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INTRODUCTION NEW TRANSDERMAL DEVICE FOR VADs

THERMAL ANALYSIS SIMULATIONS

CONCLUSIONS

The gold-standard approach of Ventricular Assist Devices (VADs)
involves using insulated transcutaneous metallic drivelines to deliver
power from the external battery through the abdominal wall to the
pump in the upper abdomen. However, VAD drivelines can
negatively affect wound healing, leading to driveline infections (DLI)
in about 1 out of 5 patients within the first year of implantation [1],
due to biofilm formation in the skin's upper layers (Fig. 1).

Fig. 3: Graphical representation of the 2D 
axisymmetric skin multilayered model [4]

Fig. 4: Thermal distribution in COMSOL 
Multiphysics. Units: degrees Kelvin.

Fig. 2: In vivo evaluation of transdermal wires in a large animal model [3]

1. A.P. Kourouklis, J. Kaemmel, X. Wu et al. “Systems of conductive skin for power
transfer in clinical applications”, Eur Biophys., 51: 171–184, 2022.
2. K. Bourque et al. “Design Rationale and Preclinical Evaluation of the HeartMate 3
Left Ventricular Assist System for Hemocompatibility”, ASAIO J., 62:375-383, 2016
3. A.P. Kourouklis, V. Falk, E. Mazza et al., “Transdermal wires for Improved
integration in vivo”, Biomaterials Advances, 2023
4. M. Bonmarin, F.A. Le Gal, “Lock-in thermal imaging for the early-stage detection
of cutaneous melanoma: A feasibility study,” Comput. Biol. Med., 47:36–43, 2014.

Fig. 5: A) Temperature rise in the core of the copper wire and in the
PDMS due to inrush current and in the steady-state. B) Electrical 

conditions of the model.

This combination of experimental and computational findings will
enable the design of new percutaneous medical devices to
support therapies that require safe exchange of power, signal, and
mass through the human body, without producing any significant
risk for skin injury.
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To promote healing of small wounds by minimizing wire impact on the
skin interface and reduce DLI (Fig. 2), we propose a novel approach
involving embedding a set of 0.2 mm diameter copper wires with
polyurethane (PU) coating into a polymer-based material for VAD
drivelines.

• 0.2 mm diameter
• Milder inflammatory responses
• Restricted epidermal downgrowth
• Improved mechanical adhesion
• Silicone and polyurethane coated wires

• Large-diameter (6-8 mm)
• Severe inflammatory 

reactions
• Frequent epidermal 

downgrowth 
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We investigated the electrothermal implications of conductive wires
on the human body through 3D COMSOL skin model simulations
(Fig. 3) representing the epidermis, dermis, fat, and muscle [4].
Additionally, a PDMS layer was included in the model to represent
the silicon-based material of the conductive skin. Various PU
insulating coating thicknesses were tested on a 0.2 mm diameter
copper wire.

• Increasing the insulation layer did not lead to a significant
improvement in the skin model.

• The observed temperature difference in the model arose from the
temperature skin gradient rather than the electric current (Fig. 4).

• The inrush current causes a temporary 0.42°C increase in the core
temperature of the copper wires (Fig. 5).

• In the steady state, both wire core and PDMS temperatures remain
elevated by around 0.08°C and 0.03°C, respectively

Fig. 1: Illustration of VAD and driveline infection. Adapted from [1], [2]
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