
Similarity and Location-based Real-time Loop
Closure: SNAPS for SLAM† in Unexplored

Environments
Abstract—Loop closure is an inseparable part of any accu-

rate and reliable visual simultaneous localization and mapping
(SLAM) algorithm for autonomous vehicles and mobile robots.
Loop closure potentially decreases the impact of the cumulative
drift while generating the map of the traversed environment. In
this paper, a heuristic similarity and location-based approach
for loop closure in unexplored environments is introduced.
The current SLAM implementation on average requires 0.295
seconds per frame from which only 0.0270 seconds are the
runtime latencies of the similarity and location-based real-time
loop closure (SNAPS), which includes trajectory correction. The
proposed approach results in a 65% decrease in the mean
deviation from the ground truth. In the conducted study, neither
conventional bag-of-words models, nor computationally expensive
deep neural networks have been used to detect and perform loop
closure, which makes the proposed approach both interpretable
and efficient. In fact, we propose a method which tries to find loop
closure candidates based on the location and also an interpretable
similarity score attained from the generated thumbnails of the
read frames instead of the local descriptors. Additionally, the
employed discount factor applied on the pose trajectory update
rule guarantees a consistent and accurate map. Lastly, the KITTI
dataset is used to demonstrate the efficiency and accuracy of
SNAPS for SLAM.

Index Terms—Visual simultaneous localization and mapping,
Visual odometry, Loop closure detection, Localization, Au-
tonomous vehicles

I. INTRODUCTION

One of the most important topics in autonomous vehicles
and mobile robots is simultaneous localization and mapping
(SLAM), which helps the intelligent system autonomously
navigate in unknown environments by generating a map of
the traversed environment. Additionally, SLAM allows the
intelligent system to localize itself on the calculated map.
There have been various implementations of SLAM employing
different sensors such as rotary encoders, inertial measurement
units, Global Positioning System, laser range sensors [1]–[4].
However, in this paper, we focus on visual SLAM (vSLAM)
which uses a camera as its main source of information.

Regardless of the deployed vSLAM method, while perform-
ing visual odometry, there is an inevitable drift in calculating
the trajectory of autonomous mobile systems describing the
pose of the system through time, impacting the estimated map
of the environment. Thus, to acquire a consistent and accurate
map, the intelligent system must be able to recognize formerly
visited places and create data associations between the former
points in the calculated trajectory and the revisited locations.
This association is referred to as loop closure. Recent studies,
address both traditional and deep learning-based methods for

† SLAM stands for Simultaneous Localization and Mapping

performing loop closure. As pointed out by Xia et al. [5],
the former tries to generate hand-crafted features to create a
bag-of-words with either an online or offline vocabulary for
a given environment. These hand-crafted features could be
Fisher vector [6], Vector of Locally Aggregated Descriptors
[7], Scale-Invariant Feature Transform (SIFT) [8], Speeded-
Up Robust Features (SURF) [9] or Oriented FAST and Rotated
BRIEF (ORB) [10].

The research by Arshad and Kim [11] has compared the per-
formance of the online and offline vocabularies and states that
the offline vocabulary cannot perform well if the aforemen-
tioned vocabulary is gathered from a different scene than the
test environment. This characteristic reduces the generalization
capability of these methods for unexplored environments.

Furthermore, researchers such as Arshad and Kim [11],
Shin and Ho [12] and Naseer et al. [13], suggest that one
effective way to deal with the downsides of relying on offline
vocabularies is to employ deep neural networks.

These deep learning-based methods are essentially trying to
reduce the need for hand-crafted features in creating references
for comparison. As an example, Gao and Zhang [14] have used
stacked auto-encoders to acquire feature representations which
is namely the latent space in this architecture. Thereafter, a
variant of difference between two arbitrary scenes’ feature
representation is used to determine whether loop closure
should be performed or not. The authors mention, that when
the difference is ”large”, the scenes are not considered to
be similar. However, they did not provide any insight or
method on how to assign an appropriate threshold as the design
parameter of this model. In addition, they merely focused on
the precision and recall of the deep neural network, which
were 70% and 50% respectively, and did not try to optimize
their method to reduce the computational costs.

Additionally, in another work by Zhang et al. [15], they have
used pre-trained deep convolutional neural networks, with 25
layers trained with 1.2 million images of 1000 categories, to
extract features which were then used to detect loops. Similar
to the previous example, they have calculated the distance
between feature vectors of different scenes and acquired the
similarity scores, making nearby images candidates for loop
closure with no discussion over efficiency.

Furthermore, Xia et al. [5] have claimed that hand-crafted
features which are designed based on human expertise could
potentially be non-representative. Therefore, they have com-
pared different architectures, e.g., AlexNet [16], CaffeNet [17],
GoogLeNet [18], etc., for loop closure via classification. In
order to train their architectures, they have used the informa-
tion in their dataset as ground truth to label which images in
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fact form a loop closure. Moreover, they required 39 GB of
RAM memory and an NVIDIA GTX 780 GPU in their studies.
This supervised training approach limits the use cases of this
model to scenes with available ground truth labels. In fact, this
approach merely replaces the offline vocabulary with a deep
neural network that tries to encode frame information in the
dataset which are potentially forming a loop. In summary, the
proposed method is computationally expensive and the authors
do not offer solutions for making their model more efficient
and less data-demanding.

One important note here is that, by employing deep neu-
ral networks, the trained model will be less interpretable
compared to classic vision methods; the acquired similarity
from the model’s feature vectors is also counter-intuitive,
as a human operator will not have a good understanding
of how these black box models have calculated different
feature vectors. Moreover, as pointed out by Huang et al. [19],
deep neural networks are susceptible to adversarial attacks
which can potentially deteriorate their performance given very
small but targeted changes in the input image. Furthermore,
Djolonga et al. suggest, that these models could potentially
become more robust against data distribution shifts, which
is equivalent to new unseen scenarios, by expanding their
training datasets [20]. However, one of the initial reasons
to use deep neural networks for loop closure was to make
the loop closure algorithm independent of some previously
acquired offline vocabulary or large training datasets, which
are not solved by the proposed solutions.

Additionally, studies targeting traditional methods in loop
detection suggest that local descriptors are not robust towards
all scenarios, and they leave out the entire image level details
[15], [21]. However, the convolutional layers in deep neural
networks could be a solution to this problem with the cost of
the above-mentioned drawbacks.

Therefore, to deal with the problem of local descriptors and
lack of interpretability in deep neural networks, in this paper
we have employed a hybrid similarity scoring function intro-
duced by Wang and Bovik [22] called ”universal image quality
index”, which provides a better estimate of the similarity be-
tween different scenes. The proposed similarity measurement
approach is based on calculating any distortions due to loss of
correlation, illumination distortion and contrast distortion. As
offline vocabularies have shown to be suboptimal, in the con-
ducted study we have generated low dimensional thumbnails
(in our case 1/6 of the original image size) and stored them
as representatives of the scenes as the intelligent system is
traversing the environment. The similarity calculations are then
performed on the aforementioned thumbnails. Our similarity
estimation approach has the following advantageous:

1) Keeps the entire image so that higher level details will
not be ignored as by the local descriptors

2) Returns an interpretable value as the similarity, consist-
ing of correlation and distortion values, which can be
used in later steps of loop closure

3) Reduces the computational costs as the image size has
been reduced

Fig. 1. Overview of SNAPS for SLAM

We have used these interpretable calculated similarity values
in the trajectory correction while performing loop closure. Our
proposed method is inspired by the idea of discount factor in
reinforcement learning which determines the importance of
long-term consequences of action [23].

The actions in our case are the calculated trajectory of poses
through time. Given the cumulative drift in the calculated
trajectory, the initial entries of a trajectory are more reliable
than the later ones. We use this heuristic to correct the acquired
trajectory upon detecting a loop.

In fact, once the current scene matches an arbitrary reference
scene, the currently calculated pose and some previous poses
are updated in a way which makes them more resemble the
pose at the reference scene. Numerous parameters determine
the degree of changes, a.k.a. discount factor, in updating the
previously calculated poses which include index difference,
inter-frame similarity, etc. In addition, to reduce the compu-
tational cost we aimed to reduce the number of times we
calculate similarity values by limiting the reference frames to
frames which are in the vicinity of the current frame location
(Fig. 1).

Our heuristic approach was tested on the KITTI dataset
[24], and the results show the efficiency and accuracy of our
loop closure technique. The current implementation on average
requires 0.295 seconds per frame from which only 0.0270
seconds are the runtime latencies of the similarity and location-
based real-time loop closure (SNAPS), including loop closure
and trajectory correction. It should be pointed out that the
visual odometry approach in this paper is not novel and is not
the main focus of the paper. It is possible to substitute the
visual odometry part with any desired model.

The main contributions of our proposed method are the



following:
1) Does not require any training datasets, offline vocabu-

laries or computationally expensive architectures
2) The loop closure algorithm can run in real-time and

when needed provides a reliable initial starting point for
other optimization schemas such as Bundle Adjustment

3) The employed similarity measurement is interpretable
and can be used in adjusting the pose trajectory for a
more consistent map

4) The discount factor along with the heuristic used, re-
duces the computational burden and makes our model
more efficient

The remainder of this paper is outlined as follows. First,
the preliminaries of the visual odometry and the SNAPS for
SLAM are given. Afterwards, the implementation details of the
proposed method are discussed in detail and lastly, conclusions
are made and the future work of the conducted study is
introduced.

II. PRELIMINARIES

A. Testbed

The used dataset in the conducted study is gathered from a
stereo camera mounted on the roof of a car driving through
urban areas [24]. The images are recorded with sampling time
of 0.1 seconds and the calibration data for the cameras are
provided in a separate file.

B. Disparity Map

By having data from a stereo camera, it is possible to
calculate the disparity map and afterwards the depth map of
the captured frame. Given the distance between 2 points in the
left and right image planes (x and x

′
), the focal length of the

camera (f ) and the horizontal distance between the left and
right lenses (B), the depth (z) can be calculated as follows:

z =
Bf

x− x′ (1)

For acquiring the depth map, we first use the block matching
algorithm in Open Source Computer Vision Library (OpenCV)
to calculate the disparity map and thereafter apply the disparity
map filter based on the Weighted Least Squares filter [25], and
finally convert the disparity map to a depth map.

C. Feature extraction and matching for motion estimation

We have employed feature-based visual odometry in our
model to show that even without a state-of-the-art visual
odometry model, it is possible to remove the drift from
the visual odometry with our novel loop closure approach.
Furthermore, the SIFT class from OpenCV library is used
to perform the following steps for feature extraction and
matching from consecutive frames, which can be used to
estimate the movement of the camera [26]:

1) Scale-space extrema detection
2) Keypoint localization
3) Orientation assignment
4) Keypoint descriptor generation

5) Keypoint matching
Thereafter, by using the matching keypoints and the corre-

sponding depth values from the depth map, the transformation
between two consecutive frames in the world coordinate can
be calculated as follows [27]:

x = z
u− u0

f0

y = z
v − v0
f0

(2)

where u and v describe the keypoint position in the image
plane, u0 and v0 are the offsets of the principal point from the
top-left corner of the image plane and f0 is the focal length.

D. Perspective-n-Point (PnP)

The PnP problem deals with determining the pose of a
calibrated camera given n three-dimensional points in the
world and the corresponding two-dimensional projections in
consecutive frames. Formally, the problem definition for PnP
is as follows [27]:

spc = K[R|T ]pw (3)

where pw is the homogeneous coordinates of a point in
the world frame, explained in section II-C, and pc is the
corresponding homogeneous coordinate of the point in the
image plane. Additionally, K is the calibration matrix of
intrinsic camera parameters. Lastly, R and T are the rotation
matrix and translation vector which are required. Moreover, we
have used Random sample consensus (RANSAC) algorithm
[28], to deal with outliers and find the optimal solution for
the PnP problem. Having the transformations and the pose,
now we can create a trajectory of poses of the camera and
refine it upon detecting a loop.

E. Universal Image Quality Index

Universal image quality index can be used to model any
image distortions caused by loss of correlation, luminance dis-
tortion and contrast distortion. Let x = {xi : i = 1, 2, · · · , N}
and y = {yi : i = 1, 2, · · · , N} be two images. The index is
defined as [22]:

Q =
4σxyx̄ȳ

(σ2
x + σ2

y)[(x̄)
2 + (ȳ)2]

(4)

where

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi

σ2
x =

1

N − 1

N∑
i=1

(xi − x̄)2, σ2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2

σxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ).

(5)

Moreover, this index takes the degree of linear correlation
between x and y into account along with how close the



Fig. 2. Impact of number of found loops (α) on the trajectory correction

mean luminance and the contrast of the images x and y are.
Similar to convolutional layers, this index starts from the top-
left corner of an image and slides a window of size B × B
vertically and horizontally throughout the image.

III. IMPLEMENTED METHOD

A. Thumbnail generation

While reading the image frames, we generate thumbnails of
the read images which are essentially the rescaled images to
a lower dimension (shown as x1, x2, · · · , x5 in Fig. 1). The
thumbnails are used to calculate how similar two arbitrary
frames are. In the conducted study we use 1/6 as our rescaling
factor. In addition, we generate the thumbnails online as
the frames are read, and do not require any vocabularies or
trained models which increases the generalization power of
our approach.

B. Finding loop closure candidates

As the algorithm is reading frames and calculating the pose
trajectory from the original images, the generated thumbnails
are used to check whether the currently read frame match
any of the formerly seen frames. Moreover, to reduce the
computational costs, we have designated an allowed vicinity
around every read frame, where the similarity checks are
performed. The aforementioned vicinity is depicted with a
yellow circle in Fig. 1.

As the thumbnails in the vicinity of the current frame are
checked for similarity, a designated counter, tries to control
the number of attempts for finding a similar frame in the
vicinity of the current frame. If the number of attempts exceeds
a predefined value, the process of finding a loop closure
candidate stops and the pose for the next upcoming frame
is calculated.

Additionally, if the currently read frame is the N th frame
in the trajectory, the last M frames will not be considered
as candidates for loop closure. We call this parameter M the
frame distance. This design parameter also further reduces
the computational costs of finding candidates for loop closure.
Moreover, to avoid the attempt for finding a reference frame
in scenarios such as junctions where the car or intelligent
system is entering the formerly seen frame from a different
road, we also check the yaw angle between the current pose
and the reference frame pose and if the difference is bigger

than a predefined value (in our case 10 degrees), we ignore
the reference frame.

After all the previous checks, if the similarity between the
frames in the vicinity of the current frame reach a given
threshold (in our case set to 75%), this frame will be used as
a reference to correct the last K frames in the pose trajectory,
resulting in a more consistent map. Unlike other methods
employed in recent studies, in this paper, the factors affecting
the calculated similarity index are interpretable and easy to
understand for a human operator. Thus, it is quite convenient
to fine-tune this parameter if needed.

C. Closing the loop and updating the trajectory

Once a reference frame passes all the checks for similarity
and distance to the current frame, the position is updated as
follows:

δx = xref − xcurr, δy = yref − ycurr, δz = zref − zcurr

For s ∈ [N −K,N ] :

s
′
= N − s

γ = (1− 1

e3−α∗0.01∗s′
)

xnew
s = Q.γ.δx, ynews = Q.γ.δy, znews = Q.γ.δz

(6)

where Q is the calculated similarity between the current
frame described in the world coordinates by xcurr, ycurr
and zcurr and the reference frame described by xref , yref
and zref . Additionally, the correction along different axes is
denoted as δx, δy and δz; and α is the impact of the total
number of closed loops on how the (N−K)th pose all the way
to the N th pose are updated. The impact of α on the updated
frames can be seen in Fig. 2, once the number of found loops
increases, the previous frames are less impacted by the update
rule in Equ. 6. The term γ is similar to the discount factor
in reinforcement learning [23], where the impact of previous
actions are weighted by this discount factor so they would
not be neglected in the calculations. The same principal holds
here and as the poses are calculated, the accumulated drift
increases. Therefore, the impact of corrections in Equ. 6 are
higher on later frames than previous ones, given higher value
of γ.

Once a loop is closed, the index of the last frame at the
time of loop closure is stored as the last pinned frame
and the algorithm allows another loop closure to be per-
formed if the difference between the current frame index and
the last pinned frame is higher than a threshold called
inter frame pause. This design parameter further reduces
the computation costs in numerous scenarios, e.g., when
the intelligent system is driving down a long and formerly
traversed road which already triggered loop closure.

Furthermore, in Table I, a list of the hyper parameters
with their functionalities are provided which enable SNAPS
for SLAM to be customizable when needed. The results of
SNAPS for SLAM can be seen in Fig. 3: the proposed method



Fig. 3. Impact of loop closure in the consistency of the generated map

Fig. 4. Impact of loop closure in the accuracy of the generated map

significantly reduced the impact of the accumulated drift in
visual odometry via SNAPS. Despite the accuracy of the
proposed method, SNAPS for SLAM can run in real-time and
does not require offline optimizations to provide a consistent
map. More information about the runtime latency of SNAPS
for SLAM are provided in section III-D. Additionally, the
proposed method reduces the mean of deviations from the
ground truth by 65%, decreasing it from 16.79 meters (without
loop closure) to 5.94 meters (Fig. 4).

D. Runtime latency statistics

The proposed method is developed and test on MacBook Pro
with 2.0 GHz quad-core 10th-generation Intel Core i5 CPU
and 16GB of 3733MHz LPDDR4X RAM without any use of
GPUs.

Fig. 5. SNAPS for SLAM runtime latency

Moreover, the box-plot for the computation time when the
loop closure algorithm does not find candidate frames, when
the candidate frame is found and lastly the total computation
time of visual odometry and loop closure are depicted in Fig. 5.
These have the mean values of 2.94e − 6, 0.0270 and 0.295
seconds respectively implicating the efficiency of our proposed
method.

IV. DISCUSSION AND CONCLUSION

In this paper an interpretable and efficient model for per-
forming loop closure in unexplored environments was in-
troduced. The proposed method does not require any train-
ing dataset for either generating bags-of-word nor training
computationally expensive deep neural networks for detecting
loops. The allocated design parameters in the introduced model
were defined in such a way that they were not only intuitive
to the human operator, but also could be used to impact
the behavior of SNAPS for SLAM. In addition, numerous
elements were introduced in the SNAPS for SLAM to reduce
the computational costs of this model which in the end
helped the model reach mean runtime latency of only 0.0270
seconds for performing loop closure. The aforementioned
elements include: use of thumbnails for calculating inter-frame
similarity, checks done by the design parameters such as the
search radius for finding candidate frames, frame difference
and inter-frame pause, etc. The low runtime latency of the
algorithm did not deteriorate its performance and as shown
in this paper, SNAPS was able to significantly improve the
consistency of the generated map from the KITTI dataset by
reducing the mean deviation from the ground truth by 65%.
The employed blaming factor trajectory correction ensures that
the frames impacted more by drift in visual odometry are
adjusted more according to the reference frame compared to
the previous trajectory points. For the future work of SNAPS
for SLAM it has been considered to employ a probabilistic



Design parameter Details Hints and/or tuning impact
Radius The radius of the area around the current frame checked for loop closure When decreased, reduces the computations but increases the chance of missing a loop

closure candidate
Frame difference The index difference between the current and the candidate reference frame for loop

closure
By increasing it, more frames with indices close to the last frame are ignored for loop
closure

Discount factor length Number of datapoints in the trajectory to be updated given the corrections δx, δy and
δz

Depending on the prior belief on visual odometry drift, increasing this parameter reduces
the impact of this drift

Minimum similarity The minimum required inter-thumbnail similarity for loop closure Should be increased when the scene has repetitive surface materials
Inter-frame pause The required index difference between the current candidate for loop closure and the

last one
Should be increased, in case that the initial loop closures are not reliable

Attempts The number of candidates considered for loop closure When decreased, reduces the computations but increases the chance of missing a loop
closure

TABLE I
DESIGN PARAMETERS AND THEIR TUNING GUIDES

model to adapt the parameters such as α and the constant
values in the sigmoid function given the prior knowledge
about the movement model and the presumed noise in the
sensor readings. Despite the acceptable performance of the
proposed method in the presence of pedestrians, bicycles and
other cars in the scene, another potential further development
of SNAPS for SLAM can be the fusion with deep neural
networks for removing the temporary and dynamic objects
in the scene for loop closure in heavy traffic and crowded
scenarios. In fact, highly dynamic environments can be very
challenging for conventional vSLAM algorithms, including
SNAPS for SLAM, as these environments contain moving
elements which can cause the visual odometry or the loop
closure sub-modules to have erroneous predictions. Therefore,
these scenarios require extensive study and further validation
steps, making them another potential future study case for the
improvement of the proposed method.
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