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Abstract— In this body of work, we describe preliminary work 
in implementing a Berkely Packet Filter in its original conception, 
in an FPGA. The purpose is packet filtering and ingress traffic 
shaping in security-relevant applications in distributed embedded 
nodes. We specifically target PROFINET nodes in hard-real-time 
applications where network security is a known issue. We describe 
the motivation, implementation and verification including 
performance characteristics. We posit that such a filter can be 
used to not only for protection against simple denial-of-service 
attacks but also for ingress protocol management and be used in 
the implementation of system-wide security policies.   

Keywords—Real Time Ethernet, Network Security, Packet 
Filtering, Berkeley Packet Filter, FPGA, PROFINET   

I. INTRODUCTION

New security demands made on device manufacturers 
place challenges on the manufacturers’ hardware. It is well 
understood that the cryptographic algorithms required for 
security are computationally expensive to a degree matching 
the computational expense of the run-time application, 
henceforth application. It is also well understood by industry 
that in the factory and process automation domains, device 
lifetimes of 20+ years are considered normal. The creativity 
of malicious intruders into systems and networks knows few 
bounds and the automation domain has, at least since Stuxnet 
[1], [2], understood that automation networks are very much 
at risk. What hasn’t been given much consideration is the 
security-relevant maintenance effort required over the 
lifetime of the device. The operating systems of personal 
computers (PCs) are subjected to numerous updates over their 
lifetime. It is hard to imagine industry showing the same 
patience with factory downtime for security updates, 
including the inherent risk that the machine won’t restart 
because of a faulty update on one node. We intuit that on-line 
bump-less updates will be preferred and the update should be 
verifiable, small and not affect the device booting process.   

Network security in factory automation consists of 
(management) processes, protective algorithms and 
protective software. In-place processes help reduce the 
exposure to external threats. Protective algorithms help 
protect access to and traffic between, networked devices. 
Protective software includes that software than can detect, 

prevent and recover from a malicious attack. Our contention 
is that packet-filtering fits the above criteria for use in an 
industrial Ethernet security context. We demonstrate an 
implementation of the Berkeley Packet Filter. This paper will 
present our arguments and some experimental work.  

The paper is structured accordingly – we complete this 
section with some further words on motivation and then 
relevant prior work. In Section II we shall describe the 
implementation activities so far and in Section III conclude 
with a summary of results and some thoughts on future work. 

A. Motivation

In the context of some activities in the domain of Real
Time Ethernet, specifically PROFINET security, the authors 
have been holding extensive discussions with industry 
representatives about the verification and validation (V&V) 
of HW/SW partitioned security implementations. Long-term 
maintainability concerns are a prominent feature of these 
discussions. To this end we are examining solutions that can 
be subjected to differential V&V [3].  

The PROFINET Netload certification suite [4] consists 
largely of denial of service (DoS) tests. We previously 
conducted an unpublished security analysis where we noted 
a number of system-vulnerabilities over and above the 
relatively simple DoS tests. Whilst we made no comment on 
the protection against these vulnerabilities, we maintain that 
these are not solved by simple blacklisting and/or 
whitelisting. Other authors have noted similar complex 
vulnerabilities waiting to be discovered, for instance buffer 
saturation attacks [5].  

There are a number of architectures available to 
implement protective structures, such as the netfilter [6] 
architecture known from Linux through which custom 
firewall functions can be hooked in (i.e adaptively 
instantiated). Embedded applications rarely need ad-hoc 
adaptability of the type offered by netfilter. Packet 
filtering infrastructure also offers the ability for traffic-
shaping which we intuit to be especially useful in an 
embedded application, especially under real-time constraints. 

The concept behind the Berkeley Packet Filter (BPF) is 
attractive as it is structured as a virtual machine and as such 
relatively easily implementable in HW. The original 
implementation of the BPF [7], henceforth the (classic) cBPF, 
has been superseded by the extended BPF (eBPF) [8] with a 
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virtual machine featuring a just in-time (JIT) compiler. Many 
of the attractive features of the eBPF come courtesy of the 
tight integration with the Linux kernel and hence use-cases 
that extend beyond packet manipulation. For our purposes – 
flexibility on a small scale – it appears that the 
implementation of the cBPF in hardware as a security 
orientated packet processor, warrants further investigation.  

B. Relevant Work 

There is a substantial body of work on security for general 
purpose networked computer systems. Packet filters have 
long been used for firewall and traffic shaping purposes [9]. 
The BPF in both cBPF [7] and eBPF [8] variants have been 
well documented. An embedded (software) version of the 
eBPF was presented by [10]. 

Industrial network security has also been a subject of 
study. Modbus/TCP has undergone substantial scrutiny due 
to its importance in strategic infrastructure automation 
systems (electricity generation, chemicals etc.) making it 
representative for the application domain as a whole. 
Application-domain relevant works include [11] who 
develop a taxonomy of a substantial number of possible 
attacks, [12], [13] who provide a general overview of 
application-domain security issues, additionally referencing 
PROFINET and POWERLINK. A useful performance 
comparison of eleven TLS cyphers suites is provided by [14]. 
Of the hard real time protocols in existence, [15] take issue 
with the security of EtherCAT and for PROFINET we 
observe a substantial time-gap between the initial voicing of 
concerns [16] and results from the relevant specification 
committees [17].  

Packet filtering in FPGAs has a long history especially in 
routing applications [9]. The usefulness of the eBPF coupled 
with the speed of FPGA processing has also not gone 
unnoticed and there are both research [18] and commercial 
[19] solutions available that convert eBPF code into hardware 
processing elements. To the best of our knowledge there is no 
hardware implementation of a cBPF. 

One of the novelties of this body of work is therefore to 
propose a cBPF implementation in an FPGA.  

II. PROOF-OF-CONCEPT IMPLEMENTATION 

A. Architecture 

The packet filter will be integrated into a FPGA-IP based 
PROFINET communication controller [20]. The controller 
features a stringent data-flow design optimised for low-
latency data transfer and both the packet filtering and the in-
line encryption/decryption must be integrated into this 
architecture. The ingress system is shown in Figure 1. An 
ingress frame enters the delta unit which retains the frame 
until the filter bank instructs the delta unit to forward. 
Meantime the frame words are written to a configurable 
number of data buffer components, in this diagram three. The 
three buffers shown are for the communication classes 
isochronous, alarm and asynchronous. Once the frame has 
been identified and temporally validated (i.e no asynchronous 
frames in the PROFINET isochronous phase) the buffer 
components are notified for whom the frame is. This 
notification can be combined, usually at synthesize time, with 
assertion of an interrupt. This allows calling of a (prioritised) 

communication-class specific interrupt service routine which 
can then call the relevant driver/process.  

We wish to maintain this low latency design in the light 
of new security requirements. In PROFINET there is an 
expectation of both authenticated real time (RT) and non-real 
time (NRT) packages using, for instance AES and SHA256. 
Both are block cyphers and a different body of work is 
investigating the integration of streaming cryptographic IP. 
In the context of the architecture the latency handling is an 
issue with the following considerations; there are NRT 
ingress frame that will not require authentication – for 
instance PROFINET’s discovery and configuration protocol 
(DCP); If latency is present in either filtering and/or 
authentication decryption then these operations can be carried 
out in parallel – either unit, although in practice it will most 
likely be the filter unit, shall be able to drop a packet and so 
halt the work of the other. This results in the parallel 
architecture of Figure 2. 

B. Implementation   

The cBPF features 27 64-bit instructions, all of which are 
supported in this implementation. Inclusion of the multiply 
and division functional units are implemented as synthesise-
time options. The current implementation supports 256 
instructions instead of the maximum allowed 512 largely for 
convenience sake in instantiating necessary block-RAM. We 
anticipate that filters will not require longer code nor do we 
expect any issues extending the memory addressing range 
should this be necessary. The instruction RAM can be 
implemented as a dual ported RAM allowing the update of 
the instruction code. All instructions can be issued in one 
clock cycle and execution ranges from one to five clock 
cycles. In the case of the jump-on-true (jt) and jump-on-false 
(jf) instructions, a static branch prediction is used and the 
default action can be also be configured at synthseise-time. 
The interfaces of the cBPF component are noted in Figure 3. 

An important latency minimizing feature is that the 
instruction execution can be halted if the data byte has not yet 
been received. In other words, the frame must not be 
completely received before filtering can start. The core cBPF 
synthesis to the following characteristics Table 1. It is clear 
that multiple such filters can easily be instantiated even in a 
small FPGA. 

 
ALMs ALUTs DSP Blocks 
912 1162 2 

Table 1: Intel FPGA Resources Required for cBPF Implementation 

C. Verification and Validation 

The core IP was verified in an initial phase using the 
standard tcpdump filter set [21] in simulation. A proof was 
given by instantiation in a FPGA. The viability of a cBPF as 
part of a security concept is a multi-faceted argument and will 
be discussed in the next section. Our (in simulation) 
verification setup can send a sequence of frames to the device 
under test which can check the sequence and set status bits if 
a correct sequence is detected. This setup is duplicated in 
essence in a real-world differential-test setup.   
 
 



 
Figure 1: Frame Management RTE Switch. Rx path left, Tx path right. The buffers can be determined at synthesis-time and are generally 

divided into traffic types (Isochronous, Alarm, Asynchronous according to handling requirements). Isochronous real-time buffers are often 
instantiated as double or triple single-frame buffers, whereas asynchronous traffic can be placed in a larger FIFO buffer. 

Figure 2: Proposed Expansion of a Buffer Subsystem (example 
IRT) with cBPF Filter and Streaming Decryption 

 
Figure 3: Interface Description cBPF IP 

III. DISCUSSION AND FURTHER WORK 

To a certain extent the availability of a cBPF asks more 
questions than it answers, many of which open a discussion 
on the sophistication of a security concept on different levels. 
We shall approach those questions that we consider offer 
innovations in future technology and understanding of 
security systems. The first question we shall approach is to 
what degree a cBPF is useful in a stand-alone security context 
and how this can be expanded to a security-aware protocol 
management system. The second question we approach is 
that of how to integrate a device fitted with this technology in 
a security-aware networked embedded system. For both, 
innovations out of the scope of this paper are necessary. 

As previously noted, the cBPF is a relatively simple filter 
system whose ecosystem consists of applications such as 
tcpdump, an application not considered relevant to 
embedded security. The distribution of frame buffer memory 
is different in embedded and server systems so the concept of 
traffic shaping in terms of security requires some rethought 
when applied to embedded systems. In this body of work, we 
wish to situate the filter in a system-wide context. At a 
minimum the filter should be cycle-aware and Rx buffer-size 
aware. A concept of state, which the cBPF does not possess, 
is necessary. 

A. Adding State 

Applying filtering as traffic shaping in an isochronous 
context requires, at the very least, an understanding of cycles. 
Such identification in a PROFINET IRT switch will be 
achievable through status bits generated by the internal 
switch logic. An internal communication-controller state 
status word such as buffer-fill status can be made available. 
Application SW may wish to impart protocol-state 
information. The system controller may also wish to impart 
security state information to a security process in the node. 
Enabling these features imply an extension to the cBPF as it 
does not support state, once a filter instruction has run its 
course the machine is reset. The store instructions for 
instance, will only store either the accumulator or the index 
register into scratchpad memory. It follows there are at least 
two methods of noting state. A memory added onto the 
beginning and/or end of a (in this case notional) frame whose 
contents have been written by other circuit elements (for 
instance internal buffer state and/or cycle phase) and/or 
extending the instruction set. Current work is adding a dual-
ported memory to the notional frame which can be written by 
internal circuits and software and read by the cBPF.  

Both these options look initially attractive, but such 
manipulations will immediately remove the ability to directly 
transfer filter code from a PC/server system and differentially 
test the HW implementation. In other words, the benefit of 
“write-once run everywhere” and differential V&V is, at least 
partially, lost. We leave discussions on this point to future 
work.  

B. Security-Aware Protocol Management  

In a stand-alone context the discovery and configuration 
protocol (DCP) of PROFINET is an example of a somewhat 
problematic protocol. It is used at device boot to handle the 
fundamentals of device reachability namely IP address, 
hostname and the like. It is an unsecured protocol whose most 
egregious feature is a “Reset” broadcast message that can be, 
as the name suggests, used to reset the base connectivity 
parameters of the entire network. It may have uses in the boot 
phase of a network but during normal operation there is no 
call for it other than to act as an open invitation for abuse via 
a spoofing attack. In this context it also acts as a simple 
example for demonstrating a more sophisticated approach to 
security in multi-protocol environments. 

The PROFINET literature is very clear on the use of DCP 
during the boot phase but omits to make any mention of its 



use in recovery mechanisms, for instance when the system 
controller has deemed the device to require a reboot. As an 
example of protocol management might function we propose 
a simple DCP protocol management system comprising of 
two phases, initalisation and initalised. In the default 
initalisation phase the cBPF accepts all DCP packets, 
including Reset. Once the device has been initalised, device 
software sets a bit in the status memory attached to the frame 
buffer of the cBPF and from that point on, all incoming DCP 
frames are dropped. We are currently verifying this 
functionality in simulation. This novelty represents self-
management of protocol behaviour by a device to increase 
security. 

C. System-Wide Security Management 

We can extend the device-sided protocol management to 
system-wide management by integrating a feedback loop. 
Cutting off DCP communication after device initalisation 
limits the system controller’s ability to change networking 
parameters, for whatever reason. To enable this, we leave to 
future work a so-called security profile. Most communication 
protocols operate an object model where device and 
application parameters (instantiated as objects) are gathered 
into a holding structure (instantiated as a profile) and 
accessed, by both application and remote node, at specified 
memory locations on the device. These parameters are device 
parameters such as device version, manufacturer string and, 
in the case of application parameters, motor torque, current 
and the like. Objects represent an abstraction of an inter-
process communication channel. Virtual profiles - without 
direct connection to external I/O - can usually be instantiated. 
By instantiating a security profile, security parameters of the 
device can be situatively changed by the system controller to 
optimise the security integrity of the entire system. The 
authors are unaware of whether such a proposal has been 
previously made. This notional security profile could also 
function as the mechanism by which cBPF code is 
uploaded/updated to the device. Since the objects in the 
profiles are accessed over secure mechanisms as defined by 
the specific protocol, the security integrity of this profile 
would possess the integrity of the rest of the implementation.   

D. Conclusion 

In the light of this discussion we would summarize the 
attractivity of the cBPF as a device-sided building block 
supporting device security as well as potentially facilitating 
integration of the device in system wide security policies, 
both of which – as automation security is derived from IT 
security which assumes open networks, not closed ones like 
automation networks - we consider novelties.  
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