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Abstract

This research paper presents a chemical compiler developed
to find optimal configurations of a platform for synthesizing
specific branched oligomers in an artificial chemistry, along
with exemplary compiler output and benchmarks where the
platform configuration suggested by the compiler is com-
pared to other configurations in simulation. The compiler
operates as a pipeline with two stages: labelling and opti-
mization. The report explains the structure of the compiler
target and its interpretation, followed by a code walk-through
of the compiler stages with code snippets and examples. The
compiler can be used as a code generator for reactions in a
chemical simulator and to derive loading schemes for multi-
level droplets. The results obtained in simulations suggest
that the container system can efficiently optimize the yield of
coupled reaction networks and that multi-level droplets can
lead to significant improvements.

Introduction
In this paper, we adopt the term “chemical compiler” to refer
to a computer program that generates specifications of initial
conditions for a theoretical or actual chemical reaction plat-
form. Given a desired behaviour of the chemical system as
input, the chemical compiler generates instructions on how
to set up the system so that the behaviour can be observed
in the subsequent reaction dynamics. In this work specif-
ically, the reaction platform targeted by the compiler is a
theoretical framework consisting of a linear chain of reac-
tion chambers. Given a description of a branched oligomer
as input, the chemical compiler generates a specification of
a sequence of reaction chambers, each pre-filled with suit-
able reactants, to form a chemical reaction platform capable
of synthesizing the desired molecule with a high yield rate.
This is particularly interesting in a setting where byproducts
would compromise the yield. Our compiler prevents the for-
mation of undesired byproducts by suitably arranging the
reaction chambers.

While this work is deliberately based on a reaction plat-
form that remains abstract, we suggest that, e.g., a cascade
of microfluidic reactors (cf. Utada et al. (2007)) would be
a suitable implementation of the platform. Alternatively,

the reactands could be encapsulated and compartmental-
ized within liposomes with the ability of controlled merg-
ing (cf. Angelova and Dimitrov (1986)). Both approaches
are promising candidates as they would enable confined re-
actions in microreactor-like environments. In particular,
we would like to implement the compiler output using the
droplet structures developed in the ACDC project (cf. Li
et al. (2022)) in the future.

The high-level workflow of the compiler is as follows:

1. The users specify a desired molecule (in our case, a poly-
mer) they wish to synthesize.

2. The chemical compiler generates a suitable setup specifi-
cation that will be able to synthesize the target molecule
with a high yield rate.

3. The users set up the physical system according to the
chemical compiler’s specifications and “run” the system
to produce the desired molecule.

The compiler presented here is inspired by graph-
theoretical approaches to chemical reaction networks (cf.
Temkin et al. (1996) for an overview) and is compatible with
a framework outlined in Weyland et al. (2020) which aims at
deriving chemical reaction platforms with maximum yield.
It extends the compiler by Weyland et al. (2013) in that it
aims at reducing the number of reaction chambers needed.

In the subsequent sections, this paper provides a detailed
description of the chemical compiler and its capabilities.
Specifically, in the following section, we define the compila-
tion target, i.e., the chemical reaction system, and discuss the
underlying assumptions and constraints of the system. In the
section about the compiler pipeline, we present the details of
how the chemical compiler generates the chemical reaction
system from a description of a branched oligomer. This sec-
tion includes a step-by-step walk-through of the compiler
stages: labelling and optimization, along with code snippets
and examples. To evaluate the effectiveness of the chemical
compiler, in the last section, we present the results of several
simulations that compare the performance of the compiler’s
output to manual setups in terms of synthesis time and yield



rate. We demonstrate that the chemical compiler can effi-
ciently optimize the yield of coupled reaction networks.

The Compiler Target and Its Intended
Dynamics

Compiler Target
As mentioned in the introduction, the target of our chemi-
cal compiler consists of specifications for specific chemical
reaction networks. This section defines “standardized chem-
ical reaction structures (SCR structures)” that our compiler
generates as output.

A (labelled) monomer is a pair (a, b) consisting of a
monomer label “a” and a (finite) list of bonds “b”. An SCR
structure is a (finite) list of sets of monomers. We denote
SCR structures as tuples of the form

({a1[b11, . . . b
n1
1 ], . . . , ak[b
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nk

k ]}, . . . )

where ai[b
1
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i ] denotes a monomer with label ai and

bonds b1i , . . . , b
ni
i .

In SCR structures, labelled monomers represent the ba-
sic reactants of a chemical reaction system. Each labelled
monomer has specific binding sites that are available for re-
actions. Connecting two labelled monomers at a specific
binding site requires the presence of a free binding site with
an identical label on each monomer and then combining
these binding sites into a bond. Binding sites that pertain to a
bond are no longer free. Structures obtained from connect-
ing two or more labelled monomers are partial molecules
if free binding sites are left or labelled molecules other-
wise.1 Finally, an SCR structure represents a linear arrange-
ment of reaction compartments, such as vesicles, droplets,
or containers. Each compartment is preloaded with a set
of labelled monomers. The order in which the SCR struc-
ture arranges the compartments specifies how the labelled
monomers can flow between the chambers and interact (bind
to each other).

In software, we use the following Haskell datatypes to
represent SCR structures:
data LabeledMonomer = LMonomer Monomer [Bond]
data SCRStruct = SCRStruct [Set LabeledMonomer]

where Monomer and Bond are aliases for strings.

Intended Interpretation and Dynamics
In this paragraph, we describe the dynamics of SCR
structures as they go through various configurations when
monomers move between reaction chambers and bind to-
gether.

We assume that the pores that connect compartments in
a linear SCR structure can be opened by an external sig-
nal, which opens the pores one by one, starting from the

1While we do not impose a particular chemical implementation
of this scheme, click chemistries such as the ones described by
Kolb et al. (2001) may satisfy the requirements stated here.

first to the last. This signal can be thought of as a physi-
cal or chemical stimulus, such as light or a specific chemical
compound. As the synthesis progresses and more monomers
bind together, increasingly complex structures form until the
target molecule is synthesized with a high yield rate (cf.
Fig. 1). The chemical compiler’s task is to derive a suit-
able initial structure that will improve the yield rate of the
target molecule.
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Figure 1: Four steps in the evolution of an initial SCR struc-
ture. Step 1: Initialization; step 2: inner cell reactions form-
ing intermediate products; step 3: Formation of pores; step
4: reactions forming complete molecules.

In the absence of an external signal to open the pores,
we adopt a nondeterministic interpretation of the dynamics,
where the pores are always open, and the intermediate prod-
ucts of the reaction may flow freely between the connected
compartments. While this interpretation does not guarantee
an optimal outcome, the yields are high due to the proximity
of preferred reaction pairs. In simulations, we applied this
nondeterministic interpretation and obtained almost optimal
yield rates (see section “Simulations”).

As an example of how different initial structures may pro-
vide different yield rates, consider the example shown in
Fig. 1. The displayed initial setup provides better yield rates
than a more straightforward setup where all monomers are
in a single compartment because it reduces the formation of
undesired reaction byproducts such as for example “E-x-B”
which can reduce overall yield rates.

The Compiler Pipeline
This section provides an overview of the compiler’s pipeline,
which begins with a description of a molecule (polymer)
and proceeds to generate a labelled graph of its connections
(labelling stage). The compiler then uses the generated la-
belled graph and generates an SCR structure that can opti-
mistically synthesize the target molecule in the optimization
stage. Before delving into the compiler’s processing stages,
we briefly define the compiler’s input. The compiler’s input
is a molecule (or polymer), represented as a graph compris-
ing nodes and edges. Each node represents a monomer, and



each edge represents a bond between monomers. The la-
bels on nodes and edges provide information about the types
of monomers and bonds present in the molecule. However,
the input for the compiler requires that the edges are not la-
belled. Below is a simplified2 representation of the datatypes
we use to represent molecules in code, where we model a
graph in terms of a mapping associating edges to unordered
pairs of nodes.

data Molecule = Molecule
{ mBonds :: Map bondId bond
, mMonomers :: Map monomerId monomer
, mStructure :: Map (UnorderedPair monomerId) bondId
}

Finally, we use () as bond type for input molecules, which
are molecules that lack edge labels.

The Labelling Stage
The labelling stage of the compiler begins with an unlabeled
molecule and a set of given linkers or bonds. It distributes
the linkers over the connections in the molecule such that
no monomer is adjacent to two connections with the same
label. This distribution is a crucial first optimization step, as
it ensures that the desired molecule is synthesized correctly.
Consider the following example to understand why such a
distribution is necessary. Suppose we want to synthesize the
molecule shown in Fig. 3 and label all connections adjacent
to “A” with the same label ‘x’. Then, we may inadvertently
synthesize an artefact like the one shown in Fig. 2 instead
of our target molecule. It is important to note that which of
the potential faulty molecules we end up synthesizing and in
what ratios depends on the order of the synthesis steps.

A
x

B

x

B

x

B

Figure 2: One of the possible undesired molecules that oc-
cur instead of the molecule shown in Fig. 3 when the “A”-
monomer’s bonds are all labelled with identical labels, e.g.
‘x’.

The labelling algorithm takes as input a desired molecule
and a set of available linkers and processes these inputs as
follows:

1. Initially, associate each monomer in the molecule with the
set of all available linkers.
2Throughout this paper, we use notations similar to Haskell

code. However, we may omit some details, such as type parame-
ters, and occasionally rename elements to improve readability and
fit within the two-column layout.

2. For every connection in the molecule, perform the follow-
ing steps:

(a) Find the intersection of the linker sets associated with
the endpoints of the connection. If the intersection is
empty, the algorithm fails. Otherwise,

(b) Choose a linker from the intersection found in step (a)
and associate it with the connection.

(c) Remove the chosen linker from the sets associated with
the endpoints of the connection.

Note that the runtime of this algorithm is linear in the num-
ber of connections in the molecule. Our implementation of
the algorithm in Haskell consists of a main function with the
signature:

labelMSkeleton :: MSkeleton -> Set Bond -> Molecule

Here, MSkeleton and Molecule respectively refer to
input molecules (i.e., molecules without edge labels, i.e.
”molecule skeletons”) and labelled molecules. See Figs. 3
and 4 for an example of an input and the respective output
generated by the labelling function with linker set {x, y, z}.

The Optimization Stage
The optimization stage aims to generate an initial SCR struc-
ture from a labelled molecule. The compiler optimizes the
yield rate of the desired molecule by generating a structure
that ensures that undesired reaction pairs are either never
located in the same cell or are less likely to be so (non-
deterministic case). As a secondary objective, the com-
piler also attempts to minimize the length of the resulting
SCR structure. The optimization process begins by decom-
posing a labelled molecule into labelled monomers, where
each monomer is associated with its respective linkers as
they appear in the labelled molecule. Next, the compiler
distributes these monomers into compartments, making sure
not to place monomers not connected in the target molecule
but with identical linkers in the same compartment. At the
core of this functionality is the following simple function:

partition :: (a -> a -> Bool ) -> [a] -> [[a]]
partition f xs = case xs of

[] -> []
x:xs -> insert_ x $ partition f xs
where

insert_ x [] = [[x]]
insert_ x (ys:yss)

| all (f x) ys = (x:ys):yss
| otherwise = ys:insert_ x yss

The partition function takes a binary predicate and a list of
elements as input. It then creates a list of lists, where each
sublist contains elements that are pairwise compatible ac-
cording to the given predicate. The function achieves this
by iterating through the input list and placing each element
in the first sublist where it is compatible with all existing
elements. If no such sublist exists, it creates a new sublist.



The algorithm engages in a worst-case scenario of ’k’ com-
parisons for each element ’x’ at position ’k’ in the list be-
fore successfully inserting ’x’ into the target structure. Con-
sequently, the cumulative runtime of the algorithm scales
quadratically with the total number of elements in the in-
put list. The list of sublists generated is assured of achiev-
ing minimal length in cases where the given predicate is an
equivalence relation. Although minimum length is not as-
sured when utilizing other predicates, the algorithm often
yields an optimal solution regardless. The remaining code
of the optimization stage of the compiler focuses on gen-
erating and connecting appropriate datatypes and specifying
suitable parameters to implement the two primary functions:

compartmentalize :: Molecule -> SCRStruct

selectiveCompartmentalize
:: (Monomer -> Monomer -> Bool)
-> Molecule
-> SCRStruct

The compartmentalize function utilizes the
partition function with a predicate compatibleIds
to ensure that monomers with a shared bond can only be
combined in a compartment if they are connected in the
target molecule. The implementation of the predicate is as
follows:

compatibleIds
:: Molecule
-> [BondId]
-> [BondId]
-> Bool

compatibleIds m bis1 bis2 =
and [ x == y || g x y | x <- bis1, y <- bis2]
where
g bi1 bi2 = lookup bi1 (mBonds m)

/= lookup bi2 (mBonds m)

The selectiveCompartmentalize function is a
more general version of compartmentalize that en-
ables users to introduce additional constraints, such as pre-
venting certain bonds from forming in the same location as
other bonds. Finally, Running the complete pipeline simply
means combining the compiler stages in one function:

generateStructure
:: MSkeleton
-> Set Bond
-> SCRStruct

generateStructure m bonds = compartmentalize
$ labelMSkeleton m bonds

Simulations
In this section, we provide example input and output for all
stages of the compiler pipeline. Furthermore, we showcase
the full compiler pipeline in an example and compare the
resulting synthesis platform configuration to “hand-crafted”
alternatives.

Applying the compiler pipeline
To showcase our chemical compiler, we use it to produce the
SCR structure for synthesising a target polymer from five

(abstract) monomers “A” to “E”, cf. Fig. 3.
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Figure 3: The target polymer consisting of five monomers
“A” to “E”.

In code, this target polymer consists of five unlabelled
bonds with bondId 0 to 4, “A” to “E” with monomerId 0
to 4 and the mapping of the bonds to the monomers accord-
ing to Fig. 3. It is specified as follows:

targetMolecule = Molecule
{ mBonds = fromList
[ ("0",()), ("1",()), ("2",()), ("3",()), ("4",()) ]

, mMonomers = fromList
[ ("0","A")
, ("1","B")
, ("2","C")
, ("3","D")
, ("4","E")
]

, mStructure = fromList
[ (Uop "2" "0", "0") −− C−A
, (Uop "1" "0", "1") −− B−A
, (Uop "0" "3", "2") −− A−D
, (Uop "3" "4", "3") −− D−E
]

}

When provided with this input, the compiler’s labelling
stage produces a labelled target molecule with the labels ‘x’,
‘y’ and ‘z’ that is efficiently synthesizable (cf. Fig. 4. In
particular, the compiler refrained from re-using any labels
when labelling the bonds of “A”, as these would inevitably
yield undesired by-products. Conversely, the ‘x’ label was
re-used since the creation of “ExB” artefacts can be avoided
as described previously.
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Figure 4: Output of the labelling stage: The target polymer
with labelled bonds.

Now, we consider two different scenarios, each with a dif-
ferent set of constraints regarding intermediate products: (1)
In the first scenario, there are no restrictions, i.e. all inter-
mediate products are admissible. (2) In the second scenario,
the intermediate product “AxB” is considered toxic and shall



never occur in the synthesis path. Thus, the compiler is re-
quired to generate an SCR structure that guarantees the ab-
sence of the toxic intermediate product during the synthesis
of the target polymer.

In scenario (1), the compiler generates a structure with
two compartments, one loaded with monomers “A” to “C”
and another with monomers “D” and “E”.

({A[x,y,z],B[x],C[y]},{D[z,x],E[x]})

As stated previously, a minimum of two compartments is
required to prevent the creation of “ExB” byproducts. The
synthesis on this SCR structure runs as shown in Fig. 1.

In scenario (2), we provide the compiler with information
about the supposed “incompatibility relation” of monomers
“A” and “B” and formalize this as the function

\m1 m2 -> Uop m1 m2 /= Uop "A" "B"

which we pass to the compiler. Consequently, the compiler
generates the following structure with three compartments
where “B” is initialized in a dedicated compartment to sat-
isfy the additional constraints.

({A[x,y,z],C[y]},{B[x]},{D[z,y],E[x]})

Dynamic simulation and comparison with other
platform configurations
To showcase the leverage of our compiler, we use a simula-
tor described by Schneider et al. (2020, 2021, 2022) which
simulates the assembly of a network of droplets and the sub-
sequent reactions of the chemicals loaded into the droplets.
In brief, 3000 spherical droplets with a radius of 30 µm are
initialized within a cylinder of radius 1 mm and height of
4 mm so that they do not touch or intersect with the cylinder
walls or with each other. The droplets are subject to gravita-
tional, frictional and buoyancy forces and, in consequence,
agglomerate at the bottom of the cylinder. Two droplets that
touch can form pores, thus exchanging chemicals which re-
act according to the chemistry derived by the simulator (we
assume no immediate toxic products in this example; the
simulation of the reactions is governed by algorithm devel-
oped by Gillespie (1976, 1977)).

We investigate a one-pot-reaction baseline (pot) and five
different scenarios defined as follows: (s1) Five types of
droplets are loaded with one monomer (“A” to “E”) each,
and pores are formed wherever droplets touch, regardless of
their type. (s2) The second scenario is the same as the first
scenario, with the exception that droplets of the same type
do not form pores. This scenario is expected to perform sim-
ilarly to the first one. (s3) The third scenario again uses five
types of droplets loaded with the respective monomers as
before, but pores only form between droplets with the fol-
lowing (original) content: “A” and “C”, “B” and “C”, “C”
and “D” and “D” and “E”. The third scenario is crafted in an
attempt to guide the gradual reaction process according to

the structure of the target polymer. (s4) The fourth scenario
is similar to the third scenario but pores also form between
droplets of the same type. (s5) In the fifth scenario, pores
always form except for “C” and “E” as well as “A” and “D”.
This is crafted in an attempt to avoid undesired byproducts.

The aforementioned scenarios are compared to two “im-
proved” scenarios. (imps1) allows for unconditional pore
formation between any type of droplets, while (imps2) al-
lows for pore formation between different types of droplets.
In contrast to the previous scenarios, the improved scenarios
employ droplets that are loaded according to the SCR struc-
tures proposed by the chemical compiler. Thus, only two
types of droplets are used.

Figure 5: Simulation results for the one-pot reaction (pot),
scenarios (s1) to (s5) and the scenarios improved by the
compiler, (imps1) and (imps2). The latter produce a much
higher yield compared to any other scenario, and, with the
exception of the one-pot reaction, are also faster.

The number of target polymers for any of these scenar-
ios is shown in Fig. 5 as a function of simulation time. The
one-pot reaction is very fast since any reaction can occur im-
mediately, in contrast to all other scenarios where a droplet
agglomeration with pore formation is a prerequisite for the
synthesis of the target polymer. Furthermore, the yield is
higher than in scenarios (s1) to (s3). Scenarios (s4) and (s5)
produce similar yields, but the dynamics in (s4) are faster
than in (s5). The results from the simulations of the im-
proved scenarios are better than the others in two aspects.
First, the dynamics are faster, except for the one-pot base-
line. Second, the yield of all other scenarios is dwarfed by
the yield of the two improved scenarios that were suggested
by the compiler presented in this work.

To conclude, we gave an outline of the chemical com-
piler and demonstrated how it could be used to achieve high
yields in a short amount of time. We see the potential for
this approach in situations where reactants are unstable and



may degrade quickly in reaction systems that are prone to
the formation of undesired byproducts or toxic intermediate
products.
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and Füchslin, R. M. (2021). Influence of the geometry on
the agglomeration of a polydisperse binary system of spheri-
cal particles. In Artificial Life Conference Proceedings, vol-
ume 33. MIT Press. Alife 2021 : The 2021 Conference on
Artificial Life, online, 19-23 July 2021.

Schneider, J. J., Weyland, M. S., Flumini, D., and Füchslin,
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