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Abstract—We consider the “block withholding attack” as
introduced by Eyal, where mining pools may infiltrate others to
decrease their revenues. However, when two mining pools attack
each other and neither controls a strict majority, the so-called
miner’s dilemma arises. Both pools are worse off than without
an attack. Knowing this, pools may make implicit non-attack
agreements. Having said this, the miner’s dilemma is known to
emerge only if no pool controls the majority of the mining power.
In this work, we allow for miner migration and show that the
miner’s dilemma emerges even for pools whose mining power
exceeds 50%. We construct a game, where two mining pools
attack each other and use simulation analysis methods to analyze
the evolution the pools’ mining power, infiltration preferences
and revenue densities under the influence of different mining
pool sizes and miner migration preferences. The results show
that underlying game experiences a phase transition fueled by
miners’ migration preference. Without migration, it is profitable
for a large mining pool to attack the other pool. The higher the
migration preference of the miners, the more the game transitions
into the miner’s dilemma and attacking makes both pools worse
off. In a second step, we introduce solo-mining into the system.
Introducing solo-mining cannot prevent the miner’s dilemma,
however, it improves the efficiency of the mining process as the
infiltration preferences of the mining pools are lowered. Thus,
solo-mining has a control effect on the miner’s dilemma by
keeping the infiltration preference below a certain threshold.

Index Terms—bitcoin, miner’s dilemma; block withholding
attack; miner migration; solo-mining, evolutionary game theory

I. INTRODUCTION

Bitcoin is still the most popular and most recognized cryp-
tocurrency so far with a market capitalisation of 308 billion
US dollar as of November 2020 [1]. Because of its novel
decentralized approach, Bitcoin has achieved great success
in the digital currency field [2, 3]. Within the underlying
blockchain network, nodes create blocks by solving by brute
force a computational problem. By this, the network achieves
consensus on transactions which is a crucial component of
of all blockchain networks [4]. Bitcoin’s algorithm is called
proof-of-work and it is used in many other platforms [5]. The
nodes obtain a certain amount of Bitcoin if they are able to
create a valid block [6]. The process of creating blocks is also

called mining, and the nodes participating in this process are
called miners. Due to the unstable mining profit of individual
miners – as the probability of mining a block is small for
a single miner – many miners tend to form mining pools to
guarantee stable profit through cooperative mining and profit-
sharing [7]. However, in order to maximize their gains, mining
pools can let loyal miners infiltrate other mining pools to
conduct a pool block withholding attack [7]. The infiltrating
miners do not share valid block headers with the infiltrated
mining pool leading to a waste of resource for the other honest
miners in the pool. This reduces the revenue of the honest
miners in the pool. As a result, the Bitcoin mining environment
is worsened and it is argued to seriously affect the stability and
security of the Bitcoin network [8].

Reference [9] shows that the block withholding attack
introduces a miner’s dilemma if neither pool controls a strict
majority of the mining power: in the Nash equilibrium, both
pools attack each other even though they would be better
of by not attacking. However, the author does not consider
migration. One possible reaction of the honest miners in the
attacked mining pool may be to evade the block withholding
attack and migrate to another pool to obtain a greater profit.
It is important to understand the infiltration behavior of
mining pools and the migration behavior of miners within the
Bitcoin network in combination. Revealing the evolutionary
mechanism of these behaviors helps to improve the mining
environment of Bitcoin, and promotes the stable development
of the Bitcoin network.

In the recent years, the process of Bitcoin mining has
attracted wide attention from the academic community. Some
scholars have conducted research on Bitcoin’s protocols, the
mining pool selection, attack methods, and reward mechanisms
[10, 11], [12, 13]. Other have modelled the whole consensus
mechanism [14, 15, 16]. Yet others have also explored the
impact of transaction fees, of hash rates, of block propagation
delays, and of other factors on Bitcoin mining [17, 18, 19].
Early on some people began to study the behavior of mining
pools and miners in Bitcoin from a game-theoretic perspective
[19, 20, 21]. Some scholars use evolutionary game theory
to study the security of Bitcoin mining by constructing a978-1-6654-3924-4/21/$31.00 ©2021 IEEE
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Fig. 1: Evolutionary analysis framework (extended version of [9])

game model for the process of Bitcoin mining [22, 23, 24].
Others have also from the perspective of Nash equilibrium, put
forward zero-determinant strategy and deep gradient learning
strategies to optimize the process of mining strategy selection
to solve the mining dilemma [25, 26]. Within this context,
the mining process in Bitcoin under mutual attack between
mining pools has been studied. For example, [27] constructs an
iterative game model of miner mining under the mutual attack
of two mining pools, and proposes a zero-determinant strategy
for solving the dilemma of miners. Reference [28] built a game
model of mutual attacks between mining pools and found that
an increase of the attack costs and the basic migration rate of
miners can reduce the possibility of mutual attacks between
mining pools. Reference [29] built a game model of mutual
attacks under different mining pool sizes, studied the impact
of mining pool size on attack motivation, and found that
larger mining pools have greater attack motivation. Reference
[30] established a game model between mining pools based
on the PoW consensus algorithm, and found that the mining
pool can increase its infiltration rate and average income by
increasing the mining pool power and the betrayal rate of
miners. Reference [31] built a game model of mutual attacks
between mining pools and study the impact of different block
withholding (BWH) attack intensity on miners’ income. It is
found that only when the BWH attack intensity is lower than
a certain threshold, it can lead to an improvement of miners’
income in the mining pool, so as to attract more miners to
join the mining pool. In [32] the relationship between miner
migration and mining pool rewards is studied, and it is found
that it is almost impossible to distribute rewards in a stable
way, and some miners always migrate between mining pools.
Reference [33] empirically analyzed the migration behavior of
miners among 15 mining pools in the history of Bitcoin and
found that miners are a typical economic entity seeking to

maximize profits. With respect to the migration process, [34]
considers the relationship between the random migration level
of miners and the average earnings of miners, and constructs
a concurrent mean return game model (CMPG) to analyze the
motivation to deviate from honest behavior. [35] found that
changes in the profit of neighboring mining pools will lead
to changes in the attractiveness of the pool and may lead to
random migration of miners between the pools.

The previous game-theoretic research on mutual attacks of
mining pools has been very fruitful. However, the above work
still has the following two main deficiencies: (1) Most scholars
have only analyzed the impact of either the mining pool or the
miners’ behavior on average earnings, ignoring the interaction
between mining pools and miners. (2) The withholding attack
has only been explored without migrating miners with the
exception of [36]. This work is based on this model and
we extend the analysis by additionally considering individual
miners - so called solo-miners.

In view of this, we consider the game model of [9] on
mutual attacks of mining pools and extend it to account for
migration of miners (see Figure 1). This allows us to explore
the interaction between mining pools and miners. We construct
a game model based on evolutionary game theory, where
mining pools select the optimal infiltration rate x – that can
also be zero – and miners can migrate. The miners are profit-
driven and therefore, they self-select whether they want to
migrate by comparing past revenues of the pools. If they
migrate, they will migrate a share α of their mining power.
Since the migration rule is probabilistic and involves non-
linear relationships, we cannot solve the model analytically.
Therefore, we use a simulation to analyze the evolution of the
mining pool’s mining power m, infiltration preferences x and
revenue densities r (i.e. average earnings) under the influence
of different initial mining pool powers m and miner migration
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preferences α. We show that the miner’s dilemma introduced
by [9] for pools with mining power of less than 50% emerges
also for pools controlling a strict majority of the mining
power once migration is taken into account. Furthermore, a
phase transition takes place once migration is introduced. The
miner’s dilemma does not emerge without migration and the
stronger the migration preference become, the more the game
changes into an iterative prisoner’s dilemma that is played
by the mining pools. In a second step, we introduce the
option of solo-mining in the model. Introducing solo-mining
does not eliminate this iterative prisoner’s dilemma, however,
the presence (or threat) of solo miners enhances the mining
efficiency as mining pools opt for lower infiltration rates.
Reference [9] suggests that the block withholding attack does
rarely occur in the Bitcoin network since the pools know that
they would end up in this sub-optimal situation. Knowing
this fact, pools may have reached implicit agreements to not
attack each other. We provide further indication that this holds
true even if one pool dominates the mining power – given
that miners migrate. According to the argument of [9], this
non-attack situation is unstable and eventually, one pool will
decide to attack as this can be done anonymously. As a
consequence, miners will form smaller private pools which
leads to more fine-grained mining power distribution and a
potentially better situation for the Bitcoin mining environment
(in terms of reduced concentrations). Whether this mechanism
really takes place in practice is questionable, as the atomization
of mining pools is not observed. We argue that even though
the miner’s dilemma emerges also in a network with highly
concentrated mining power distribution, it does not induce
the aforementioned mechanisms and positive impacts on the
Bitcoin mining environment.

Our contributions are therefore:
1) Extending the game model of [9] with migration.
2) Modeling the interaction between mining pools and min-

ers with respect to the block withholding attack.
3) Showing that the miner’s dilemma emerges also for pools

controlling a strict majority of the mining power.
4) Showing the control effect of solo-mining on the infiltra-

tion preferences of the mining pools.
The remainder of this paper is organized as follows. The

foundations of the evolutionary analysis framework of the
two mining pool game in the Bitcoin network is presented
in section II. Then, the game model of the two mining pools
game in the Bitcoin network is introduced in section III.
Subsequently, the simulation results of two mining pools under
mutual attack are illustrated in section IV. Finally, Section V
concludes.

II. MODEL FOUNDATIONS

With the increasing value of Bitcoin, mining has become a
fast-growing industry [37]. But in the mining process, only the
most advanced mining equipment produces profit, otherwise,
the cost exceeds expected profit. If we consider a node with
a small computing power with respect to the whole network,
the probability it mines a block is low. Thus, most of the

miners usually organize themselves into mining pools to obtain
a more stable profit [9]. Mining pools are ad hoc groups
of many miners who share computational resources to mine
blocks together. When a miner in the mining pool succeeds
in mining, the revenue is distributed among the mining pool
members according to their mining capacity. Due to the
combined computational power, mining pools can find blocks
at a higher rate, which makes the mining pool obtain more
frequent revenue, thereby ensuring that the miners can obtain
a more stable profit.

In the process of Bitcoin mining, some mining pools
adopted pool block withholding attacks to maximize their own
profits [7]. The attacking miners register with the infiltrated
mining pool and start mining, but the attacking miners only
send a part of their proof of work. If the attacking miners
find a solution that constitutes a complete proof of work, they
discard it, so that the total revenue of the attacked mining pool
is reduced. This decreases the revenue of the attacking miners
and, therefore, this attack can only be used for sabotage.

If the attacked mining pool is in such an environment for
a long time, its members, under the dual influence of their
own profits and the profits of neighboring mining pool miners,
might choose a migration strategy, which ultimately makes the
attacked mining pool paralyzed and it may collapse because
it cannot maintain the normal operation of a mining pool. On
the long-term, this will lead to the gradual deterioration of the
mining environment and the emergence of oligopoly mining
pools. However, the attacked pool may choose to defend itself
by infiltrating the other pool as well.

Based on this, we build an evolutionary analysis framework
for the two mining pools game in the Bitcoin network.
We embed the pools’ attack behavior and miner’s migration
behavior into the game model of the two mining pools, thereby
extending the model of [9]. The total mining power in the
network is m, where the mining pool power in mining pool
1 is m1 > 0, the mining pool power in mining pool 2 is
m2 > 0 and we have m = m1+m2. Mining pool i controls the
infiltration of mining pool j to xi→j . We denote the migration
preference of the pools by α. When a miner migrates, a miner
will take a share α of its mining capacity away from the mining
pool and transfer it to the other mining pool. The higher α,
the stronger is the migration. As shown in Figure 1, we can
explore the evolution of the pool’s mining power, infiltration
preference and revenue density by varying the pool sizes and
the miner migration preferences.

III. GAME MODEL

A. Basic Assumptions of the Model

To study the effects of migration on the miners’ rewards,
we keep the model as parsimonious as possible. In particular,
we consider only two large mining pools as this suffices
to understand the basic mechanics of the block withholding
attack with migration. Furthermore, having only two pools
allows us to study fully a setting where one pool has a
majority of the mining power. Introducing additional pools
implied also a substantial mathematical overhead and further
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assumptions on the migration dynamics.Therefore, based on
the characteristics of the game between the mining pools and
practical considerations, we make the following assumptions

i.) In the Bitcoin network, there are only two large mining
pools and all miners depend on the mining pool to obtain
revenue.

ii.) All miners have the same individual mining capacity
(they are identical).

iii.) Pools and miners maximize profits.
iv.) Pools can select their infiltration preference.
v.) Miners in the mining pool are bounded rational agents,

and can only choose between two strategies: migration
and non-migration. When a miner migrates, a miner will
take a share α of its mining capacity away from the
mining pool and transfer it to the other mining pool.

vi.) Miners use a unified strategy update rule of memory
length 1, that is, the miner’s strategy selection depends
on the result of the previous round.

Since all miners are identical, the total number of miners
does not matter in the model. It is only the ratio of mining
power that they allocate to a certain pool that is relevant,
in particular since a miner can participate in both pools by
dividing their minging power. It is important to acknowledge
that a two pool setup implies a hidden assumption that we
would like to make explicit: In a two pool setup, one pool
has always the majority of the mining power and could in
principle earn all the rewards [38]. However, we argue that
a rational mining pool would not do such an extreme attack
because it destroys the idea of a decentralized currency leading
to a negative price impact (and therefore to lower returns).
Therefore, the mining pools consider less dystopian attacks
such as a the Block-Withholding attack.

B. Construction of The Game Model

We draw on [9] to construct the game model presented by
Equations (1) - (8). During the first round (t = 1) game, the
total mining power is m, with m = m1 +m2. The effective
mining power of mining pool 1 is m1 − x1→2. Likewise, the
effective mining power of mining pool 2 is m2 − x2→1. The
total effective mining power in the Bitcoin network is therefore
m−x1→2−x2→1. The direct revenue share R1 of mining pool
1 and R2 of mining pool 2 are their effective mining rates.
That is the mining power excluding the infiltration, divided by
the total effective mining power:

R1 =
m1 − x1→2

m− x1→2 − x2→1
(1)

R2 =
m2 − x2→1

m− x1→2 − x2→1
(2)

The sum of the direct revenue shares always equals 1, i.e.
this reflects the distribution of the fixed block reward between
the mining pools. However, during each round of the game,
there are two sources of revenue for the mining pool. One part
is the direct mining revenue brought by the faithful miners’
honest mining, and the other part is the indirect revenue of the

infiltration miners attacking the neighboring mining pool, that
is, the total revenue of the attacked mining pool multiplied
by its infiltration rate. At the same time, the mining pool
distributes the total revenue to its registered miners. Therefore,
the revenue of each miner in mining pool 1 (denoted by r1)
and mining pool 2, that is, the revenue density is:

r1 =
R1 + x1→2r2
m1 + x2→1

(3)

r2 =
R2 + x2→1r1
m2 + x1→2

(4)

Therefore, the revenue density measures the total revenue of
honest mining and of attacking the neighboring pool, while the
latter revenue is not a monetary reward, but rather the indirect
gain of reducing the nominal mining power of the other pool.
The revenue density therefore is dependent on the strategies of
the other miners.While the direct profits Ri always add up to 1
– the reward is fixed in the system –, the revenue densities are
not a zero-sum game, since the revenue densities expresses the
relative advantages with respect to the mining pools’ revenues.

Solving for r1 and r2, we express the revenue density
as a function of x1→2 and x2→1. As the calculation is
straightforward, we omit the proof.

r1(x1→2, x2→1) =
m2R1 + x1→2(R1 +R2)

m1m2 +m1x1→2 +m2x2→1
(5)

r2(x2→1, x1→2) =
m1R2 + x2→1(R1 +R2)

m1m2 +m1x1→2 +m2x2→1
(6)

C. The Optimal Infiltration Rate

Each mining pool selects the infiltration rate in order to
obtain the maximum profit r for its miners. The pool can also
decide not to attack the other pool by setting the infiltration
rate to zero. Therefore, in each round t, the mining pools
calculate the best infiltration rate x1→2 and x2→1 as follows:

x1→2(t)← argmax
x′

r1(x
′, x2→1(t− 1)) (7)

x2→1(t)← argmax
x′

r2(x
′, x1→2(t− 1)) (8)

As shown by [9], for any pool size m1 and m2 (0 < m1,
0 < m2, m1+m2 ≤ m), a unique solution exists. In particular,
for our model with m1 +m2 = m, the solution exists and is
unique.

D. The Migration Rule

If the honest miners in pool i migrate a share α in time t to
pool j, then the mining power of pool j increases accordingly
in the next period. Therefore, the higher α, the more mining
power is migrated and the stronger the migration. We model
the migration dynamics as:

mj(t+ 1) = mj(t) + α× [mi(t)− xi→j(t)] (9)

The honest miners compare their profits in pool i to the
profits of the miners in the neighboring pool j. However, since
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(a) Only pool 1 attacks: The changes of
the mining power with respect to the initial
mining power m1 and three different migra-
tion preferences α of the miners.

(b) Both pools attack: The changes of the
mining power with respect to the initial min-
ing power m1 and three different migration
preferences α of the miners.

(c) Only pool 1 attacks: The changes of
the infiltration preference with respect to the
initial mining power m1 and three different
migration preferences α of the miners.

(d) Both pools attack: The changes of the
infiltration preference with respect to the
initial mining power m1 and three different
migration preferences α of the miners.

(e) Only pool 1 attacks: The changes
of the revenue density with respect to the
initial mining power m1 and three different
migration preferences α of the miners.

(f) Both pools attack: The changes of the
revenue density with respect to the initial
mining power m1 and three different mi-
gration preferences α of the miners.

Fig. 2: The mining power, the infiltration preference and the revenue density of the two pools for three different α and varying
m.

the miners are bounded rational agents, they are not perfect
decision-makers. Therefore, if the profit in the neighbouring
pool is larger, they will only migrate a share α of their mining
power with a certain probability Wi→j in the next round of the
game. If they were fully rational agents, they would set this
probability always equal to one if the profit of the other pool
is larger. The probability Wi→j is usually calculated by the
Fermi function [39] under the standard assumption of bounded
rational agents:

Wi→j =

[
1 + exp

(
ri(t− 1)− rj(t− 1)

K

)]−1

(10)

where K represents the noise intensity, That is, the decision-
making mistakes and bounded rationality characteristics of
miners. When K → 0 , it means that miners will not be
disturbed by external factors and carry out rational strategy
choice. When K diverges, it means that miners are irrational
due to external interference and can only update their strategies
randomly. The Fermi-rule allows for a comparison of the
different strategies, i.e., the miners select the best strategy
given the strategies of all other miners. However, one cannot

study the benefit of one strategy in isolation as the payoffs
depend on the actions of the other miners.

IV. SIMULATION ANALYSIS

A. Simulation Setting

According to the introduced evolutionary model, we solve
the complex model with an simulation. The simulation steps
under the mutual attack of the two mining pools are set as
follows:

1) Initialize the parameters of the simulation.
2) In time step t of the game, the miners compare their pre-

vious profits with the miners of the neighboring mining
pool and decide whether to migrate a share α.

3) The mining pools decide on their infiltration rate x(t)
based on the previous profits.

4) At the end of time step t, calculate the new profits.
5) At the beginning of t+1, repeat Step 2 and Step 3 until

reaching the the final time step T , and the simulation is
stopped.

At the start of the simulation (t = 0), we set the total
mining power m = 1 and we select a noise factor K = 0.5
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as it is often done in literature. We conduct the simulation for
different values of m1,m2, and α. We run the simulation for
all size combinations of m1 and m2, where m1 = 1 − m2.
Further, we analyse three different scenarios: 1) no migration
(α = 0), 2) moderate migration (α = 0.1), and 3) strong
migration (α = 0.2). Having said this, α > 0 does not mean
that miners need to migrate, but they can migrate if it is
beneficial for them according to the Fermi rule (equation 10).
We use Matlab2020a to conduct the simulation analysis. We
simulate the game for T = 500 time steps. To ensure the
accuracy of the results, we average the results over 100 runs
for each parameter setting.

B. The Mining Power

In the model, the mining power m2 can be expressed as
1 −m1. As a consequence, one mining pool always controls
a strict majority of the mining power. In Subfigure 5a, only
pool 1 attacks, i.e. x2→1 = 0. In this case, it does not
matter whether the miner has a moderate (α = 0.1) or a
strong (α = 0.2) preference for migration. We will see this
invariance in all of the subsequent analysis for the one-pool-
attacks scenario. Interestingly here, even an initially small pool
is able to gain a strict majority of the mining power in the
long run. This is not true for the both-pools-attack scenario
shown in Subfigure 5b. In all three migration scenarios, the
pool initially controlling the majority of the mining power still
controls the majority at the end. With α = 0, we recover the
model of [9] as no migration takes place. In this case, there
is no dynamic evolution of the mining power over time and
the mining powers remain constant. However, in presence of
moderate migration (α = 0.1), the behavior changes. There are
two regimes: in the first, when m1 ∈ (0.0, 0.3)∪(0.7, 1.0), the
mining powers gravitate towards a high (90%) resp. low (10%)
level irrespective of the initial mining power. At a certain
critical point (m1 ≈ 0.3), the second regime begins and the
mining power increases (resp. decreases) rapidly. Furthermore,
the larger pool tend to profit from moderate migration as they
are able to gain mining power over time. Only very large pools
with a mining power m > 0.9 lose some miners to the smaller
one. If migration preference is higher (α = 0.2), however, the
largest pool is worse off than without migration. Similarly, we
observe again two regimes: In the first, miners migrate to the
other pool leading to lower discrepancy between the mining
powers; in the second, miners’ migration cancels out and the
initial mining powers remain more or less constant. Therefore,
small pools tend to gain mining power, whereas large pools
tend to lose miners.

C. The Optimal Infiltration Rate

As [9] already noted, there is a certain threshold for the size
of a mining pool that is needed such that an infiltration attack
is considered worthwhile. In the one-pool-attacks scenario
(Subfigure 2c), the pool that has the possibility to attack will
always choose to do so (as m ≈ 0.9, see Subfigure 5a). As
before, the magnitude of the miners’ migration preference does
not matter. As shown in Subfigure 2d, with no migration, the

pools do not attack if m < 0.2. However, with migration, there
are at least some small attacks for moderate migration and
larger attacks for strong migration. Since the size of the mining
pools is not static anymore and changes during the simulation,
the infiltration preferences change respectively. In the case
of moderate migration, the logic of [9] is recovered. Since
in the first regime (m1 ∈ (0.0, 0.3) ∪ (0.7, 1.0)), the mining
power of the smaller pool stabilizes around 0.1, the infiltration
preference is the same as with no migration at m1 = 0.1
resp. m1 = 0.9, i.e. represented by the intersection of the
lines with no migration and moderate migration in Figure
2d. Once the migration preference of the miners becomes
stronger, the infiltration once again assimilates and both pools
will always attack. Initially small mining pools consider an
attack worthwhile as well, since they are able to reach a
considerable size. The whole dynamics is an iterative adaption
process between the mining pools and the miners: at time t, the
miners decide to migrate and the mining pool sets the optimal
infiltration rate. Their decisions are based on the decisions of
each other (as well as on the other mining pool and its miners)
at time t− 1.

D. The Emergence of the Prisoner’s Dilemma

If none of the pools attacks, the revenue density is for both
pools equal to one if the total mining power is m = 1. To see
this, consider equation (3) and (4) with x1→2 = x2→1 = 0 and
m = 1. Reference [9] has showed that a prisoner’s dilemma
exists when neither mining pool controls the majority of the
mining power. Concretely, he shows that when two pools with
m1 < 0.5 and m2 < 0.5 attack each other, both obtain a
revenue density r < 1, but attacking is still their best strategy.
However, this is only valid under the condition that none
of the pools controls a strict majority of the mining power.
In our model, one of the pools always (except in the edge
case of m1 = 0.5) controls a strict majority. In this scenario,
[9] shows that the pool controlling the majority can always
improve its revenue compared to the no-pool-attacks scenario.
To see this, consider Figure 2 in the no migration case (α = 0).
Subfigure 5e shows the one-pool-attacks scenario if pool 1
attacks, however, due to symmetry, the results hold true for
pool 2 as well. The attacking pool can earn a revenue larger
than its fair share irrespective of its initial size m, whereas the
attacked pool earns a revenue lower than one. If both pools
attack (Subfigure 5f), the larger mining pool (m > 0.5) always
earns a revenue bigger than one in the no migration case and
the smaller pools earns less than one. Therefore, attacking is
a dominant strategy for the larger pool as its revenue is larger
than one. This can be modelled as a game and is shown in table
I, where we denote the revenue of the smaller pool with rs and
the revenue of the larger pool with rl. For the smaller pool,
it depends on the initial mining power ms whether to attack.
However, without migration attacking is clearly a dominant
strategy for the larger pool.

If there is strong migration (α = 0.2), the game has
changed. In the one-pool-attacks scenario, the revenue of the
attacked pool is below 0.4 no matter what is its initial size m.
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Small Pool
Large Pool no attack attack

no attack 1, 1 rs < 1, rl > 1
attack rs > 1, rl < 1 rs < 1, rl > 1

TABLE I: Dominant strategy game without migration (α = 0).

Furthermore, in the two-pools-attack scenario, the revenues for
the larger pools are below one and the revenues for smaller
pools larger than 0.4. The exact values depend on the initial
sizes m, but it is clear that the revenue densities are below
one. As a result, we recover the miner’s dilemma of [9]. Table
II shows the payoff matrix for the miners. Here, it becomes
clear that with strong migration, we end up with the both-
pools-attack Nash equilibrium. Even though both pools would
be better off by not attacking each other, they both attack,
hence, it is a classic prisoner’s dilemma.

Small Pool
Large Pool no attack attack

no attack 1, 1 rs ≪ 1, rl > 1
attack rs > 1, rl ≪ 1 rs < 1, rl < 1

TABLE II: Miner’s dilemma for strong migration (α = 0.2).

Interestingly, taking migration into account leads once again
to the prisoner’s dilemma also when one pool controls a
strict majority. However, the effect depends on the migration
intensity. The case of moderate migration (α = 0.1) is
mixture between the dominant-strategy game (α = 0) and the
prisoner’s dilemma (α = 0.2) depending on the exact value
of m1. Therefore, the game goes through a phase transition
depending on the migration parameter α.

E. The Strength of Migration

In Figure 3, we show the effect of varying the miner’s
migration preference α. For large differences in the initial
mining power (m1 = 0.05), the larger pool loses mining
power with migration for all value of α. However, the larger
mining pool is able to retain about 90% of the mining power
even for moderate migration (α = 0.1). After this, the
differences in mining power decline rapidly and at a value
of α ≈ 0.35 it vanishes. With such strong migration, the
initial large difference in mining power does not play a role
anymore as migration leads to an assimilation of both pools.
This observation holds true for other initial configurations if
the migration is that strong (α ≥ 0.35). For lower values of
migration preference, however, the pool that has a larger initial
mining power is able to gain mining power over time.

The optimal infiltration preference in Sub-figure 3b chosen
by the mining also varies with the parameter α. If the mi-
gration preference of the miners becomes stronger (α > 0.1),
the small pool starts to attack. The optimal infiltration rate
x depends also on the eventual size of the mining pool.
Therefore, the infiltration rate assimilates and stabilizes at a
value of 0.25.

With respect to the the revenue density, we can observe
that the emergence of the miner’s dilemma depends on α,

but also on the initial mining power m of the pools. If the
initial mining powers of the pools are very similar, the miner’s
dilemma emerges even for small value of α. In other words, the
game transitions already with little migration into the miner’s
dilemma. When one pool controls a large majority of the initial
mining power (e.g. 90%), then it requires strong migration
such that the miner’s dilemma emerges.

F. Accounting for Solo-Mining

To make the model more realistic, we relax assumption i.(In
the Bitcoin network, there are only two large mining pools and
all miners depend on the mining pool to obtain revenue.) as
follows: We allow solo-mining, meaning that the miners may
leave (or join) mining pools 1 and 2 if they want and start
to mine solo. They can also decide to join a pool again in
case solo-mining is not worthwile. So, all migration paths are
possible (solo-mining to pool / pool to pool / pool to solo-
mining). If they decide to mine solo, they cannot infiltrate
mining pools and vice versa cannot be infiltrated by others.
It is a priori not clear whether solo-mining is more or less
beneficial than mining in a pool. However, solo-mining is
feasible at all times since miners in the network can always
join and leave pools (they have the equipment anyways). The
payoffs of solo-mining depend again on the actions of the
other miners.

The combined mining power of all solo-miners is denoted
by msm. Therefore, we have that m = m1 +m2 +msm. As
a result, the direct revenue share Rsm of the solo-miners is
given by

Rsm =
msm

m− x1→2 − x2→1
(11)

The direct revenue is the mining power of the solo miners
divided by the total effective mining power and therefore,
depends on the strategies of the other miners. There is no
infiltration rate for the solo miners since they cannot infiltrate
other. Similarly, the revenue density of the solo miners does
only consist of their direct revenue divided by their total
mining power:

rsm =
Rsm

msm
=

1

m− x1→2 − x2→1
(12)

Furthermore, we assume the same migration preference α
for the solo miners as for the pool miners. The pools again
try to select the optimal infiltration rate as in equations 7 and
8. For the migration between the pools and also when pool
miners become solo miners, we will use the same dynamics
as in equation 9. If solo miners migrate to mining pools, the
migration dynamics is simply given by

mi(t+ 1) = mi(t) + α×msm(t) (13)

Again, miners compare their profits with either a pool or
solo mining and migrate a share α of their mining power with
probability Wi in the next round of the game. To keep the
model simple, we assume the following two-step approach:
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(a) Both pools attacks: The changes of the
mining power with respect to the migration
preference α and three different initial min-
ing powers m1 of the miners.

(b) Both pools attack: The changes of the
infiltration preference with respect to the
migration preference α and three different
initial mining powers m1 of the miners.

(c) Both pools attack: The changes of the
revenue density with respect to the migra-
tion preference α and three different initial
mining powers m1 of the miners.

Fig. 3: The average mining power, infiltration preference, and revenue density for three different m and varying α.

1) Randomly decide on the counterpart to compare the profit
to, i.e. with a probability of 0.5 for each party.

2) Apply the Fermi update rule [39] to construct the migra-
tion probability Wi→j :

Wi→j =

[
1 + exp

(
ri(t− 1)− rj(t− 1)

K

)]−1

(14)

We used the same simulation settings as described in
subsection IV-A, however, we set initial share of the solo
miners msm = 0.01 for all simulations. This makes the
comparison possible between the setting without solo-mining
possible. With such an (almost) negligible initial mining power
of the solo miners, we can still explore the effects of migration
on large mining pools (mi > 50%). As it will show, the
initial mining power of the solo miners does not influence
the outcome. Even more, with solo mining, the mining power,
the infiltration preference, and the revenue density becomes
independent of the initial mining power distribution.

Figures 4 shows the adapted framework. While the mining
pools still have the option for infiltration, the solo miners do
not take part in the infiltration game. However, they are part
of the migration dynamics since pool miners can become solo
miners and vice versa. We then again measure the mining
power mi, the infiltration preference xi→j , and the revenue
density ri.

In Figure 5, we show the results with solo miners included.
We again differentiate among no migration (α = 0), moderate
migration (α = 0.1), and strong migration (α = 0.2).
However, by looking at Figure 5, it becomes immediately clear
that the strength of migration does not influence the results.
Nevertheless, migration within the system has an influence.
Therefore, we differentiate only between no migration α = 0)
and migration (α > 0) for the further analysis.

Solo-mining seems a valuable option for the miners once
they can migrate. In the equilibrium, a mixture between pool-
mining and solo-mining emerges. This means that solo-mining
is feasible and also beneficial for some of the miners. However,
this is only true as long as a substantial share (about 60%) of

the other miners join a pool. If too many miners mined solo,
mining in a pool become again more attractive. Therefore, in
the equilibrium, both is needed.

Interestingly, the conceptual results with respect to the
miner’s dilemma remain the same with the introduction of
solo miners. If there is no migration, the revenue densities are
as in Table I and attacking is a dominant strategy for the larger
pool. Again, the optimal strategy of the smaller pool depends
on the initial mining power ms. Likewise, with migration, the
payoffs for the small and large pools are the same as in the
case without solo mining (Table II). Consequently, the miner’s
dilemma emerges and we end up with the both-pools-attack
Nash equilibrium.

Even though the outcome of the game remains unchanged
by introducing solo-mining, it has some interesting conse-
quences for the system. As for the mining power, the game
calibrates to a healthy state where neither pool has a majority
of the mining power (Figure 5a and 5b). The option of solo-
mining in an attack-prone environment leads to a more decen-
tralized setup and a more efficient mining power allocation.

A similar effect takes place with respect to the infiltration
preference. Figure 5c and 5d show the infiltration preference
for different initial mining pool sizes m1, while the initial
msm = 0.01. Without migration, the optimal infiltration pref-
erence for the pools are capped by about 0.36, even for larger
pools (mi > 0.9) who could allocate much higher proportions
to attacking the smaller pool – and without solo-mining, they
also do so (Figure 2. With migration, the attacking pool
allocates only very little mining power to infiltration attacks
(Figure 5c). If both pools attack, they allocate exactly the
same amount of mining power to infiltration attacks. Again,
compared to the case without solo-mining, the infiltration
preferences in the system are much lower (Figure 2). There-
fore, the presence of solo-mining results into lower infiltration
preferences. The reason for this can be found in the solo
miners’ profit and revenue density equations 11 and 12. The
larger the infiltration preferences of the pools, the larger is
the profit resp. the revenue density of solo mining. As a
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Fig. 4: Evolutionary analysis framework (include miners individual)

(a) Only pool 1 attacks: The changes of
the mining power with respect to the initial
mining power m1 and three different migra-
tion preferences α of the miners.

(b) Both pools attack: The changes of the
mining power with respect to the initial min-
ing power m1 and three different migration
preferences α of the miners.

(c) Only pool 1 attacks: The changes of
the infiltration preference with respect to the
initial mining power m1 and three different
migration preferences α of the miners.

(d) Both pools attack: The changes of the
infiltration preference with respect to the
initial mining power m1 and three different
migration preferences α of the miners.

(e) Only pool 1 attacks: The changes
of the revenue density with respect to the
initial mining power m1 and three different
migration preferences α of the miners.

(f) Both pools attack: The changes of the
revenue density with respect to the initial
mining power m1 and three different mi-
gration preferences α of the miners.

Fig. 5: The mining power, the infiltration preference and the revenue density of the two pools for three different α and varying
m with individual miners.
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consequence, the infiltration preferences cannot be too high
as otherwise the miners would start solo-mining and leave the
pools. As a consequence, the pools cannot select a too high
infiltration preference. The presence of solo-mining does not
prevent the miner’s dilemma, but it increases the efficiency
of mining as the mining pools opt for lower infiltration rates
and the total effective mining power m−x1→2−x2→1 in the
system increases.

In Figure 6, we show that varying the miner’s migration
preference α does not have an effect. Even for large differences
in the initial mining power (m1 = 0.05), both pools converge
to about 30% of the mining power, while the solo-miners
secure 40% of the mining power. This remains the same for
almost all migration preferences α. Only for very large migra-
tion preferences (α > 0.7), the solo-miners retain even a bit
more of the mining power. However, overall the mining power,
the infiltration preference and the revenue density become
independent of the migration preferences (with the exception
of very high values). The additional option of solo-mining
allows the miners to more efficiently allocate their mining
power, since they have now a broader set of alternatives.

V. CONCLUSION

Considering the migration process of miners in a proof
of work system, we extend the model of Eyal to study the
mutual infiltration attack between two mining pools if one
pool controls a strict majority of the mining power. We show
that the miner’s dilemma emerges for all initial pool sizes
if the migration is strong enough. After a certain migration
preference of the miners has been surpassed, even extremely
large pools suffer from the miner’s dilemma. With solo-
mining, even small to moderate migration is sufficient to
trigger the miner’s dilemma for all pool sizes. This result may
help to explain why the block withholding attack has been
rarely observed in Bitcoin. Even though a few mining pools are
jointly controlling the majority of the mining power in Bitcoin,
block withholding attacks do not occur. Our results show
that with migration, also large pools must fear the miner’s
dilemma and it is therefore probable that implicit non-attack
agreements exist. However if the sole mechanism would be
the miner’s dilemma, ultimately one pool would attack as this
situation is unstable. Consequently, the other pool would also
attack leading to lower revenues for both pools and miners
would leave the mining pools to form smaller (private) pools
leading to an improved mining environment. This effect is
also indicated by considering solo-mining, which could also
be considered as small private pools that do not participate
in the infiltration game. In the presence of such solo-miners,
the large mining pools will confine their infiltration rates
to low values. Furthermore, the system ends up in a state
where neither of the pool controls a strict a majority of
the mining power. Therefore, the possibility of solo-mining
increases not only the decentralization in the system, but also
safeguards the system against too much infiltration activities.
Therefore, designers of blockchain protocols should strive for
a decentralized mining setup as this increases the options for

miners. This again increases the incentives for mining pools
to act honestly as otherwise miners would migrate to more
profitable alternatives than being forced to participate in a
detrimental miner’s dilemma game.

Our work here suffers from certain limitations: We applied
a relatively straightforward migration model which might
not adequately captures the migration dynamics. Further, we
neglected pool fees in our analysis. We also made some
simplifying assumptions such that all miners have the same
mining power. In addition, miners are profit-maximizing, how-
ever, they might also be variance-minimizing. Lastly, we only
looked at a two pool setting. For future work, we plan to extend
on our work as follows: We want to include several pools as
well as multiple distinct miners that also minimize the variance
of the return streams. We also want to explore other migration
dynamics to check the robustness of our results. Additionally,
we want to conduct an in-depth evaluation of our theoretical
results with data from the real Bitcoin network. Finally, we
will explore why the block withholding attack does not occur
in practice, since there are other mechanisms than the miner’s
dilemma at play as well. All in all, we hope to contribute to
a better understanding of the mining environment in proof of
work blockchain-based systems.
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