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Abstract—Supply chain attacks are an evolving threat to the
IoT and mobile landscape. Recent malware findings have shown
that even sizeable mobile phone vendors cannot defend their
operating systems fully against pre-installed malware. Detecting
and mitigating malware and software vulnerabilities on Android
firmware is a challenging task requiring expertise in Android
internals, such as customised firmware formats. Moreover, as
users cannot choose what software is pre-installed on their
devices, there is a fundamental lack of transparency and control.
To make Android firmware analysis more accessible and regain
some transparency, we present FirmwareDroid, a novel open-
source security framework for Android firmware analysis that
automates the extraction and analysis of pre-installed software.

FirmwareDroid streamlines the process of software extrac-
tion from Android firmware for static security and privacy
assessments. With FirmwareDroid, we lay the groundwork for
researchers to automate the security assessment of Android
firmware at scale, and we demonstrated the capabilities of
FirmwareDroid by analysing 5,728 Android firmware samples
from various vendors. We analysed 75,141 unique pre-installed
Android applications to study how common advertising tracker
libraries (a piece of software that collects user usage data) are
used and which permissions pre-installed Android apps inherit.
We conclude that 20.53% of all apps in our dataset include
advertising trackers and that 88.14% of all used permissions are
signature-based.

Index Terms—Android Firmware, Pre-Installed Apps, Static
Analysis, Security, Vulnerability

I. INTRODUCTION

When we buy a smartphone or IoT device, we buy a piece

of hardware and the pre-installed software on the hardware.

If the device is part of the Android ecosystem, this software

is called firmware, or Android firmware (ROM). If the device

manufacturer provides it for reloading onto the device, it is

usually in the form of a so-called firmware image. Android

firmware consists of the Android operating system with its

system apps and other applications developed by the device

manufacturer or third parties (e.g., mobile providers or social

media companies). The Android Open Source Project (AOSP)

provides the basis for the Android operating system, which

device manufacturers need to supplement with drivers for the

hardware used (e.g., chipset, camera, and various sensors).

What is also missing from AOSP are the Huawei or Google

Mobile Services (HMS / GMS), a set of applications, APIs,

and cloud-based services usually present on Android devices.

As these services have to be licensed and pre-installed sepa-

rately, they are not present on all smartphones by default.

All apps mentioned so far and thus already installed at

delivery are commonly called pre-installed apps. However,

just like regular apps downloaded and installed by users after

the device is shipped, these pre-installed apps also potentially

pose a security risk. On the one hand, they can contain

vulnerabilities that attackers can exploit. On the other hand,

they could have been intentionally equipped with functionality

to spy on users or harm them in other ways. This is even

more of a problem because pre-installed apps often have higher

permissions than regular apps, cannot be easily removed by

users, and, in contrast to apps from app stores, there are also no

mechanisms like commenting, rating, and reporting potentially

problematic apps.

Various well-documented incidents show that both security

risks are not only theoretical. The risk of malware introduced

by members of the supply chain is demonstrated, for example,

by the malware families known as Chamois [1], [2], [3] and

Triada [4], [5]. According to these sources, these have infected

several million devices and remained undetected for months. In

addition to these security risks, privacy risks from advertising

trackers contained in the pre-installed apps are moving into the

spotlight of the media [6]. Unfortunately, there are hardly any

studies on how prevalent such advertising trackers are used in

pre-installed apps nowadays.

Indications that this could be a problem are provided by the

study of Gamba et al. [7]. It shows that a worrying number of

companies known for their aggressive advertising strategies are

associated with providers of Android firmware components.

However, whether this complies with privacy regulations such

as the GDPR or the CCPA remains unclear in the study.

On the other hand, some providers of alternative Android

firmware, such as LineageOS [8] and GrapheneOS [9], see in

the commitment to a privacy-friendly Android firmware and

the renunciation of so-called bloatware at least a market gap

and opportunity. If we look at all of these risks and take the

many incidents, some of them well documented, as a reference,

we have to conclude that even manufacturers like Google,

which have sophisticated security measures and processes in

place, are not immune to them. Moreover, it raises the question

of how less security-conscious device manufacturers can detect

and respond to attacks via the supply chain and how secure

pre-installed apps are in general.

Certification of manufacturers or of devices could eventually

be part of the answer. For example, users of Android firmware

that comes with Google Mobile Services can be sure that

their firmware had to go through the Google Play Protect1

1https://www.android.com/certified/
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certification process. However, the exact testing methodology

and the technical details of the test are not known to the

public. The same applies to a device that has been certified

according to the Android profile of the ioXt Alliance2. In

addition to the requirement that it must already be certified for

GMS, the profile defines various non-technical criteria such as

the existence of a vulnerability reporting program and some

criteria such as the risk posed by the pre-installed apps (”very

low”, ”low”, or ”medium”), for which it is not clear where the

relevant data should come from. In an assessment, the NCC

Group used the Uraniborg tool [10], [11] for this purpose, for

example.

Hence, while certification might shed some light on what

has been tested and how, we ultimately still know little

about manufacturers’ security measures and internal testing

procedures. At the same time, many tools exist, including

freely available ones, for analysing individual security aspects

of Android apps (e.g., [12], [13], [14], [15], [16], [17], [18]),

but none of these can directly cope with Android firmware

images, let alone the entire Android firmware ecosystem.

Consequently, without proper tools for verification and

large-scale independent investigations into security aspects of

the Android firmware ecosystem, users have no choice but to

trust in good faith that device manufacturers are trustworthy

and act in the customer’s best interest. In addition, customers

have to trust that manufacturers have proper procedures and

analysis methods in place to minimise security and privacy

risks in the supply chain. In this paper, we aim to contribute to

making the security of the Android firmware ecosystem more

transparent. We provide two contributions to this end. The

first contribution is the FirmwareDroid framework, published

as an open-source project, enabling the research community

to conduct large-scale, independent investigations into the

security aspects of the Android firmware ecosystem much

faster and cheaper. FirmwareDroid achieves this primarily by

solving various challenges in automating the various steps such

as collecting and unpacking firmware samples or distributing

the analysis across various analysis tools integrated and con-

tainerised in FirmwareDroid. Section III gives an overview

of FirmwareDroid and describes the different steps Firmware-

Droid performs in an automated way to collect and analyse

Android firmware. We also outline some of our approaches

to solving problems that we needed to overcome to turn

FirmwareDroid into a solution that can analyse the Android

ecosystem faster and with less manual work. We demonstrate

that our framework is capable of managing a wide variety of

independently developed tools for forensics, security, and data

analysis.

Our second contribution is to publish the results of our anal-

ysis of the Android firmware ecosystem using FirmwareDroid

concerning the following research questions:

• RQ1: Which permissions are used by pre-installed apps?

More specifically, we investigate (i) how common pre-

installed apps use dangerous and other permissions cat-

2https://www.ioxtalliance.org/

egories and (ii) whether there are significant differences

in permission usage between the vendors in our dataset.

• RQ2: How common are advertising tracker libraries used

in pre-installed apps? Here, we want to know (i) which

advertising tracker libraries we can detect and (ii) how

often these libraries are used within pre-installed apps.

For the second contribution, we analysed 75,141 unique

pre-installed apps from 5,728 Android firmware samples. We

found that (1) the average number of dangerous permissions

used by the apps has decreased from 10.2% to 3.6% from

Android version 10 to version 11, at least on Google firmware,

and (2) there are over 40,000 advertising trackers and 20.53%

of all apps use at least one advertising tracker, and (3) while

there are 3.56% apps that use dangerous permission a more

significant fraction, 88.14%, of pre-installed apps use signature

permissions.

The rest of the paper is structured as follows. Details on

the data sources used to collect the Android firmware samples

and some key figures of the resulting dataset are presented in

Sections III and IV. The analysis results related to RQ1 can

be found in Section V and those related to RQ2 in Section

VI. If you want to use our dataset or the code for your own

research, please see Section X for further details.

II. RELATED WORK

Gamba et al. [7] analysed pre-installed apps from more

than 200 vendors and showed privacy concerning relation-

ships between third-party app developers, vendors, and de-

vice manufacturers by using LibRadar [19] to detect known

advertising libraries. Their analysis focused on 82,501 pre-

installed android applications collected from 2,748 devices

with 1,795 unique package names. It is unknown how many of

the apps were unique and thus their dataset may include some

duplicates. We assume that Gamba et al. [7] could give us only

some limited insights into how common advertising companies

are represented in pre-installed apps, but their insights show

already concerning relations between advertising companies

and mobile phone vendors.

Using FirmwareDroid, we overcome scalability limitations

and demonstrate that static analysis of several hundred thou-

sand apps is possible within a reasonable amount of time and

computation power. Regarding RQ2, we demonstrate that we

can detect over 40,000 instances of tracker libraries by using

Exodus [20] in pre-installed apps, which is so far lacking in the

scientific literature. Exodus Privacy is a non-profit organisation

that provides a static analysis tool for detecting advertising

trackers on Android. Exodus can detect 405 known advertising

tracker libraries at the time of writing, and the Exodus Privacy

team continuously detects trackers of apps in the Google Play

Store and publish their results on their official website3.

Another more recent work by Kollnig et al. demonstrated

in [21] that Android apps from the Google Play Store often

violate European privacy regulations regarding consensual ad-

vertising tracking. Their results show that many Android apps

3https://exodus-privacy.eu.org/en/
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do not ask for the user’s consent to be tracked by advertising

frameworks and that many app developers violate the GDPR.

Our work contributes to this research as we can provide

the names and exact numbers of apps that use advertising

trackers, which allows testing of apps at a finer granularity that

may not comply to such regulations as the GDPR. Moreover,

we provide the dataset together with our codebase to allow

other researchers to reproduce or enhance our results. With

FirmwareDroid we strive to significantly lower the burden for

other researchers to analyse pre-installed Android software.

Other researchers have focused on Android’s Mandatory

Access Control (MAC) and Discretionary Access Control

(DAC) policy model [22], [23], [24]. BigMac by Hernandez

et al. [24] has shown discrepancies between MAC and DAC

permissions that lead to the fact that untrusted apps could

access root processes over inter-process communication (IPC)

and could load kernel modules. Aafer et al. [25] developed

several differential analysis algorithms to detect inconsistent

security configurations between different builds of the same

firmware. They tested their approach on 591 custom firmware

samples and found in several cases that newer OS releases

downgraded some of the security settings, which lead to

potential security risks if done unintentionally.

The development of tools like DiffDroid [25], BigMac

[24], and PolyScope [22] demonstrate that analysing Android

firmware often requires researchers to implement common

tasks such as extracting files from Android firmware from

scratch. With the FirmwareDroid framework, we aim to pro-

vide the groundwork for such common tasks and reduce re-

searchers’ time to implement such components and focus more

on their research. Moreover, by selecting two common static

analysis tools, we demonstrate that using a common dataset is

beneficial for future research, as it makes benchmarking and

comparison of the tools and results possible. Therefore, one of

our main contributions is to provide a framework that allows

to extract and analyse pre-installed Android software from the

firmware without the need of the hardware.

Other research has focused on developing a rating system

for Android firmware, for example, a white paper by Lau

et al. [10] proposed a scoring system for Android firmware,

called Uraniborg, based on the permissions given to pre-

installed apps. Their idea was to create an easily understand-

able risk metric for Android firmware based on scoring the

risk implied by specific permissions and on the number of

apps that allow clear-text traffic. The NCC group used this risk

metric to evaluate Google Pixel devices for an ioXt Audit [11].

Cam et al. [26] described a system, uitXROM, to analyse the

relationships of pre-installed apps for sensitive data leakages,

which could help in detecting privacy concerning apps. As we

have automated the process of permission extraction within

FirmwareDroid, it is an ideal framework for using it as well

to rate the security majority of an Android firmware and use

rating systems such as the one proposed by the Uraniborg

team.

By integrating the tool from Desnos and Gueguen [27] into

FirmwareDroid, we provide an easy way for users to extract

the used permissions of pre-installed apps, and we demonstrate

in this paper how we can extract the used number of permis-

sions for every permission level for further evaluations. As an

all-rounder tool (decompiler, disassembler, XML parser, call-

graph extraction), AndroGuard [27] became sort of a standard

tool for the static analysis of Android applications. Other

studies [7], [17] used AndroGuard for extracting app meta-data

like used permissions, certificates, string-analysis, and defined

components. Some studies even used AndroGuard for malware

analysis [28] or as the basis for their tools: BLECryptracer

[29], and HSandroguard [30]. Within FirmwareDroid, we use

AndroGuard mainly to automate the extraction of permissions,

certificates, and strings.

Previous research can only be considered the first step

towards a more profound understanding of how vendors

customise Android’s permission system in practice and what

permissions pre-installed app developers use. We, therefore,

address in this paper how common pre-installed apps use

dangerous and custom permissions and provide a framework

that can automate the analysis for pre-installed apps. We

accomplish this by collecting 5,728 firmware samples from

freely available sources.

Another key aspect of pre-installed app research focuses on

vulnerability and malware detection. For example, the team

around FirmScope [31] has developed a novel static taint anal-

ysis tool and found 3,483 privilege-escalation vulnerabilities

in pre-installed apps by examining 2,017 Android firmware

images. In [32] You et al. analysed eleven Android smart TV

boxes with fuzzing techniques which resulted in the finding

of 37 unique vulnerabilities, and in [33] Zheng et al. found

a specific privilege escalation vulnerability in 99.6% (249

samples) of their firmware dataset. In addition, Hou et al.

[34] showed on a dataset of 6,261 firmware images that patch

delays are widely spread among Android images and that pre-

installed apps often contain publicly known vulnerabilities.

While many tools find vulnerabilities, there are hardly any

studies that analyse their findings in terms of ”can this be

exploitable and is it relevant”, or if so, then very limited in

scope or to particular vulnerabilities. The lack of a dataset with

ground truth is undoubtedly a problem, which will probably

never be solved at large scale since this currently still requires

manual verification. Thus, we contribute to this area of cyber

security research by publishing our dataset and providing

researchers with a tool that allows them to combine the results

of several static analysis tools.

III. FIRMWAREDROID

In this section, we provide an overview of the Firmware-

Droid framework. We briefly describe the different steps it

performs to collect and analyse Android firmware and outline

some of the challenges we had to overcome to turn it into a

solution with which the Android ecosystem can be analysed

quicker and with less manual work. Next, we discuss our

choice of data sources for Android firmware images and

provide metrics for the set of Android firmware collected by

FirmwareDroid’s crawler component.
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A. Data Acquisition

To collect firmware samples, we developed a web crawler

and downloaded firmware samples from official Android

firmware vendor websites that publish their firmware for free

and with cryptographic checksums. We used Puppeteer [35]

to control a headless chromium-browser and implemented

custom routines to download the firmware samples. Our

crawler collects all links from a predefined list of web-

sites by recursively going through the website’s sitemap and

searching for links that refer to compressed (.zip, .tar) files

that we later download. After collecting the download links,

we removed unwanted files (such as drivers and wallpapers)

and downloaded the remaining firmware files. During import,

FirmwareDroid would automatically detect if a file is a valid

firmware and delete invalid files.

We selected websites based on their popularity, the number

of samples, and their sharing policy. Moreover, for our re-

search we used only firmware from official Android vendors

to have precise measurements. Unfortunately, many of the

market leading Android firmware vendors do not provide their

firmware publicly on official channels.

Nevertheless, with our data collection method, we were

able to collect 6,169 firmware samples from seven operating

system vendors (OSV) and FirmwareDroid was able to unpack

5,728 of these samples. Table I shows the number of firmware

samples collected for every OSV and Android version4. Our

dataset contains some of the most popular custom ROMs,

LineageOS [8], GrapheneOS [9], Paranoid [36], OmniROM

[37], and Resurrection Remix OS (RROS) [38] as well as

all available smartphone firmware from Google [39]. All the

firmware was collected in July 2021.

As another data source we could have used websites that

claim to provide official Android firmware but do not have

an official affiliation with the vendor. In a previous study

[40] we tested a set of such websites and came to the

conclusion that using such data sources inherit a fundamental

problem: Firmware from an unknown source could have been

modified and as many firmware vendors do not publish their

cryptographic checksums, we cannot verify if the firmware is

from the original vendor or a modified version. Thus, in this

study we use only official and verifiable firmware.

As an alternative data source, we could have collected

our pre-installed apps with a crowd-sourced approach as for

example Gamba et al. [7] did. However, this approach does not

allow the extraction of large parts of the firmware, such as the

kernel or the baseband operating system, and is limited through

the number of users that are willing to share their pre-installed

apps. With FirmwareDroid we provide a framework which is

not only able to analyse pre-installed Android apps, moreover

it provides the possibility to analyse the dependencies such

as native libraries of the operating system or other system

components.

Another fact that we would like to express is that no other

research team did provide their firmware nor their data set

4We denote ’v0’ as unknown Android version.

of pre-installed apps so far, which makes it impossible to

reproduce their results or use any of their data sources for

our experiments. We overcome this gap in the literature by

providing the full data set with 5,728 firmware samples and

850,555 pre-installed apps.

B. Design and Implementation

We had to solve several challenges to automate the process

of static analysis for pre-installed apps or any other file within

the firmware. This section explains our solution design for the

FirmwareDroid framework and gives some details about the

challenges to overcome. We start by giving an overview of

FirmwareDroid in Figure 1 and explain step by step how we

can automate the scanning process.

1 Firmware pre-processing. Android operating system

and hardware manufacturers use various formats and cus-

tomize their firmware according to their needs. Different com-

pression algorithms are used to store the firmware. To access

the data within the firmware, we have to detect which compres-

sion formats are used and then decompress these formats in the

correct order. For example, an Android 11 firmware can be first

Brotli [41] compressed, then zipped, and then ’.dat’ formatted.

To get access to the files within the .dat formatted image,

we first need to unzip the archive, decompress the resulting

Brotli files, and then extract the ’.dat’ files. The current version

of FirmwareDroid can process eight different compression

formats, including Brotli and nb0, in various combinations by

using a recursion algorithm. With the current implementation,

we extracted more than 8,000 firmware samples (counting as

well samples from our previous work [40]) and support a wide

variety of compression combinations. From the total of 6,169

downloaded firmware samples for this study, we were not

able to import 441 samples (297 OmniROM, 92 RROS, 46

Carbon, 6 Google) due to currently unknown file formats or

naming patterns. We hope to overcome this limitation in future

versions of FirmwareDroid by including additional unpacking

tools, or compression formats.

2 File extraction. Android firmware partitions are Sparse

or Yaffs2 formatted [42], [43]. After decompressing the

firmware, we need to locate the files of interest that store the

system, vendor, OEM, or other data partitions. Since manu-

facturers have no strict naming convention for partition files,

locating the correct files can be challenging and is an error-

prone task for automation. However, our approach overcome

these shortcomings by using a rule system based on regular ex-

pressions (regex). We analysed manually the names of several

hundred data partitions and created regex patterns for matching

filenames (e.g., ’user.img’, or ’kernel.img’). Depending on the

image file format, we developed different routines to extract

pre-installed apps from the Android firmware. In general,

whenever possible, we attempt to convert Sparse image files

with simg2img [44] to an ext formatted image that we can

directly mount into the host filesystem. We experienced that

using simg2img alone is not sufficient due to the fact that

converting to a valid ext image with simg2img would often

fail because the host system would prevent us from mounting

15



TABLE I
ANDROID FIRMWARE DATASETS WITH NUMBER OF SAMPLES PER ANDROID VERSION.

ROM Vendor # Firmware # Apps # Unique Packages # Unique Apps (SHA-256) v0 v4 v5 v6 v7 v8 v9 v10 v11

Google 1,023 169,392 (19.92%) 652 (0.38%) 37,255 (21.99%) 530 0 0 0 34 68 102 156 133

GrapheneOS 18 3,597 (0.42%) 243 (6.67%) 2,131 (59.24%) 0 0 0 0 0 0 0 0 18
Paranoid 99 19,332 (2.27%) 322 (1.67%) 1,616 (8.36%) 0 0 0 0 0 0 0 99 0
Carbon 1,300 68,901 (8.10%) 317 (0.46%) 2,725 (3.95%) 0 0 0 0 0 94 386 820 0
LineageOS 644 122,838 (14.44%) 457 (0.37%) 4,620 (3.76%) 0 0 0 0 0 0 0 200 444
OmniROM 2,107 292,879 (34.43%) 503 (0.17%) 15,815 (5.40%) 932 51 6 9 252 3 124 530 200
RROS 537 173,616 (20.41%) 688 (0.4%) 10,979 (6.32%) 0 0 0 0 0 0 0 537 0

Total 5,728 850,555 3,182 (0.37%) 75,141 (8.83%) 1,462 51 6 9 286 165 612 2,342 795

25.52% 0.89% 0.10% 0.16% 4.99% 2.88% 10.68% 40.89% 13.88%
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Fig. 1. Overview of the FirmwareDroid framework

customized images successfully. We, therefore, use the kernel

module fuseext2 [45] allowing us to mount modified images.

The usage of simg2img in combination with fuseext2 is a

novel approach in extracting the data from firmware images

as it allows us to extract the data from nearly all firmware

vendors. In cases when even the combination of simg2img

and fuseext2 is not able to mount an image, FirmwareDroid

attempts to extract the firmware with the imgpatchtools [46]

or the ubi-extract [47] tools. Both tools allow to extract the

image content directly to the host file system without mounting

it first. As soon as the firmware is mounted or extracted, we

copy relevant firmware files to a permanent storage on the host

system. By default, FirmwareDroid searches for apk-, vdex-

, odex-, dex-, and art- files and copies them to a permanent

storage. After copying all the relevant files from the firmware,

we unmount the firmware and store the firmware images for

later use within a permanent storage.

3 Job queuing. FirmwareDroid is based on docker and

docker-compose and has an integrated queuing system for job

management. The complete framework runs within docker,

which allows us to separate the environments and scale the

number of containers as needed. By default, every static anal-

ysis tool has its queue for scheduling jobs. This architecture

allows to scale the number of instances for any analysis tool

as needed. Moreover, using our queuing system we were able

to scan an average of ≈ 55, 000 apps per day on one virtual

server with 32 cores (Intel, Broadwell, no TSX, IBRS) and 128

GB RAM. As FirmwareDroid is completely dockerized it is

possible to scale the performance by using cluster techniques

or several instances of the framework.

4 Static analysis. We selected a base set of eight ex-

isting open-source static analysis tools (AndroGuard [27],

Androwarn [13], SUPER Android Analyzer (SUPER) [14],

Quick Android Review Kit (QARK) [15], QuarkEngine [16],

APKiD [48], APKLeaks [18], Exodus [20]). We included them

into FirmwareDroid with the idea in mind to have an ex-

tendable framework that can handle the different requirements

of any static analysis tool. It is challenging to unite these

tools based on different programming languages, and with

individual software requirements and dependencies, within

one framework. In addition, these tools often have outdated,

conflicting, or undocumented dependencies that make an in-

tegration complex. We, therefore, created for every tool a

docker container and developed an API to access the generated

scanning reports. Another advantage of this architecture is that

we are able to modify or remove tools individually, which

makes FirmwareDroid scaleable for larger environments and

reduces the maintenance workload significantly. In this study

we will focus only on the result provided by AndroGuard and

Exodus to answer our research questions.

5 Data analysis. The static analysis tools in our corpus

use JSON formatted output files for their result reports or

other text-based output formats. A concern we had at the

beginning when we were integrating these reports was the

long-term maintainability of FirmwareDroid. Over time, the

reports generated by the static analysis tools are likely to

change, resulting in breaking changes for FirmwareDroid and

generating large and continued workloads to keep up with

the latest changes. To cope with changing output formats, we

decided to use a dynamic schema based on a NoSQL database

that allows us to store the generated data by the static analysis

tools without defining a strict report schema. We think this
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should allow us to keep up with the latest changes in the

static analysis tools with a minimal workload.

IV. METHODOLOGY

This section explains our approach for collecting specific

firmware samples and why it is essential to use verifiable

firmware for further studies.

Dataset. Our dataset contains 5,728 firmware samples and

850,555 pre-installed apps. As shown in Table I, we have

40.89% Android 10 and 13.88% Android 11 firmware samples.

Every Android app defines within its AndroidManifest.xml,
an XML file with essential app details as for example the

app’s package name (e.g., com.android.settings). The Android

framework assures that every app on the system uses a unique

package name. Using the package name, we can quantify the

diversity of pre-install apps in the dataset by examining the

number of unique package names. The dataset contains 3,182

unique packages, meaning that we have mostly apps with the

same package name from different firmware or, in other words,

apps with multiple builds. To be more precise, we calculate for

every app file a SHA-256 hash and use this hash to identify the

number of unique apps in our dataset. We have 75,141 unique

apps in our corpus, meaning that our dataset contains 8.83%

unique app builds. Note that we have 5,728 unique firmware

images and that an Android app can behave differently based

on its dependencies on the firmware environment. Therefore, it

does make sense to analyse duplicated apps in cases where the

environment influences the app’s behaviour directly. For exam-

ple, such influences can be: Access to shared native libraries of

the operating system, environment variable checks, conditional

dynamic code loading, or inter-process communication.

At the time of writing, not all smartphone manufacturers

make their stock firmware freely available, and it seems

unlikely to change soon. Various websites on the web offer

stock firmware for specific OSV’s for download but without

the official5 cryptographic checksums, it is not possible to

verify the integrity of these firmware samples, and therefore

the possibility of malicious modifications exists as mentioned

before. Moreover, OSV’s and OSM’s often do not publish

the cryptographic checksums of their firmware, so it is not

possible to conduct any cross-reference checks. As a result,

verifying the integrity of the firmware from unofficial sources

is currently not possible without insider knowledge. Using a

dataset of unverifiable firmware can lead to wrong conclusions.

For example, if we detect a harmful app in vendor A’s

firmware, we cannot verify if the malicious app was initially

included in the firmware or later modified, resigned, and then

redistributed.

Furthermore, using unverifiable firmware makes the security

analysis more challenging because attackers and developers

tend to change the meta-data used for the analysis. For

example, Siewierski [49] found out that attackers had used

tampered build fingerprints to hinder analysts from identify

to which manufacturer or brand a firmware belongs to. Such

5Published by the original operating system developer.

modifications are typical for tampered firmware but are often

hard to detect because we cannot verify the integrity of

the firmware without the vendor’s cryptographic checksums.

In this study, we, therefore, only use verifiable firmware

downloaded from official vendor websites. This allows us to

draw conclusions about specific vendors without worrying that

the firmware is not original stock firmware. Furthermore, as

mentioned before, we focus our analysis on the static analysis

of pre-installed apps and not on other parts of the Android

firmware for this study. More precisely, we analyse the usage

of permissions and advertising trackers within pre-installed

apps by using the static analysis tools AndroGuard [27] and

Exodus [20].

V. PERMISSION USAGE

In this section we give a detailed examination of the results

extracted with AndroGuard [27]. Using FirmwareDroid we

analysed the permission usage of all collected Android apps

in our dataset. AndroGuard extracts permission declarations

directly from the AndroidManifest.xml file and can list the

used custom or framework API permissions. Therefore, using

AndroidGuard gives us precise results of the declared per-

missions but cannot test if the permission is actually used at

runtime.

We compare the permission usages of the OS vendors by

categorising them into the three permission levels defined by

the Android framework: signature, dangerous, and normal.

Analysing the declared app permissions allows us to compare

how many apps access potentially dangerous APIs such as the

camera, location, or microphone and to answer our research

question RQ1. For a comparison at a finer level of granularity

we use a stratified sampling approach to compare the app

manifests’ permissions of randomly selected apps.

As a first step, we aggregate the number of permissions

declared for each OS vendor, OS version, and permission

level. Using this data, we determine the ratios for each

permission level and conclude that 88.14% of the permissions

are signature-, 3.56% are dangerous-, and 8.21% are normal

declared permissions over all vendors. When having a look at

some specific vendors, we can conclude the following facts

without using stratified sampling. 10.22% of the permissions

found in Google Android 10 firmware are dangerous per-

missions. Compared to Google Android 11 firmware, we see

that the dangerous permission usage has decreased to 3.6%

and that the number of normal permissions on Android 11

increased to 23.83% from its previous version. We detect on

Resurrection Remix OS 801 (0.23%) dangerous permissions,

which is the fewest number of dangerous permissions detected

overall, but it has with 338,758 (95.91%), the highest num-

ber of signature permissions. GrapheneOS has the highest

number of normal permissions (59.54%). In addition, we

detect 35.26% signature-based permissions in GrapheneOS,

whereas LineageOS uses fewer dangerous permissions than

GrapheneOS with 3.08% on its Android 11 firmware. Please

note that some of these numbers have to be considered biased

as the number of samples differs.
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TABLE II
TOP 20 OF REQUESTED DANGEROUS PERMISSIONS FOR PRE-INSTALLED APPS ON ANDROID 10 AND 11.

# Rank Permission RROS
V10

Paranoid
v10

OmniROM
v11

OmniROM
v10

LineageOS
v11

LineageOS
v10

GrapheneOS
v11

Google
V11

Google
v10

Carbon
v10

1 android.permission.WRITE EXTERNAL STORAGE 16,512 2,895 4,755 12,676 11,652 5,251 378 5,305 6,218 6,142
2 android.permission.READ EXTERNAL STORAGE 12,682 2,680 4,486 11,871 8,837 3,701 378 4,258 4,948 5,746
3 android.permission.READ PHONE STATE 10,586 2,024 2,699 8,868 7,639 3,695 280 5,545 6,584 3,874
4 android.permission.READ CONTACTS 9,224 2,270 2,771 8,005 6,664 3,112 302 4,284 5,332 4,008
5 android.permission.ACCESS FINE LOCATION 7,273 1,813 3,164 6,806 6,729 2,209 262 4,649 4,946 3,388
6 android.permission.GET ACCOUNTS 7,890 1,877 2,171 6,592 4,960 2,666 248 4,234 5,328 3,218
7 android.permission.ACCESS COARSE LOCATION 6,139 1,835 2,042 5,823 4,490 1,800 234 4,556 5,088 2,929
8 android.permission.WRITE CONTACTS 6,137 1,482 1,651 4,692 4,042 2,066 176 2,394 2,992 2,356
9 android.permission.CALL PHONE 5,314 1,336 1,720 4,640 4,247 1,786 162 2,654 3,304 2,636
10 android.permission.CAMERA 5,055 1,112 1,498 4,203 3,043 1,152 180 2,588 3,072 1,890
11 android.permission.RECORD AUDIO 4,721 1,129 1,182 3,026 3,760 1,531 126 2,698 3,234 1,215
12 android.permission.READ CALL LOG 3,615 940 1,399 3,248 3,169 1,209 126 1,463 1,782 1,767
13 android.permission.SEND SMS 3,630 846 1,198 3,249 2,761 1,218 108 1,735 2,222 1,724
14 android.permission.READ SMS 3,169 846 1,036 2,720 2,761 1,009 108 1,723 2,108 1,408
15 android.permission.WRITE CALL LOG 2,431 651 998 2,190 2,256 809 90 1,197 1,588 1,135
16 android.permission.READ CALENDAR 2,925 652 600 1,989 1,332 1,000 54 931 1,248 862
17 android.permission.WRITE CALENDAR 2,697 468 600 1,916 1,332 1,000 54 665 780 862
18 android.permission.ACCESS BACKGROUND LOCATION 1,519 273 1,073 1,404 1,437 200 54 2,017 1,502 273
19 android.permission.PROCESS OUTGOING CALLS 1,422 395 420 1,358 1,040 446 36 1,064 1,328 631
20 com.android.voicemail.permission.ADD VOICEMAIL 1,200 281 400 1,058 884 400 36 532 690 589

Furthermore, it is essential to notice that signature permis-

sion may give similar privileged access to an app as dangerous

permissions. Signature permissions give access if the requiring

app is signed with the same signing key as the app declaring

the permission. In general, signature permissions are either

used for custom permissions or access to privileged system

components. Depending on the usage, they give an app access

to critical system resources like Android’s PackageManager.

As a second step, we assessed the number of custom

permissions. We created a list of all the requested permissions

for Android 10 and 11 and counted how often apps requested

the permissions. This method allows us to investigate how

many custom permissions were used or requested.

In total, we detected 1,113 defined permissions. We found

out that 518 (46.54%) were permissions from the main ’an-
droid.’ package, 68 (6.11%) of ’com.android.’, 209 (18.78%)

of ’com.google.’, and 318 (28.57%) were third-party vendors

packages. Consequently, 28.57% of the permissions in our

dataset are custom third-party permissions. We further eval-

uated the frequencies of permission requests for Android 10

and 11 to give the reader an insight into the most used

ones. In Table II we show the top 20 of the most requested

dangerous permissions (by the total number of declarations)

for the Android 10 and 11 firmware. The most used dangerous

permissions are write and read to the external storage, followed

by reading of the phone state. The fourth most used permission

is the reading the user contacts, and the fifth most used is the

access to the fine location of the phone. Under the top 20 of

all permissions (grouped by normal, signature, and dangerous),

there are six dangerous permissions, six signature permissions,

and eight normal permissions.

As a third step, we apply stratified sampling and select

randomly from every vendor 1,000 unique apps (by SHA-

256) for comparison from Android version eight and above.

We show in Table III the result of this comparison. In our

experiment an average of 2,777 signature, two system, 119

dangerous, and 505 normal permissions were used. Signature

permissions are the most frequently used permission by all

TABLE III
COMPARISON OF APP PERMISSIONS WITH STRATIFIED SAMPLING.

ROM Vendor # signature # system # dangerous # normal # Total
Google 2,297 (85.36%) 10 (0.37%) 32 (1.19%) 352 (13.08%) 2,691
GrapheneOS 1,334 (75.62%) 0 (0%) 90 (5.1%) 340 (19.27%) 1,764
Paranoid 7,299 (88.99%) 0 (0%) 197 (2.4%) 706 (8.61%) 8,202
Carbon 2,939 (73.33%) 0 (0%) 170 (4.24%) 899 (22.43%) 4,008
LineageOS 1,946 (83.52%) 3 (0.13%) 101(4.33%) 280 (12.02%) 2,330
OmniROM 1,841 (71.03%) 0 (0%) 97 (3.74%) 654 (25.23%) 2,592
RROS 1,785 (79.94%) 3 (0.13%) 143 (6.4%) 302 (13.52%) 2,233

Total 19,441 16 830 3,533 23,820
Average 2,777 2 119 505 3,403

TABLE IV
TOTAL NUMBER OF DETECTED TRACKERS WITHIN ALL PRE-INSTALLED

APPS.

Vendor # Apps >0
trackers

# Apps no
trackers # Reports % of Apps

Google 19,757 149,544 169,392 11.66%
GrapheneOS 0 3,597 3,597 0.00%
Paranoid 1,279 18,053 19,332 6.62%
Carbon 415 68,486 68,901 0.60%
LineageOS 162 122,676 122,838 0.13%
OmniROM 879 291,998 292,877 0.30%
RROS 2,105 171,105 173,210 1.22%

Total 24,597 825,459 850,147 20.53%

vendors. As shown in Table III, Google used the fewest

dangerous permissions, with 32 (1.19%), and Paranoid used

with 197 (2.4%) the highest number of dangerous permissions

in our experiment.

In conclusion, we can say that signature permissions are

the most frequently requested and used permissions by pre-

installed apps. The fact that pre-installed apps often do not

have to ask the user’s consent for signature and dangerous

permissions seems to be a concerning trend. Our random

sampling experiment shows that the number of requested

dangerous permissions is relatively small compared to the

number of signature permissions used.
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TABLE V
ADVERTISING TRACKER LIBRARY DETECTION RATES BY EXODUS.

OS Vendor Version Google
Analytics

Google
AdMob

Google
CrashLytics

Amazon Analytics
(Amazon insights)

Google
Firebase
Analytics

Google
Manager

Facebook
Share

Facebook
Analytics

Facebook
Login Mapbox

OpenTelemetry
(OpenCensus,
OpenTracing)

AutoNavi
Amap Total

Google

v0 3,993 1,714 61 0 1,563 795 0 0 0 0 0 0 8,126
v7 739 289 68 0 702 187 0 0 0 0 0 0 1,985
v8 0 567 136 1,168 660 334 0 0 0 0 0 0 2,865
v9 1,840 790 408 38 1,204 484 0 0 0 0 204 0 4,968

v10 2,434 1,268 772 66 2,920 474 0 0 0 0 582 0 8,516
v11 1,294 1,106 532 48 2,557 241 0 0 0 0 0 0 5,778

Carbon
v8 0 0 0 0 0 0 0 0 0 0 0 0 0
v9 13 0 73 0 88 0 11 11 11 0 0 0 207

v10 0 0 316 0 273 0 43 43 43 0 0 0 718

RROS v10 566 497 443 0 1,512 96 0 0 0 0 133 37 3,284

LineageOS
v10 2 0 0 0 18 0 0 0 0 0 0 0 20
v11 40 7 4 7 98 0 4 4 4 0 0 0 168

GrapheneOS v11 0 0 0 0 0 0 0 0 0 0 0 0 0

Paranoid v10 637 364 278 0 728 0 5 5 5 0 91 0 2,113

OmniROM

v0 5 5 5 0 20 5 0 0 0 0 0 0 40
v4 0 0 0 0 0 0 0 0 0 0 0 0 0
v5 1 0 0 0 0 0 0 0 0 0 0 0 1
v6 0 0 0 0 6 0 0 0 0 0 0 0 6
v7 10 10 10 0 20 10 0 0 0 0 0 0 60
v8 0 0 0 0 0 0 0 0 0 0 0 0 0
v9 3 0 0 0 3 0 0 0 0 0 0 0 6

v10 439 220 0 0 439 73 0 0 0 220 0 125 1,516
v11 264 109 0 0 264 52 0 0 0 109 0 0 798

Total All 12,280 6,946 3,106 1,327 13,075 2,751 63 63 63 329 1,010 162 41,175

VI. TRACKING THE TRACKERS

We scanned 850,147 of the apps in our dataset with Exodus

and found 41,175 known trackers. Please note that we were not

able to scan 408 apps because Exodus crashed for unknown

reasons on these samples. Table V shows the summarised

results of the advertising tracker libraries detected by Exodus.

We analysed the data from different points of view, such as

the number of detections per Android version and OSV.

We detected the most significant number of advertising

tracker libraries in Google firmware with 32,238 trackers.

Taking into consideration that the number of app samples

differs for each OSV, we extracted the number of apps with at

least one tracker and the number of apps without any detected

trackers. We show the results in Table IV. Google has with

11.66% (19,757) the highest number of apps with at least one

tracker followed by Paranoid 6.62% (1,279) and RROS with

1.22% (2,105). In total 24,597 (20.53%) of the pre-installed

apps in our dataset use advertising tracker libraries.

Overall, as shown in Table V the most common track-

ers in our datasets are Google Firebase Analytics (13,049,

31.74%), Google Analytics (12,269, 29.85%), and Google

AdMob (6,936, 16.87%). Amazon Analytics seems to be

most used on Android 8 on Google firmware with 1,168

(2.84%) detected trackers. After Android 8, the detection rates

of Amazon Analytics decrease for all subsequent Android

versions by Google. We can only assume that this is either

due to undetected trackers by Exodus or due to Google

policy changes. Another effect that could be due to undetected

trackers is the low number of detected Facebook Analytics.

The Exodus community reports on their official website [20]

that around 18% (19,296 apps6) of the scanned apps in the

Google Play Store use Facebook Analytics. However, on our

6Statistics from September 2021.

TABLE VI
COMPARISON OF DETECTED TRACKERS WITH STRATIFIED SAMPLING (1K

APPS).

Vendor # Apps >0 trackers # Apps with no trackers

Google 847 153
GrapheneOS 0 1,000
Paranoid 15 985
Carbon 5 995
LineageOS 4 996
OmniROM 14 986
RROS 18 982

Total 903 6,097

pre-installed app dataset, we could only detect 63 (0.15%)

apps that use Facebook Analytics.

Nevertheless, an interesting fact is that the two OSVs focus-

ing on privacy, LineageOS (188, 0.15%) and GrapheneOS (0,

0%), use a rather low number of advertising tracker libraries.

Other custom ROM providers like OmniROM (2,427, 0.83%)

and Paranoid (2,113, 10.93%) have more detections compared

to LingeageOS or GrapheneOS.

For a better comparison, we use stratified sampling once

more to select 1,000 pre-installed apps randomly from every

vendor. As shown in Table VI the number of trackers in

Google apps is significantly higher than for all the other

vendors. Undoubtedly, this could be due to Exodus detection

rate for Google libraries as these are more prominent in the

Google Play Store than other tracker libraries. However, these

experiments showcase the potential of FirmwareDroid as a

framework for the comparison of firmware from different

vendors. We see using tools such as Exodus for data gathering

only as the first step in analysing and benchmarking such

privacy issues.
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VII. RESULTS SUMMARY

In this section we summarize the findings of the analyzed

data in the last Sections and answer our research questions

defined in Section I.

App permissions. In RQ1, our goal was to determine

how many dangerous permissions pre-installed apps use and

which permissions are the most used ones. We found out that

under the top 20 permissions were six dangerous permissions:

read+write of the external storage, read of the phone state, read

of contacts, access to the fine location, and the get accounts

permission. We determined that 88.14% of the permissions

are signature-, 3.56% are dangerous-, and 8.21% are normal

declared permissions. We conclude, that OSVs have significant

usage difference of dangerous and signature permissions and

that the average use of dangerous permission (55,859, 3.56%)

seems to be rather high. The complete evaluation of the

permission data is shown in Section V.

Advertising tracker libraries. Our goal for RQ2 was

to determine how common are advertising tracker services

within pre-installed apps. We found out that in total 24,597

(20.53%) of the pre-installed apps in our dataset use ad

trackers. Thus, the data supports the premise that pre-installed

apps of commercial vendors like Google include high amounts

of tracking libraries. We detected the highest number of

ad trackers (32,238) within Google firmware, followed by

Resurrection Remix OS with 3,284 detected trackers. The most

often detected ad trackers were Google Firebase Analytics

(13,049, 31.74%) and Google Analytics (12,269, 29.85%).

The least number of ad trackers were detected in LineageOS

(188, 0.15%) and GrapheneOS (0, 0%). This study is enough

to point out that we could identify 41,108 known ad track-

ers within 850,555 pre-installed apps. We assume that the

detection rates for some specific ad trackers like Facebook

and Amazon Analytics are too low when compared to the

rates reported by Exodus Privacy on their official website7 for

Google Play Store apps. It is up to future research to prove

this assumption and to further enhance detection mechanisms.

VIII. DISCUSSION

Pre-installed apps have some fundamental differences com-

pared to apps from any app store, making the analysis

more challenging from a technical perspective. Moreover, we

will resolve more technical challenges to further enhance

FirmwareDroid as a framework and to enhance Android

firmware analysis in general.

Unpacking. The number of formats FirmwareDroid sup-

ports is limited and might needs to be enhanced in the future

to support more Android image formats. Integrating additional

unpacking tools such as unblob [50] or binwalk [51] might

help to overcome these shortcomings in future versions of

FirmwareDroid.

Optimized Dalvik-Code. OEM manufacturers use dex op-

timizing file formats to increase the performance of pre-

installed apps on device start-up. Formats like .odex, .vdex,

7https://reports.exodus-privacy.eu.org/en/trackers/stats/

.art, and .cdex allow splitting the Dalvik byte-code [52] and

app resources into separate files on the file system, which

the Android Runtime (ART) [53] optimizes for different

CPU architectures (mainly x86, ARM). Consequently, Android

splits the app’s code into several files that a researcher needs

to consider for security analysis. More precisely, it leads to

the fact that ART loads different Dalvik-byte code depending

on the CPU architecture the app is executed on. As a result,

analysing just the apk of a pre-installed app itself is not enough

to get a complete static analysis of the actual code executed

at run-time on the device. This is a significant difference from

analysing regular apps from any app store because an apk of a

pre-installed app may not include large parts of the code. Thus,

focusing only on apk files may lead to wrong conclusions.

An apparent limitation of our method is that FirmwareDroid

extracts, whenever present all the optimised Dalvik byte code

files found but is missing a module that can deoptimise the

Dalvik-byte code into one apk file so that all the static analysis

tools can scan the complete code.

Native Libraries. A major source of limitation is that

none of our static analysis tools can scan native libraries for

vulnerabilities or malware. Most static analysis tools focus on

scanning an apk file but do not scan any referenced native

libraries. Scanners like Androwarn [13] and QARK [15] can

detect that native libraries are loaded to some extent, but

they do not check the libraries for vulnerabilities or malicious

behaviour. In addition, a recent study by Wang et al. [54] has

shown that malware developers are targeting Android software

development kits (SDK), which are often included as native

libraries, to harvest data from apps integrating the SDK. We

assume that libraries for pre-installed apps could be similar

targets for such kind of attacks. Thus, it is up to future research

to have better static analysis tools that are capable of scanning

native libraries as well.

Permissions. We can extract how many permissions a

specific app uses. However, the number of permissions is often

not sufficient to come to the conclusion if one firmware is

more trustworthy than another. This is especially true when

we consider the fact that signature permissions might give

the same access rights as dangerous permissions. Therefore,

more sophisticated approaches, such as combining static- and

dynamic analysis tools, are necessary to further automate the

analysis and benchmark process.

Tracking detection. Detecting advertisement trackers with

Exodus can only be seen as the first step towards an auto-

mated analysis of tracking numbers. Additional tools such,

for example, LibRadar [19], or dynamic analysis techniques,

as described by He et al. [55], could help further enhance the

detection of third-party libraries.

Tool limitations. Some of the static analysis tools integrated

into FirmwareDroid are not capable of scanning all apk files

in our dataset. For example, SUPER [14] is only capable of

scanning 51% of the apps in our corpus due to technical

limitations of the tool itself. Another problem we faced, is

that not every tool scales well in terms of time consumption.

For example, it would take several months to scan all apps
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in our corpus with the QARK [15] due the fact that QARK

decompiles every apk file, which is a time-consuming task,

especially for large apk files. Moreover, we have experienced

similar performance issues with Androguard’s [27] call-graph

feature, which can take several minutes or in worst case hours

to generate a call-graph for a single apk file. Despite slow

performance, such tools can be useful to analyse specific

apk files for researchers. Thus, we integrated these tools

into FirmwwareDroid for other use-cases, such as malware

analysis.

Error rate. Another limitation of many static analysis tools

is that their error rate is unknown. For example, we tested

APKleaks [18] which is capable of detecting information

leakage vulnerabilities (e.g., exposed Google API keys) in

Android apps. Testing the tool on our corpus showed that over

90% of the detected information leakages by APKLeaks [18]

in our corpus were false positives. Analysing the root cause

led to the fact, that APKleaks probes for regex patterns8 of

known secrets but does not conduct sanity checks, such as

considering the location where the information leakage was

detected. Thus, the tool would often report SHA-256 digests

found in the MANIFEST.MF file, as generic secrets. However,

the MANIFEST.MF file contains SHA-256 digests for every

jar file included in the apk and thus, it is an obvious false

positive.

Nevertheless, including such tools into FirmwareDroid can

still be helpful for researchers and the developer community.

For example, even with APKLeaks high false positive rate, we

were able to detect hard coded Github credentials in one of the

firmware samples in our corpus. In addition, we are working

on an improved version of APKLeaks to minimise the false

positive rate in future versions of the tool.

IX. CONCLUSION AND FINAL REMARKS

We showed significant differences between different

firmware vendors regarding permission usages of Android

apps. More generally, our findings are consistent with other

research [7] showing that pre-installed apps have a concerning

amount of access to dangerous permissions and therefore to

privacy-related content on smartphones. In addition, we study

the number of ad trackers detected on pre-installed apps and

compared different operating system vendors, showing that

major differences in the usage of ad trackers exist.

The majority of the static analysis tools we used in this study

are non-profit open-source projects that volunteers maintain.

Unfortunately, the tools often have a time delay to keep up

with Android’s latest changes. Therefore, it is likely that many

of the newer ad trackers or permissions are not detected and

that the used tools have unknown error rates.

Concluding, we showed that utilizing static analysis tools

with FirmwareDroid can help gathering the necessary data for

further studies. It seems that we have just seen the tip of the

iceberg when it comes to detecting ad tracking libraries and

that large parts of pre-installed app analysis remains unknown.

8https://github.com/dwisiswant0/apkleaks/blob/master/config/regexes.json

X. AVAILABILITY

Code: FirmwareDroid is open-source and freely available

on GitHub: https://github.com/FirmwareDroid/FirmwareDroid
Dataset: Our dataset is free of charge available for accredited

researchers and students. More information on GitHub: https:

//github.com/FirmwareDroid/Datasets
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