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Abstract

Following the success of deep learning (DL) in research, we are now wit-
nessing the fast and widespread adoption of artificial intelligence (AI) in
daily life, influencing the way we act, think, and organize our lives. How-
ever, much still remains a mystery when it comes to how these systems
achieve such high performance and why they reach the outputs they do.
This presents us with an unusual combination: of technical mastery on
the one hand, and a striking degree of mystery on the other. This con-
junction is not only fascinating, but it also poses considerable risks, which
urgently require our attention. Awareness of the need to analyze ethi-
cal implications, such as fairness, equality, and sustainability, is growing.
However, other dimensions of inquiry receive less attention, including
the subtle but pervasive ways in which our dealings with AI shape our
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way of living and thinking, transforming our culture and human self-
understanding. If we want to deploy AI positively in the long term, a
broader and more holistic assessment of the technology is vital, involv-
ing not only scientific and technical perspectives but also those from the
humanities. To this end, we present outlines of a work program for the
humanities that aim to contribute to assessing and guiding the potential,
opportunities, and risks of further developing and deploying DL systems.
————–
How to read this paper: It is structured in four modular parts:
a general introduction (section 1), an introduction to the workings of
DL for uninitiated non-technical readers (section 2), a more mathe-
matical introduction to DL (appendix A), and a main part, containing
the outlines of a work program for the humanities (section 3). Read-
ers familiar with mathematical notions might want to skip 2 and
instead read A. Readers familiar with DL in general might want
to ignore 2 and A altogether and instead directly read 3 after 1.

Keywords: Deep Learning, Anthropology, Humanities, Artificial Intelligence,
Ethics, Philosophy

1 Introduction

With the introduction of deep learning (DL) in around 2006 (Hinton et al.
2006; Bengio et al. 2006; Ranzato et al. 2006), the field of artificial intelligence
(AI) entered into what has proven to be by far its most impressive period of
advancement. The methods introduced with DL perform remarkably well in
identifying complex patterns in large data sets in order to make predictions.
Today, DL has found its way from research into our daily lives in a multi-
tude of applications (Stadelmann et al. 2018; Yan et al. 2023), such as internet
searches, translation apps, face recognition and augmentation on social media,
speech interfaces, digital art generation, and chatbots. It can achieve enormous
good, e.g., by preventing secondary cancer through improved medical imag-
ing (Amirian et al. 2023). Other recent advances have further demonstrated
the astonishing capacities of DL: generative AI models caught public atten-
tion by producing striking images from text prompts (e.g., ‘DALL-E 2’ and its
open-access brother ‘Stable Diffusion’, as well as ’Midjourney’, Ramesh et al.
2022; Rombach et al. 2022; Borji 2023), while generalist models (e.g., ‘GATO’,
Reed et al. 2022), and the unprecedented utility of multimodal ‘large language
models’ (LLMs), create the impression that we are getting closer to building so-
called ‘artificial general intelligence’ (AGI): an engineered human-like or even
superhuman intelligence (Bubeck et al. 2023; Agüera y Arcas 2022). Language
models respond so persuasively to prompts and questions by human inquir-
ers that some already think they exhibit some kind of sentience, and others
believe that they will in the near future (Tiku 2022; Kaplan 2022; Schmid-
huber 2022). Shortly after release, language models, such as ‘ChatGPT’ and



Springer Nature 2021 LATEX template

Deep Learning & the Humanities 3

‘GPT-4’ have quickly become an integral part of the work and everyday life
for many people. They have already passed bar examinations (e.g., the US
Uniform Bar Examination for lawyers, see Katz et al. 2023).

Despite these successes, our theoretical insight into why DL performs so
well is still shallow, and some of its success remains a mystery (Plebe and
Grasso 2019; Hodas and Stinis 2018; Poggio et al. 2019; Berner et al. 2022;
Zhang et al. 2017, 2021; Sejnowski 2020). As a consequence, engineering DL
models involves a substantial amount of trial and error. From a theoretical
perspective, in many ways, it is guesswork: while the end product often works
rather seamlessly (although there are glitches, and these systems have the sig-
nificant problem of not being able to recognize where they are wildly wrong),
getting to a working system can involve substantial and creative experimen-
tation on the part of the engineers. Some have even labeled the process as
‘alchemy’ or ‘magic’ (Hutson 2018; Ford 2018; Edwards and Edwarts 2018;
Domingos 2012; Martini 2019; Flessner 2018; von der Malsburg et al. 2022).
Moreover, the complexity of the problems solved with DL requires use of
highly complex models that are incomprehensible to humans. This confluence
of technical mastery and mystery in DL applications – of remarkable capaci-
ties that defy our capacity to understand them – has been observed to lead to
what we might call an ‘enchanted perception’ of the technology in segments
of the scientific community and the broader public (Campolo and Crawford
2020). Trans- and posthumanist accounts further radicalize expectations of
what such technologies can achieve (or become) by describing future visions
of ‘uploaded’ minds, an artificial “super intelligence” (Bostrom 2014; Tegmark
2018) or a “technological singularity” (see, e.g., Kurzweil 2005; Chalmers 2010;
Eden et al. 2012; Barrat 2015). Not surprisingly, the astonishing performance
of DL applications has given rise to anthropomorphisms and even a longing for
– or fear of (Yudkowski 2023) – superhuman technology. The speed, scope, and
intensity with which DL is influencing our societies press for a closer inspection
and assessment involving a plurality of perspectives.

1.1 A Call to Assessment From a Humanities Perspective

As DL is increasingly implemented in critical fields such as healthcare, insur-
ance, criminal justice, employment, and hiring, as well as financial markets,
the problem that we often lack an explanation for how automated decisions
are made in such situations is rendered more urgent. Recent legislation in
the European Union (e.g., European Parliament and Council of the European
Union 2016) states that individuals have the right to an ‘explanation’ if they
are affected by an automated decision-making process. This is a critical step
in the collective regulation of such technologies in light of their societal impact
(Grunwald 2019b; Pflanzer et al. 2023; Salmi 2023). Next to such concerns,
engineers also have technical reasons for wanting to understand input-output
relations with greater clarity for the sake of increasing efficacy and robust-
ness. This has led to a growing body of research on model interpretability in
the emerging field of ‘explainable artificial intelligence’ (XAI) (Došilović et al.
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2018; Adadi and Berrada 2018; Confalonieri et al. 2021; Joshi et al. 2021;
Madsen et al. 2022; Notovich et al. 2023; Besold and Uckelman 2018) – which
is sometimes also referred to as ‘intelligible’ (Weld and Bansal 2019; Caru-
ana et al. 2020) or ‘reviewable’ AI (Cobbe et al. 2021). (On this, see also the
vital contributions of the ‘National Institute of Standards and Technology’,
www.nist.gov). Knowing why a system performs the way it does helps both to
counter biases and to understand malfunctions, thus enabling us to improve
the technology. However, bold claims about ‘explaining’ DL models often fail
to do justice to the gap between the kind of explanation provided and the
kind needed (Lipton 2018; Besold and Uckelman 2018). Overpromising what
can be explained might prove to be a bad strategy, risking a loss of confidence
and support for AI research if the technology does not deliver on the promises
immediately. Not long ago, such a pattern – with disappointment over lack of
trustworthiness, robustness, and comprehensibility in particular – led to talk
about another ‘AI winter’ (Floridi 2020; Yasnitsky 2020), i.e., a period of low
funding and thus low resources invested in AI research. While this has largely
passed out of sight with the recent success of generative AI (Dwivedi et al.
2023), societal, political, and ecological concerns remain essential (Crawford
2021) and have, for example, led to bans on facial recognition, and a conse-
quent slowing of research in that area (Wehrli et al. 2021). We are currently
seeing initiatives for banning some generative AI applications (successful in
some cases) worldwide and in many institutions.

The mystery that surrounds DL involves a yet more fundamental and more
subtle danger, namely the premature confusion of human intelligence with
purely computational and probabilistic processes and vice versa (Tallis 2004,
2020). The danger here is conceptual and methodological confusion, with socio-
political consequences. As well as the risk of confused thinking, it also renders
difficult the practical task for distinguishing between human beings, AIs, and
robots, and thus conflicts with the democratic organization of our societies
around the unique worth and dignity of human beings. If we are but machines,
then why grant us special status amongst other machines (see, e.g., Gunkel
2018; Gordon and Pasvenskiene 2021; Munn and Weijers 2023; Novelli 2023)?
Although the confusion of human beings with machines, and especially com-
puters, has a long history (Boden 2008; Black 2014; Dürr 2021; Cave et al.
2020), notable recent achievements in DL have greatly contributed to the myth
of the ‘electronic person’ – as seen, for instance, in work by the European
Commission to address the status of sophisticated robots in terms of ‘per-
sons’ (European Parliament 2017). Much of this cross-talk between registers –
the computer and the human – is in danger of spawning jingle-jangle errors.
Historically it stems from the fact that it was an analogy drawn from biolog-
ical learning, in the form of neural networks, that inspired the original core
principles underlying DL (McCulloch and Pitts 1943; Hebb 1949). Thus, the
perceived comparability of human and computational forms of intelligence has
propelled the anthropomorphization of DL language (Lipton and Steinhardt

www.nist.gov
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2019; Kostopoulos 2021; The Royal Society 2018). Now running in the oppo-
site direction, definitions of intelligence in purely technical terms (Legg and
Hutter 2007; Chollet 2019) are often projected back onto humans, and per-
ceived as the norm of intelligence tout court (Dennett 1991; Churchland and
Sejnowski 1992; Chalmers 2011; Boden 1988). Evidence that ‘intelligence’ and
other characteristics of the mind can indeed be modeled as computational pro-
cesses seem to be increasing (von der Malsburg 2023), as DL models continue
to deliver impressive results (notable, for instance, in the tendency to ascribe
previously unknown ‘creativity’ to AI-generated ‘art’, Mazzone and Elgammal
2019).

If we want to harness the promise of DL and create a fruitful and humane
future with these technologies, it is crucial and urgent that we think through
the implications of DL not only from the technical perspective of science and
engineering but also from a more encompassing humanities perspective. The
reason for this is that our understanding of, and interactions with, technol-
ogy is always inextricably linked with negotiating human self-understanding
(Liggieri and Müller 2019). Much care and thought must be given to making
sure that our technologies do not ultimately hollow out human values, forms
of sense-making, and resources that motivate action from under us – Bernard
Stiegler analyzes how digital technologies tend to undermine and even elim-
inate reflection and questioning of their development. Having this in mind,
one of the key tasks for the humanities is to deliberately and carefully think
about the conditions under which we can relate to technology in a more fruit-
ful, livable, and humane way (Stiegler 2017). Thus, the future we will create
with DL ultimately depends on our understanding of the technology, our view
of human beings and the values which guide us in the assessment, design and
deployment of technology.

1.2 How to Read This Paper

This paper sketches some important points of a work program for the humani-
ties on how to assess and guide the potential, opportunities, and risks of further
developing DL. In section 2, we provide a brief and up-to-date introduction of
the known and unknown aspects of DL, written with uninitiated, non-technical
readers in mind. This should provide them with realistic technical bearings
without requiring any understanding of the mathematics involved. Sections
2.1 to 2.4 provide the basic theory of DL, its workings and inevitable limits,
and potential errors, also with respect to recent transformer models behind
systems like ChatGPT, while section 2.5 refers to some gaps in this theory.
Readers familiar with basic mathematical notions who want to gain a deeper
understanding of DL can skip this introduction and read the more in-depth
introduction provided in appendix A. Readers already familiar with these con-
cepts might want to skip both introductions altogether. In section 3, we identify
some pressing issues that require attention from a humanities perspective. This
includes differentiating between the ‘human’ and the ‘technological’ factors in
ethical AI assessments (section 3.1), efforts to contextualize DL more broadly
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(section 3.2), and exemplary resources, provided by the humanities in dealing
with questions arising from DL deployment (section 3.3). We want to under-
line here that in pointing to certain weaknesses, inherent theoretical limits,
and societal challenges associated with DL, we are not advocating a univer-
sally pessimistic stance toward digital technologies, AI, and DL in particular
(Marcus 2018). We are rather suggesting that a realistic picture is necessary if
we want to harvest the benefits, avoid the perils and prevent a disillusioning
halt for AI research.

2 Deep Learning: An Introduction for the
Uninitiated

DL is a form of machine learning (Mitchell 1997), which itself is a form of
AI (Russell and Norvig 2021). Machine learning is usually categorized into
supervised learning, unsupervised learning, and reinforcement learning. In
supervised learning, a model is trained for a specific task based on labeled
data (i.e., it is given input examples and corresponding desired outputs). For
instance, if a model is to predict whether an image of human skin contains
a malignant melanoma, it is trained on many example images with known
‘ground truth’, i.e., labeled correctly as ‘contains melanoma’ or ‘does not
contain melanoma’. In unsupervised learning, patterns are determined in unla-
beled data, with data clustered and grouped by the DL system without reliance
on predefined labels. Strictly speaking, using parts of the data itself as labels
(e.g., predicting the upper half of an image from its lower half or the next word
in a given text), which is the predominant learning paradigm for large-scale
models, would also fall under this definition, but is called ‘self-supervised learn-
ing’ instead because methodically it uses methods from supervised learning. In
reinforcement learning, a DL ‘agent’ is trained to interact with its environment
in order to achieve a certain goal based on a punishment-reward mechanism.
Reinforcement learning is mostly used in robotics, games, or wherever inter-
action is required of the agent, so recently also in chatbots. In this paper, we
only consider supervised learning, since this type of machine learning method
is the most widely used and, by a large margin, responsible for the current suc-
cesses of DL. A basic understanding of supervised DL carries far in assessing
the potential of the other learning paradigms.

Outlook on this section:

In what follows, we outline the fundamental workings of DL by introducing
artificial neural networks (ANNs), which comprise the core building block of
any DL system (section 2.1). We then elaborate how they work by means of
‘universal approximation’ (section 2.2). Next, we analyze a set of inevitable
errors that apply to every such system, based on their architecture and train-
ing algorithm (section 2.3). Section 2.4 aims, more specifically, to familiarize
readers with the core concepts of current generative language models, like
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ChatGPT. The last section (2.5) introduces some open questions in the theory
of DL.

2.1 Artificial Neural Networks

ANNs are the fundamental building blocks of DL (for papers written at the
origin of ANNs, see Rosenblatt 1958; Minsky and Papert 1969; Rumelhart
et al. 1986; for a historical summary, see Schmidhuber 2015, for a contempo-
rary introduction Prince 2023). To understand the basic principles of DL, one
has to grasp how a basic ANN works: it consists of input units, hidden units,
and output units, connected in a sequence of layers (see Figure 1) that between
them encode a mathematical function. In more technical terms, we have a lay-
ered network of computationally simple units, which is trained to approximate
a complex function that maps any desired input to any desired form of out-
put (called the ’target space’). As an example, an ANN could classify images
showing handwritten digits into the represented digits 0 to 9 (this is a classic
problem in, for instance, the task of processing bank cheques automatically,
see Lecun et al. 1998). In this case, the input would contain the gray scale pixel
values of an image (each unit representing the shade of a single pixel), whereas
the output would consist of ten values (units) representing the probabilities
that the image shows the respective digits. As one can see, input and output
layers are chosen to represent something meaningful (in this case, images and
respective digits), while what is going on in the hidden layers remains hidden
(as the name suggests) and is usually highly complex. When properly trained,
the ANN, upon receiving an input, will send a much stronger output signal
to the correct output channel than it will to the other incorrect outputs, thus
indicating the correct digit or ‘class’).

Disassembled into its basic building blocks, all that an ANN does is a string
of simple calculations: no mystery, no magic, no alchemy. In the next step, we
want to assess these workings on a higher level of abstraction, where things
begin to be more complex.

2.2 Universal Approximation

Through a process of sequentially altering the parameters of an ANN (which
is to say, how the elements of one level feed into and trigger activations in
the following level), it can potentially approximate any input-output relation.
That may be, for instance, a very simple one, like, e.g., the relation between the
distance traveled and money spent on gasoline, or more complex ones, like, e.g.,
the relation between images showing handwritten digits and the represented
digits, or even – at the upper limit of what has thus far been attempted –
between a protein sequence and the three-dimensional structure to which it
folds (Jumper et al. 2021). How do such approximations work?

Approached in terms of the universal approximation theorem, an ANN
encodes a function that can theoretically approximate any relation between
two variables with arbitrary precision (Hornik et al. 1989; Cybenko 1989; Zhou
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Fig. 1: Illustration of an ANN with two hidden layers h(1) and h(2). The
mapping from input to output is shown from left to right. Input and output
consist of an array of numbers respectively, e.g., corresponding with the pixel-

values of an image. Each hidden unit h
(i)
j computes a weighted summation of

values of preceding units (shown with solid arrows) and then passes it through
a non-linear step function (this can be thought of as a threshold that the sum
of inputs either passes or not, inspired by a biological neuron either firing or
not). The weights are called the parameters of an ANN.

2020). The function encoded by an ANN is defined solely by the values of its
parameters (i.e., the weights between units in any layer and those in the next
layer). Before training, the input-output relation of an ANN is random, based
on the randomness of the newly initialized parameters. After training, that
once random constellation is trained to yield astonishing results. To understand
this mapping from input to output as a single function, let us consider the
example of the handwritten digits again. First, all pixel values of an input
image are lined up (one row of the image after another to form one long
sequence) such that they correspond to the form of the input layer in Figure
1. To better understand the workings of an ANN, every unit in the input layer
(every pixel) can be thought of as an axis in multidimensional space. The
value of a unit (pixel value) then defines a position on this axis. As the input
consists of multiple units, the input image can be thought of as one point in
this multi-dimensional data space (see Figure 2). Shifting this point along one
axis corresponds with altering the value of one pixel. Picking a random spot
in data space corresponds with an image consisting of random pixel values.
The dimensionality of the data space is usually very high. If an image has,
say, 28× 28 pixels, then all pixels together define a single point in 282 = 784-
dimensional data space. The same is true for the units at any layer in an ANN,
i.e., they all describe a single point in a multi-dimensional data space. Going
from a layer with fewer units to a layer with more units thus corresponds to
expanding the data space. Going from a layer with more units to a layer with
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Fig. 2: Representation of an input image by a point in space. On the left is
an image showing the handwritten digit ‘5’. Imagine that only three pixels
are fed into the input layer of an ANN (the following layers are not shown),
represented by their grey-scale value between 0−1. On the right, the input units
are shown as axes and the unit values as positions on these axes. Thus, one
point in three-dimensional space represents the three input pixels. Similarly,
all the 784 pixels can be represented (although not visually illustrated) in
784-dimensional space.

fewer units corresponds to collapsing the data space. Based on the insight that
meaningful inputs, such as images, can also be represented by points in space,
it becomes easier to see that the relationship between input and output is a
mathematical function. As every ANN encodes a function, it defines how the
data space transforms, expands, and collapses from input to output, such that
every input example transforms into an output example. This is also true for
language models, as elaborated in section 2.4.

In practice, stacking many hidden layers (the number of layers between the
input and output layers), i.e., increasing the depth of an ANN, has been shown
to massively increase the capacity to approximate complex input-output rela-
tions (Bengio and LeCun 2007; Eldan and Shamir 2016; Raghu et al. 2017;
Berner et al. 2022; Lin et al. 2017). This finding lies at the heart of DL: as
the name suggests, the ‘deep’ in DL stands for the use of ANNs with many
hidden layers. Since every hidden layer encodes a function itself, the function
encoded by the deep ANN consists of a succession of functions (data space
transformations), each cascading into the next. Although theory confirms that
a single hidden layer would be sufficient to achieve the necessary transforma-
tion or linkage (if arbitrarily wide), the stacking of many hidden layers has
shown to be far more efficient (Bengio and LeCun 2007; Bengio et al. 2013).

Although the benefit of deep models over shallow ones is still not really
explained satisfactorily, a widely supported theory suggests that the benefits
lie in their compositional structure: data representation gradually progresses
through the layers from rudimentary to more complex aspects, sequentially
converging on the salient features in the data (as observed initially by Lee
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Fig. 3: Effect of the data-space transformations within an ANN that classi-
fies images into ten classes, such as ‘plane’, ‘car’, ‘bird’, ‘cat’ etc. Every point
in the plots corresponds to one image. Colours represent the respective class.
Looking at the data representation at different hidden layers h(14) to h(60), one
can see that the data is transformed in a manner that allows for easier sepa-
ration of classes. The plots are taken from Hoyt and Owen (2021) (permission
requested) and are obtained from real data. Note that to visualize an image in
two dimensions, an algorithm was used that produces a low-dimensional repre-
sentation such that distances between 2D points are reflective of the distances
between the original (i.e., high-dimensional) images.

et al. (2009); Zeiler and Fergus (2014), with explanatory approaches proposed
by, e.g., Mhaskar et al. (2017); Frankle and Carbin (2019); Hodas and Stinis
(2018); Shwartz-Ziv and Tishby (2017) and summarized by Prince (2023)).
Figure 3 shows the effect that this feature abstraction has on classification
capabilities, while 4 visualizes the respective features themselves. A more low-
level visualization is provided in the appendix (Figure 9).

Thus, the power of deep ANNs lies exactly in their capacity to approxi-
mate high-dimensional and complex (highly non-linear) functions by means of
successive data-space transformations, combined with the property that these
functions can be fitted to data, i.e., trained for specific tasks. Crucially, the true
input-output relation underlying the task does not need to be known; it suffices
to provide enough examples of input-output pairs. (Indeed, given the com-
plexity of relations between elements in one hidden layer and the layer below
it, such knowledge seems more or less impossible to obtain anyway). ANNs,
thus, can extract complex patterns and provide human-accessible outputs that
represent the underlying patterns in some meaningful way. For example, the
complex patterns underlying images that show dogs or cats are transformed
into two values only, representing the probabilities of the image to show a cat
and a dog, respectively.

We have now seen that ANNs, on a more abstract level, can exhibit very
complex functions, whose meanings, however, remain opaque to human insight
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Fig. 4: Progression of data representation in the DL network ‘GoogLeNet’
(Szegedy et al. 2015). GoogLeNet is an instance of a convolutional neural net-
work (CNN), which achieves state-of-the-art performance in image analysis
tasks (for an accessible introduction, see Stadelmann et al. 2019b). The shown
images were achieved by fixing the trained model parameters and instead opti-
mizing the pixel values of the input image in a manner that maximizes the
response of certain hidden channels (in CNNs, convolutional layers usually
consist of channels, which consist of units). Thus, the obtained images show
what the respective channels are detecting, i.e., how the respective channels
represent input images. Going from lower to higher layers, we see that channels
represent edges, then textures, then patterns, then parts, then objects, such as
archways and eyes. We can see that the image representations in higher lay-
ers serve to simplify classification. Detecting cars based on raw pixel values or
edges, for example, is hard, but detecting cars based on channels that represent
objects, such as tires, lights, and streets (and ultimately cars themselves) is
much easier. These images are taken from Olah et al. (2017) with permission.

due to their complexity. We can understand them on the lowest possible level,
e.g., mathematically, but then miss the semantics of the operations that con-
nect to meaningful concepts of human experience. Or, we can understand them
on the highest possible level, e.g., mapping images of animals to the categories
‘cats’ and ‘dogs’. But we cannot understand it in any way comparable to how
something like this is achieved by a human. Thus, we can either achieve a
superficial or a purely numerical understanding. But there is no explanation,
on a meaningful intermediate level, of the ‘reasoning’ behind the level-by-
level data space transformations, the performed abstractions, and the salient
features identified. The complexity of the ANN itself, which enables it to auto-
matically extract highly complex relationships from highly complex data and
thus is its biggest strength, is also its weakness, as it causes the opacity as to
how that works. To keep this introduction concise, we will skip the details of
how an ANN can be fitted to data, i.e., how it can be trained to approximate
a useful function and refer to appendix A.3 instead. Here, we rather want to
give a general idea (see section 2.3 below) and then show how a fully trained
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ANN inevitably deviates from its theoretical optimum of universal approxi-
mation. In other words, we present to the reader errors of trained DL models,
which are unavoidable given their current architecture. When assessing DL
from a humanities perspective, it is critical to keep these errors in mind, as
they might bear on every DL model and application.

2.3 Inevitable Errors of Trained Deep Learning Models

Training an ANN requires the definition of a penalty (commonly referred to
as the ‘loss metric’ or ‘cost’) that indicates the difference between the output
produced by the model in response to a certain input and its corresponding
target value (the known ground truth). If the output resembles the target, the
penalty is small. The more the output deviates from the target, the higher the
penalty. During training, the penalty is minimized by altering the underlying
model parameters. This is an iterative process, which arrives at an increasingly
better model through a mathematical method called ‘gradient descent’ (which
ultimately is an implementation of the ‘chain rule of differentiation’ taught in
school to 11th-graders). This is necessary because the optimal model parame-
ters cannot be known, or directly calculated, in advance. Thus, every example
’shown’ to the ANN (each input-output pair) provides some small degree of
additional information about the direction in which each parameter should be
nudged in order to slightly decrease the penalty, which is to say, to increase
the performance of the model. After many iterations, this optimization process
arrives at smaller and smaller penalties with the model parameters found so
far, such that further iterations become negligible. However, since the lowest
possible penalty and the optimal model parameters are not known, there is no
certainty that training has reached the optimum or is as close to the optimum
as it could achieve. Even if this optimum were reached for a particular ANN
architecture, it is, in fact, theoretically impossible to arrive at an ANN perfectly
solving a given task of sufficient complexity (i.e., without the slightest error,
see i − iii below), although the current state of DL theory suggests that any
found optimum should be ‘good enough’ in practice (Prince 2023). The empiri-
cist process of iterating through examples and nudging model parameters thus
involves inevitable errors. These can be categorized as follows.

i. Bayes Error

The success of predicting an output based on a certain input is grounded in
a sufficient correlation between the input variable and the output variable. If,
therefore, we wanted to predict the duration of stay at the ICU based on a
patient’s shoe size, even the best model would fail, since the two variables are
not correlated in any meaningful way. The Bayes error is inevitable since no
practical machine learning task is based on perfect correlation.

ii. Approximation Error
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If an ANN model is to fit data, it needs to exhibit a level of complexity that
allows for a sufficiently close fitting, i.e., it must suffice to represent the under-
lying distribution in a meaningful way. In practice, no ANN model is arbitrarily
complex, and thus no model can map arbitrarily complex relations. This error
is also called the ‘bias’ of a model. An under-complex, i.e., biased, model will
be ‘off’ in a systematic way (think of a straight line that will be systematically
wrong in predicting any periodical function), being unable to fit the more com-
plex training data entirely accurately. A model with high bias is therefore said
to be ‘underfitting’ the training data. Models with a small number of param-
eters are particularly prone to this error when used with large-sized training
sets with high-dimensional data.

iii. Estimation Error

A further inevitable error is due to training data not representing the under-
lying data distribution (input-output relation) adequately. That is to say; one
can only train an ANN on some, often very small, subset of all possible exam-
ples. This error is inevitable because there exist no relevant machine learning
tasks where all possible data pairs are accessible (such that the underlying
distribution is fully known). The estimation error is called the ‘variance’ of
a model, since with varying training data, models with different blind spots
would be produced, corresponding to different weaknesses. A model with high
variance is said to be ‘overfitting’ the training data, as it follows the train-
ing data so closely as to fail to generalize accurately to new (‘unseen’) data
examples. This leads to the notorious difficulty in machine learning that the
training data needs to be sampled in such a way that it is representative of
the underlying data distribution, although the underlying data distribution
remains unknown. Usually, a dense and hence representative sampling is sim-
ply assumed to be the case. (For more details see appendix A.3 and Figure 11).
Models with high numbers of parameters are especially prone to this error, if
they rely on small-sized training sets.

In sum: To minimize the overall error, the model complexity should increase
with the complexity of the true underlying input-output relation, and training
examples must be representative of it. Since this underlying relation remains
unknown, however, there cannot be any guarantee that the trained DL model
will not be wildly wrong with new examples (Delétang et al. 2023). Almost the
opposite is true: for any statistical classifier, including complex DL models,
examples can be generated where it will fail dramatically – these are referred
to as ‘adversarial examples’ (Szegedy et al. 2014; Goodfellow et al. 2015). This
is an inevitable characteristic of DL models (Shafahi et al. 2020; Papernot
et al. 2017) and poses problems in various applications, such as self-driving
cars (Brown et al. 2018; Tu et al. 2022), making the presence of additional
processes to detect such out-of-distribution samples necessary (Amirian et al.
2018). While theoretical guarantees are thus absent, however, the success of
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DL models is built on the empirical finding that, in practice, reasonable gen-
eralization to unseen examples usually works quite well if it can be achieved
through interpolation between seen training examples (see section 2.5).

2.4 DL in Generative Pretrained Transformer Models

So far, we have outlined what ANN models are, wherein their power lies, and
where difficulties arise in training them. They are valid for any type of DL
model and application, among which we have looked at examples where ANNs
are used for classification, namely the image-to-class example of recognizing
handwritten digits, since image classification lies at the heart of the DL revo-
lution since 2012 (Krizhevsky et al. 2012; LeCun et al. 2015). Now that LLMs
have gained a great deal of public attention, this section provides a conceptual
introduction to the workings of generative language models, such as ChatGPT
or GPT-4 (OpenAI 2023) – see Prince (2023) for a more detailed introduction.

Generative Pretrained Transfomer (GPT) (Radford et al. 2018) models
represent what is called an autoregressive transformer model. An autoregressive
model forecasts a variable using its past values. Consider the sentence “He sits
on a bench”. The probability of this sentence equals the probability of starting
with “He”, times the probability for “sits” given “He”, times the probability for
“on” given “He sits”, and so on. An autoregressive model sequentially predicts
the next word by maximizing the joint probability between any next word given
the words that precede it. Thus, every new word in a sequence is a function of
the preceding words – and the model is a powerful next-word-predictor. The
specific characteristic of the transformer architecture, originally published by
Vaswani et al. (2017), bears the great advantage that it can model relations
between words independently of the distance between them in a text and that
it allows for what is called efficient ‘parallelization’, such that training on large
amounts of data is feasible.

To gain a more substantial technical understanding of what a ‘transformer’
does, we must first turn to how words are ‘embedded’, i.e., numerically repre-
sented, in an ANN. The previous example is not entirely accurate since most
language models predict not words but ‘sub-word tokens’. The term ‘token’
here refers to any statistically relevant part of a word (this could be, e.g., the
parts of a compound word, a punctuation mark in a sentence, a short word
itself, or simply any sequence of letters appearing often enough in text). The
use of tokens allows the model also to represent words that are not contained
in the vocabulary as such (e.g., names), to deal properly with punctuation, and
more effectively to relate words and their different suffixes (e.g., learn, learns,
learned, learning). Every token is then mapped to a point in a multidimensional
data space (e.g., 1024-dimensional), such that there exists a correspondence
between points in data space and tokens. Note that this mapping is not delib-
erately fixed but learned from data during training. To simplify matters, we
will, nevertheless, continue to talk about words instead of token embeddings.

A central part of the transformer model is the concept of ‘self-attention’.
Since language can be ambiguous, it is often not possible to infer how words
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relate to each other from syntax alone. Consider, e.g., the sentence “The book
does not fit into the suitcase, because it is too big”. The fact that “it” refers
to the book follows not from syntax but from the meaning of the words them-
selves. Depending on the context, the model should thus pay more ‘attention’
to certain words to incorporate their relation to others, hence the description
as ‘self-attention’. Finally, a ‘score’ contains the mutual connection strengths
between words, depending on the structure of any sequence of words – this
score serves to direct the attention toward certain preceding words when
predicting a given next word. Note that it is common to have multiple self-
attention modules that run in parallel. This is called ‘multi-head attention’
and achieves a more robust self-attention mechanism (or so it has been specu-
lated, see, Vaswani et al. 2017). In practice, several dozens of such multi-head
attention layers are stacked to build a deep model.

The final module in a transformer model is an ANN that takes the repre-
sentations of the transformed, embedded words and their mutual connection
weights as input and maps them to output probabilities for possible next
words. A word corresponding with a high probability for the next word is then
displayed in textual form (from its numerical representation). However, the
same prompts do not always yield identical results because chatbots sample
new words from the joint probability density instead of just going for the most
probable word. In other words, they choose an option with some randomness,
but with a weighting depending on probability densities. (On a side note: the
‘creativity’ of a transformer model corresponds with such random sampling
from a few of the most probable words, which is very different from what we
mean by ‘creativity’ as a human characteristic.) In the above example, the
transformer would then be able, building on the self-attention mechanism, to
refer “it” correctly to “book”, and, e.g., follow that sentence with “So I carry
the book by hand”. As written above, this potentially holds true, even if the
related words are far apart from each other in the text.

It is a matter of interpretation whether a transformer ‘learning’ and ‘gen-
erating’ text (i.e., predicting with high precision what the next word in a long
sequence of text should be while drawing on almost all humanly authored text
digitally stored on the web) constitutes ‘understanding’ of the structure of lan-
guage and the workings of the world (Bender and Koller 2020; Bisk et al. 2020;
Durt et al. 2023; Marcus et al. 2023; Dürr et al. 2023), and what ‘understand-
ing’ would mean in that case. As we have seen, the outputs are generated upon
suggestions by the statistics of words and their relative positions in a text. In
human beings, the same result could have been achieved through their semantic
knowledge of the terms involved as well as their embodied, lived ‘experience’.
Human understanding is thus grounded in all sorts of (implicit and explicit)
rational, emotional states, such as thoughts, feelings, and bodily sensations,
which a human being goes through while, for example, chatting. In contrast, a
transformer-based chatbot strings together words that are ‘likely’ and statis-
tically determined from analyzing a vast amount of text. ‘Understanding’ in
transformers thus refers to such a statistical mechanism. It is an interpretative
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move to say that with transformers, “statistics do amount to understanding”
of semantics (Agüera y Arcas 2022) or that something like this mechanism is
what we are referring to when we speak of understanding in humans (we will
return to these questions in section 3.1 below). What is striking, though, is
that the performance of state-of-the-art LLMs seems to reveal just how much
real-world grounding is sedimented in the humanly authored texts on which
those systems are trained (Durt et al. 2023), and it raises the question of how
much of that is then instilled into the DL models themselves.

We have now outlined the basic workings of transformer-based LLMs. Any
qualitative advance in their performance is still based on an architecture with
inherent limits – just precisely where the limits of achievable results lie must
be researched empirically (Pavlick 2023). Acknowledging such limitations of
transformer models, prominent AI researchers, like Yann LeCun, have pro-
posed ‘embodied’ model architectures that bring us closer to machines with a
human-like understanding of words (e.g., “autonomous machine intelligence”,
see, LeCun 2022; Matsuo et al. 2022, critically discussed in Dürr et al. 2023).

So far, we have introduced the known aspects of DL concerning how it
works and what its limits are. As stated above, some of the success of DL is,
however, still a mystery and subject to current research. In the next section,
we will turn to two example questions that still perplex researchers in DL, to
give an intuition about the unknown aspects of DL success.

2.5 Our Shallow Understanding of Why DL Works

Although advances in hardware and the increasing availability of data explain
the success of DL to a large extent (Lenzen 2020) and gave rise to numerous
algorithmic advances, which account for another large part (Stadelmann et al.
2019b), a unified theory that fully justifies the remarkable performance of DL
models is still missing (Plebe and Grasso 2019; Sejnowski 2020; Zhang et al.
2021), although progress seems to be made (Ma et al. 2022; Liu et al. 2022).
Two ‘unknowns’ remain particularly significant, which we will discuss here –
albeit only briefly (we describe two further ‘unknowns’ in section A.4). For a
more complete and detailed overview, we refer to Plebe and Grasso (2019) or
Hodas and Stinis (2018), for a more mathematical approach to Poggio et al.
(2019), and to for an in-depth mathematical investigation to Berner et al.
(2022). What is known theoretically about DL workings is summarized, e.g.,
in Roberts et al. (2022); Prince (2023).

i. DL Generalizes Surprisingly Well

As elaborated in section 2.3, DL models with large numbers of parameters
are, in theory, prone to overfit the training set. In practice, however, mod-
els with a great many parameters generalize surprisingly well to new data
examples (Zhang et al. 2017; Soltanolkotabi et al. 2019; Zhang et al. 2021;
Martinetz and Martinetz 2023). A good example is the model ‘Noisy Student’
with 480 million parameters, trained on only 1.2 million images, which might
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be expected to overfit drastically, but instead generalizes well (Xie et al. 2020).
Current research into generalization focuses on the learning algorithms, sug-
gesting that they exhibit properties of implicit regularization, i.e., a bias that
prefers encoded functions of low complexity (Soudry et al. 2022; Arora et al.
2019; Poggio et al. 2019). Furthermore, it was observed that the correlation
(more precisely, the mutual information) between neighboring layers in ANNs
is high, which is to say that although the system would allow for the difference
between levels to be higher, the functions encoded by neighboring layers are
in fact not so different from each other (Hodas and Stinis 2018; Tishby and
Zaslavsky 2015). In other words, the observed function complexity of an ANN
is typically much lower than theory shows it could be. This is what seems to
prevent large models from overfitting to the training set and thus from fail-
ing to generalize to new data examples. Overfitting was theoretically expected
to stop such DL models in their tracks. In light of this, their performance in
generalization is surprisingly high (Liu et al. 2022) – nevertheless, overfitting
remains an issue when training deep models, and there exist several methods
to counter this by penalizing complexity during training.

ii. DL Overcomes the ‘Curse of Dimensionality’

Many tasks in computer science become extremely difficult when the number
of dimensions of the data space is very high. The data provided for learning
LLMs like GPTs could easily run to tens of thousands of dimensions. High
dimensional data space is problematic because the sheer number of possi-
ble data examples with only small differences increases exponentially with its
dimensions, and the number of examples required to cover all relevant config-
urations consequently increases exponentially as well. Consider a small 5 × 5
image with a pixel value range 0−9 (from black to white). To cover all possible
configurations, we would need 1025 image examples. Extending the image by
one single pixel, we would need to cover 1026 configurations. That is an exten-
sion by 90 trillion trillion configurations (90× 1024). In computer science, this
problem is referred to as the ‘curse of dimensionality’ (Bellman 2015; Novak
and Woźniakowski 2009; Goodfellow et al. 2016). The data space in most
DL applications is very high. Surprisingly, tasks involving high-dimensional
data can, and have been, solved successfully for many applications using deep
learning. One hypothetical explanation for this corresponds to an important
idea underlying machine learning, namely that all meaningful data lies on
a lower-dimensional sub-space (usually referred to as ‘manifold’) embedded
in higher-dimensional space (Bengio et al. 2013, illustrated in Figure 12b).
What does this mean? Goodfellow et al. (2016) provides a helpful illustra-
tion: Although we live in three-dimensional space, we essentially move on a
two-dimensional manifold, i.e., the surface of the world, embedded in three-
dimensional space. Thus, standing at a random location, we can usually ignore
being above or below ground (for all relevant purposes of a given task). Like-
wise, the set of all possible images that show a face, for instance, is far smaller
than the set of all possible images. Machine learning seems to be able to latch
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onto this, which simplifies its tasks drastically. Although the ‘manifold hypoth-
esis’ is not apt for all problems, and much remains unknown, there is a good
deal of evidence that supports it (Goodfellow et al. 2016; Brahma et al. 2016).

These are just two examples of why our understanding of DL systems is
somewhat shallow. Much more research needs to be conducted in this area if
we are to reach transparency or ‘explainability’ in DL.

3 Work Program: Reconfiguring a DL
Assessment From a Humanities Perspective

Having outlined the basic principles of DL, we can now ask how DL, and the
applications to which it is put, can be engaged from a humanities perspective,
and under which conditions such an engagement benefits society and culture.
We want to make it clear from the outset that this work program is necessarily
limited in scope and that we have primarily identified issues that we deem
urgent – we invite others to chime in, further elaborate, and extend the issues
addressed here.

The revolutionary potential of recent DL innovations makes it pertinent
to reflect explicitly on the anthropological contexts within which we venture
any constructive interpretation and critical assessments of DL: firstly, because
these interpretations differ greatly today in their outlook and are in little
constructive dialogue which each other; and, secondly, because such anthropo-
logical views and values necessarily shape how we organize our societies, and
therefore form standards against which any technological innovation is mea-
sured. For these reasons, we aim, in this section, to provide some resources for
addressing fundamental questions around DL raised from a broadly humanistic
perspective.

We begin with a note on humanism. In what follows, we work within a
broad humanistic tradition, conceived as a field in which different approaches,
traditions, and streams may align with regard to shared interests and goals.
While not necessarily religious in outlook, this view is more inclusive than sec-
ularistic and exclusively non-religious accounts of humanism (Flynn 2002, see
also the website of humanists.international). Acknowledging the limits of each
scientific approach to explaining and making sense of the ‘human’, such an
inclusive humanism is open to religious and spiritual outlooks, alongside those
who ashew, or do not stress, such a perspective. More strongly, we would argue
that the frame of a ‘religion-secular’ distinction itself is not helpful and that,
particularly in Western countries, arguments about ‘what really matters’ are
conducted on the conceptual territory of the human – not necessarily the ‘reli-
gious’, but neither the absence thereof (Grey and Dürr 2023). (We stress this
not least because we have ourselves experienced the fruitfulness of dialogues
which include a wide range of perspectives on the human – religious and secular
– in debates around the future of humanity in a digital world.) Furthermore,
this inclusive humanism sees the value of the human person not in competition
with those entities with which humanity shares its rationality, animality, and

humanists.international
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life itself. Rather, it is the valuation of the human that leads inclusive human-
ists to value the world of which they are a part – thus, we agree with the line
of questioning of existing approaches to ‘inclusive humanism’ (Antweiler 2012,
2013) as well as with some concerns of (critical) ‘post-humanism’ (Foucault
1990; Herbrechter 2009; Wolfe 2010; Braidotti 2013), without agreeing with
their conclusions.

But how are we to assess DL technology from such a humanistic perspec-
tive, or within the framework of the humanities as disciplines addressing ‘the
human’ (broadly conceived)? The point of departure, for us, is minding the use
of language with regard to DL. How we talk about technology – most notably
in marketing campaigns but also in research, journalism, and popular culture –
has practical consequences. Language both opens and limits the world we can
inhabit (Wittgenstein 2013 [1921], 5.6). In the age of DL, computational the-
ories of mind and the language of human-like computational models (present
or anticipated) heavily influence our cultural imagination, self-experience, and
interpretation of reality: they impact our everyday lives. Such conceptions turn
into public narratives, into socio-cultural notions that transform our ideas and
ideals of ‘intelligence’, ‘life’, and what it is to be ‘human’ (Leung 2019). AI
research, correspondingly, has long ceased only to concern the use of computers
to get useful things done. Instead, some researchers make – implicit or explicit
– claims about reality as such and aspire to answer ‘big questions’ about the
nature of human beings, mind, behavior, and life itself (Boden 2016, see, e.g.,
Tegmark 2018). Not least in journalistic settings, AI researchers and engi-
neers are increasingly asked more about such human questions than about the
technical details of their research and actual competency. Ultimately, concep-
tions of AI feature not only as elements in explicitly articulated theories and
world views but are also always elements of broader socio-cultural imaginaries,
implicit world views, and quasi-metaphysical basic assumptions about reality.
We believe that the elucidation and assessment of such fundamental questions
about technology and the human are of the utmost importance today.

Outlook on this section:

In what follows, we will first argue that an engagement from a humani-
ties perspective (i.e., having humans in view) must begin with differentiating
‘the human’ and ‘technology’, while considering that the two are always also
enmeshed, such that they should neither be confused nor separated too neatly
(section 3.1). These considerations will further show that any assessment of
DL is inevitably grounded in anthropological, epistemological, and ontologi-
cal presuppositions (traditionally addressed and reflected by the humanities)
and that such statements are always interpretative and thus also questionable
from various other perspectives. We then argue that current assessments often
lack explicit reflection of their anthropological presuppositions and that the
humanities can help clarify and navigate the debate by thinking about such
assumptions and bringing them into the discussion, not least to foster construc-
tive dialogue between rivaling viewpoints (section 3.2). Finally, we focus on
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some fields of inquiry that require attention from the humanities for a holistic
assessment of DL, and offer resources of ongoing work in corresponding fields
(section 3.3) – in this last section, we provide practical follow-up questions
pertaining to the issues addressed.

3.1 Philosophical Foundations: The ‘Human’ and
‘Technological’ Factors in Human-Technology
Relations

Any holistic approach to the assessment of DL from a humanities perspective
must begin with and address the ‘human’. Ultimately, it is human actors who
create and deploy technologies at a scale that has a lasting effect on the world
we inhabit – the notion of the ‘Anthropocene’ (Crutzen and Stoermer 2013)
refers precisely to this fact. From this perspective, it is vital also to note that
we are ultimately responsible for what we do with our technologies. Therefore,
a clearer view of the complex ways in which human behavior and technolog-
ical innovation jointly transform our world is part of charting the way with
responsible use of DL systems. This requires that we have some grasp of the
qualitative difference between human beings and their technologies. However,
it is precisely this that is called into question in the age of AI.

The confusion of human beings with technology can be analyzed as the
result of two related tendencies: (i) a tendency to anthropomorphize AI, and
(ii) the corresponding tendency to technomorphize human beings – both of
which have a long pedigree. While we are convinced that we should not confuse
the human and technology, neither should we separate them all too neatly.
Therefore, we will consider the fact that (iii) technology is part of and shapes
human life (nature and culture), such that human beings must be understood
as inherently related to them. Further practical and applied questions and
suggestions stemming from these observations are provided in section 3.3.

i. Human-Like AI? On Anthropomorphizing Technologies

‘Anthropomorphism’ is the act of attributing distinctively human-like emo-
tions, mental states, behavior, and even subjectivity, to non-living objects,
animals, and, more broadly, to both natural or supernatural phenomena (Epley
et al. 2007). With the increasing performance of AI systems – and, espe-
cially brain-inspired AI like DL – and their embedding in the real world (e.g.,
as robots with human features, as virtual assistants with human voices, and
the like), possibilities for confusing human beings with AI systems steadily
increase. The result, among our concerns, is the attribution of distinctively
human qualities to DL systems, sometimes also referred to as ‘mind percep-
tion’ (Waytz et al. 2010). This is a notable propensity not only in the public
sphere but also in AI research (Proudfoot 2011; Salles et al. 2020; Watson
2019; Cave et al. 2019; Lipton and Steinhardt 2019). As a caveat, it must be
noted that, historically, there have been different kinds of definitions of AI.
Russell and Norvig (2021) suggest two main strands: one explicitly pursuing
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“human performance” and the other preferring an “abstract, formal defini-
tion of intelligence called rationality” (which is cast in terms of goal-directed
behavior, problem-solving, thinking and acting rationally, etc.). On this map,
human-centric approaches are particularly prone to anthropomorphism, and
explicitly so. But, at least since Aristotle’s seminal definition of human beings
as ‘rational animals’, the second definition can lend itself to it as well.

Blake Lemoine, a former engineer of Google for ‘Responsible AI’, has made
the news with the claim that their “Language Model for Dialogue Applica-
tion” (LaMDA) supposedly has awareness of its rights and needs, is afraid
of death and thus sentient (Lemoine 2022; Tiku 2022). Others argue that
robotic AI systems are candidates for personal rights (Gunkel 2018), which is
true, particularly for people under thirty who believe that future robots will
develop cognition and affect (de Graaf et al. 2021). Anthropomorphization is
also observable in the phenomenon of bonding with chatbots, social bots, and
care bots, which in many cases leads (positively or negatively) to the ‘person-
ification’ of bots and AI systems (Dosovitsky and Bunge 2021; Skjuve et al.
2023; Crolic et al. 2022). This is not least due to the fact that these are engi-
neered to engage the emotional needs of specific users and to create the illusion
of mutual care (Darling 2017). Cultural variations of these phenomena can be
observed, for instance, in a comparison between Europe and Japan (Haring
et al. 2014; Robertson 2014). This seems to have something to do with the
religious background of the Shinto religion, or ‘way of life’, in Japan, which
ascribes spirit and personality to both organic and inorganic things (Robert-
son 2018). Thomas Fuchs even diagnoses a novel form of “digital animism” in
Western societies (Fuchs 2022). There is a notable tendency of people to trust
computers more than human beings in decision-making processes (Bogert et al.
2021), leading to an ‘overtrust’ (Hardré 2016; Aroyo et al. 2021). AI systems
are being perceived as human-like but more ‘objective’, ‘reliable’, and ‘trust-
worthy’ compared to rather ‘erratic’, ‘biased’, and ‘unreliable’. Neglecting that
such systems lack any form of emphatic understanding of the human life-form
(Fuchs 2022; Dürr et al. 2023) is most consequential if it leads to deploy-
ment in decision-making processes that existentially affect human lives, e.g.,
in jurisprudence (Ryberg and Roberts 2022), policing (McDaniel and Pease
2021), banking (Donepudi 2017), and insurance (Lamberton et al. 2017). In
light of these dynamics, the clarification of terminology is pertinent, alongside
anthropological, philosophical, and religious background assumptions.

In both AI research and among the broader public, the language deployed
to speak about DL models overlaps substantially with everyday language about
human beings (Salles et al. 2020). Kostopoulos (2021) has argued that in the
attempt to communicate the capabilities of AI, spokespersons in research,
industry, and journalism reach for parallels with human capabilities using
vocabulary that is characteristic of human behavior. Although there is broad
consensus in research that today’s DL models are nothing other than a complex
mathematical function, they are characterized as having the ability to “read
and comprehend”, to “compose music”, to exhibit “curiosity” or “creativity”,
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to be “afraid”, and so on (e.g., in Hermann et al. 2015; Mozer 1994; Reizinger
and Szemenyei 2020; Nguyen et al. 2015; Lipton et al. 2018). Of course, human-
izing technology for the sake of communicative or pedagogical simplification
is a frequently encountered phenomenon. It has been common, e.g., in control
theory, to speak of a controller ‘seeking’ a target value, although no one would
think the controller is consciously doing so. However, with today’s AI, that
is not quite so clear anymore. Although some use anthropomorphic language
metaphorically, as in control theory, others would say that, in principle, the
terms used are equally appropriate or inappropriate for humans and technol-
ogy, as the difference between the two is, ultimately, a matter of degree (on
different ways to characterize this relation see Davison 2021). However, such
interpretations and their philosophical premises remain largely implicit and
are often not given enough attention (more on that in the following section).
Lipton and Steinhardt (2019) argue that we should not take such anthropo-
morphizations lightly. They speculate that the transfer of qualities from the
human to the machine is partly due to performance and funding incentives, i.e.,
using anthropomorphic language with regards to algorithms increases atten-
tion from media, donors, institutions, and colleagues in the field (Stadelmann
et al. 2019a).

The main problem in using anthropomorphizations with AI systems is that
it obscures the nuances, intricacies, and workings of the actual technology –
which makes it difficult to adequately assess it. This can go both ways. It can
strengthen unwarranted confidence in the technology’s capabilities, e.g., by
speaking of ‘learning’, which in humans refers to an adaptive ability to cope
with new environments, where there is, in fact, function approximation, which
does not generalize well (Brooks 2017). Negatively, it can also give rise to fears,
e.g., by speaking of algorithmic ‘bias’, which in humans usually goes hand
in hand with bad intentions, that cannot, in the same way, be attributed to
algorithms, or, more extremely, in doomsday prophecies of a superintelligence
purposefully eradicating humanity (see, e.g., Yudkowski 2023). Note that both
terms, ‘learning’ and ‘bias’, refer to real technical issues with social implica-
tions, but we propose that they are best addressed without anthropomorphic
distortions.

In sum: Using anthropomorphic language with reference to DL systems
makes it increasingly difficult to distinguish between human actors and their
technological counterparts. While the advancement of DL application blurs
the line between them, we deem it urgent to think more deeply about this
difference, and ask what makes human beings unique vis-a-vis machines.

ii. Machine-Like Humans? On Technomorphizing Human Beings

The flip side of confusing technology with human beings is the tendency to
‘technomorphize’ human beings. This has gained traction with the growing
mutual relationship between neuroscience and AI, and the rise of DL as a
‘brain-inspired technology’ (Salles et al. 2020; Hassabis et al. 2017). One initial
aim of creating correspondences between the workings of the brain and AI
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systems was to better understand the human brain, self, and behavior (see, e.g.,
Huerta et al. 1993; Waldrop 2012; Prescott and Camilleri 2019). Indeed, AI can
be very helpful in researching human beings, but its architectural similarity
with the human brain should not be overstated, as the majority of what we
know, e.g., about the learning process in the brain, has not been integrated
in DL – or only in an immensely simplified manner (Schmidgall et al. 2023;
Lillicrap et al. 2020; Ullman 2019).

DL anthropomorphism, however, and the dynamics of seeing ourselves in
the image of our technology, has a pedigree reaching back to antiquity. (Müller
and Liggieri 2019; Cave et al. 2020). It gained modern plausibility with the
scientific and industrial revolutions, and the ascent of an all-encompassing
mechanistic world picture since at least the 17th century (see, e.g., Boden 2008;
Black 2014; Jank 2014; Dürr 2021, 2023; Sarasin 2001). Surveying these devel-
opments allows one to identify several leading metaphors which have impacted
the conceptualization of human beings – especially as to how their bodies
‘function’. Such metaphors usually mirror the most advanced technology of a
certain era: in Descartes’ time, these were organ pipes or the automata in the
Garden of Versailles; later came cameras, radio, and the electrical systems of
the early 20th century. It is not surprising, then, that computer science now
informs many of the current models and conceptualizations of the human:
i.e., human beings as ‘biological computers’, ‘informational patterns’ or ‘pro-
cesses’, ’algorithms’, ‘software’ or ‘mindware’ instantiated on the ‘hardware’
or ‘wetware’ of the body (see, e.g., Bray 2011; Tegmark 2018; Clark 2008;
and, for a critical perspective Weizenbaum 1976). Such metaphors are often
deployed without explicit philosophical intent, but they nevertheless convey an
anthropology that we tentatively characterize as a ‘computer-anthropology’.

Such metaphors have gained particular traction in cognitive science and
the analytic philosophy of mind insofar as those have been rooted in behav-
iorist and functionalist frameworks of the mind (Rescorla 2020). Behaviorism
deliberately brackets the deeper questions of what intelligence, understanding,
curiosity, etc. are, and instead ascribes these characteristics to everything that
passes in behaving as if it exhibits them (see, e.g., the famous ‘Turing Test’
in AI, Turing 1950). However, in order actually to understand and engineer
intelligence, the question of how intelligence (or at least how some form of
intelligence) works must be answered on a practical level. Thus, the field of
cognitive science and the AI project – purposefully framed as the engineering
quest to simulate human intelligence (McCarthy et al. 1955) – had to overcome
the purely behaviorist approach to intelligence. This was achieved on the basis
of functionalism (e.g. Putnam 1960) with the central concept of mental rep-
resentations (e.g. Fodor 1975; Heil 2020; Pitt 2022; von der Malsburg 2023).
According to representationalism, mental states and processes are constituted
by their functional role in a system of symbolic structures. In our context,
the system is the mind materialized in the brain, and its symbolic structures
are representations of some sort, e.g., inner representations of things in the
external world. As such, the mind is perceived as a machine that follows strict
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syntactic rules to manipulate symbols and sequences of symbols in a mean-
ingful way, i.e., it processes information toward certain goals. Notably, such
an ‘informational’ account tends to focus – almost exclusively – on the human
brain as a ‘computational engine’ (Churchland and Sejnowski 1992; Church-
land 2013; Clark 2013). This brief outline of core assumptions that add up –
implicitly or explicitly – to a ‘computer-anthropology’ would deserve a much
fuller treatment here. We must confine ourselves here to three critical concerns
that indicate the significance of deeper reflection on these issues:

Firstly, with regard to the exclusive focus on the brain, the claim that the
workings of the human brain – and mind! – are essentially comparable to AI
is based on the strong and highly contestable philosophical assumption that
both are essentially mechanistic processes (Boden 2008). Kenny (1984) has
provided helpful clarifications in addressing what he termed the “homunculus
fallacy” (pp. 125–136) – also addressed as “mereological fallacy” (Bennett
and Hacker 2022, pp. 79–93), and more broadly as ‘cerebrocentrism’ (Hagner
1997; Fuchs 2021; Dreyfus and Taylor 2015, pp. 107–123). This consists of
taking “predicates whose normal application is to complete human beings or
complete animals and apply[ing] them to parts of animals, such as brains, or
to electrical systems.” (Kenny 1984, p. 125). As if the brain itself were like ‘a
little human being’ (homunculus), doing the perceiving, thinking, etc., that we
usually ascribe to the whole human being. Ultimately, this would result in an
infinite regress of trying to explain the capabilities of the homunculus with yet
another little man inside it, etc. In Kenny’s view, the fallacy is still “commonly
defended as a harmless pedagogical device”, against which he argues “that
it is a dangerous practice which may lead to conceptual and methodological
confusion.” (Kenny 1984, p. 125). Parts of human beings (e.g., the brain)
or technical devices (e.g., DL systems) can be in certain “states”, which can
be described by their internal (physical) properties, but that is categorically
different from a “capacity”, which usually can be specified with a description
of “what would count as the exercise of the capacity” (Kenny 1984, p. 129).
This holds against critics, who say that knowing something is to be in a
neural state (e.g., Dennett 2007; Searle 2007), because “to know something
is ability-like, and hence more akin to a potentiality than to an actuality (a
state)” (Smit and Hacker 2014, 1084). Thus, confusing mental capacities (like
knowing or understanding information) with physical states and processes (like
containing information or performing operations on information states) results
in attributing capacities – which properly are those of whole human beings,
persons, or to some degree animals – to the brain, or, for that matter DL
systems. The result of this can be both the anthropomorphization of DL and
the technomorphization of human beings.

Secondly, purely formal approaches to cognition or intelligence – regarding
them as encoded functions – fail to include our subjective everyday expe-
rience (Fuchs 2018). Janich (2009) illustrates this problem by considering
an anatomist investigating the human skeleton. Her findings are valid, inde-
pendently of her having a skeleton of her own, because her explanandum
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is independent of her own constitution in that matter. With regard to her
research object, she is a third-person-perspective observer. However, the same
does not hold true for a physiologist investigating ‘seeing’ in the visual system,
for he can see and knows what seeing is from everyday experience, long before
entering the laboratory. Without his pre-scientific practice of seeing, he has
no explanandum at all, which means that physiology does not define the word
‘seeing’ as an explanandum; rather, it stems from everyday language. In con-
trast to the anatomist investigating the skeleton, the physiologist investigating
the visual system has no other option than to take a perspective of participa-
tion concerning his research object. The search for a formal description for the
human mind, or ‘intelligence’, thus faces the serious issue that a substantial
part of what constitutes everyday human cognition – as with ‘seeing’ – must be
presumed and can only lie at the basis of a formal account, not at its conclu-
sion. Following Janich’s argument, cognition defies formal definition because
the formal method has no language for any form of participatory perspec-
tive. Thus, it can only ignore the fundamental problem that here explanandum
and explanans overlap, i.e., to explain the thing we want to explain, we must
use that same thing which is then involved in the explanation of itself, lead-
ing to an infinite regress. If this is true, every attempt to ‘explain’ cognition
or intelligence in purely formal terms illegitimately reduces the larger real-
ity underlying these words and must ultimately fail. This has been argued at
length with regard to ‘consciousness’ and pertains to AI: There are attempts
to explain consciousness as what results from increasing the complexity of a
system as well as what is called the ‘principle of recursivity’ (i.e., a feedback
loop of the state of a system into its further processing). The idea is then to
explain consciousness by “piling up” such systems on top of each other so that
higher levels (consciously) monitor the lower (yet unconscious) mental states
of the system (see, e.g., Dennett 2013, p. 325). However, any effort to elu-
cidate consciousness using higher-order concepts and modes of formalization
like recursiveness or even self-modeling ultimately results in an endless cycle
of regression (Frank 2002, 2007; Zahavi 2006; Fuchs 2018).

The third concern is more grave still. Modeling humans on computers can
have dehumanizing effects (Hoff 2021; Fuchs 2021; Tallis 2004, 2020; Dürr
2021). This is sometimes referred to as ‘mechanistic dehumanization’ (Haslam
2006; Li et al. 2014; Kuljian and Hohman 2023) The historical record of those
who saw and treated people as machines, programmable at will, is sinister
(Haslam 2006; Todorov 2016). At the very least, it produces a low perception of
human worth with potential long-term consequences, fostering a modern form
of fatalism (see, e.g., Courchamp et al. 2018). Ultimately, it is incompatible
with core assumptions about human beings, which are consequential for our
liberal democracies: core values, such as human dignity, liberty, and autonomy,
cannot, in such a take on human beings, be meaningfully maintained because
they presuppose something in individual human beings that lifts them out of
the realm of disposable things. It seems difficult to argue for the unique and
incalculable dignity of a human person from the assumption that they are
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‘nothing but’ computational processes and, as such, completely replaceable
with computational processes, say in machines. The same goes for the kind
of freedom, rights, and duties we attribute to such dignified human beings
to engage in the politics of our democratic societies – attributes we do not
grant to algorithms, computers, and robots (at least for now, see Gordon and
Pasvenskiene 2021). Thus, even if one tends to believe that a human being
could, in principle, be exhaustively modeled by a computer, it would still be
prudent not to assume that this is the case until the evidence is overwhelming.
In the long run, computer-anthropology will have direct consequences, not just
for our ethical assessment of DL, but for the principles and values guiding
design processes, as well as for political and juridical decisions, and thus for
the future of our societies as they grapple with the digital transformation.

These are just three prominent reasons that illustrate why we believe it is
vital to reflect deeply and critically on the difference between ‘the human’ and
‘machines’ – particularly in light of DL achieving things that were hitherto
considered impossible for machines, clarifying what is distinctively human is
one of the great tasks of the humanities.

iii. Technological Mediation: Why We Cannot Separate the Human From
Technology

It is vital to note that the emphasis on the ‘human’ here must not be
understood within the framework of a naive instrumental conception of human-
machine relations: as if neatly isolated ‘human beings’ were using neatly
isolated ‘DL tools’ for their purposes, by means of their sheer will. Such a view
has been labeled the ‘value neutrality thesis’ of technology: denoting the idea
that technology is a morally and politically neutral medium and that the only
relevant factor with regard to outcomes is what humans do with it (see, e.g.,
Pitt 2014). This view is increasingly questioned and challenged by approaches
that recognize that values are embedded in technology and that technologi-
cal artifacts have a kind of agency that needs to be reckoned with, not least
because they lastingly affect their ‘users’ and culture and society more broadly
(Brey 2005; Miller 2021; Kroes and Verbeek 2014; Jenkins et al. 2023). Tech-
nologies do something to us as we do something with them (Ihde 1990) and
thus make vital an encompassing analysis of the structure of human-technology
systems as well as their ‘co-evolution’ (Hughes 1987; Murphie and Potts 2017;
Hoff 2021).

Several strands of research in the philosophy of technology (broadly con-
ceived) provide us with helpful resources to conceive in a more nuanced way
of human-technology relations : technology assessment (Grunwald 2009, 2019a;
Winner 2020), media philosophy and media ecology (McLuhan 1994 [1964];
Postman 2006; Strate 2017; Cali 2017), phenomenology and postphenomenol-
ogy (Ihde 1990, 1995; Verbeek 2005; Rosenberger and Verbeek 2015), and the
interdisciplinary field of ‘science and technology studies’ (Latour 2012; Sharon
2013, see also Sismondo 2010; Felt et al. 2017). The concept of ‘mediation’
has proven to be valuable: “rather than seeing technologies as functional,
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we need to understand how they play a mediating role in human practices
and experiences. Technologies-in-use help shape relations between users and
their environment” (Verbeek 2015, p. 31). In transforming our environments,
DL applications are not merely neutral or passive instruments but have their
own kind of agency (Latour 2012; Verbeek 2005). They transform our expe-
riential, cultural, and social environments with lasting effect (Stiegler 2013;
Hoff 2021; Kitchin and Dodge 2011; Heidenreich and Weber-Stein 2022). The
importance of such considerations becomes more obvious when considering the
fact that DL-based systems are not only making suggestions but also mak-
ing decisions for us, and in a way that no human being has deliberately or
strategically planned (Karanasiou and Pinotsis 2017). This practically forces
us to revise our notion of human ‘autonomy’ (Prunkl 2022) (on this see section
3.3.iii below). What this amounts to is the need to reconceive the relationship
between humans and technology in what we would term a relational anthropol-
ogy of technology. Such an anthropology must account for the fact that human
nature, technology, and culture constitute each other and continuously evolve
together without either nature, technology, or culture fully determining the
others (Leroi-Gourhan 1993; Hoff 2021; Noë 2023). This goes against the grain
of both ‘technological determinism’, for which technology is the only decisive
factor (Ellul 2021 [1954]) or ‘socio-cultural determinism’, for which it is only
social and economic factors and human action which determine outcomes (Pitt
2014). Empirically, both sides seem to have a point but are lopsided in their
exclusivity of other factors (Grunwald 2007).

The case for a more holistic and relational anthropology of technology sets
out phenomenologically from the experience of lived embodiment (Leiblichkeit,
see Fuchs 2018; Hoff 2021). We are capable of relating to technology in such
a way that we relate to the world through it (‘mediation’). A classic example
of this is a blind person’s cane, which is integrated into the sensory field so
that things are felt with the tip of the cane (Merleau-Ponty and Smith 1962;
Polanyi 1967). Another example is prostheses, which has led philosophers of
technology to speak of the ‘prostheticity’ of technology more broadly (Stiegler
1998). Technologies transform our world because we, in many ways, live in
and through them. Thus, we are enmeshed with the values embedded in them
and the influences they exert on us as we ‘use’ them (Spiekermann 2023).
(This has immediate implications for how we conceive of ourselves as ‘free’,
‘responsible’, and ‘dignified’ persons in democratic societies, but also for how
we think about designing, legislating, and deploying technology, which we will
discuss in sections 3.3 and 4.)

A promising anthropological starting point for such a project seems to be
a line of thought under the notion “embodied cognition”, which has recently
attracted significant attention within and outside cognitive science, and which
is most distinctly represented by theories of “enactivism” (Varela et al. 1992;
Thompson 2010; Di Paolo et al. 2017; Hutto and Myin 2012; Stewart et al.
2010; Gallagher 2011, 2017; Fuchs 2018, for an introduction to the varieties of
enactivism, see Ward et al. 2017, for an overview over the very dispersed field
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of cognitive science in general, see Núñez et al. 2019; Andler 2009; Wilson and
Golonka 2013; Margolis et al. 2012).

The main idea of enactivism is that organisms and their environments are
interrelated and mutually shape one another. A living organism is an autopoi-
etic system (from the greek auto = self; poiesis = creation or production), i.e.,
it produces and maintains itself by creating its own parts through constant
metabolism, exchange, and interaction with its environment. The lived body
plays a mediating role between the living being and its environment, hence
‘embodied’ cognition. Importantly, this is understood as a ‘vital’ embodiment,
not just any kind of embodiment (Thompson and Stapleton 2009; Fuchs 2022)
as enactivism does not sit too well with the idea of ‘extended’ or ‘substrate
independent minds’ (see Rowlands 2009; Cappuccio 2017; Gallagher 2018,
against, e.g., Kurzweil 2005; Clark 2008). Being embodied, a living organism
perceives its environment not in a mere passive manner, as does the mind in
the functionalist paradigm of mental representation, but it co-constitutes it by
its actions. This means that what a living being perceives influences its actions,
which in turn constitute what it perceives. The main idea of enactivism is
taken up in neuroscience and philosophy under the term ‘predictive processing’
(Hohwy 2013; Clark 2016; Butlin et al. 2023), even if ‘predictive processing’ is
still framed within the bounds of what we would term computer-anthropology,
namely focusing on the brain as a processing machine that constantly updates
a ‘mental model’ of its environment. On the enactivist view, a cat and a mouse
have different environments and live in different worlds. They – to follow up
on Janich’s illustration in the previous section – ‘see’ the world differently.
In this light, cognition is not solely explained from an observer’s perspective
in terms of information processing. In other words, there is no neutral ‘view
from nowhere’ (Nagel 1989). Instead, the complex and ever-changing patterns
of interaction with the environment require a more holistic approach to cogni-
tion, which understands this as a value-saturated, intentional, and goal-driven
phenomenon (Varela et al. 1992, pp. 205-206; Thompson 2010; Turner 2017;
Noble and Noble 2023): one that involves the whole organism-environment-
system and, not least, considers that every explanatory perspective is subject
to this co-constitutive interrelations as well. Instead of mental representa-
tions, enactivism works with the concept of ‘flexible neuronal dispositions’
which apply in different situations – ‘open’ behavioral ‘loops’ that are formed
through experience and reactivated in specific situations to ‘close’ an organism-
environment-interaction (this would deserve a more detailed treatment we
cannot give here; instead, we refer to Fuchs 2020, 2018). This organic and phe-
nomenological ‘mechanism’ also applies in technological environments, where
it explains the ‘mediating’ or ‘prosthetic’ function of technology. This lies in
marked contrast to the ‘mental representation paradigm’ of computer anthro-
pologies (see section 3.1.ii), which presupposes a clean divide between subject
and world. Enactivism cuts across this divide and thus helps ground a more
holistic relational anthropology of technology. This holistic entanglement of
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the human being with technology and culture makes clear that ‘the human’ is
constantly negotiated and precarious.

In sum: Our notion of the human is invariably the frame of reference for any
assessment of DL technology. Yet, this ‘human factor’ is co-dependent and co-
constitutive with ‘technological factors’ and ‘cultural embeddings’. Together,
those factors shape our anthropology and, thus, the socio-culturally malleable
frame of reference for how we shape our common life. Bracketing out either
the ‘human factor’, the ‘socio-cultural frame’, or the ‘technological factor’ does
not do justice to the complexity of the situation we are facing with the dig-
ital transformation. We are convinced that only by holding the tension of all
three factors (nature, technology, culture) the delicate balance between the
humanities, natural sciences, and engineering could be productively struck.
Keeping this in mind thus orients the way we ethically and practically engage
DL technologies.

3.2 Contextualizing Ethical Assessments of DL

From a humanities standpoint, one vital task is to analyze technology, its
impact, and its interpretations against a wider anthropological background.
Such broadening and contextualizing of ethical DL assessments is vital if
we want to reap the benefits of novel AI technologies while managing their
perils. Important research is already being conducted in the areas of ‘technol-
ogy assessment’ and ‘responsible research and innovation’ (Grunwald 2019a;
Coenen and Grunwald 2017), ‘value-sensitive design’ (Friedman and Hendry
2019), ‘value-based engineering’ (Spiekermann 2023), and privacy and security
assessment (European Parliament and Council of the European Union 2016;
Liu et al. 2021; Véliz 2021; Curzon et al. 2021), as well as research and the stan-
dardization of ‘trustworthy AI’, which deals with issues of reliability, safety,
security, resiliency, accountability, transparency, explainability, interpretabil-
ity, reviewability, and fairness with mitigation of harmful bias in AI (Kaur
et al. 2022; Wing 2021; Chatila et al. 2021; Durán and Formanek 2018; Floridi
2019; Krüger and Wilson 2023; Yazdanpanah et al. 2023; Johansen et al. 2023;
Li et al. 2023).

Here we see part of a notable broader ‘ethical turn’ in thinking about DL,
or at least increasing interest in the ethical conditions and ramifications of DL
applications, which resulted in an expansion of literature (for an overview of
current debates and developments in the field, see, Coeckelbergh 2020; Spiek-
ermann 2019; Dubber et al. 2020; Véliz 2023). One strong emphasis has fallen
on our inability to understand the outputs and decisions of DL models (on
this, see section 2.5), drawing attention to questions around harmful bias and
discrimination in data-based assessments or decision-making support systems
(Glüge et al. 2020; Loi et al. 2019; Baumann and Heitz 2022). Other areas of
ethical attention include privacy of personal information, free speech, infor-
mation flows and misinformation, the working conditions of humans training
and optimizing models and data sets, military applications (Brundage et al.
2018), and ecological considerations (positively in as much as DL can help
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to work toward ecological sustainability (Rolnick et al. 2022), and negatively,
given the ecological impact of training DL systems themselves (Strubell et al.
2019; Bender et al. 2021; Crawford 2021)). Such work sees technology as not
the solution to our societal and planetary challenges on its own. Just as impor-
tant is how technology is designed, regulated, implemented, and used in our
societies (Floridi et al. 2018; Russell 2019). The challenges of the digital trans-
formation require more than a ‘technical fix’ (Weinberg 1966; Morozov 2014)
because, ultimately, it is always human beings who deploy, use or abuse novel
technical potentials. This, in turn, brings into focus the conditions under which
human beings are even capable of living with technology in a way that allows
for human flourishing.

Having the co-constitution of technology and human self-understanding in
view, the increasing deployment of ‘human-like’ DL systems propels a human
self-understanding that might end up losing sight of ‘the human’ (as discussed
above in section 3.1). Therefore, as we have already suggested, the assessment
of DL will benefit from a holistic approach, placing technological considerations
and ethical evaluations in the broader context of a relational anthropology,
epistemology, and ontology of technology. An example of this is the already
mentioned nexus between DL systems and ecology (we will address further
implications of such an approach in section 3.3): When inquiring into the
impact of DL on ecology, who are ‘we’ that care about ecology in the first
place? Why is it that we care about the environment? What motivates us to
act for it, and how is this mixed up with technologies? Which values are guid-
ing us in this? How can we achieve our goals in this regard by deploying DL
without being driven off course by those technologies or other external fac-
tors? Which technologies are really adequate for such tasks, and which are
not? In grappling with such questions, it is vital to acknowledge that tech-
nology is never neutral but always embodies and implements certain goods,
values, and aims – the question is “which ones”? Such questions need to be
asked, empirically researched and debated with a broad participation of soci-
etal stakeholders (Bélisle-Pipon et al. 2022). The point here is not to ‘solve’
age-old questions but to navigate consensus or democratic decisions about the
future we truly want, not just one that technically imposes itself on us. We
want to argue, however, that it takes the humanities to help navigate such a
process if we truly wish to aim, for instance, at a more just, equitable, and
humane society.

Such an aim, it should be noted, relies heavily on the particular anthropol-
ogy one has as a basis for engaging the questions. If one operates, for example,
on the basis of the abovementioned ‘value neutrality hypothesis’ of technol-
ogy and a notion of human beings as completely free, autonomous subjects, a
different set of ethical issues emerges than if one operates (as we do here) on
the grounds of an enactivist and relational account of human beings. Another
example is the timeline of ethical issues to be addressed with AI: Baum (2018)
differentiates between “presentists” and “futurists” as factions stressing that
attention needs to be given to either “near-term” or “long-term” issues with
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AI. These debates were intensified with powerful LLMs and public specula-
tions about “emergent properties” and “sparks” of AGI (Bubeck et al. 2023,
for a critical perspective on such claims see, e.g., Schaeffer et al. 2023; Durt
et al. 2023) and the subsequent open letter to pause “giant AI experiments”,
signed by leading AI-researchers and CEOs (Bengio et al. 2023). While ‘pre-
sentists’ – in Baum’s terminology – argue for the need to mitigate current
societal and ecological harm (see, e.g., Bender et al. 2021; Prabhakaran et al.
2022; Gill 2023), ‘futurists’ urge concentrating all resources on mitigating ‘exis-
tential risks’ (see, e.g., Bostrom 2013; Greaves and MacAskill 2021) not least
from an out-of-control and misaligned superhuman intelligence (Bostrom 2014;
Russell 2019; Tegmark 2018) or even a so-called “singularity” (Kurzweil 2005;
Eden et al. 2012). It is worth noting that such debates are mainly conducted
on social media, podcasts, and in the press – economic and political stakes are
high. Both sides argue in an all-or-nothing manner, and there is not much com-
munication between factions. Anticipated threats, probabilities, and timescales
and thus ethical opinions differ greatly.

The interpretation and associated predictions of DL technologies rest on
speculative (philosophical) grounds. The basis for these attributions is often
not technical arguments but competing theoretical accounts, conceptions of
the human, and even fundamental worldview assumptions. Such background
assumptions (pre-)determine any ethical judgment we can arrive at because
they set the values, goods, and aims implicit in any ethical evaluation of DL.
These often implicit background assumptions are what the recent approach of
‘hermeneutic technology assessment’ (Grunwald et al. 2023) wants to help elu-
cidate in analyzing technological future visions. Ultimately, DL applications
present our societies with challenges that are more than technical or even ethi-
cal. While classical AI ethics efforts have ‘the human’ in view and as a reference
point for technology assessments, they often take a high value of humans for
granted, while it is, in fact, highly contested. Technical developments, like DL,
thus put our value systems to the test and bring to the fore fundamental views
about human beings, technology, culture, and the world we inhabit. Such views
invite conceptual and theoretical analysis as well as empirical research. This is
what the humanities, more broadly, can help facilitate and why they are vital
for the assessment, development, and deployment of DL technologies. (A good
example of such an encompassing approach is Rovetto 2023.)

In the following section, we outline how the humanities may help to nav-
igate the engagement with and assessment of DL systems as we move into a
future increasingly impacted by such technologies.

3.3 How to Navigate the Digital Future – Resources the
Humanities Provide for the Assessment of DL

A realistic assessment of DL requires us to draw all of the above-mentioned
threads together. In this section, we outline some of the questions and issues
we deem important with regard to DL technologies – this list is in no way
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exhaustive, and we want to invite others to add to, develop, and challenge our
ideas.

We have selected three exemplary aspects, which are all classically associ-
ated with ‘human beings’ but are now challenged by DL. Those aspects deepen
some of the philosophical issues addressed in section 3.1 above. They are inter-
related, elucidate each other, and should therefore be viewed in parallel. (i)
Firstly, we argue that humans are always embodied and embedded in natural,
technological, and cultural environments and that this has significant impli-
cations for assessing DL. (ii) Secondly, we will consider the challenges we, as
rational and responsible beings, face as we try to understand a world shaped
by technologies we cannot comprehend. (iii) Thirdly, we turn to humans as
morally responsible agents and explore how an assessment by the humanities
can foster the use of DL systems for good.

i. Human Beings as Embodied and Embedded in an Environment

We have already introduced the basic concept of embodied cognition and
enactivism in section 3.1.iii. What might this branch of research in cognitive
science, drawing from phenomenological insights, indicate for an assessment
of DL systems? We approach an answer in dialogue with Fuchs (2022) asking
how a DL system (e.g., GPT-4, see section 2.4) ‘understands’ words.

Understanding in the human sense, argues Fuchs, requires subjectivity: to
understand, there must be someone who understands, i.e., someone to whom
a word means something (see also Spaemann 2006, for a characterization of
a person as a ‘someone’ over against ‘something’). According to behaviorist
and functionalist accounts, we ascribe subjectivity to things based on solip-
sism and inference, i.e., we take the ‘intentional stance’ towards an object by
deducing that it is a subject (Turing 1950; Dennett 1989). However, research
on embodied cognition indicates that this is not true (Gallagher 2011). Rather,
we presuppose selfhood from the outset as we engage embodied participants in
a common form of living (Merleau-Ponty 1964; Moyal-Sharrock 2021). Under-
standing ‘hunger’, for example, presupposes a sharing of life of our kind in
the broadest sense, one within which hunger can be felt. Thus, understand-
ing hunger requires one to have a biological body for which nourishment and
the lack thereof really mean something (Jonas 1966; Thompson and Stapleton
2009) – which is why enactivism places a strong emphasis on the biologi-
cal grounds of distinctively human cognition (bracketing out for a moment,
whether AI could develop an entirely different form of cognition). Fuchs (2022)
terms this sharing of a form of living ‘conviviality’ (Fuchs 2022). According
to this view, even today’s most advanced language models, with their sur-
prisingly human-like outputs, do not ‘understand’ us any more than a pocket
calculator or a stone can. In this view, substrate does matter (as explained
above), and a simulated body in a virtual space – which some label ‘embodi-
ment’ (see, e.g., Xiang et al. 2023) – still does not feel ‘hunger’ any more than
a simulation of rain is wet. There might be different forms of understanding, as
there might be different forms of intelligence (e.g., human, animal, etc.), but
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human understanding and the statistical ‘understanding’ of LLMs differ in at
least this characteristic: the lived experience of vital embodiment. To the best
of our knowledge, this is a fundamental difference, even though this is highly
contested, e.g., by what we have outlined as computer-anthropologies above.
In the same manner, consciousness, as exhibited by living beings, cannot arise
in an isolated brain (and certainly not in a computer simulation) because it
requires constant vital regulatory processes that involve the whole organism
and its environment (Damasio 2010; Fuchs 2018; Man and Damasio 2019).
What does that indicate for an assessment of DL systems?

Regarding human beings as fundamentally embodied and embedded in
an environment shifts the attention away from the fear of having sentient
AI anytime soon, toward the more realistic concern that DL systems could
catastrophically impact our societies and ecology as powerful (but mindless)
tools (see section 3.2 above). The main point here, coming from enactivism,
is that even if AI has a distinct form of ‘intelligence’ that allows it to ‘solve
problems’, only a biological life form (from metabolism all the way up to
higher forms of cognition, consciousness, and self-awareness) actually has prob-
lems it intentionally and existentially wants to solve because it pertains to
its self-preservation as a living being. This goes to show that anthropological
considerations, far from being distractions, actually set the course for fur-
ther inquiry and action. If one is convinced that today’s AI systems are a
step toward sentient AI or even a superintelligence that could come up with
the intention to eradicate humanity, one will take the prevention of such an
‘existential risk’ to be “strictly more important than any other global public
good” (Bostrom 2013, 2014; Russell 2019; Greaves and MacAskill 2021). On
this view, when push comes to shove, resources should be directed toward AI
alignment efforts and not ecological or social challenges associated with DL.
Thus, anthropology (broadly conceived) is a pressing issue because it weighs
rather heavily on the values, criteria, and priorities we set in the development
and deployment of DL systems.

Furthermore, the embodied embeddedness of human beings underpins and
reinforces efforts toward ecological sustainability because it regards concerns
about our planet and other life forms as deeply human concerns. An embod-
ied view of human beings gives weight and urgency to those efforts since it
makes clear the existential connection between human beings and the rest of
living things in nature, of which we are part. This realization clarifies that a
human-centered perspective in AI ethics need not be in conflict with ecological
concerns. All of these indications suggest that the following question should
also be addressed from an encompassing humanities perspective.

Follow-Up Questions:

• How should we interpret the success of DL systems in solving tasks that
were long thought to be solvable only by human beings? What does this tell
us about ourselves? What can the history of thinking about human beings
contribute to this question?
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• What is ‘the human’, what is ‘technology’? How can we elucidate the dif-
ference between human beings as living things and technology, and how do
we assess the multiple frontiers on which this difference is challenged?

• How can we bring to light, challenge, and – where necessary – replace the
anthropologies implied in DL applications and their deployment? How, par-
ticularly, can we leave behind purely behaviorist or functionalist models of
human beings?

• How should we conceive of human-technology-relations? How should we deal
with the fact that human beings are capable of existentially relating and
bonding with non-living technological artifacts? And that these artifacts
have a form of agency, that cannot be completely predicted or controlled?
Are there systemic effects or risks through the interaction of human beings
and such technologies that are unwanted for? What does it mean anthropo-
logically that DL technologies are now an active and formative part of the
human lifeworld?

• Who decides on what we want such systems to do? Are there things we do not
want them to ‘learn’ or be capable of? Around which values, standards, and
future visions are we creating, designing and deploying novel technologies?
Who sets those markers, and with which legitimacy?

• How can we deploy DL systems to foster shared embodied experiences,
community, and societal unity in the lifeworld toward human flourishing?

• How can we deploy DL systems to foster ecological sustainability? How,
particularly, can we foster a renewed focus and valuation of the ‘human’ in a
way that does not imply a devaluation of the rest of living things in nature
– with whom we share much precisely of what makes us human in the first
place, i.e., our animality, our biology, life, and ultimately being itself? What
can we learn here from the humanistic tradition as well as its critics, such
as critical-posthumanism?

ii. Human Beings as Rational Animals Who Inquire Into Reality by Way of
Theory and Knowledge

At least since Aristotle, human beings have considered their ‘rationality’ –
closely linked with their linguistic capacity – the defining feature of what makes
them ‘human’. The original Greek definition provided by the philosopher is
zoon logikon, which usually is translated as ‘rational animal’ but might also,
as Charles Taylor correctly suggests, be rendered as ‘animal possessing lan-
guage’ (Taylor 2016, pp. 338). We are, in this classic view, animals with the
capacity for linguistically mediated reason. Reason and language, furthermore,
are closely linked with ‘intelligence’ (in Greek nous, and in the Latin render-
ing intellectus), i.e., the capacity to understand, to judge, and to will things.
Given the relational way in which humans constitute themselves together with
technology and culture (section 3.1.iii) it is clear, that the human capacity to
understand, judge, and will must be thought enmeshed with techno-cultural
settings. Which requires us to clarify how we speak and what we mean, when we
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speak about ‘rationality’, ‘intelligence’, and ‘language’ with regard to human
beings or technology (Davison 2021; Dürr et al. 2023; Durt et al. 2023). The
history of these terms, it must be noted, is highly complex, and at certain times,
their meaning has been stretched to the brink of referring to the contrary to
the original sense of the word – especially with regard to the capacities of AI
(see Hoff 2021, for a constructive overview of these developments). Today, the
capabilities of current generative DL applications urge clarification.

Prominent LLMs, like ChatGPT and GPT-4 (at the moment of writing),
generate content that human beings perceive as meaningful, helpful, and cre-
ative. They exhibit behavior (particularly linguistic output) that we commonly
associate exclusively with human beings and that with human beings involve
understanding, knowledge, and meaning. We have already mentioned that this
is interpreted in very different (partly contradictory) ways. Some think this
amounts to understanding, knowledge and intelligence in a human-like sense
(see, e.g., Piantadosi and Hill 2022; Agüera y Arcas 2022) while others are
more skeptical (Marcus et al. 2023), believe that there are other ways to
explain these capabilities (Durt et al. 2023) or think we are dealing here with
‘stochastic parrots’ (Bender and Koller 2020; Bender et al. 2021). From an
enactivist perspective, LLMs are seen as technical systems that contain infor-
mation and perform operations on information, but they do not ‘know’ that
information, much like a bus schedule contains information about bus depar-
tures but does not know the time of departures (Fuchs 2022, see also Tallis
2020). From a technical, engineering perspective, however, such models funda-
mentally encode a high-dimensional joint probability density function (PDF)
of the next word (token); given a large context of previous words, one can
explicitly state what its ‘understanding’ constitutes: To the degree that (a) lan-
guage (i.e., the sequence of words) is (or, can be modeled as) a random process
and (b) all variables influencing the token sequence are part of the modeling,
this PDF statistically constitutes everything there is to know about the next
word. In human beings, however, speaking meaningfully involves intentional-
ity and extralinguistic context – as we are embodied and embedded beings
(section 3.3.i). What the next word in a sentence of ours is, can be statisti-
cally guessed (and in many instances adequately so), but it is not confined
to or determined by technical processes, and our variations are not due to
randomization. Thus, the technical grasp on ‘understanding’ in DL helps clar-
ify what such statistical ‘understanding’ is lacking from a more encompassing
view within the humanities.

Everything hinges on the question if we can truly say that a DL application
‘has’ goals and thus exhibits meaningful ‘behavior’ in any sense with which
we attribute those terms to human beings. One may press this further: where
does the process begin? Usually, with somebody who prompts the system.
And where does it come to a meaningful conclusion? Usually, with somebody
to whom the output of the system means something. In human-technology
relations, it is human beings, holistically, which are the relevant subjects when
it comes to knowing, willing, understanding, behaving, and the like. Still, the
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difference between a DL application and a human person, as mentioned above
(section 3.3.i), is that between something and someone: while ‘something’ can
be explained by a description of the state it is in at a given moment in time
– someone cannot (Kenny 1984; Spaemann 2006, see also Bennett and Hacker
2022). This distinction does not ‘solve’ the question of what makes a person or
what constitutes mind in a sense that only complete human beings, holistically
conceived, can be said to possess. But it holds a tension that is foundational
to our societies and that needs further clarification.

Explicating this tension (i.e., holding a clear separation between human
beings and technological artifacts, but without falling into the trap of overlook-
ing the agency as well as the formative role such artifacts play in our human
constitution) is perhaps one of the greatest tasks for the humanities today.
Such an account would reckon with the relational and co-evolutionary way of
conceiving human-technology systems we have briefly sketched above (section
3.1.iii). The depth and speed with which such DL technologies transform our
environments and thus influence the ways our human minds constitute them-
selves require us to rethink our notions of ‘knowledge’, ‘understanding’, and
‘explanation’:

The combination of technical mastery and explanatory mystery in DL
marks a significant step in the history of human engineering and scientific
inquiry into reality. Although we have some knowledge about why DL systems
arrive at high performances, the workings of trained DL systems remain opaque
to our understanding (section 2). We can now engineer and deploy working sys-
tems whose inner workings we do not understand and they successfully solve
problems of such complexity that we cannot possibly comprehend correspond-
ing solutions. This marks a shift from causal explanation toward statistical
correlation (Brodie 2019). This corresponds with debates in the philosophy
of science, which increasingly question the dominance of causal explanations
(Reutlinger and Saatsi 2018) and moving beyond epistemic reliabilism (Gold-
man and Beddor 2021). An illustrative example in the context of scientific
inquiry is the problem of protein folding. The three-dimensional structure of a
protein defines its function and is determined by an amino-acid sequence. How-
ever, the relation between the amino-acid sequence and the resulting structure
has been a puzzle of the first order in biology for decades, and there seemed
to be no feasible way of proceeding from one to the other by calculation. With
the help of DL, this problem has been successfully solved for the majority of
known proteins (Jumper et al. 2021), although there is still little knowledge on
why a specific structure follows from a respective amino-acid sequence. Nev-
ertheless, biologists in many fields can now work with these predictions, for
instance, in drug design (Eisenstein et al. 2021). Thus, DL confronts us with
the spectacular practical advances that cannot be theoretically explained. For
the scientific community, this is at once exhilarating and demoralizing. We now
have a fuller database of crucially important protein structures, unthinkable
even a decade ago, but, at the same time, we do not understand how protein
sequence leads to protein structure — for all immediate practical purposes we
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do not need to understand it, since we have DL. A question of such impor-
tance – how sequence determines structure – may now go under-researched,
and under-funded, because of DL leaping from one to the other.

This shift in scientific practice – not least away from reliabilism – seems
to bring us back closer to more practical notions of ‘understanding’ (Grimm
2021) as developed by phenomenological philosophers like Martin Heidegger
and Maurice Merleau-Ponty. They conceived of the mind not as a detached
subject over against a material world to be theoretically dissected, but rather
as always already “being-in-the-world” in a way that allows us to practically
cope with the world (Heidegger 1996 [1926]; Merleau-Ponty and Smith 1962,
on this, see also Dreyfus and Wrathall 2014). This philosophical tradition has
influenced both enactivism and salient approaches to science and technology
today. Rather than seeing science as a systematic representation of the world
(e.g., the “scientific image” in Sellars 1962), such approaches conceptualize
our scientific endeavor as a set of human practices that render the world more
intelligible by continuously and interactively transforming environments (see
Rouse 2019 on the basis of “niche construction” theories, Odling-Smee et al.
2003).

In philosophy of technology, this shift to practice leads to a way of engag-
ing novel technologies – from design to use – in practical, even pragmatic ways
that amount to what since antiquity has been called ‘wisdom’: a combina-
tion of practical skill and mastery and rule-based knowledge, alongside a sense
of one’s limits in knowing and ability to handle things (on this, see section
3.3.iii below). Such an outlook cannot depend on the rationality of controlled
and verifiable procedures alone but faces the need for personal responsibility,
virtue, and wisdom in processes of discernment and conjectural explorations
guided by values (Hoff 2021; Spiekermann 2023). Some developments in what
is called ‘hermeneutic technology assessment’ and which amounts to an “explo-
rative philosophy of emerging technologies” come close to this (Grunwald 2016;
Grunwald et al. 2023).

Follow-Up Questions:

• What makes up the ‘holism’, with regard to complete human beings and
persons, implied in enactivism? What truly makes the difference between an
embodied human being as persons, who can be said to possess a mind in the
sense that it is adequate to attribute intelligence, knowledge, understanding,
will, and the like, and DL applications – or simply to parts of human beings,
such as brains?

• Do DL systems represent a novel or perhaps stand-alone form of rationality?
Are they indicative of ‘how human intelligence works’? What does the strong
performance of DL mean for our assessment of ‘intelligence’, ‘rationality’,
‘understanding’, ‘sentience’, ‘consciousness’, ‘intentionality’, ‘feeling’, ‘learn-
ing’ and the like? What insights from different traditions can the humanities
bring to the table when it comes to analyzing such traits?
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• What do we mean, conceptually and hermeneutically when we use such
terms in human beings, animals and algorithms? What can we learn from
the history of interpretations of these terms? How is research concerned with
such traits in animals informative of our understanding of it in humans and
technology? How are they constituted in technical and cultural settings, in
ways that subvert any neat separation of human beings, cultural forms of
life, and technological artifacts?

• How can we adequately speak of DL technology in communicative or peda-
gogical contexts? How do we avoid applying predicates that normally apply
to complete human beings or complete animals to parts of human beings or
parts of animals, or even electrical systems in a way that is fallacious and
risks conceptual and methodological confusion? How, more broadly, can we
avoid anthropomorphisms and technomorphisms?

• How do we mediate and communicate between rivaling theoretical outlooks
on the world, human beings, technology, and especially intelligence – e.g.,
between analytical positions, focusing on formal approaches and enactivist
positions, focusing on the holistic embeddings of processes that are taken to
be irreducible to formalization?

• How does opacity affect the ethics of AI deployment? In biology, for example,
results can be tested insofar as they work or they do not. That does not
apply in the same way, without a high price, in societal areas where human
beings and their freedoms are directly at stake. What factor should ‘causal
explanations’ play in the evaluation, prediction of, or ruling over human
behavior? In which areas should corresponding systems be deployed, and in
which ones should we refrain from this?

• Does scientific inquiry require causal explanations? What is the role of sta-
tistical knowledge in science? What is the qualitative difference between
causal knowledge and statistical knowledge? And how does DL factor in
such debates?

• How could novel models and modes of knowledge, understanding and coping
in terms of practical wisdom look like that would do justice to the relational
nature of anthropology of technology?

iii. Human Beings as (Morally) Responsible Agents

The complexity and opacity of DL systems force us to clarify our notions of
‘autonomy’, ‘agency’, and ‘responsibility’. Who is responsible and should be
held accountable for the real-world consequences of deploying algorithms with
the power and capabilities we are witnessing in the latest DL applications?
(Wagner 2019; Martini 2019; Kaun 2022) This is particularly urgent to ask
because the architecture of current DL systems cannot fully prevent unex-
pected, potentially harmful ‘rogue’ outputs (see 2.3). In which areas of life
should we deploy applications whose results we cannot understand or mean-
ingfully reconstruct? To act upon the output of a statistical model without
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the possibility of tracking and understanding sequential causal steps compli-
cates the moral evaluation of those actions. This is aggravated by the lurking
possibility of bias, deliberate manipulation, and adversarial attacks, which can-
not, in principle, be excluded (see section 2.3). Relying on opaque DL systems
thus further complicates the already challenging notion of the responsibility
of engineers, labs, or companies, especially, in the latter case, with respect to
their increasing weight as global economic agents, able to reshape national and
international money flows at large scale. It is clear that we are facing issues
here that require not only technical adjustments but also philosophical reflec-
tion and practical (societal, political, legal) measures often discussed under
the label of a ‘trustworthy AI’ (on this, see section 3.2 above).

More profoundly, these constellations require us to ask ourselves if and
how we can even consider ourselves to be ‘autonomous’ in our decision-making
processes at all. What is the role, range of possibilities, and scope of freedom
of human beings in human-technology systems? Prunkl (2022) suggests that
‘autonomy’ can be analyzed in (at least) two dimensions: Firstly, authenticity,
i.e., if beliefs, values, motivations, and reasons held by a person are in a relevant
sense authentic to that person, and not the product of external manipulative or
distorting influences. And secondly, agency, i.e., if a person is able to act on the
beliefs and values they hold. Given our relational approach to anthropology,
neither dimension can be construed in a way completely independent of either
cultural or technological factors. Here, the humanities have insights to offer
into human behavior, motivation, and, more broadly, freedom (Calvo et al.
2020; Wagner 2019, see, e.g.,). Given that technical innovations will continue
to transform our societies, we may ask what resources would enable human
beings – from stakeholders to designers, engineers, regulators, politicians, and
general users – to use them constructively to build more humane societies
rather than the opposite.

To make progress on those questions, we need to ask what motivates us to
do the ‘right thing’ in the first place and how we can tap into those resources.
A humanities perspective (and particularly from one that is humanistic) opens
up vistas for understanding humans as embodied, social, and communal beings.
We are shaped and motivated by community and by the stories, symbols,
values, and practices we share with others, who, in turn, make us who we
are. The disciplines of the humanities have much to contribute here since
this is also a question about the social, political, psychological, and spiritual
conditions (or worldviews) that support and shape human agency. Here, not
least, a realistic assessment of the power of technology is vital (Stiegler 2013,
2018). In trying to resource human beings to develop and cultivate a sense of
self, community and agency in a technological world, we suggest that we can
draw on the resources of many traditions of philosophy, religion, spirituality,
and culture. Those traditions can provide us with practical resources to train,
attune, and form human beings to refine their desires, thoughts, and feelings
(Hoff 2021). Such virtue – grounded on a relational anthropology of human-
technology relations – is the basis of any practical notion of human freedom



Springer Nature 2021 LATEX template

40 Deep Learning & the Humanities

and morality around which we can organize our liberal, democratic, and plural
societies. It is worth noting that this does not deny the value of other ethical
approaches – perhaps deontological, utilitarian, and consequentialist – but
rather emphasizes the fact that, ultimately, virtue is instrumental to really do
what we ethically deem good. Thus, we see virtue ethics and the cultivation
of “the technomoral self” and “technomoral wisdom” (Vallor 2016; Kanner
1998) – i.e., morally cultivating the self and wisdom under the influence of
technology – as a necessary complement to any practical ethical assessment
of DL systems. Here, our analysis of the dynamics of a technicized world goes
hand in hand with the question of how such dynamics – insofar as they are
unwanted – can also be countered. A virtue-oriented approach, for example,
may profit from the spiritual traditions of moral sublimation that focus on
money, sex, and power as abiding human temptations toward vice as well as
realms in which one can behave virtuously. This moral outlook on human
beings, their actions, motivations, and freedom from the negative aspects of
those perennial temptations yields a perhaps surprisingly rich assessment of
the key ethical challenges of DL systems.

Firstly, it is undeniable that money drives DL technology as well as soci-
etal changes induced by it (Bughin et al. 2017; Stadelmann 2019; Tricot 2021).
Developments in the field go hand in hand with marketing hype cycles and
cash-grab investments, as well as dramatic variations in stock value. With a
focus on the business models, we can also say that economic dynamics and
the incentive structures of the advertisement and attention economy, or –
more alarmingly put – “surveillance capitalism” (Zuboff 2019, 2023) – already
have destructive, destabilizing and dehumanizing effects on our societies. DL
catalyzes such developments and forces us to consider how bad incentive struc-
tures and the abuse of economic power can be mitigated – and, positively put,
how virtue can be cultivated in economics (Bruni and Sugden 2013; Bruni and
Héjj 2011)

Secondly, sex, which has always been a driver of technological innova-
tion (Keilty 2018) – from the success and broad implementation of VCR,
the dot-com boom, online payment systems, e-commerce, internet-based video
streaming platforms, live video-chats, and digital hardware (cameras and
devices for faster broadband), all the way to high-speed internet on mobile
phones, as well as augmented and virtual reality – is a factor in DL applica-
tions. One example of where this manifests is novel possibilities of DL-powered
GenAI, which allow for the generation of demeaning and pornographic content
(e.g., ‘nonconsensual deep fake porn’) against the will of victims or even with-
out their knowledge. A virtue-oriented perspective on such technology would
not focus only on technical solutions (such as filters and constraints), since
technological power can always be circumvented or adversarially deployed. It
seems timely, therefore, to revive more traditional humanistic and spiritual
ways of engaging with ‘the human’; through educational formation (in the Bil-
dung-tradition) towards rationality, sociality, morality, and care, which must
complement technological innovations (Kergel et al. 2022).



Springer Nature 2021 LATEX template

Deep Learning & the Humanities 41

Thirdly, it is vital to assess the relationship of technology and power
(Coeckelbergh 2022; Sattarov 2019). In a sense, technology can be understood
as a (more or less controllable) form of power lent to some, while it renders oth-
ers (and possibly the rest of nature) more powerless with regards to the former
(Lewis 1943). In the last few years, we have increasingly seen the application
of DL in the political sphere (Crawford 2021; Crawford and Paglen 2021; Kane
2019; Sætra 2021; Marwala 2023). The manipulative potentials of DL sys-
tems (Ienca 2023) clearly have the power to substantially impact our ‘freedom’
as citizens in modern societies – especially through microtargeting, nudg-
ing, adaptive preference formation, and manipulating choice architectures of
‘persuasive technology’ (Bishop 1985; Fogg 2002; Wilson 2017; Zuiderveen Bor-
gesius et al. 2018; Susser 2019; Milano et al. 2020; Susser et al. 2019; Mele et al.
2021; Ashton and Franklin 2022; Simchon et al. 2023; Smith and de Villiers-
Botha 2023; Carroll et al. 2023) – which were impressed on the public mind
through the ‘Cambridge Analytica Scandal’ (Berghel 2018). These potentials
are further evinced by the channeling and filtering of accessible information
and the algorithmically powered platforming or de-platforming of political
actors or opinions, and in some countries, even social scoring and controlling
systems (see, e.g., Coeckelbergh 2022; Geller 2022; Heinrichs et al. 2022, pp.
144-168). We have already mentioned fears of corporate totalitarianism, which
Shoshana Zuboff describes as “a ubiquitous networked institutional regime
that records, modifies, and commodifies everyday experience from toasters
to bodies, communication to thought, all with a view to establishing new
pathways to monetization and profit” (Zuboff 2019, p. 81). There are similar
concerns in the sphere of state-sponsored surveillance and totalitarian power
through AI systems (and especially DL systems, since such methods power
machine perception). These concerns reach beyond the economic motif of profit
and into the political sphere of human rights, dignity, and autonomy. While
there is no doubt that such technologies stand to impact our political landscape
to an almost seismic degree and that we must respond to this challenge (Véliz
2021; Curzon et al. 2021), it is important to examine the assumptions about
the human underlying these fears. Are human beings fully “hackable animals”
(Coeckelbergh 2022, pp. 85–86) that can be fully manipulated and controlled?
Taken literally, such a view would reduce human beings to quantifiable data,
which can be manipulated and controlled through engineering. From a holis-
tic view of the human person, the greater danger seems to be that human
beings believe this and then treat each other as if they were reducible to such
data and statistical analyses, profiles, and predictions drawn from them – this
is bracketing out the fact, that treating human beings in such a way can be
both extremely effective and dehumanizing at the same time. Thus, an ethical
assessment of the use of DL, for example, in profiling and predicting behavior
– which already finds practical application, e.g., in law, insurance, loan-giving,
and health care (see, e.g., Lamberton et al. 2017; Berk 2021; Awotunde et al.
2022; Turiel and Aste 2020; Rong et al. 2020; Yang 2022; Secinaro et al. 2021;
Vallès-Peris and Domènech 2023; Gill 2023) – would focus on the insight that
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such predictions and profiling can never do justice to human beings, their dig-
nity, and freedom as persons and citizens of our societies. This would be an
anthropological analysis, backing the ethical objection to the abusive instru-
mentalization of DL, rather than just an ethical objection that such abuse
should not happen. From a virtue-ethics perspective, an assessment of DL
could focus on the following questions:

Follow-Up Questions:

• What are the economic, political, and institutional dynamics related to DL?
Who benefits? How do DL systems change the power dynamics? Who is in
control, and who is being controlled? Which ideas and values are imposed
on society by those who are ‘in control’? How do we deal with the fact
that many of those dynamics are too complex to even be controlled in any
meaningful way?

• How are DL systems being used in exploitative ways? How can they be
designed and deployed in more constructive, value-based, and goal-oriented
ways? Which incentive structures should be created so that the latter is
encouraged and not the former?

• How are we to think about ‘autonomy’ and ‘responsibility’ given the opacity
of current DL applications? How should we conceptualize such values in light
of a relational anthropology (seeing human beings and technologies as co-
constitutive)? And how can we motivate ourselves (and design technology
that really supports us) to create a more humane future? More broadly still,
how is DL affecting our self-understanding?

• How could a humane future look like, and how could DL systems help achieve
such a future? Which applications, models, use cases, and best practices are
there that lead toward human flourishing?

4 Conclusion

We propose that the most promising way of speaking about (and conceptual-
izing) DL systems is not as a ‘standalone’ form of ‘intelligence’ or ‘sentience’
but as a form of ‘complex information processing’ that augments human intel-
ligence (Ford et al. 2015). Given that, historically, this description has been
rejected – notably by John McCarthy – in favor of an ‘artificial intelligence’
description, for marketing and funding purposes, and that this has now become
entrenched, we suggest amending this prevailing designation, to become not
AI but ‘extended intelligence’ (Uhl 2021; Karachalios and Ito 2018; Council
on Extended Intelligence 2021), seeing the need to stress that we understand
such extension in terms of enactivism and a relational anthropology as out-
lined above (section 3.1.iii) and not in terms of the ‘extended mind theory’.
‘Extended intelligence’, in our proposal, would analyse and assess DL technolo-
gies within a relational framework of human-technology systems. Such systems
include both human actors and algorithms embedded in cultural, technologi-
cal, societal, and other environmental contexts. Such a perspective avoids the
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reification and anthropomorphization of AI, without losing sight of these tech-
nologies’ powerful dynamics, influence on human beings, and their high degree
of practical agency. It complements technical practice and optimization with
consideration of the ‘human factor’, i.e., values, judgments, and our political
self-determination as free human beings – but it has no naive conception of
a contextless ‘freedom’, considering how existentially enmeshed we are in our
technicized environments. Within an extended intelligence framework, we can
combine the question of how to make better technology with more fundamental
human questions: what do we actually want, and how might we realistically get
there? In our view, perhaps the most important question here is: what moti-
vates and enables us to act? Given that we do not conceive of ourselves as fully
autonomous subjects independent from external influences (cultural, techno-
logical, or biological), how could an entangled freedom look like? More broadly,
indeed, this is perhaps the most important question posed to the humanities
today – and answers to it will have to draw from intellectual, cultural, and
spiritual resources (Hoff 2021). Only in light of answers to these questions can
we meaningfully assess whether and which technology helps us to get there.

Such an encompassing view can bear upon all stages of technological devel-
opment and application: in design, practical implementation, and deployment,
in assessing its impact, and finally, in reconsidering regulations, further design,
and use. We see such thinking being already fruitfully practiced in approaches
of human-centered, ‘value-based’ and ‘value sensitive’ systems design (Aurum
et al. 2005; Friedman et al. 2013; Spiekermann 2015; Spiekermann and Win-
kler 2022; Spiekermann 2023; Friedman and Hendry 2019; Shneiderman 2022;
Herrmann and Pfeiffer 2023).

A realistic assessment of the promise and peril of DL requires an holis-
tic relational anthropology and thus an encompassing view of the human
integration of nature, technology and culture. Such a broader perspective
can only fully come into view if we address technical issues, such as those
within DL, from a perspective integrating engineering, natural sciences, and
the humanities. As a cluster of disciplines, the humanities, particularly with
their multifaceted approaches, can help address the pertinent questions in the
digital transformation. This work program aims to further this engagement.

DL will never yield the sorts of results that could bring us closer to the
future we actually want if it is not approached in such an encompassing way.
Given the urgency such issues have for our societies, it seems pertinent to note
here that such an aim must reach beyond the bounds of scholarly methods in
either the natural sciences or the humanities. If we want to realize the potential
goods of DL systems, we would do well to draw from other (non-technical
and even non-academic) resources – from cultural and spiritual practices and
traditions – which can transform human motivation toward care and allow the
deployment of DL applications for good.



Springer Nature 2021 LATEX template

44 Deep Learning & the Humanities

Appendices

A Deep Learning: A More Mathematical
Account

In what follows, we outline the fundamental workings of DL by introducing
artificial neural networks (ANNs), or more specifically, multi layer perceptrons
(MLP), which comprise the core building block of any DL system (section
A.1). We then elaborate how they work by means of ‘universal approxima-
tion’ (section A.2). Next, we introduce the training process and analyze a set
of inevitable errors (section A.3). The last section (A.4) introduces some open
questions in the theory of DL. In contrast to the non-mathematical intro-
duction to DL in the main text (section 2), this section does not provide a
dedicated part on generative language models, such as ChatGPT. For this, we
refer to section 2.4.

A.1 Artificial Neural Networks

Artificial neural networks (ANN) are the fundamental building blocks of deep
learning. In 1958, Frank Rosenblatt introduced their predecessor, the “per-
ceptron” (Rosenblatt 1958). However, Minsky and Papert (1969) discovered
a number of critical weaknesses in perceptrons, such that interest waned for
the time being. Almost two decades later, Rosenblatt’s idea was revived, with
the proposal of the multi layer perceptron (along with a reasonably effective
training algorithm), which remains the basic structure of an ANN (Rumelhart
et al. 1986; for a complete history, see Schmidhuber 2015). To understand the
basic principles of DL, one has to grasp how an MLP works.

An MLP consists of input units x, hidden units h and output units z that
are connected in a sequence of layers (see Figure 5). Note that bold letters
represent variables containing multiple elements, i.e., vectors. The number of
units in a layer is referred to as the width of that layer. The number of hidden
layers in an MLP is referred to as the depth of that MLP.

Put simply, an ANN is a function f that maps an input to an output.
Mathematically, we denote f : X 7→ Y , with input x ∈ X and output f(x) ∈
Y, where X and Y are the input and target spaces respectively (examples
following). In the process, each hidden unit computes a simple calculation
(described and illustrated in Figure 6). Outputs units are computed similarly,
but, depending on the target space, are forced to represent elements of the
target space.

As an example, f could predict a person’s respiratory function (an impor-
tant health indicator in medicine, e.g., quantified by the forced expiratory
volume, FEV) based on certain measurements. The input would consist of a
vector x containing features (the measurements), such as age (x0), sex (x1),
height (x2), and whether the patient smokes (x3). The input space X would
be considered the set of all possible combinations of features. The output f(x)
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Fig. 5: Illustration of a multi layer perceptron (MLP) with two hidden layers.

A hidden unit h
(u)
v , denotes the vth unit in the uth layer. Note that concern-

ing the notions of the “width” and the “depth” of an MLP, respectively, the
depiction is rotated by 90◦, such that the mapping from input to output is
shown from left to right. This is how ANNs are typically visualized.

Fig. 6: An artificial neuron, for example the jth unit in the first hidden layer
of the multi layer perceptron illustrated in Figure 5. Each hidden unit’s output

h
(1)
j can be computed as a weighted and biased sum of its inputs xi (blue box),

followed by a non-linear activation function ϕ (yellow box). Three examples of
commonly used activation functions are shown below the corresponding box
(from left to right: sigmoid function, step function, rectified linear unit). To be

exact, every unit h
(1)
j is computed as follows: h

(1)
j = ϕ(bj +

∑n
i=0 wi,jxi), where

wi,j denotes the weight from xi to hj and bj the bias (for each hj). Intuitively,

h
(1)
j thus computes a weighted sum of its inputs and passes it on if the sum

exceeds some threshold, whereas finding optimal weights and thresholds to
achieve the final goal of f is the purpose of the training process.

would consist of one value z representing the FEV. The target space Y would
be considered the set of all possible FEVs.
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Alternatively, f could classify images showing handwritten digits into cor-
responding classes 0 to 9 (a classical problem to e.g., process bank cheques
automatically, Lecun et al. 1998). The input x would contain the gray scale
pixel values of a flattened image (going from w×w pixels to 1×w2, such that x
is a vector of length w2), whereas the output f(x) would consist of ten values
z0 to z9 representing the probabilities of the image for showing the respective
digit.

In short, an ANN is a layered network of computationally simple units that
encodes a function, which maps any desired input to any desired target space.
But how do these straight-forward calculations end up performing complex
and meaningful tasks, such as detecting cars in images? In the next section, we
address such questions and assess ANNs on a higher level of understanding.

A.2 Universal Approximation

The universal approximation theorem states that every ANN with at least one
hidden layer can approximate any continuous function with arbitrary precision
(Hornik et al. 1989; Cybenko 1989; the activation function cannot be polyno-
mial, see Leshno et al. 1993). Theoretically, the precision increases with the
number of hidden units. However, in practice, it is difficult to achieve a precise
approximation by adding width to an ANN. Instead, increasing the depth, i.e.,
stacking many hidden layers, has been shown to perform far better (Bengio
and LeCun 2007). This finding lies at the heart of DL. As the name suggests,
“deep” in DL stands for using ANNs with many hidden layers.

Every hidden layer encodes a function itself, such that the function encoded
by the ANN consists of a succession of functions. Before taking a closer look at
what these successive functions do, it is important to understand that the data
dimension at every layer corresponds with the number of units in that layer.
For example, if an ANN processes images with pixel count w (remember that
in this case the input layer must consists of w units), every image is represented
by one point in w-dimensional space (for an illustration, see Figure 7). The
function encoded by each layer transforms the space of the antecedent layer
(note that every transformation is also a function). The varying width of con-
secutive layers corresponds with expanding or compressing space to higher and
lower dimensions. Non-linear activation functions allow for non-linear transfor-
mations of the data space. Thus, if we consider an ANN that classifies images
into the classes “shows a car” and “does not show a car”, processing an image
corresponds to transforming a point in high-dimensional space, until compres-
sion to one dimension by the output layer leads to one value that represents
the probability of the respective image to show a car. Figure 8 shows how data
is transformed on an easy-to-understand low-dimensional ANN, and Figure 9
shows the same effect on a complex task (image classification).

The power of deep ANNs lies in their capacity to approximate high-
dimensional and highly non-linear functions by successive data-space transfor-
mations combined with the fact that they can be fitted to data, i.e., trained,
for specific tasks: the true function underlying the task does not need to be
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Fig. 7: Representation of an input image by a point in space. On the left is
an image showing the handwritten digit ‘5’. Imagine that only three pixels
are fed into the input layer of an ANN (the following layers are not shown),
represented by their grey-scale value between 0−1. On the right, the input units
are shown as axes and the unit values as positions on these axes. Thus, one
point in three-dimensional space represents the three input pixels. Similarly,
all the 784 pixels can be represented (although not visually illustrated) in
784-dimensional space.

known, it suffices to provide enough samples of input-output pairs. As such,
they can extract complex patterns and provide human-accessible outputs that
represent the underlying patterns in some meaningful way (e.g., the complex
patterns underlying images that contain dogs or cats are transformed into two
probability values only). But how can an ANN be fitted to data? Or, more
precisely: how can an ANN, starting with randomly initialized parameters
(weights and biases), approximate a useful function? The next section provides
a short insight into the principles of learning in ANNs.

A.3 Training Process and Inevitable Errors

Statistical learning theory provides us with a framework for assessing how
ANNs approximate functions and data distributions. It is used to study
theoretical properties of learning algorithms from a statistical viewpoint.

Training an ANN can be perceived as an optimization process, in which a
loss (or cost) is minimized by altering the underlying model parameters (here,
the weights and biases). This requires the definition of a loss function that
measures the difference between the output of an ANN and the corresponding
target value. The loss function thus measures how well a model performs on a
data example. Mathematically speaking, we define a loss function L : Y×Y 7→
R which maps the output of a DL model f(x) ∈ Y and its corresponding
target y ∈ Y to a real value. For example, if we consider a model f to predict
how many days a hospitalized patient has to stay in an ICU based on his or
her conditions and demographic data, the loss L(f(x),y) would measure the
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Fig. 8: Illustration of how an ANN transforms data layer by layer, adapted
with permission from Olah (2015). In this simple example, the input consists of
two dimensions x1 and x2. The input space lies on two curves, each belonging
to a separate class (class blue and yellow, respectively). Note that one input
example would correspond to a point on one of the curves and not to a curve
itself. The task of this ANN is to predict, for any given input, to which class it
belongs. This is not a linear task, since separation of classes cannot be achieved
with a straight line in input space. The hidden layer h warps the space, leading
to a reshaping of the curves that allows for easier classification, here linear.
The output layer z projects the space to a single dimension, representing it on
a value between 0 and 1 (corresponding with the probability to belong to class
yellow). The decision margin (dashed line) is at 0.5, since all values above 0.5
are considered to belong to class yellow and all values below 0.5 to class blue.
To better understand how the decision line separates the input data, its shape
is back-projected to all preceding layers.

difference between predicted days and true days in the ICU. The model is
optimized in order to minimize that difference.

The goal, however, is not to optimize the model based on the assessment
of one individual output, but to optimize it for the whole task, no mat-
ter the individual input. This raises the question of how the model can be
assessed as a whole. If all possible input-target data pairs were known, i.e.,
the joint distribution between input and target space PX,Y (see Figure 10a
for an illustration), evaluating and optimizing a model would be straightfor-
ward. Obviously, the need for a model would vanish at that point, however,
since if we, e.g., had all possible images showing a car, detecting cars in
images would no longer be a matter of prediction, but one of simple compar-
ison with known data. Nevertheless, the theoretical case, where we know the
data distribution PX,Y is important in learning theory, because it enables us
to formulate the theoretically best model f∗. Computing f∗ requires the min-
imization of the loss between the data pair we expect, knowing PX,Y . This
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Fig. 9: Effect of the data transformations within an ANN that classifies images
into ten classes, such as “plane”, “car”, “bird”, “cat” etc. Every point in the
plots corresponds with one image. Colors represent to which class that image
belongs, i.e., its target label. To visualize a multidimensional point (an image)
in two dimensions, an algorithm was used that produces a low-dimensional
representation, where distances between points are reflective of the distances
between the original, i.e., multidimensional, points. Looking at the data repre-
sentation at different hidden layers h(14) to h(60), one can see that the data is
transformed in a manner that allows for easier separation of classes. The plots
are taken from Hoyt and Owen (2021) and are obtained from real data.

loss is called the Bayes risk R(f). Mathematically, we formulate Bayes risk
R(f) = Ex,y∼PX,Y

[L(f(x),y)] and formulate the best model in theory by a
minimization of Bayes risk f∗ = arg minf R(f). Although f∗ is the best model
in theory, its success is still limited by the Bayes error, referring to a lack of
correlation between X and Y . If we, e.g., predict the duration of stay at the
ICU based on shoe size, even the best model will not succeed, since the two
variables are not correlated in a meaningful way.

Of course, in practice, we only have some examples of data pairs and do not
know the joint distribution PX,Y of these pairs. The solution to this problem
is to use a finite set of example pairs D (called training set) drawn from, and
thus (hopefully) representing, the underlying joint distribution. However, the
training set can represent the joint distribution only if the number of sampled
data pairs is sufficiently large and the sampling is done in an independent
and identically distributed (i.i.d.) fashion. If we, e.g., predict ICU days for
patients of all ages with a model that is based on a training set D containing
only patients older than 80 years (which is drawn from a subset of PX,Y ), the
prediction will likely be inaccurate. Note that since PX,Y is unknown, there
is no way to be certain whether these assumptions hold (and they typically
do not hold in practice, but are assumed to anyway, with astonishing success
regarding the results).



Springer Nature 2021 LATEX template

50 Deep Learning & the Humanities

Besides relying on a finite set of example pairs, there is another limit-
ing factor. In practice, the set of functions that can be approximated by a
model f is restricted due to the number of parameters and choices of concrete
ANN architecture (the architecture of an ANN is defined by the number and
arrangement of individual units plus their wiring). The family of functions
that can be realized by f is called its hypothesis space F . Thus, instead of
minimizing the Bayes risk, the primary goal of machine learning is the mini-
mization of an empirical risk RD(f) that is limited by D and restricted to a

hypothesis space F . The best model in practice, f̂ , is then defined as the func-
tion for which the empirical risk is minimal. Mathematically, we formulate the
empirical risk RD(f) = 1

n

∑n
i=0 L(f(x(i)),y(i)) and the best model in practice

f̂ = arg minf∈F RD(f).
In addition to the Bayes error, then, there is also an error caused by depen-

dence on a finite set of examples and an error caused by dependence on a finite
set of functions. The former is called the estimation error and the latter the
approximation error. The different effects of these two errors on the predictive
performance of a model is shown with more detail in Figure 11.

(a) (b)

Fig. 10: (a) Illustration of the joint distribution of data pairs. Example input-
target data pairs are shown as blue dots, where X represents the input variable
and Y the target variable. Their respective underlying distributions PX and
PY as well as the iso-probability lines of the joint distribution PX,Y are shown
as well (all unknown in practice). Note that here, the Bayes error would be
high, i.e., knowing X gives relatively little information about Y . (b) Shows
the loss for one example i with respect to one model parameter wi,j (for a
non-convex optimization problem in black and for a convex problem in gray).
From its initial value, the parameter is being nudged towards a lower loss in
an iterative fashion, eventually reaching a minimum. Note that for non-convex
optimizations, there exist multiple minima, and thus, it is almost certain for
wi,j to miss the global minimum on convergence.
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(a) (b) (c)

Fig. 11: Illustration of the effects of the estimation error and the approxima-
tion error. (a) Shows the estimation error (black line), the approximation error
(gray line), and their sum, the generalization error (dashed line) as a function of
model complexity (size of the hypothesis space F). For low model complexities,
the model underfits, i.e., the model is too simple to fit the data appropriately
(high approximation error). For high model complexities, the model overfits,
i.e., the model is too complex and fits the training data too closely, while failing
to generalize to data outside the training set (high estimation error). For opti-
mal generalization, the model complexity must usually be balanced between
these errors; these balance is found by “regularizing” the models, i.e., giving
them side objectives that make bother overfitting and underfitting harder. (b)
Illustrates the different errors on a regression task, i.e., predicting a real-valued
y based on x. An underfitting function (blue) approximates the training exam-
ples (black dots) poorly. An overfitting function (yellow) approximates the
training examples too closely, failing to generalize to unseen examples (black
square). The optimal function is shown in black.(c) Illustrates the different
errors on a classification task (integer-valued y), i.e., predicting whether an
example x belongs to class y = 0 (black dots) or class y = 1 (white dots).
An underfitting decision margin (blue) separates the training examples poorly.
An overfitting decision margin (yellow) follows the observed training examples
too closely, failing to generalize to unseen examples appropriately (see white
square). The optimal decision margin is shown in black.

Finding f̂ from a random starting point f is, as is stated above, an opti-
mization task that involves altering the model parameters wi,j and bj such
that the empirical risk RD(f) is minimal. This is done using gradient-based
methods (Lecun et al. 1998), such as stochastic gradient descent (SGD). With-
out going into too much detail, these methods compute the gradient of the loss
function with respect to the model parameters. The gradient provides infor-
mation about how each parameter needs to be adjusted in order to reduce
the loss (or risk). Note that the gradient does not provide information about
the optimal final value for each parameter (the loss topology with regard to
the model parameters is not known and is typically arbitrarily complex, see,
e.g., Feizi et al. 2018), but about whether each parameter should be higher or
lower. The model parameters can then be nudged in a manner that decreases
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the loss. This procedure is repeated many times, moving the parameters in
small steps towards a lower and lower loss, eventually arriving at a minimum.
However, there is no guarantee that the minimum to which the optimization
converges corresponds with the global minimum (the lowest possible risk, see
Figure 10b). Thus, the performance of the model that is actually achieved by
optimization is likely still below the performance of the best model in prac-
tice f̂ , but typically close enough for practical usability (Choromanska et al.
2015). The gap between those two model is called the optimization error. In
sum, we have the following four kinds of commonly known errors or limits that
are inherent in statistical learning methods (such as DL):

i. Bayes Error

The Bayes error is the unquantified error occurring due to a lack of correlation
between input and target variables. If the input is only loosely related to the
target, even the best model in theory f∗ performs badly. Every statistical
method can only provide good results if its variables are sufficiently related.

ii. Approximation Error

The approximation error is the error due to the restriction on the complexity of
the model. Since no model is arbitrarily complex, no model can map arbitrarily
complex relations. This error is also called the ‘bias’ of a model as it is due to
a model being biased towards a simplistic solution that is systematically off
the true target because of lacking model complexity.

iii. Estimation Error

The estimation error is the error due to the restriction of the joint probability
PX,Y to a finite set of data (the training set) that should represent it. Since
there exists no machine learning tasks where all possible data is accessible, the
error due to lack of data is inevitable. This error is also called the “variance”
of a model as with varying training data, models with different blind spots
would be learned, corresponding to different weaknesses.

iv. Optimization Error

The optimization error is the difference between the optimal function in prac-
tice f̂ and the actual model that was learned. It is due to a suboptimal search
process for the best model parameters.

In sum: To minimize the overall error, the model complexity should increase
with the complexity of the true underlying input-output relation, and training
examples must be representative of it. Since this underlying relation remains
unknown, however, there cannot be any guarantee that the trained DL model
will not be wildly wrong with new examples (Delétang et al. 2023). Almost
the opposite is true: for any statistical classifier, including complex DL mod-
els, examples can be generated where it fails dramatically – these are referred
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to as ‘adversarial examples’ (Szegedy et al. 2014; Goodfellow et al. 2015). This
is an inevitable characteristic of DL models (Shafahi et al. 2020; Papernot
et al. 2017) and poses problems in various applications, such as self-driving
cars (Brown et al. 2018; Tu et al. 2022), making the presence of additional
processes to detect such out-of-distribution samples necessary (Amirian et al.
2018). While theoretical guarantees are thus absent, however, the success of
DL models is built on the empirical finding that, in practice, reasonable gen-
eralization to unseen examples usually works quite well if it can be achieved
through interpolation between seen training examples (see section A.4).

A.4 Our Shallow Understanding of Why DL Works

Although advances in hardware and the increasing availability of data explain
the success of DL to a large extent (see, e.g., Lenzen 2020) and gave rise to
numerous algorithmic advances that account for another large part (Stadel-
mann et al. 2019b), a unified theory that fully justifies the remarkable
performance of DL models is still missing (Plebe and Grasso 2019; Sejnowski
2020). To list a few open issues (references follow in the subsections below), it
is still not fully clear (i) why large models generalize so well despite their vast
overparametrization, (ii) why deep models are so superior to shallow ones,
(iii) why models perform well in very high-dimensional environments, and (iv)
why optimization converges to good local minima despite the non-convexity of
the loss topology. For some of these issues, there exist already plausible expla-
nations that are increasingly supported by evidence. We discuss these issues
here because this way we gain further interesting insight into how DL work.
Note that all addressed issues are not clearly separable, and a solution to one
is likely to contribute to the resolution of other issues as well. Here, we only
provide a brief outline of these issues. We refer to Plebe and Grasso (2019) or
Hodas and Stinis (2018) for a more detailed overview, to Poggio et al. (2019)
for a more mathematical approach, and to Berner et al. (2022) for a recent
in-depth mathematical investigation.

i. DL Generalizes Surprisingly Well

To interpolate any training data with example count m and example dimen-
sion d (e.g., m = 100 cases of ICU patients with d = 10 vital parameters per
case or m = 5000 images with a number of d = 784 pixels each), a three-
layered MLP with a parameter count in the order of m + d (mathematically,
this is expressed as O(m + d)) is sufficient (Berner et al. 2022). This means
that in theory, increasing the number of parameters beyond O(m + d) (called
overparametrization) will lead to overfitting. However, it was shown that DL
models can perfectly fit randomly labeled training data and still generalize well
to real labels (Zhang et al. 2017). This means that even models that are proven
to overfit can generalize well to unseen data. This behavior seemingly contra-
dicts our previous elaborations in section A.3. In fact, overparametrization was
shown to often lead to significant benefits (Soltanolkotabi et al. 2019). It was,
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e.g., shown that a DL model with 1.6 million parameters, trained on m = 50000
images of size d = 32 × 32 pixels reaches almost state-of-the-art generaliza-
tion performance (Zhang et al. 2017, 2021). Another example of outstanding
generalization performance despite overparametrization is “Noisy Student”, a
state-of-the-art image recognition system with 480 million parameters, trained
on 1.2 million images (Xie et al. 2020).

Current research into this matter focuses on the optimization algorithms,
such as SGD (see Figure 10b), suggesting that they exhibit properties of
implicit regularization, i.e., a bias that prefers models of low complexity
(Soudry et al. 2022; Arora et al. 2019). Furthermore, the probability for opti-
mization to converge to good minima (there seems to be a multiplicity of
them in deep models, see section A.4.iii) turns out to be higher in deep
overparametrized models, i.e., they usually exhibit a smaller optimization
error than underparametrized models (Poggio et al. 2019). Analysis of over-
parametrized models extends the classical U-shaped generalization error in
Figure 11a to a “double descent” curve (see Figure 12a). This suggests that if
model complexity is increased beyond the point of high estimation error and
low approximation error, the estimation error descents again, leading to a lower
overall error eventually (see, e.g., Belkin et al. 2019; Feldman 2021; Dosovitskiy
et al. 2021). Furthermore, it was observed that the correlation (more precisely
the mutual information) between neighboring layers is high, meaning that the
hypothesis space collapses to a smaller actual size, implicitly regularizing the
optimization task (Hodas and Stinis 2018; Tishby and Zaslavsky 2015).

ii. DL Overcomes the ‘Curse of Dimensionality’

Many tasks in computer science become extremely difficult whenever the num-
ber of dimensions of the data is high. High dimensional data is typically
problematic in that the possible number of configurations of a data example
increases exponentially with its dimensions. The number of examples required
to cover all relevant configurations therefore also increases exponentially. In
computer science, this problem is referred to as the curse of dimensionality
(Bellman 2015; Novak and Woźniakowski 2009; Goodfellow et al. 2016). Unfor-
tunately, in most DL applications, the data dimension is very high. If we, e.g.,
want to classify 512× 512 pixel gray scale images with each pixel representing
a value between 0 and 255, there are 256262144 possible images for which we
want to compute the probability to belong to certain classes. The data and
computing power theoretically needed to solve this task is far beyond reach.
However, in practice, high-dimensional tasks have been successfully solved for
many applications using deep learning.

An important idea underlying machine learning is that all meaningful data
lies on a lower-dimensional manifold embedded in higher-dimensional space. A
manifold is a connected region as shown in Figure 12b. An illustrative example,
given by Goodfellow et al. (2016), is that although we live in three-dimensional
space, we essentially move on a two-dimensional manifold, i.e., the surface of
the world. Thus, standing at a random location usually excludes being above
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(a) (b)

Fig. 12: (a) The double descend curve. In direct comparison to Figure 11a,
we see that with increasing model complexity, the generalization error (dashed
line) decreases a second time for overparametrized models. (b) Illustration of
a learned manifold. A data set is shown where every two-dimensional example
is concentrated on a one-dimensional manifold (i.e., with the curvature of the
manifold z known, the position of a point on the manifold can be given with just
one scalar number). It is not possible for an example of that data set to be far
from the manifold (e.g., a data set of images showing handwritten digits does
not contain examples that show a car). The two-dimensional input space can be
transformed such that an output unit z represents the disentangled manifold
(figuratively, the curve is stretched out to form a straight line). Separating the
two classes (blue and yellow) based on x is difficult, but separating them based
on z is straight forward (just by finding a single threshold on that stretched-out
straight line).

or below ground. Driving a car, the probability collapses even further, reducing
the problem to one dimension, i.e., all roads. Likewise, the set of all possible
images that, e.g., show a face, is far below the set of all possible images.
As a consequence, machine learning tasks simplify drastically. Although the
manifold hypothesis is not necessarily correct for all problems, there is a lot
of evidence confirming it (Goodfellow et al. 2016; Brahma et al. 2016).

iii. Depth is Superior to Width

The universal approximation theorem states that a shallow (or deep) ANN
can, in theory, approximate every function if its width is sufficiently large (see
section A.3). For a long time, therefore, the focus of analysis was on the width
of models. However, the breakthrough for ANNs (and with that, a new Spring
for AI in general) came with algorithms that allowed for efficient training of
deep models (Hinton et al. 2006, followed by, e.g., Bengio et al. 2006; Ranzato
et al. 2006). The focus shifted from width to depth (Bengio 2009), as DL
outperformed other machine learning methods on important tasks (Krizhevsky
et al. 2012). Today, models can contain over 1000 layers (He et al. 2016).
Interestingly, we still do not have a tangible explanation for the strength of
deep over shallow models.
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Recent research, however, has shed some light on this issue. It was shown,
for instance, that the function complexity of deep models grows exponentially
with depth, and that shallow models need significantly more parameters to
exhibit similar complexity (Eldan and Shamir 2016; Raghu et al. 2017; Berner
et al. 2022; Lin et al. 2017). Furthermore, not all parameters are equally
important (Frankle and Carbin 2019). The model output has been shown to
be more sensitive to lower layer parameters (Raghu et al. 2017). These find-
ings affirm a widely supported theory that data representation must gradually
progress through the layers from rudimentary to more complex (Hodas and
Stinis 2018; Shwartz-Ziv and Tishby 2017). Figure 13 shows this effect in an
image classifier. For many researchers, the benefit of this compositional struc-
ture of functions makes intuitive (and quantitative) sense (Hodas and Stinis
2018; Mhaskar et al. 2017; Lee et al. 2009). A further hypothesis is that by
using many narrow layers (i.e., low-dimensional functions) instead of a few
wide layers (i.e., high-dimensional functions), models can better avoid the curse
of dimensionality (Poggio et al. 2019; for curse of dimensionality, see section
A.4.ii).

Fig. 13: Progression of data representation in the convolutional neural net-
work (CNN) “GoogleLeNet” (Szegedy et al. 2015) (used with permission from
Olah et al. 2017). These images were achieved by fixing the trained model
parameters and instead optimize the pixel values of the input image in such
a manner that maximizes certain hidden channels (in CNNs, convolutional
layers usually consist of channels, which consist of units). Thus, the obtained
images show what the respective channels are detecting, i.e., how the respec-
tive channels represent input images. Going from lower to higher layers, we see
that channels represent edges, then textures, then patterns, then parts, then
objects, such as archways and eyes. Remembering section A.3, we can see that
the image representations in higher layers serve to simplify classification. e.g.,
detecting cars based on raw pixel values or edges is hard, but detecting cars
based on channels that represent objects, such as tires, lights, and streets (and
ultimately cars themselves) is much easier.
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iii. Training Reaches Near-Global Minima Despite Non-Convex Optimization

In order to be guaranteed to reach the global minimum with SGD, the loss
topology has to be convex. This is typically not the case in the optimization of
deep models (see, e.g., Elbrächter et al. (2019); Petersen et al. (2021)). With
a non-convex loss topology, the issues with optimization include converging at
suboptimal local minima (see Figure 10b and, e.g., Auer et al. 1995; Safran
and Shamir 2018), converging at saddle points, and high time consumption
due to escaping very small gradients (see, e.g., Berner et al. (2022)). Even
today, there is little theoretical explanation for why, in practice, convergence
to a quasi-global minimum seems to be observed quite often.

One insight is that by adding more depth and width to a model the quality
of local minima has been shown to improve, i.e., they are no worse than global
minima (Kawaguchi et al. 2019). Thus, for sufficiently large models, the focus
shifts from finding the minimum loss, i.e., the global minimum, to finding some
low loss, i.e., a good minimum (Goodfellow et al. 2016).

Further reading : This brief introduction into the theory of DL only scratches
the surface of the varieties of concepts, models, and applications. For a more
in-depth account, we suggest reading Goodfellow et al. (2016); Prince (2023);
Murphy (2022).
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