower, and more often, the actual root cause does not have the high-
est value. While the first and fourth personalization approaches are
similar in their base structure, they differ in detecting the hardware
"correlation" to the anomaly. The first approach with the BIRCH al-
gorithm is slower and less stable. This instability occurs in the form

Shttps://github.com/locustio/locust
®https://chaos-mesh.org/

SAC °23, March 27-April 2, 2023, Tallinn, Estonia

Table 1: IoMiRCA algorithm results with four different per-
sonalization functions (Pn) in different fault scenarios.

l Pn ‘ Fault service ‘ Evil ‘ Personalization | Anomalies

C:0.63 C:1.0
Catalogue
X | C:0.66 C:1.0
4 1:0.73 1:0.78
T:0.28 T:0.22
Tot-handler
X 1.0.22 1:0.29
T:1.33 T:0.50
1:0.22 1:0.53
T:0.775 T:0.46
temperature- sensor
X 1:0.22 1:0.29
T:1.33 T:0.50

of detected anomalies in the container metrics that are not strongly
related to the analysed problem. The second and third approaches
are both partially based on the correlation, and therefore, we get
similar results. Nevertheless, both of these approaches have less
range in the results and the IoT device is generally placed further
down the suggested root cause list. The most complicated scenario
considering all tests is the situation when the iot-handler is the
root cause, and the IoT device has communications that violate the
MUD rules.

4 CONCLUSION

This paper proposes an RCA scheme with integrated anomaly de-
tection for a service environment in containerized networked ap-
plications. The experiments show that the algorithm successfully
detects root causes in our environment where microservices exist
alongside IoT devices. Due to missing IoT device metrics and the
assumption that they are an unmanaged domain, our approach
inherently provides limited suggestions that can be improved by
extending the metric collection architecture as future work.

REFERENCES

[1] Yacine Anser, Chrystel Gaber, Jean-Philippe Wary, Sara Nieves Matheu Gar-
cia, and Samia Bouzefrane. 2022. TRAILS: Extending TOSCA NFV profiles
for liability management in the Cloud-to-IoT continuum. In 2022 IEEE 8th In-
ternational Conference on Network Softwarization (NetSoft). 321-329. https:
//doi.org/10.1109/NetSoft54395.2022.9844027

[2] Broadband Internet Technical Advisory Group (BITAG). 2021. 2020 Pandemic
Network Performance. http://www.bitag.org/documents/bitag_report.pdf.

[3] Chrystel Gaber, José Sanchez Vilchez, Giirkan Giir, Morgan Chopin, Nancy Per-

rot, Jean-Luc Grimault, and Jean-Philippe Wary. 2020. Liability-Aware Secu-

rity Management for 5G. In 2020 IEEE 3rd 5G World Forum (5GWF). 133-138.

https://doi.org/10.1109/5GWF49715.2020.9221407

Zeno Heeb, Onur Kalinagac, Wissem Soussi, and Giirkan Giir. 2022. The Impact of

Manufacturer Usage Description (MUD) on IoT Security. In 2022 1st International

Conference on 6G Networking (6GNet). 1-4. https://doi.org/10.1109/6GNet54646.

2022.9830354

E. Lear, R. Droms, and D. Romascanu. 2019. Manufacturer Usage Description

Specification. RFC 8520. RFC Editor. https://doi.org/10.17487/RFC8520

[6] Sara Nieves Matheu, José Luis Hernandez-Ramos, Salvador Pérez, and Antonio F.
Skarmeta. 2019. Extending MUD Profiles Through an Automated IoT Security
Testing Methodology. IEEE Access 7 (2019), 149444-149463. https://doi.org/10.
1109/ACCESS.2019.2947157

[7] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root
Cause Localization of Performance Issues in Microservices. In NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium. IEEE, 1-9. https:
//doi.org/10.1109/NOMS47738.2020.9110353

[4

(5

©Zeno Heeb, Onur Kalinagac, Wissem Soussi and Girkan Gir 2023. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published in SAC '23: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, http://dx.doi.org/10.1145/3555776.3577840.

