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Abstract
Conducting experiments can be time consuming and
expensive, and may not always be reasonable. Therefore,
empirical research often derives structural parameters based
on observational data and reduced-form econometric
models. The state-contingent approach presents a consis-
tent conceptual framework for analyzing producer deci-
sions under uncertainty. However, application of this
structural modeling approach has been hampered by data
constraints, particularly the lack of information for map-
ping producers’ stochastic outputs onto a set of the states of
nature representing different uncertain events. Consistent
mapping of uncertainty is particularly critical in the context
of multiple output production where weather shocks often
have different effects across crops and in microeconometric
analyses when unobserved farm heterogeneity may con-
found the effect of uncertainty. Our study demonstrates
how the application of reduced-form approaches can over-
come constraints of structural econometric modeling asso-
ciated with the lack of relevant data and presents an
approach for identifying states of nature in the context of
multiple output production using reduced-form economet-
ric models of crop yield. In an empirical application based
on Hungarian farm accountancy data, we demonstrate that
the proposed approach allows a consistent mapping of pro-
duction uncertainty in crop farming, utilizes panel data
structure, and controls for potential endogeneity due to
unobserved farm heterogeneity. We anticipate the pres-
ented approach to be useful for developing further the
state-contingent approach and to stimulate further studies

Accepted: 21 July 2023

DOI: 10.1111/ajae.12424

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.

© 2023 The Authors. American Journal of Agricultural Economics published by Wiley Periodicals LLC on behalf of Agricultural & Applied Eco-
nomics Association.

Amer J Agr Econ. 2023;1–23. wileyonlinelibrary.com/journal/ajae 1

mailto:raushan.bokusheva@zhaw.ch
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ajae
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fajae.12424&domain=pdf&date_stamp=2023-08-16


combining the strengths of structural approaches and
reduced-form models.
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1 | INTRODUCTION

The last 2 decades of research on the effect of uncertainty on agricultural producers’ decisions and
risk management in agriculture have been characterized by a movement away from structural
approaches (Tack & Yu, 2021). This development was induced by the “credibility revolution,” which
disclosed the empirical difficulty of obtaining consistent estimates of structural parameters—a trend
that is characteristic for numerous economic disciplines (Tack & Yu, 2021; Angrist & Pischke, 2010).
It resulted in much empirical research relying on reduced-form econometric approaches and,
accordingly, focusing on the estimation and identification of specific parameters of corresponding
structural models.1

The lack of full information on underlying structural (data-generating) processes considerably
impacts empirical researchers’ prospects for drawing consistent inferences (Angrist & Pischke, 2010;
Tomek, 1998). At the same time, conducting experiments is time consuming, expensive, and may
not always be feasible or an adequate solution. In this context, empirical research often relies on
observational (i.e., nonexperimental) data. However, observed variables may not (always) be suitable
measures of underlying concepts, or no data may exist for some concepts and processes.2

There is potentially no other structural approach in agricultural economics whose application
has been as strongly hampered by data constraints as the state-contingent approach. Much of empir-
ical research investigating production decisions under uncertainty and producers’ risk preferences
continues to rely on the expected utility framework and the stochastic production function approach
(Tack & Yu, 2021). In his recent paper, Quiggin (2022, p. 718) emphasizes that “the analytical tools
applied to the problem of the firm under uncertainty were derived under the assumption of
expected-utility maximization,” despite the pathbreaking insight by Debreu that the concept of a
state-contingent commodity “allows one to obtain a theory of uncertainty free from any probability
concept and formally identical with the theory of certainty” (Debreu, 1959, p. 98, as cited in
Quiggin, 2022, p. 718). Quiggin also points at the fact that “little account has been taken of theoreti-
cal advances in the theory of choice under uncertainty” in the analysis of production under uncer-
tainty (Quiggin, 2022, p. 722).

Using the Arrow–Debreu conceptual framework for representing uncertainty in terms of a set of
states of nature and mapping them onto particular uncertain events, Chambers and Quiggin (2000)
have demonstrated that most empirical representations of stochastic technologies, including Just and
Pope’s (1978) stochastic production function, place severe restrictions on stochastic technology. In
this context, Chambers and Quiggin (2000) refer to an “output-cubical technology,” that is, a tech-
nology characterized by the absence of output substitution across states of nature.

Chambers and Quiggin (2000) have also demonstrated that producers’ input use depends on out-
puts in all possible states of nature, that is, not on singular realized states as is implicitly assumed in
the standard stochastic production function framework. Accordingly, considering that observed out-
puts (in specific periods) are associated with a single state of nature and thus incompletely reflect the
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effect of production uncertainty, there exists a serious identification problem in modeling producers’
decisions under production uncertainty (Chavas, 2008). According to Chavas (2008), “we cannot
estimate the ex ante technology without observing all possible outputs (meaning outputs under all
possible states, and not just for the realized state)” (p. 439).

In our study, we address this aspect of state-contingent production technology modeling by dem-
onstrating how a reduced-form approach can be applied to address the well-known identification
problem associated with the conditioning on observables when deriving causal inferences. To this
end, we build on the recent advantages in modeling the reduced-form relationships between weather
and crop yields using panel data on historical weather observations and crop yield.

Considering that year-to-year variation in the weather in a fixed location is random and
exogeneous to a crop’s yield, the reduced-form relationship between ex-post crop yield observations
and weather records is clearly identified and can be considered a quasi-natural experiment
(Schlenker & Roberts, 2006, 2009). Consequently, reduced-form econometric models of crop yield
estimated using farm crop yield data and historical weather observations for the corresponding geo-
graphical location can be considered as useful tools for establishing a consistent mapping between a
farm’s stochastic output and location-specific interannual weather variation.

However, weather shocks often exhibit different effects across crops. A state of nature may be
simultaneously favorable for producing one output (or several outputs) and unfavorable for another
output (or some other outputs). In this setting, producers often allocate inputs to the production of
outputs/crops that demonstrate different degrees of sensitivity to specific weather events. Thus,
state-contingent outputs depend on both the realized states of nature and on farmers’ efforts aimed
at reducing the effect of production uncertainty on farm output (Chambers & Quiggin, 2000).
Consequently, ignoring farmers’ actions, such as portfolio diversification, may hinder the identification
of production uncertainty’s effect on production technology. To address this aspect, we propose a
mapping procedure that considers each state’s effects on specific farm outputs/crops.

Furthermore, a consistent mapping of individual producers’ production outcomes onto a set of
uncertain events may be particularly complicated in the context of microeconometric analyses. This
is because the impact of production uncertainty on state-contingent outputs can be confounded by
unobserved farm heterogeneity. Specifically, the same input combination may produce different
amounts of output under the same state of nature in the presence of unobserved farm heterogeneity.3

In this context, it is important to employ a mapping procedure that considers panel data structure
and allows application of the estimation methods addressing omitted variable endogeneity. In an
empirical application based on a panel dataset for a sample of Hungarian cereal producers, we dem-
onstrate that the proposed approach utilizes panel data structure and enables us to control for poten-
tial endogeneity bias.

In the subsequent section, we summarize the aspects that have been addressed in previous empirical
applications of the state-contingent approach. Additionally, we provide a short overview of the recent
advances in the modeling weather–yield relationships using reduced-form models. Section 3 describes
the methodological framework applied in the study, including the proposed empirical strategy for map-
ping production uncertainty and the state-contingent production technology formulation employed in
the empirical application. Section 4 presents the data and empirical procedure used in our empirical
application and summarizes its main results. The final section concludes.

2 | RESEARCH BACKGROUND

2.1 | Empirical applications of the state-contingent approach

Only a few studies have applied the state-contingent approach to modeling producer behavior under
uncertainty. Most studies in this line of the literature have explored options to resolve identification
problems associated with empirical implementation of the state-contingent approach.
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In this context, Chavas (2008) refers to serious identification problems when only one particular
outcome is observed for each period/study unit, that is, in the absence of information/knowledge
about all possible outcomes/states of nature. He also cautions of potential identification bias in situa-
tions where one single factor/indicator is used to distinguish between specific states of nature, as
such a representation of production technology imposes separability of the stochastic factors deter-
mining output uncertainty (Chavas, 2008). In addition, O’Donnell and Griffiths (2006) draw atten-
tion to the fact that variables representing states of nature typically remain unobserved to the
researcher. Nauges et al. (2011); henceforth, NOQ (2011) refer to identification problems, which
may arise in the context of cross-sectional or panel data. In particular, by defining generic states of
nature, such as “good,” “normal,” and “bad,” empirical studies risk ignoring the fact that states of
nature may differ from producer to producer, for example, a good state for one farmer may be
another farmer’s normal state.

To address the identification problem, different empirical strategies have been developed in the
state-contingent literature. O’Donnell and Griffiths (2006) present an approach involving a Bayesian
latent class model to estimate a state-contingent stochastic frontier model subject to rainfall uncer-
tainty. In their empirical application, the authors show that when state-contingent uncertainty plays
a major role, the standard stochastic frontier approach may significantly overestimate producers’
technical inefficiency.

Chavas (2008) proposes an approach for estimating cost-minimizing input choices with two
states of nature and testing the assumption of output-cubical technology in the context of a time
series analysis. In particular, based on an aggregated crop yield index, he specifies an auxiliary func-
tion to simulate for each period potential states of nature to represent production uncertainty in the
context of United States (U.S.) agriculture. Chambers and Serra use an akin econometric procedure
to identify two states of nature in the context of output price uncertainty.4

To address the issue of missing information on relevant stochastic prospects, Chambers et al.
(2015) have proposed a mapping strategy involving expert knowledge and a farm survey. Although
this empirical strategy presents several advantages, such as a direct elicitation of producers’ subjec-
tive expectations, it may also be susceptible to identification bias, for example, if respondents apply
inconsistent mapping rules and/or their assessments are subject to measurement errors. Moreover, if
the degree of subjectivity and respectively probability assessments for generic states of nature formu-
lations such as “good” and “bad” vary substantially across producers, embedding producers’ subjec-
tive assessments may lead to a biased representation of production uncertainty and consequently
threaten identification.

Interestingly, most empirical studies have failed to reject the assumption of output-cubical tech-
nology that excludes output substitutability across states of nature. To the best of our knowledge,
NOQ’s (2011) study is the only investigation that provides empirical support for output substitut-
ability between different states of nature. NOQ (2011) define states of nature for Finnish grain pro-
ducers using two indicators of weather conditions, specifically, the season-specific start date of the
growing period, and the cumulative rainfall in June. To this end, they compare average crop yields
(computed using their farm data) under different weather conditions, as represented by the two
above-mentioned weather indicators. Subsequently, they assign each farm-year observation a specific
state of nature subject to the corresponding observed values of the selected weather indicators.5

Another distinctive feature of NOQ’s (2011) research is that it was the first study to that formu-
lated states of nature in the context of multiple output production. Although it employs a production
function formulation with one aggregate output, their model distinguishes between land input allo-
cations to three different crops. However, NOQ (2011) define their states of nature in terms of their
suitability for growing one particular crop that is a rather restrictive assumption considering that
weather conditions in a production period may be simultaneously favorable for several crops grown
by a farmer.6

An overview of the main state-contingent technology formulations used in the literature can be
found in Shankar (2012).
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2.2 | Reduced-form econometric models of crop yield

Statistical crop yield models have been extensively used over the past decade to investigate the
impact of climate change on agricultural productivity (e.g., Ortiz-Bobea & Just, 2012; Roberts
et al., 2012; Schlenker & Roberts, 2009; Tack et al., 2015). This recent research goes back to the work
by Mendelson et al. (1994), who proposed to regress land values on a set of weather variables in
order to identify the net impacts of climate on agriculture. As crop yields are better suited to repre-
sent the impacts of weather variation on agricultural productivity and at the same time show high
correlations with economic outcomes, recent research on the topic focused on improving the capac-
ity of statistical crop yield models to provide consistent estimates of the weather–yield relationship.

Furthermore, Schlenker and Roberts (2006) refer to a serious limitation of cross-sectional
approaches to modeling the impact of climate change on an economic outcome such the Ricardian
approach by Mendelsohn et al. (1994). Particularly, cross-sectional approaches may be susceptible
for the omitted variables problem. As it is hardly possible to include into the model all relevant fac-
tors potentially correlated with the current climate, cross-sectional approaches may confound cli-
mate with other factors and, thus, provide biased estimates. To address this problem, in their study
on nonlinear effects of weather on county-level corn yields, Schlenker and Roberts (2006) formulate
a panel model with the county fixed effects. According to these authors, “The use of fixed effects
avoids the problem of omitted variables, as they are lumped together in the fixed effects.”
(Schlenker & Roberts, 2006, p. 393). Accordingly, by capturing time-invariant heterogeneity across
study units through the introduction of fixed effects, reduced-form panel models of crop yield allow
identification of the effects of interannual weather variation on crop yields. This explains why recent
studies on the topic have applied mainly fixed-effects model formulations of crop yield models
(Ortiz-Bobea & Just, 2012; Roberts et al., 2012; Schlenker & Roberts, 2009; Tack et al., 2018).

Important contributions in this line of literature addressed aspects such modeling nonlinear tem-
perature effects and impacts of extreme heat on crop yields (Schlenker & Roberts, 2006, 2009; Tack
et al., 2015), a more explicit consideration of adaptation processes (Burke & Emerick, 2016; Ortiz-
Bobea & Just, 2012), identifying weather-driven changes for different moments of crop yield distri-
butions (Tack et al., 2012), and controlling for endogeneity of prices in yield and land use regression
models (Miao et al., 2016).

To model the impact of heat on crop yields, Schlenker and Roberts (2006, 2009) propose to mea-
sure the time a crop is exposed to each 1�C temperature interval during a day (i.e., degree days). By
using yields for corn, soybean and cotton and daily weather records for the U.S. counties, Schlenker
and Roberts (2009) have shown that yields increase with temperature up to 29�C for corn, 30�C for
soybeans and 32�C for cotton, and decrease sharply above these thresholds for all three study crops.

Schlenker and Roberts (2006, p. 391) argue that reduced-form models of weather–yield relation-
ships formulated using location-specific weather observations (which are random and exogeneous)
can be considered as a natural experiment. Furthermore, they refer to the superiority of their
approach allowing to evaluate non-linear temperature effects on crop productivity and to derive “the
consummate effects of weather on yields” compared to the reduced-form approaches that “ignore
the distribution of weather realizations around their averages,” for example, crop model formula-
tions employing average daily temperature and cumulative precipitation for single months of plant
vegetation (Schlenker & Roberts, 2006, p. 392).

More recently, Massetti et al. (2016) showed that for agricultural production in the United States
degree days and temperature variables are perfect substitutes over the growing season. Massetti et al.
(2016) also show that the effect of temperature is not the same in each season. Considering this find-
ing, they stress that aggregating temperature measures over a crop’s entire growing season may miss
the specific effects of meteorological seasons. Empirical results of the study on the impact of
warming temperatures on U.S. winter wheat yields by Tack et al. (2015) support this argument.
Specifically, they indicate that the sensitivity of winter wheat to temperature exposure varies consid-
erably over the meteorological seasons considered in their study (i.e., fall, winter and spring). Tack
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et al. (2015) refer also to differences in the shape of the precipitation effects on winter wheat yields
across spring and autumn.

Ortiz-Bobea and Just (2012) draw attention to that even season-long weather variables may fall short
to capture adequately varying sensitivity of plants to weather at different phenological stages and recom-
mend to formulate weather variables based on existing scientific knowledge of the underlying mecha-
nisms of the weather impact on production. In their empirical example, they use a statistical corn yield
model with weather variables measured for the key stages of the corn phenology. This procedure allows
them to estimate model coefficients that are not fixed to calendar periods but single stages of plant
growth, which can move with shifts in growing seasons induced by climate change.

Whereas most studies predict climate change impacts on crop yield conditional means, Tack
et al. (2012) propose an approach enabling weather effects to be evaluated using conditional higher
order moments of the yield distribution, as raising temperatures may change not only expected
yields but also the shape of yield distributions. Subsequently, they propose utilizing the moments of
the distribution estimated using the maximum entropy method to construct yield distribution under
selected climate and irrigation regimes.

Recent research on modeling the weather–yield relationship advanced the capacity of reduced-
form crop yield models to infer the impact of weather variation on crop yields and made them a
powerful tool for identifying weather-related production uncertainty in crop farming. The most
recent review of the methods used in this research line can be found in Ortiz-Bobea (2021).

3 | METHODOLOGY

3.1 | Formulation of states of nature

Basic features of states of nature

Chambers and Quiggin (2000, pp. 17–18) describe a comprehensive set of states of nature as “a
mutually exclusive and exhaustive set of possible descriptions of the state of the world.” Simulta-
neously, they claim that a complete description is impossibly complex, which is why the state space
must disregard those features of the environment that are irrelevant to the problem under consider-
ation and instead capture only those features that are pertinent. Additionally, they define the state
space as a Cartesian product of all pertinent characteristics of the environment.

Furthermore, Chambers and Quiggin (2000) underline the importance of considering decision-
makers’ actions aimed at addressing production uncertainty. Accordingly, they distinguish between
the states of nature (i.e., states of the world/environment) and outcome states that are formulated
based on the outcomes of a production process. Considering that production outcomes are deter-
mined based on both states of nature and decision-makers’ actions, using data on observed outputs
to formulate states of nature will, indubitably, cause an identification problem. Moreover, Chambers
and Quiggin state that if the outcome for any action undertaken by a decision maker remains the
same across a number of states of nature under consideration, they can be collapsed into a single
state of nature (2000, p. 18).

In our study, we build on these basic features of states of nature summarized by Chambers and
Quiggin (2000) to develop an empirical strategy for formulating states of nature in a multiple output
production context.

Multiple outputs and multiple uncertain events

To manage production uncertainty, farmers usually produce outputs/crops with varying degrees of
sensitivity to different weather events. They frequently select crops that demonstrate significant
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differences in growing periods and phenology, for example, winter grains and spring grains. Accord-
ingly, diverse sets of weather events may be relevant for growing different crops and must be, there-
fore, considered when mapping relevant sources of production uncertainty in a multiple output
production context.

Consider the following example: A farmer specializes in the production of a specific crop (e.g., a
spring grain) that exhibits high sensitivity to drought in June; let us call it Crop 1. To reduce this
source of production uncertainty, the farmer may decide to produce another crop, such as a winter
grain, which we call Crop 2. Compared to Crop 1, Crop 2 exhibits lower sensitivity to drought. How-
ever, Crop 2 is more prone to another source of production uncertainty—extensive rainfall in late
fall—which is on its part not of great relevance for growing Crop 1. In this context, the farmer must
decide about the amount of land and other inputs to be allocated to the production of each of the
two crops. Accordingly, the farmer’s ex-ante decision regarding input allocation to Crop 1 depends
on their assessment of the production uncertainty for both Crop 1 and 2. Effectively, as presented in
Table 1a, the farmer must make their input allocation decisions considering the uncertain events
pertinent for growing both crops.

Furthermore, considering that, typically, multiple sources of production uncertainty exist in agri-
culture, it is important to capture their joint effect on output during a production period. Referring
to the previous example, imagine that the productivity of Crop 2 is contingent not only on extensive
rainfall in late fall but also the temperature and rainfall regime in early spring (because cold and
rainy weather in March and April may kill young plants). Consequently, the state space presented in
Table 1a must be adjusted to account for this additional source of production uncertainty for Crop
2 to adequately capture the effects of production uncertainty. This modified example is summarized
in Table 1b.

The above-presented examples emphasize the following: First, states of nature should reflect the
weather outcomes that are relevant to growing all major crops/outputs produced on a farm. Second,
in the presence of several uncertain events, states of nature formulations should account for their
joint (cumulative) impacts on the productivity of the respective crop. Third, in a multiple output
production context with multiple uncertain events, the dimension of the state space may increase
considerably for each additional study crop and uncertain event. This aspect requires a procedure
that allows state space dimensionality reduction without forcing abstraction from relevant character-
istics of the environment. The latter is however a desirable property only when producers do not
undertake distinct efforts to address a particular uncertain event.

Another aspect to be considered when formulating states of nature in a multiple output pro-
duction context is that producers’ actions aimed at exploiting potential substitution between dif-
ferent output types may significantly influence output substitutability across states of nature.
This consideration requires a production technology representation that enables the modeling of
multiple output correspondence with both the formulated states of nature and varying input
bundles applied by producers.

3.2 | Identifying states of nature based on reduced-form models of crop yield

We believe that recent advances in the modeling weather–yield relationships have made
reduced-form econometric models of crop yield to powerful tools for mapping weather-related
production uncertainty in agriculture. First, they are helpful in identifying weather events that
significantly influence the productivity of specific crops. Second, they allow one to capture the
complex relationships between crop yields and diverse weather events and enable assessments of
their joint (cumulative) effect. Accordingly, the resulting conditional yield estimates can be used
to derive a relatively compact set of weather characteristics/outcomes that capture the joint
effects of multiple weather events. Finally, using panel approaches for modeling crop yield
responses to interannual weather variation may help establish consistent correspondence

BOKUSHEVA and BARÁTH 7



between sample farms’ production data and annual weather records for corresponding locations
(e.g., grids showing a farm’s location).

To identify weather events that explain a considerable part of year-to-year variation in farm crop
yields, we propose using the following basic reduced-form crop yield model formulation:

lnyjit ¼w0
jitβjþujiþ f j tð Þþϵjit , ð1Þ

where yjit is the yield of crop j¼ 1,…J in farm i¼ 1,…N and year t¼ 1,…,T ; wjit is the vector of
relevant weather variables for crop j, computed using weather records for farm i’s location; and βj is
the vector of the corresponding coefficients. uji are farm fixed effects used to control for time-
invariant (omitted) factors that may confound the weather impact on crop yields (Schlenker &

T A B L E 1 B Specification of the state space for the example with two crops and three sources of production uncertainty.

Crop 1 

Drought in June 

(DJ)

No drought in June 

(NDJ)

Crop 2 

Extensive

rainfall (ER) 

in late 

autumn  

Unfavorable

rainfall-temperature 

regime in early 

spring (URTS) 

DJ, ER  & URTS NDJ, ER & URTS 

Favorable rainfall-

temperature regime 

in early spring 

(FRTS)

DJ, ER & FRTS NDJ, ER & FRTS 

No

extensive 

rainfall

(NER) in 

late autumn 

Unfavorable

rainfall-temperature 

regime in early 

spring (URTS) 

DJ, NER & URTS NDJ, NER & URTS 

Favorable rainfall-

temperature regime 

in early spring 

(FRTS)

DJ, NER  & FRTS NDJ, NER  & FRTS 

T A B L E 1 A Specification of the state space for the example with two crops and two sources of production uncertainty.

1porC

Drought in June 

(DJ)

No drought in 

June (NDJ) 

Crop 2 

Extensive

rainfall (ER) in 

late autumn 

DJ, ER NDJ, ER 

No extensive 

rainfall (NER) in 

late autumn 

DJ, NER NDJ, NER 

8 IDENTIFYING STATES OF NATURE USING CROP YIELD MODELS



Roberts, 2006), f j tð Þ are crop-specific time trends employed to capture the technical change effect,
and ϵjit is the stochastic error term.

The model in Equation (1) can be consistently estimated using e.g. Conley’s heteroskedasticity
and spatial and serial correlation consistent (HAC) estimator (Conley, 1999; Hsiang, 2010) or a spa-
tial error model (SEM) (Ortiz-Bobea, 2021).7 In our empirical application, we apply Conley’s estima-
tor, which is used more frequently than the SEM estimator (Ortiz-Bobea, 2021).

Subsequently, we use estimates of the model in Equation (1) for major (specific) crops produced
by sample farms, to derive quasi-experimental observations of crop yields. Akin to the approach pro-
posed by Chavas (2008), in the context of a time series analysis and aggregate production output, we
propose to capture production uncertainty by an auxiliary yield index. However, instead of
employing a single auxiliary index derived using an aggregate yield index, we derive crop-specific
auxiliary yield indices. Considering the model formulation in Equation (1), we define them
as follows:

hjit ¼ exp w0
jitβj

� �
: ð2Þ

Equation (2) demonstrated that hjit is derived based on the conditional mean of crop j, using his-
torical realizations for the vector of weather variables w in Equation (1). Given the exogenous nature
of weather and consistency of estimates obtained from the fixed-effects model formulation in
Equation (1), hjit consistently captures the effect of interannual weather variation on respective crop
yields for each sample farm-year observation and can be considered as quasi-experimental data cap-
turing the impact of weather-related production uncertainty.

After deriving hjit , a straightforward mapping of the weather-related production uncertainty (associ-
ated with the production of each specific crop) can be established by splitting the corresponding hji dis-

tribution into Kj intervals8: rji1 ¼ �∞,qji1

� �
, rji2 ¼ qji1,qji2

� �
,…, rjiKj ¼ qjiKj�1,∞

� �
, where

qji1 < qji2 <… < qjiKj�1 could be particular selected quantiles or other measures of location of auxiliary

index distribution for crop j and farm i over the period under consideration. This procedure helps us
determine for each sample farm and study crop a set of Kj nonoverlapping auxiliary index intervals
representing crop-specific weather outcomes.

Then, we define our state space as a Cartesian product of the sets of crop-specific weather out-
comes. Considering J crops with Kj intervals each, it comprises S¼QJ

j¼1Kj intersections of all iden-
tified weather outcomes/auxiliary index intervals. For example, in the case of three crops with two
nonoverlapping intervals each—namely, (i) below than or equal to, and (ii) above the respective aux-
iliary index threshold, such as the mean or the median, the state set would comprise a total of eight
states of nature.9

In Figure A1 of the Appendix, we present the aforementioned procedure using a basic hypotheti-
cal example with two crops having two weather outcomes each. We also use this example to exem-
plify the construction of two types of dummy variables, namely, states of nature dummy variables es
(s� S¼ 4Þ and weather-outcome dummy variables ejkj(kj �Kj ¼ 2). In our empirical application we
show, how this type of variables can be used for the operationalization of an empirical model of
state-contingent production technology.

The presented strategy for mapping production uncertainty allows states of nature to be favor-
able for growing one particular crop and unfavorable for all other crops grown by a farmer—a map-
ping rule used by NOQ (2011). Concurrently, it does not exclude situations wherein a state of nature
can be simultaneously favorable for a number of crops produced on a farm. It neither exclude situa-
tions wherein the sources of production uncertainty may vary across different farm outputs.

Further, this approach for formulating states of nature can be extended to consider other sources
of uncertainty, such as disease or pest damages, which can also be crop specific.10
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3.3 | State-contingent technology model with technical inefficiency

To exemplify the proposed approach for mapping states of nature, we apply a production-function
model that builds upon the state-contingent production technology representation proposed by
O’Donnell et al. (2010)11:

lnqs ¼ b�1 lnxs� lnasð Þ, ð3Þ

where qs denotes output realized under state of nature s (s�Ω¼ 1,2,…, S); xs is the amount of non-
stochastic input allocated to state s; parameters as ≥ 0 are interpreted as technical parameters specific
to the production of output in state of nature s. Further, b can be interpreted as the cost flexibility indi-
cator and expresses the magnitude of output substitutability across states of nature. b is restricted to be
greater than unity, which implies that the technology exhibits nonincreasing returns to scale (OCQ, 2010).

Based on Equation (3), the state-specific input requirement function is defined as the amount of
the input that must be committed in period 0 if output qs is to be realized when Nature chooses s
from Ω, viz.:

xs ¼ asq
b
s : ð4Þ

In a basic case with two states of nature, the producer must allocate ex ante a total input amount
x¼ x1þx2 to a specific state of nature. This enables them to produce q1 when Nature draws s¼ 1
and q2 when Nature draws s¼ 2 (QCO, 2010):

a1q
b
1þa2q

b
2 � g q1,q2

� �
: ð5Þ

Technically feasible production patterns are then defined by introducing a convex transforma-
tion function:

t q1,q2,x
� �¼ g q1,q2

� ��x: ð6Þ

Accordingly, the producer is technically efficient if t q1,q2,x
� �¼ 0 and technically inefficient if

t q1,q2,x
� �

< 0. Expressed in terms of the input distance function, this corresponds to

DI x,q1,q2
� �¼ x

g q1,q2
� � , ð7Þ

where DI ¼ 1 for technically efficient producers, and DI > 1 for technically inefficient producers.
The output-oriented efficiency measure for the technology formulation in Equation (4) has the

following form:

DO q1,q2,x
� �¼ g q1,q2

� �1
bx�

1
b, ð8Þ

that is the constant elasticity of transformation (CES) output distance function (OCQ, 2010). In this
case, DO ¼ 1 for technically efficient producers, and DO < 1 for technically inefficient producers.

The above-presented model of a state-contingent technology assumes that the vector of state-
contingent outputs is known, in particular, the effect of uncertainty on producer’s output is identi-
fied by the set q1,q2

� �
. It also assumes that the inputs are state specific, that is, an input allocated to
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a given state of nature contributes to the production of output only in that particular state of nature
(Shankar & Quggin, 2013).

OCQ’s (2010) model was extended by NOQ (2011, Equation (4)) to a more flexible CES-type
model, differentiating between one state-allocable input, xs, and a vector of non-state-allocable
inputs zp:

qs ¼As θbxbþδbs x
b
s þ

XP
p¼1

γbpz
b
p

" #ϕ=b

, ð9Þ

where x¼PS
s¼1

xs is the total use of the state-allocable input
13, which allows the production output to

be nonzero in state of nature s even if no input is allocated to this state; δs is a measure of how pro-
duction output in state s responds to an input allocation to that particular state. Finally, b≠ 0; ϕ > 0
and As � a�1=b

s ≥ 0.14

The production technology as defined in Equation (9) can exhibit increasing, constant, and
decreasing returns to scale (RTS) subject to the value ϕ, corresponding to ϕ < 1,ϕ¼ 1 and ϕ > 1,
respectively. The supply elasticities for the state-allocable input in individual states of nature can be
derived by differentiating the expression in Equation (9) by the variable representing the allocation
of this input to the corresponding state of nature, xs (NOQ, 2011):

lnqs
lnxs

¼ ϕ θbxb�1xsþδbs x
b
s

� �
θbxbþδbs x

b
s þ

PP
p¼1

γbpz
b
p

: ð10Þ

To estimate the model presented in Equation (9) using observational data on ex-post output real-
izations, NOQ (2011) attribute ex-post output observations to a total of three pre-identified states of
nature using information regarding weather suitability for growing different study crops. Particu-
larly, they assigned observations on their state-allocable input to specific states of nature using a state
dummy variable es, which takes value 1 when Nature chooses state s, and 0 otherwise. Accordingly,
they rewrite the model in Equation (10) as follows:

lnq¼
XS

s¼1

es lnAsþ ln θbxbþ
XS

s¼1

δsesx
b
s þ

XP
p¼1

γbpz
b
p

" #ϕ=b

, ð11Þ

In contrast to the models in Equations (3) and (7)–(10), wherein state-contingent outputs are
known, the model in Equation (11) is formulated in terms of ex-post realizations of producers’ sto-
chastic outputs that correspond with states of nature unknown to the researcher. To solve the identi-
fication problem, NOQ (2011) define farmers’ stochastic outputs being conditional on both the
input use and S states of nature identified externally to the model. As mentioned earlier, the infor-
mation on states of nature is inputted into the model using the dummy variable es.

Chambers and Quiggin (2000) refer to this technology formulation as a state-contingent
production function and describe it using the following general notation: q¼ f (x1SÞ, where x is a
quasi-fixed input chosen by the farmer prior to Nature’s draw from the state space, and 1S is an S-
dimensional unit vector. O’Donnell and Griffiths (2006) propose expressing this production function
model, defined as a stochastic frontier, as lnq¼ f s(xÞ�u,15 to stress that, in this technology formula-
tion, for each state of nature there exists its own state-contingent production function.

Another important feature of the model in Equation (11) is that it assumes separability.16
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3.4 | State-contingent frontier model formulation for panel data

To exemplify the identification strategy presented in Section 3.2, we rewrite the model in
Equation (11) as follows:

qit ¼
XS

s¼1

esAs

!
θbxbitþ

XS

s¼1

XJ

j¼1
δbsjesx

b
jitþ

XP
p¼1

γbpz
b
pit

" #ϕ=b

, ð12Þ

where i¼ 1,…,N and t¼ 1,…,T are the farm and time subscripts, respectively. xjit denotes land

allocated to crop j¼ 1,…, J in farm i and period t, and xit ¼
PJ
j¼1

xjit is the total land use in the respec-

tive farm and period. s (s¼ 1,…,S) denotes one particular of S states of nature, and es is a dummy
variable that takes value 1 if Nature selects in the location of farm i in year t state of nature s and 0
otherwise.

The main difference between the models in Equations (12) and (11) is the way of formulating
the states of nature. Using quasi-experimental data to summarize the effects of interannual weather
variation on productivity of specific crops grown by sample farmers, we can formulate the states of
nature by considering their effects on different crops grown in sample farms. Specifically, we can
account for the fact that weather conditions in the same production period may be either simulta-
neously favorable or unfavorable or have diverging effects on productivity of two or more crops
grown by a farmer. Accordingly, the δ-parameters in the model in Equation (12) vary across both
states of nature and crops, and consequently denoted as δsj.

The technology formulation in Equation (12) requires the estimation of an SJ-dimensional vector
of δ-parameters measuring how the output in state s responds to the allocation of land to crop j.
Moreover, it requires a set of restrictions to ensure identification; particularly, the δ-parameters for
crop j cannot differ across those states of nature, which accommodate the same weather outcome for
that crop. Herein, we exemplify this aspect using a simple example with two crops as follows: Crop 1
(j¼ 1) and Crop 2 (j¼ 2), each having two coarse weather outcomes—“unfavorable” (kj ¼ 1) and
“favorable” (kj ¼ 2). In this example, our approach for formulating states of nature results in a total
of four states: two states, bearing the predicates “unfavorable,” and two states, bearing the predicate
“favorable,” for each crop. Let us define s¼ 1 as the combination of weather outcomes unfavorable
for both crops, kj¼1 ¼ 1,kj¼2 ¼ 1

� �
; s¼ 2 as the combination of weather outcomes unfavorable for

Crop 1 but favorable for Crop 2, kj¼1 ¼ 1,kj¼2 ¼ 2
� �

; s¼ 3 as the combination of weather events
favorable for Crop 1 but unfavorable for Crop 2, kj¼1 ¼ 2,kj¼2 ¼ 1

� �
; and s¼ 4 as the combination

of weather outcomes favorable for both crops, kj¼1 ¼ 2,kj¼2 ¼ 2
� �

. Accordingly, the following
restrictions on the set of δ-parameters would be required: δj¼1s¼1 ¼ δj¼1s¼2; δj¼1s¼3 ¼ δj¼1s¼4;
δj¼2s¼1 ¼ δj¼2s¼3 and δj¼2s¼2 ¼ δj¼2s¼4.

However, it is possible to derive a more efficient estimator by reformulating the model in
Equation (12) as follows:

qit ¼
XS

s¼1

esAs

!
θbxbitþ

XJ

j¼1

XKj

rj
δbjkj ejkj x

b
jitþ

XP
p¼1

γbpz
b
pit

" #ϕ
b

, ð13Þ

where ejkj is a dummy variable referring to a specific weather outcome/auxiliary index interval
kj ¼ 1,…,Kj for crop j.

In the model in Equation (13), the δ-parameters directly refer to corresponding weather out-
comes kj, forming our state space. Therefore, we can define δjkj= δjs, 8kj � s. Accordingly, compared
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to the model in Equation (12), the number of δ-parameters can be reduced in this model to
PJ
j
Kj,

that is, by JS�PJ
j
Kj= J

QM
j¼1Kj�

PJ
j
Kj parameters. For the above-presented example with four

states of nature each formed by two specific weather outcomes, this model formulation would
involve four parameters less than the model in Equation (12).

By differentiating for each crop j between Kj subsets, each associated with a specific weather
outcome,17 the model in Equation (13) allows deriving, in addition to the marginal rate of technical
substitution (MRTS) of the total land input between each pair of states, the MRTS of land allocated
to crop j between each pair of states accommodating district weather outcomes for that crop, kj ¼ l

and kj ¼m (m≠ l), as
∂q=∂xj ejkj¼l

��
∂q=∂xj ejkj¼m

�� :

To demonstrate our empirical strategy for mapping production uncertainty, we utilize a special
case of the model in Equation (11), referred to in NOQ (2011) as FLEX0.18 NOQ (2011) formulate it
as a stochastic frontier model, viz.:

lnq¼
XS

s¼1

lnAsesþθ lnxþ
XS

s¼1

δsesds lnxsþ
XP
p¼1

γpgp lnzpþ v�u, ð14Þ

where b! 0 and ϕ¼ 1; es is a dummy variable that takes value 1 if Nature picks state s, and 0 other-
wise; ds ¼ I xs > 0ð Þ and gs ¼ I zs > 0ð Þ are indicator functions that take value 1 if the argument is true,
and 0 otherwise (NOQ, 2011).19

NOQ (2011) have proposed the use of the following parameterization: σ2 ¼ σ2uþσ2v and λ¼ σ2u
σ2uþσ2v

to estimate the model as a stochastic frontier model. Additionally, they have assumed that the sto-
chastic error term in this model subsumes any errors associated with the fact that it presents a limit-
ing case of the model in Equation (11).

We augment the model in Equation (14) as follows:

lnqit ¼
XS

s¼1

es lnAsþθ lnxitþ
XJ

j¼1

XKj

kj¼1

δjkj ejkjdj lnxjit þ
XP
p¼1

γpgp lnzpitþ ctþ vit�uit , ð15Þ

where dj ¼ I xjit > 0
� �

and gp ¼ I zpit > 0
� �

are indicator functions that take value 1 if the respective
condition in parentheses is fulfilled, and 0 otherwise. Year fixed effects ct control for factors that are
constant across farms but vary over time including the effect of technical change. The remaining var-
iables and indices are specified in the same way as in the model in Equation (12).

To control for time-invariant unobserved heterogeneity, we rewrite the model in Equation (15)
as the true fixed effects (TFE) stochastic frontier model (Greene, 2005) as follows:

lnqit ¼ωiþ
XS

s¼2

es lnAsþθ lnxitþ
XJ

j¼1

XKj

kj¼1

δjkj ejkjdj lnxjitþ
XP
p¼1

γpgpit lnzpit þ ctþ vit�uit , ð16Þ

where ωi are farm fixed effects. In this model formulation, s¼ 1 is the reference state of nature;
accordingly, the estimate of technical parameter lnA1 coincides with the fixed effect for the reference
farm in the sample. Further, it is assumed that uit is i.i.d. Nþ 0,σuð Þ; vit is i.i.d. N 0,σvð Þ, and uit and
vit are independently distributed.
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Akin to the procedure proposed by NOQ (2011), we conduct the test for an output-cubical tech-
nology by testing H0 : δjkj ¼ 0, 8j¼ 1,…, J and 8kj ¼ 1,…,Kj, which implies the absence of substitu-
tion between states of nature.

3.5 | An empirical application

We conduct our empirical analysis using accounting data of Hungarian farms specialized in cereal
production. Hungarian crop farms are known to face considerable yield risk, predominantly due to
droughts (Zubor-Nemes et al., 2018), and are therefore well-suited for studying production
uncertainty’s effect on farm input allocation decisions. Another important aspect of our empirical
analysis is that the Hungarian National Farm Accountancy Data Network (FADN) database contains
information on farms’ geographical coordinates, allowing farm-level data to be linked to
corresponding weather records.

3.6 | Data

We use Hungarian national FADN data for the period from 2002 to 2013 to form an unbalanced
sample of specialized cereal farms. Maize and winter wheat are the two main cereal crops produced
in Hungary. Together, they account for approximately 90% of the country’s cereal output and
around 40%–42% of the national crop output (Eurostat, 2019). The sample of study farms contains
2288 observations, with each sample farm represented by at least six annual observations.

We specify farm output using the FADN variable “Total farm output.” We measure the total
land input in hectares of utilized agricultural area (UAA) and treat it as a quasi-fixed but allocable
input. Particularly, we distinguish between three different land allocations, corresponding to the fol-
lowing three farm outputs: maize, winter wheat, and other farm output. The latter is defined as the
farm UAA after deducting maize and winter wheat crop areas.

The vector of the non-state-allocable inputs consists of labor input, capital, and materials. Labor
input is defined as annual work unit, whereas depreciation and expenditures for contractors services
(contact work) are used to proxy capital. Total specific costs are used to measure materials input. All
monetary indicators are deflated using the price indices provided by the Eurostat (Eurostat, 2019).
Farm output is deflated using the price index for total agricultural output; the price index of goods
and services contributing to agricultural investment is used to deflate fixed assets; and the price
index for goods and services currently consumed in agriculture is employed to deflate materials.

To estimate statistical crop yield models, we use data on farm-level maize and winter wheat
yields, whereas the other farm output variable is normalized by the difference between the farm
UAA and maize and winter wheat crop areas. We also utilize information on each farm’s spatial
location (grid value) to compute relevant weather variables using gridded agro-meteorological data
from Agri4Cast, an agro-meteorological database maintained by the European Commission Joint
Research Centre (Agri4Cast, 2019).20 Summary statistics of all the variables used in the empirical
analysis are presented in Table A1 of the Appendix.

3.7 | Empirical procedure

First, we estimate the fixed-effects crop yield model in Equation (1) for maize, winter wheat and
other farm output. Here, we use the following two alternative sets of weather variables: formulation
F1 employs average daily temperature and cumulative precipitation variables computed for crop-
specific phenology periods21; formulation F2 is based on degree days and cumulative precipitation
variables measured for the following periods of crop vegetation: (i) autumn (September–November),
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winter (December–February), and spring (March–May) for winter wheat following Tack et al.
(2015), and (ii) the 6 months of the growing period of maize following Schlenker and Roberts (2009)
and the more recent study by Tack et al. (2018), that is April through September in Hungary. For
wheat, we measure degree-days variables using the same temperature intervals as Tack et al. (2015,
Table S3 in the supplementary materials). For maize, we employ the thresholds of 10�C and 30�C,
that is, the same lower threshold as Schlenker and Roberts (2009) but a 1�C higher upper threshold
than used in that study.22 We use the growing degree days (GDD) corresponding with the tempera-
ture interval between 10�C and 30�C, and the heating degree days (HDD) above 30�C for modeling
crop yields for both maize and other farm output.

Considering that both crop yield model formulations (F1 and F2) did not provide statistically
significant response estimates for other farm output23, we formulate auxiliary yield indices and sub-
sequently the state space using only crop model estimates obtained for maize and winter wheat.
Additionally, formulation F2 of the crop yield model for winter wheat did neither provide statisti-
cally significant estimates.24 Therefore, we compute the auxiliary yield index for winter wheat solely
based on model formulation F1.

The final crop yield model specifications and estimation results for maize and winter wheat can
be found in Tables A2-1, A2-2, and A3 of the Appendix, respectively.25

Second, we use crop yield model estimates to derive auxiliary yield indices hjit as presented in
Equation (2). Because weather records are available for farm specific locations (grids) and all produc-
tion periods (years) covered in our data set, we can generate crop specific auxiliary yield indices for
each farm-year observation in the sample, including those sample farms that did not produce a par-
ticular crop in one or several years covered in our empirical analysis. In addition, considering that
the model in Equation (1) estimated using Conley’s HAC estimator controls for unobserved farm
heterogeneity, heteroskedasticity, and spatial and serial correlations, the crop-specific auxiliary indi-
ces hjit depend exclusively on weather that is exogenous to the farm production technology.

Subsequently, using auxiliary yield index estimates for specific crops and their respective mean
values, we determine for each crop, maize (j¼ 1) and winter wheat (j¼ 2), the following coarse inter-
vals: kj ¼ 1 corresponding to unfavorable weather outcomes and kj ¼ 2 corresponding to favorable
weather outcomes.

Fourth, we formulate two specifications of the state space, corresponding to crop yield model for-
mulations F1 and F2, each comprising four states of nature defined as follows: low maize–low wheat,
s1 ¼ kj¼1 ¼ 1,kj¼2 ¼ 1

� �
; low maize–high wheat, s2 ¼ kj¼1 ¼ 1,kj¼2 ¼ 2

� �
; high maize–low

wheat, s3 ¼ kj¼1 ¼ 2,kj¼2 ¼ 1
� �

; and high maize–high wheat s4 ¼ kj¼1 ¼ 2,kj¼2 ¼ 2
� �

.26 Henceforth,
we refer to the respective state space specifications as F1 and F2. We assign each farm-year observa-
tion a specific state of nature using corresponding auxiliary yield index values. Subsequently, we gen-
erate four dummy variables corresponding with crop-specific weather outcomes and four dummy
variables corresponding with the aforementioned four states of nature. This procedure is exemplified
in Table A1 of the Appendix.

Finally, we employ both specifications of the states of nature, F1 and F2, to specify the TFE state-
contingent stochastic frontier model presented in Equation (16). We refer to the corresponding
models as SC1 and SC2. To test the null hypothesis of an output-cubical technology, we test the SC1
and SC2 models against a standard Cobb–Douglas TFE stochastic frontier model (CD) with a total
of four inputs—namely, total farmland, labor, capital, and materials—and a time variable, which is a
restricted formulation of SC1 and SC2.

3.8 | Results

Table 2 presents the estimates of the following three TFE stochastic frontier models: the CD model
and two SC models formulated using two alternative specifications of states of nature. SC1 corre-
sponds with states’ specification F1 based on the auxiliary yield indices derived using the crop yield
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models that employ temperature and precipitation variables for crop-specific phenology periods
(Tables A2-1 and A3 of the Appendix). SC2 utilizes states’ specification F2, for which the auxiliary
yield index for maize is computed using the estimates of the degree-days’ model formulation for this
crop (Tables A2-2 of the Appendix). For winter wheat, we utilize in F2 the same auxiliary yield index
as in F1.

The likelihood ratio test rejects H0: δjrj ¼ 0 8j and 8kj
� �

at 1% significance level for both state-
contingent model formulations, implying the presence of substitutability of output across the identi-
fied states of nature. Akin to NOQ (2011), we interpret this result as a rejection of the hypothesis of
an output-cubical technology.27

Most parameter estimates for SC1 and SC2 are highly statistically significant and have the
expected signs. The lnA parameters corresponding to individual states of nature are statistically
insignificant for states of nature s3 : high maize–low wheat and s4 : high maize–high wheat.28 How-
ever, the reduced model formulations, where the lnA parameters are assumed to be zero (except for
the reference state of nature), were rejected in favor of the full model.

The output elasticity estimates for labor and capital in SC1 and SC2 exhibit magnitudes that are
similar to those in the CD model—all evaluated at the sample averages. The supply elasticities of the
materials input are lower for the both state-contingent model formulations. Because materials use
usually shows a certain degree of association with land use decisions as well as production

T A B L E 2 Stochastic production frontier estimates: true-fixed effects estimator.

Variable

State-contingent TFE models

Cobb–Douglas
TFE model (CD)

SC1: States’
specification F1

SC2: States’
specification F2

Coeff. Std.err. Coeff. Std.err. Coeff. Std.err.

lnA2: low maize–high wheat - - 0.078 0.031 0.061 0.030

lnA3: high maize–low wheat - - �0.048 0.042 �0.069 0.041

lnA4: high maize–high wheat - - �0.049 0.046 �0.047 0.047

γ1: labor 0.102 0.021 0.099 0.021 0.098 0.021

γ2: capital 0.088 0.014 0.088 0.014 0.083 0.014

γ3: materials 0.243 0.024 0.225 0.024 0.222 0.024

θ: total land 0.408 0.038 0.343 0.039 0.354 0.039

δ11: land maize in low maize - - 0.061 0.014 0.059 0.013

δ12: land maize in high maize - - 0.091 0.013 0.090 0.014

δ21: land wheat in low wheat - - 0.009 0.007 0.010 0.007

δ22: land wheat in high wheat - - 0.016 0.007 0.017 0.007

Year fixed effects yes yes yes

σu 0.149 0.010 0.153 0.009 0.145 0.009

σv 0.208 0.005 0.199 0.005 0.203 0.005

LR test (H0: δ¼ 0Þ - 90.8*** 73.0***

Note: SC1 corresponds with the state formulation F1 that is based on the maize yield model presented in Table A2-1, whereas in SC2, states of
nature are formulated using the maize yield model F2 in Table A2-2 in the Appendix. In both F1 and F2, the states are defined using the same
winter wheat yield model (s. Table A3 in the Appendix); δ11 (land maize in low maize) captures output responses to land allocated to maize in
states s1 : low maize–low wheat and s2 : low maize–high wheat, δ12 (land maize in high maize) does it for states s3 : high maize–low wheat and
s4 : high maize–high wheat, δ21 (land wheat in low wheat) measures output elasticity to land allocated to winter wheat in states s1 : low maize–
low wheat and s3 : high maize–low wheat, and δ22 (land wheat in high wheat) is associated with marginal productivity of land allocated to
winter wheat in states s2 : low maize–high wheat and s4 : high maize–high wheat.
Note: *** statistically significant at the 1% significance level.
Source: Own estimates.
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uncertainty, this outcome for a production technology representation that explicitly accounts for
land allocation decisions across different groups of crops and states of nature appear to be
reasonable.

The estimates of the δ-parameters, measuring how farm output in corresponding states of nature
responds to land allocation to crop j, are highly significant except δ21, which correspond to land allo-
cated to production of winter wheat in the states of nature accommodating the low wheat weather
outcome. This result implies that in both the state-contingent model formulations this parameter
does not significantly differ from the corresponding parameter estimate for the total land vari-
able, θ.29

Table 3 presents the estimates of supply response elasticities for all inputs, cropland allocated to
maize and winter wheat under different states of nature, and land allocations to each study crop under
the corresponding favorable and unfavorable states of nature; all evaluated at the sample averages.

T A B L E 3 Estimates of supply response elasticities and marginal rates of technical substitution (MRTS).

Cobb–Douglas
TFE model (CD)

State-contingent TFE models

SC1:
States’ specification F1

SC2:
States’ specification F2

Elasticities of output w.r.t.

Labor 0.102*** 0.099*** 0.098***

Capital 0.088*** 0.088*** 0.083***

Materials 0.243*** 0.225*** 0.222***

Landa 0.408*** 0.426*** 0.437***

Land maize: low maize - 0.526*** 0.532***

Land maize: high maize - 0.615*** 0.626***

Land wheat: low wheat - 0.342*** 0.354***

Land wheat: high wheat - 0.402*** 0.416***

Land other farm output - 0.343*** 0.355***

Land under maize and wheatb

s1 : low maize–low wheat - 0.442*** 0.451***

s2 : low maize–high wheat - 0.469*** 0.479***

s3 : high maize–low wheat - 0.491*** 0.503***

s4 : high maize–high wheat - 0.518*** 0.531***

MRTS for land allocations

s2� s1
b - 1.061*** 1.062***

s3� s1
b - 1.110*** 1.114***

s4� s1
b - 1.171*** 1.176***

High maize–low maizec - 1.169*** 1.177***

High wheat–low wheatc - 1.174*** 1.174***

Wheat–maized - 0.788*** 0.803***

Other farm output-maized - 0.509*** 0.519***

Other farm output-wheatd - 0.647*** 0.647***

Note: *** statistically significant at the 1% significance level.
aAverage output elasticity for the total land input; for models SC1 and SC2 measured considering land allocation to the three considered
outputs and corresponding output elasticities (evaluated at sample averages).
bMeasured for land input allocated to maize and winter wheat.
cMeasured for land allocated to respective crop.
dOn average, over all states of nature.
Source: Own calculations.
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The output elasticity estimates for the total land input are higher in both SC1 and SC2 than for
the CD model. Across SC1 and SC2, the estimates of the supply elasticity for land allocated to maize
is noticeably higher for the two states of nature accommodating the weather outcome high maize (i.
e., s3 : high maize-low wheat and s4 : high maize-high wheat) than for the two states associated with
the weather outcome low maize (i.e., s1 : low maize–low wheat and s2 : low maize–high wheat). This
outcome is also valid for the land allocated to winter wheat under the states accommodating differ-
ent weather outcomes for this crop. The MRTS estimates for the land input allocated to maize indi-
cate that one hectare of this crop in the maize favorable states can substitute for 1.17 and 1.18
hectares of maize in the states characterized as unfavorable for producing this crop, according to the
estimates obtained for SC1 and SC2, respectively. The respective estimates for wheat are 1.17 for
both models. These findings suggest that, for both study crops, implicit producers’ prices for land
are higher in the states identified to be favorable compared to those that are considered as unfavor-
able for each crop.

The estimates of MRTS for land allocated to different crops are similar across SC1 and SC2, and
indicate that, when evaluated at the sample averages, one hectare of winter wheat substitutes for
0.79–0.80 hectares of maize without affecting the amount of total farm output produced. The MRTS
estimates for other farm output and maize are considerably lower: 0.51 (SC1) and 0.52 (SC2).
Respectively, one hectare of winter wheat has a higher implicit price than one hectare of other farm
output, when evaluated at the sample averages. These results indicate that the marginal land produc-
tivity for maize is higher than that for winter wheat, and, for both maize and wheat, marginal land
productivity is higher compared to that for land allocated to other crops (produced in Hungarian
cereal farms). This finding is indeed in line with the empirical evidence.

The MRTS estimates for the cropland under maize and wheat across s2, s3, and s4 compared to
the reference state of nature, s1, are all lower than the MRTS estimates expressing differences in mar-
ginal productivity of land allocated to each of the two study crops between the corresponding favor-
able and unfavorable states for each crop. The MRTS estimates across the states of nature vary
between 1.05 and 1.17 for SC1, and 1.06 and 1.17 for SC2. These estimates are lower than the MRTS
estimates high maize–low maize and high wheat–low wheat expressing marginal substitution of land
under different states of nature for single crops, except the MRTS estimates for s4� s1, which is rea-
sonable since the latter measures MRTS for the two extreme states of nature. This result implies the
presence of substitution effects between two study crops’ outputs within states of nature.

Overall, our land output elasticity estimates show rather moderate differences across the formu-
lated states of nature, which results in only moderate MRTS estimates. There are at least three rea-
sons for this outcome. First, we represent the production technology using a production function
formulation that limits our capacity to measure substitution in the context of a multiple output pro-
duction. Second, we specify rather coarse states of nature. Third, producers may allocate more inputs
to states of nature that they believe are more probable. A more risk averse producer may tend to allo-
cate more efforts to unfavorable states to be closer to the equal-output ray in the state-contingent
output space, that is, to attempt to increase the output across favorable and unfavorable states in a
proportional manner (Chambers & Quiggin, 2000). However, by doing so, they may forgo opportu-
nities for output substitution between states of nature. In fact, our sample farms demonstrate reason-
ably diversified production plans. Crop diversification is indeed an important risk management
instrument in Hungarian agriculture and may have helped our sample farms to smooth the aggre-
gate output across the states of nature.

The parameter estimates related to the technical inefficiency component exhibit high statistical
significance. H0: σu = 0 is rejected at the 1% significance level for all three TFE models. This indi-
cates the presence of technical inefficiency (Table 2 and Table A6 of the Appendix). However, we
did not find significant differences between the technical efficiency distributions for the CD model
and each of the two SC models. Note, that the estimates of technical efficiency presented here refer
to short-run or transient technical efficiency (Colombi et al., 2014; Kumbhakar et al., 2014).
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4 | CONCLUDING REMARKS

The fact that stochastic output realizations in single production periods are associated with one
of the many possible states of nature and, therefore, incompletely reflect the effect of production
uncertainty, poses a serious identification problem for modeling state-contingent production tech-
nology. Furthermore, when identifying relevant stochastic events to map production uncertainty,
researchers are confronted with a similar problem to that of a conditioning-on-observables identi-
fication strategy.

In this study, we present how a reduced-form approach for evaluating the impact of weather
shocks on crop yields—fixed-effects crop yield models—can be accommodated with a structural
approach—the state-contingent technology model—to address the well-known identification prob-
lem. We demonstrate that the proposed empirical strategy enables a consistent mapping of produc-
tion uncertainty in the context of multiple output production, respects panel data structure, and
allows to control for unobserved farm heterogeneity.

Our empirical analysis, implemented using Hungarian national FADN data, exemplified that
production uncertainty significantly influenced the input allocation decisions of Hungarian grain
producers during the study period. The null hypothesis of an output-cubical technology was
rejected at the 1% significance level for both the state-contingent technology model formulations
used in the study.

Some aspects of modeling a state-contingent multiple output production technology were not
addressed in this study and consequently require further research. In our empirical application,
we employed a production function technology formulation, which may have caused a biased
representation of a multiple output production technology and substitution effects across states of
nature. Furthermore, we focused solely on weather-related production uncertainty and did not
consider other important sources of uncertainty in agricultural production (e.g., risk of pest and
diseases, and price uncertainty). However, the approach can be extended to account also for these
types of uncertainty.
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ENDNOTES
1 At the same time, reduced-form models are known to fall short in drawing correct inferences about the effects of policies
and other changes in the environment affecting the underlying structure of a problem or process (Cho & Antle, 2023;
Provencher, 1997). In their recent review of research on risk management in agriculture, Tack and Yu (2021) acknowledged
the progress that has been made in reduced-form approaches. Concurrently, they emphasized the need for innovative struc-
tural approaches accommodating advances made in reduced-form approaches.

2 For example, in their ex ante analysis of technology adoption in hemp production, Cho and Antle (2023, pp. 3–4) argue
that many policy aspects including adaptation to climate change involve assessment of new technologies in new or future
settings where historical data have only limited relevance.

3 This can also be the case in the presence of technical efficiency.
4 For each of three random variables used in the empirical application of their ex ante cost function including the agricultural
output price index, they estimate time series models and combine them with Monte Carlo simulations to derive for each
random variable and each period 500 quasirealizations. Subsequently, they compute the random variate for the low (high)
event as the average below (above) the median of simulated output price values for corresponding periods.

5 The authors use meteorological observations at the province level (NOQ, 2011).
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6 NOQ (2011) formulate three states of nature each corresponding to one of the three crops/outputs considered (i.e., a state
of nature that is favorable for producing Crop 1, a state that is favorable for producing Crop 2, and a state of nature that is
favorable for producing Crop 3).

7 The SEM estimator has some advantages and disadvantages compared to Conley’s HAC estimator. Additional details
regarding this subject can be found in Ortiz-Bobea (2021).

8 Note, the number of intervals may vary from crop to crop.
9 In the example, if we had increased the number of pertinent weather outcomes/auxiliary index intervals for only one of the
three crops to three, the number of states of nature would have increased to a total of 12.

10 In our empirical application of the proposed approach, we have reduced the scope of our analysis to weather-related pro-
duction uncertainty because we do not have data on pest and disease damages for sample farms.

11 This model can also be found in O’Donnell and Shankar (2009).
12 Rasmussen (2003, p. 459) provides the following definition of a state-allocable input “an input that may influence output in

two or more states of nature, and which may be allocated (ex ante) to different states of nature.” Furthermore, Rasmussen
proposes drawing distinction between strictly state-allocable (or state-specific input)–influencing production in one single
state only–and not strictly state-allocable inputs–such that may influence output in different states of nature in
dissimilar ways.

13 Land is often the only production factor, for which farm accounting data contain records on its allocation to production of
different farm outputs.

14 Shankar and Quiggin (2013) extended OCQ’s (2010) model to a state-general state-contingent specification of technology.
By assuming the rational behavior and technical efficiency of risk-neutral firms that maximize a welfare function using
(individual) subjective probabilities about future states of nature, they develop an econometric methodology that allows the
estimation of decision makers’ subjective probabilities and the parameters of stochastic production technology in the pres-
ence of two states of nature, from which only one is observed.

15 We have slightly adjusted the original notation used by O’Donnell and Griffiths (2006) to ensure consistency of the nota-
tion used herein.

16 Although the approach by NOQ (2011) does not model a multiple output production technology explicitly, under certain
(restrictive) assumptions, it may be applied to study substitution between state-contingent outputs, in particular, by using
information about farmers’ land allocations to production of different crops. According to Chambers and Just (1989), under
the assumption of an input-nonjoint technology, it is reasonable to expect that a profit-maximizing producer will allocate a
“quasi-fixed but allocatable input” optimally across different crops, that is, equate the shadow prices of the input across
crops. Subsequently, assuming the consistency of production decisions under uncertainty with profit maximization
(Chambers & Quiggin, 2000) and applying the first-order profit-maximization condition, it can be demonstrated that the
slope of the marginal rate of technical substitution line for two alternative land input allocations should be equal to
the slope of the marginal rate of the substitution line for corresponding outputs. Moreover, we believe that there is a small
but nontrivial advantage of measuring the output substitution between states of nature using observations regarding pro-
ducers’ ex-ante input demands instead of ex-post output realizations. Particularly, observations regarding producers’ ex-
ante input allocations could be considered a more informative data source than ex-post output realizations. The advantage
of using data on producers’ ex-ante input allocations has already been recognized for some time. Considering that informa-
tion on farmers’ expected output levels are unknown and unobservable to researchers, a number of insightful contributions
(Chambers & Serra, 2018; Chavas, 2008; Moschini, 1988; Pope & Just, 1996, 1998; Pope & Chavas, 1994) have explored the
options for estimating ex-ante cost functions. Further, LaFrance and Pope (2010) have examined the necessary and suffi-
cient conditions for variable input demands using observational data on input prices, quasifixed inputs, and total
variable cost.

17 For example, in the case of two crops, each with two selected weather outcomes—“favorable” and “unfavorable,” we can
distinguish between two pairs of states of nature for each crop: two states with the weather outcome “favorable” and two
states with the weather outcome “unfavorable.”

18 We present the FLEX0 model in NOQ (2011) using the same notation as in the original study, that is, without using farm
and time subscripts.

19 This model is essentially an extension of the Cobb–Douglas production function model and assumes a unitary elasticity of
substitution between different factor inputs. We also tried to estimate the model presented in Equation (13), which is a CES
representation of production technology. Unfortunately, we could not obtain convergence for this model formulation. Both
the CES and Cobb–Douglas production functions place some restrictive assumptions on the production technology. The
CES specification assumes the elasticity of substitution to be the same across all inputs, whereas the Cobb–Douglas specifi-
cation assumes the elasticities of substitution across all inputs to be equal to 1. Hence, both functional forms may not well
represent the production technology. Accordingly, our model estimates presented in the next section may be biased. We
thank one of the referees, who drew our attention to this aspect of our empirical application.
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20 Agri4Cast provides data from weather stations interpolated on a 25 � 25 km grid.
21 We used expert information on the most important phases in the phenology of specific crops and relevant sets of weather

variables. Considering the relatively short period covered by our farm data, we assume that phenological phases did not
demonstrate substantial changes for both study crops during the study period.

22 We found both growing and heat degree-days variables to provide a better statistical fit compared to lower or higher upper
threshold values. Although we do not estimate the piece-wise linear model proposed by Schlenker and Roberts (2009), our
results for maize are consistent with the empirical findings obtained in their study. Particularly, when estimating their
piece-linear model for different groups of regions in the U.S., they found a slightly higher threshold of 30�C for the north-
ern regions of the country. Notably, our sample farms are located between 45.75� N and 48.41� N latitudes, which is further
north than most U.S. regions.

23 We also estimated crop yield models for two further crops grown by sample farms, namely, sunflowers and raps. However,
they also provided low explanatory power. This may be because of strong specialization of Hungarian cereal producers in
maize and winter wheat. Notably, substantially fewer sample farms produced sunflower and raps than maize and winter
wheat. Moreover, our farm data demonstrate that both crops were rather irregularly grown by the sample farms. These
aspects of our empirical data may have impeded the identification of the impacts of interannual weather variation on sun-
flower and raps yields. The low explanatory power of the model employing the land productivity index for the other farm
output variable may be related to the diversification effect because this output variable comprises several crops/activities.

24 This outcome may be related to the fact that temperature regimes in fall and spring are comparatively favorable for winter
wheat in Hungary. Therefore, temperatures in these seasons seldom exceed critical thresholds. Indeed, we found the average
degree days for all three temperature intervals above 0�C determined in Tack et al. (2015) to be substantially lower for our
sample farms than those in in their study.

25 The final model specifications employ weather variables tested to significantly improve the explanatory power of the respec-
tive model.

26 The conditional mean function E yjxð Þ½ � is the optimal predictor for quadratic loss functions, whereas the conditional
median is the optimal predictor for estimators based on the absolute error loss criterion (Cameron & Trivedi, 2005). Con-
sidering that we generate auxiliary yield indices using yield model estimates obtained by applying Conley’s HAC estimator,
which has a quadratic loss function, we use farm means of auxiliary indices to discriminate between the two coarse index
intervals for the respective crop.

27 We also estimate production technology parameters of the model in Equation (16) using an iterated system generalized method
of moments (GMM) estimator (Arellano & Bover, 1995; Blundell & Bond, 1998; Hansen et al., 1996; Hansen & Lee, 2021). In
the GMM model, we assume that land and labor are exogenous, capital and materials are predetermined, and specific cropland
allocations are endogenous. In addition to standard GMM instruments, that is, lagged explanatory variables, we use individual
farms’ maize and wheat prices (normalized by the national fertilizer price index) lagged one period back as instruments to con-
trol for the endogeneity of farms’ crop land allocations. The system GMM model estimates are in general in line with those
obtained using the TFE estimator. They also reject the null hypothesis of an output-cubical technology for both SC1 and SC2
(Table 2 and Table A4 in the Appendix). The GMM estimates of the output elasticities for the total land input and labor have
similar magnitudes to the corresponding TFE model estimates. However, the supply elasticities for capital and materials, which
are treated as predetermined variables in the GMM model, are significantly higher for both SC1 and SC2 than the
corresponding estimates obtained with the TFE estimator (Table 3 and Table A5 in the Appendix). In addition, the GMM
model estimates indicate greater differences in output elasticities for both maize and wheat land allocations between the
corresponding favorable and unfavorable states of nature, which is reasonable given the use of instruments in the GMM
models. Accordingly, GMM model estimates suggest the presence of greater substitution effects for crop specific land alloca-
tions across states of nature. Note, that residuals of a GMM model can be used to estimate stochastic frontier models. See for
example Guan et al. (2009) or Bokusheva et al. (2023).

28 OCQ (2010, p. 3) provide the following potential interpretations for the lnA parameters: (i) technical parameters that are
specific to the production of output in a particular state of nature; (ii) ex-post realizations of an unobservable scalar random
variable that is within nature’s control.

29 Accordingly, we do not use this parameter for measuring supply elasticities of land in the states of nature accommodating
unfavorable weather outcomes for wheat.
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