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Abstract
We describe our approaches to sub-task 1A on multi-modal check-worthiness classification of the
CheckThat! Lab 2023 in English. The goal was to determine whether a tweet is worth fact-checking based
on its text and image content. Our submission was based on a kernel ensemble of different uni-modal
and multi-modal classifiers. It achieved second place out of 7 teams with an F1 score of 0.708.
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1. Introduction

The CheckThat! Lab 2023 [1] included five tasks targeting various aspects of misinformation.
We describe our approach to Task 1 Check-Worthiness in Multimodal and Unimodal Contents,
which contained two sub-tasks. Of the two sub-tasks, we participated specifically in sub-task
1A targeting multi-modal content. The goal was to classify a tweet consisting of both text and
an image as check-worthy or not. The sub-task was offered both in Arabic and English. We only
developed methods for the English data.

Check-worthiness classification represents an important first triage step in a fact-checking
pipeline. Successfully removing claims that are not worth checking reduces the work-load
of human fact-checkers. It has been part of all CheckThat! Lab iterations so far [2, 3, 4, 5, 6].
Where previously the focus was on text content, this year’s sub-task 1A is a multi-modal task,
involving both text and image data. This represents an important next step since much of the
current content on social media is multi-modal in nature.

In this work, we will describe the approaches of our team, ZHAW-CAI, for sub-task 1A in
English. We developed several different classifiers based on text only, ranging from traditional
word frequency, to deep learning, and LLM solutions. We also developed a multi-modal classifi-
cation model, as well as a kernel-method based ensemble model. When discussing our results,
we will in particular highlight the importance of threshold selection.
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2. Related Work

The general problem of misinformation in social media has recieved a lot of interest from the
community in recent years. Apart from the CheckThat! Lab tasks there have been tasks focusing
on identifying the veracity of a claim or rumour, such as RumourEval [7, 8] and FEVEROUS [9].

The first modern systems for check-worthiness detection include ClaimBuster [10] and Claim-
Rank [11]. Their main focus is on identifying check-worthy claims in political debates. The
various CheckThat! Lab check-worthiness tasks have targeted different text genres, including
social media and tweets in particular. While TF-IDF features are a staple of any text classifica-
tion task and have been included in systems such as ClaimBuster, many successful previous
participants [12, 13] used fine-tuned masked language models such as BERT [14] and RoBERTa
[15] in their solutions. We include both approaches in our solution. In terms of analysis of
multi-modal social media content, the Hateful Memes challenge [16] has sparked a lot of interest
in the community. For the challenge of multi-modality for disinformation in particular, we
refer the reader to a recent survey [17]. The MM-Claims dataset [18] is a recent multi-modal
claim detection dataset, on which this shared task is based. Our multi-modal sub-component
is most similar to systems such as [19] that use cross-attention between modalities. However,
we use a full transformer [20] encoder to fuse the modalities. Of course, an important recent
development involves the use of large language models such as the GPT family [21] and LLaMa
[22] that exhibit astonishing zero-shot classification capabilities. We include this approach in
our solutions as well. Finally, we use a multiple kernel learning [23] approach to combine these
disparate classifiers into a unified ensemble model.

3. Method

3.1. Data

The multi-modal check-worthiness sub-task is a binary classification task where a tweet con-
sisting of a short text and an image has to be classified as check-worthy or not. During the
development phase of the shared task, the organizers released training data (𝐷𝑡𝑟𝑎𝑖𝑛), validation
data (𝐷𝑑𝑒𝑣) and a dev-test set to be used for evaluation during development (𝐷𝑑𝑒𝑣−𝑡𝑒𝑠𝑡). The test
data 𝐷𝑡𝑒𝑠𝑡 was released shortly before the submission deadline and its labels were only released
after the submission deadline. For all our experiments, we combine the 𝐷𝑑𝑒𝑣 and 𝐷𝑑𝑒𝑣−𝑡𝑒𝑠𝑡 sets
into a single validation set 𝐷𝑣𝑎𝑙𝑖𝑑. The individual systems are trained on 𝐷𝑡𝑟𝑎𝑖𝑛 and evaluated on
𝐷𝑡𝑒𝑠𝑡. The sizes of these sets and their label distributions are shown in Table 1. We note that
each sample contained both text and image data. The training and development data came from
the MM-Claims dataset [18] and for the full description of the task data, we refer the reader to
the task overview [24].

3.2. Systems

We will now describe the different uni-modal and multi-modal systems we trained and our
method to combine them using a kernel-based ensemble.



Table 1
Information for the English Data

Number of Samples Number of Check-worthy Number non-check-worthy

𝐷𝑡𝑟𝑎𝑖𝑛 2356 820 (34.8%) 1536 (65.2%)
𝐷𝑑𝑒𝑣 271 87 (32.1%) 184 (67.9%)
𝐷𝑑𝑒𝑣−𝑡𝑒𝑠𝑡 548 174 (32.8%) 374 (68.2%)
𝐷𝑣𝑎𝑙𝑖𝑑 819 (= 271 + 548) 261 (31.9%) 558 (68.1%)
𝐷𝑡𝑒𝑠𝑡 736 277 (37.6%) 459 (62.4%)

3.2.1. Text N-gram Classifier

Our first uni-modal system is based on the tweet text only. We first pre-process the texts by
replacing URLs 1, user handles, and sequences of emoji 2 by placeholder tokens. The text was
then lower-cased and tokenized by splitting on white-space. Tokens shorter than 2 characters
were discarded. Based on this we computed TF-IDF [25] vectors for each text. This means
counting the uni-grams and bi-grams of tokens for each sample. We count only one occurrence
for each n-gram, meaning we ignore repetitions. We also ignore n-grams that appear in fewer
than 3 samples in𝐷𝑡𝑟𝑎𝑖𝑛. Based on these counts one can compute the inverse document frequency
(IDF) for each token. The resulting feature vectors are normalized to have unit euclidean length.
We used the TfidfVectorizer implementation provided by scikit-learn [26]. We call the resulting
feature vectors 𝑥𝑡𝑒𝑥𝑡−𝑛𝑔𝑟𝑎𝑚.

We then use these feature vectors to train a linear Support Vector Machine (SVM) [27] with
regularization strength of 1. We again rely on the implementation provided by scikit-learn.
In particular we also employ their implementation of reweighing the classes based on their
frequency in the training data which was inspired by [28]. We will call this model text-ngram.

3.2.2. MLM Classifier

Next, we trained another text-only system. For this we fine-tuned an electra-base-discriminator
[29] model on the training data. Electra models have the same architecture as BERT [14] but
follow a different pre-training setup. During masked language modelling (MLM) pre-training
there is both a generator network 𝐺 and a discriminator network 𝐷. During pre-training a
certain number of input tokens are masked and 𝐺 has to predict the original token. The masked
tokens are then replaced by those predicted by 𝐺 and 𝐷 has to determine whether a token was
the original or has been replaced.

For our experiments we use the provided discriminator model checkpoint from Huggingface 3

[30]. We show the training hyper-parameters in Table 2. We will call the resulting model
electra-clf.

In section 3.2.5 we will need access to a feature vector extracted from electra-clf. For this we
remove the final dense layer of electra-clf and use the model activations as feature vectors and

1For this we use the urlextract package: https://github.com/lipoja/URLExtract.
2For this we use the emoji package: https://github.com/carpedm20/emoji/.
3https://huggingface.co/google/electra-base-discriminator

https://github.com/lipoja/URLExtract
https://github.com/carpedm20/emoji/
https://huggingface.co/google/electra-base-discriminator


Table 2
Training Hyper-parameters for electra-clf

Parameter Value

Epochs 10
Batch Size 16
Optimizer AdamW [31]
Learning Rate 5e − 5
Weight Decay 0.01

scale them to unit length. We will refer to these feature vectors as 𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑎.

3.2.3. Multi-Modal Classifier

Our multi-modal model relies on pre-trained encoder models for each modality. For text, we use
the twitter-roberta-base 4 checkpoint from Huggingface. This is a RoBERTa [15] model that has
been pre-trained on 58M tweets [32]. The output of this text encoder has dimensions 𝐿𝑡𝑒𝑥𝑡 × 𝑑𝑡𝑒𝑥𝑡
where 𝐿𝑡𝑒𝑥𝑡 is the number of tokens and 𝑑𝑡𝑒𝑥𝑡 the dimension of the token embedding.

For images, we use a Vision Transformer (ViT ) [33] that has been pre-trained on ImageNet21k
[34]. We again use a checkpoint provided by Huggingface5. The model takes images at a
224 × 224 pixel resolution as input and processes them as a sequence of 16 × 16 pixel patches.
This results in an output representation of size 𝐿𝑖𝑚𝑔 × 𝑑𝑖𝑚𝑔 where 𝐿𝑖𝑚𝑔 is the number of patches
and 𝑑𝑖𝑚𝑔 the patch embedding dimension.

We first project both representations into a shared space of dimension 𝑑𝑠ℎ𝑎𝑟𝑒𝑑 using a dense
layer and relu activation for each representation. This results in representations of sizes
𝐿𝑡𝑒𝑥𝑡 × 𝑑𝑠ℎ𝑎𝑟𝑒𝑑 and 𝐿𝑖𝑚𝑔 × 𝑑𝑠ℎ𝑎𝑟𝑒𝑑. We then concatenate them to get a new representation of size
𝐿×𝑑𝑠ℎ𝑎𝑟𝑒𝑑 where 𝐿 = 𝐿𝑡𝑒𝑥𝑡+𝐿𝑖𝑚𝑔. We then feed this representation through a transformer encoder
[20] and a relu activation. The transformer encoder preserves the size of the representation
and we use mean pooling across the sequence length to get an embedding 𝑥𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑎𝑙 of size
𝑑𝑠ℎ𝑎𝑟𝑒𝑑. Finally, we normalize 𝑥𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑎𝑙 to unit length and feed it through a final dense layer
for classification.

We fine-tune this model on 𝐷𝑡𝑟𝑎𝑖𝑛 but keep the weights of both the RoBERTa and the ViT
encoders frozen. We call the resulting model multi-modal-clf and show its hyper-parameters in
Table 3.

3.2.4. LLM Classifier

Recent Large Language Models (LLMs) such as the GPT family [21] have shown impressive few-
shot and even zero-shot classification capabilities. In particular, chain-of-thought prompting
[35], where the model is asked to generate a step-by-step explanation how it arrives at a certain
prediction, has shown much promise.

4https://huggingface.co/cardiffnlp/twitter-roberta-base
5https://huggingface.co/google/vit-base-patch16-224-in21k
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Table 3
Training Hyper-parameters for multi-modal-clf

Parameter Value

𝑑𝑡𝑒𝑥𝑡 768
𝑑𝑖𝑚𝑔 768
𝑑𝑠ℎ𝑎𝑟𝑒𝑑 256
Transformer Encoder Layers 1
Attention Heads 4
Transformer Feedforward Dimension 1024

Epochs 10
Batch Size 16
Optimizer AdamW [31]
Learning Rate 5e − 5
Weight Decay 0.01

Based on these observations, we constructed a very simple zero-shot classification prompt.
We use the Language Model Query Language (LMQL) [36] to formulate the prompt and constrain
the answers. We show the prompt written in LMQL in Listing 1.

Listing 1: LMQL Prompt

argmax
Cons ide r the f o l l ow i n g Tweet :
{ c l a im }
Do you th ink t h i s Tweet c on t a i n s a c l a im t h a t i s worth

f a c t − check ing ?
Answer : [ANSWER]
Reasoning : [ REASON]

from
opena i / t e x t − dav in c i −003

where
STOPS_AT (REASON , ” . ” )
and ANSWER in [ ’ Yes ’ , ’No ’ ]

The placeholder claim is where we insert the tweet text. The placeholders ANSWER and
REASON are filled in by the model. In our case we use OpenAI ’s text-davinci-003 6 model. The
answer is constrained to the words Yes and No which we can directly use as predictions, which
we will call gpt-answer. The reasoning is constrained to be one sentence, since it should stop
generating when it produces the first full stop. We apply a similar feature extraction procedure
as for text-ngram in Section 3.2.1 to these reasoning sentences. We forgo any special token
replacements and use n-grams up to length 3 but keep the other parameters the same. The
resulting feature vectors will be called 𝑥𝑔𝑝𝑡−𝑛𝑔𝑟𝑎𝑚. We then train a linear SVM on 𝑥𝑔𝑝𝑡−𝑛𝑔𝑟𝑎𝑚
and call it gpt-ngram.

6https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5


3.2.5. Kernel Ensemble

We have seen that all our base models have an associated feature vector: 𝑥𝑡𝑒𝑥𝑡−𝑛𝑔𝑟𝑎𝑚, 𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑎,
𝑥𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑎𝑙, and 𝑥𝑔𝑝𝑡−𝑛𝑔𝑟𝑎𝑚. For each of these we can define a linear kernel. The kernel value
for two samples 𝑖 and 𝑗 for a given system 𝑠 is then defined as 𝑘𝑠(𝑖, 𝑗) = 𝑥𝑇𝑠 (𝑖)𝑥𝑠(𝑗), where 𝑥𝑠(𝑖)
is the feature vector of system 𝑠 for sample 𝑖. Given such a kernel 𝑘𝑠, we can then train an
SVM. For 𝑥𝑡𝑒𝑥𝑡−𝑛𝑔𝑟𝑎𝑚 and 𝑥𝑔𝑝𝑡−𝑛𝑔𝑟𝑎𝑚 this is equivalent to their associated classifiers text-ngram
and gpt-ngram. On the other hand, for 𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑎 and 𝑥𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑎𝑙 we will call the resulting SVM
classifiers electra-kernel and multi-modal-kernel respectively.

We will include an additional ViT encoder based feature vector 𝑥𝑖𝑚𝑔−𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑. It is based
on the same ViT encoder as multi-modal-clf, which also provides a pooled representation for
classification, which we will use as 𝑥𝑖𝑚𝑔−𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑. We will call the resulting kernel-based SVM
classifier img-untrained-kernel.

Next, we show how we combine these kernels into an ensemble. Given a set of systems 𝑆, we
can define their average kernel as:

𝑘𝑎𝑣𝑔(𝑖, 𝑗) = ∑
𝑠∈𝑆

1
|𝑆|

𝑘𝑠(𝑖, 𝑗)

This is known as a fixed rule multiple kernel learning method [23]. We can then use 𝑘𝑎𝑣𝑔 to
train an SVM. Our main submission was based on this method and used an average kernel using
text-ngram, gpt-ngram, electra-kernel, and multi-modal-kernel as components. We will also
show results for all-kernels which additionally includes img-untrained-kernel in the average.7

All kernel-based SVMs were trained using a regularization strength of 1 and frequency based
class weights.

4. Results

In Table 4 we show our main results. Our submission achieved an F1 score of 0.708 on the test
set. We note that if we use the default classification threshold 8 electra-kernel and all-kernels
achieve that exact same score. This could indicate that our ensemble method is redundant. In
practice, F1 scores can be sensitive to the decision threshold. In Figure 1 we show the Precision
and Recall Curves for each system. They show the Precision and Recall of a system for all
potential thresholds. In the plot we include lines of constant F1 in light gray. We can see that
the default thresholds (black cross marks) tend to select sub-optimal operating points.

We could therefore try to find a better classification threshold. For this we can use the
validation set 𝐷𝑣𝑎𝑙𝑖𝑑 and use the threshold which maximizes the F1 score on 𝐷𝑣𝑎𝑙𝑖𝑑. The results
are shown as red cross marks in Figure 1 and in the column called Tuned Threshold in Table 4.
Since gpt-answer provides only binary outputs we can not change its threshold. The values for
electra-clf and multi-modal-clf are missing since we did not compute their output on 𝐷𝑣𝑎𝑙𝑖𝑑

9.
We can see that for most systems this method selects an even worse threshold. We had already

7The difference between submission and all-kernels was due to time constraints.
8For SVM-based systems the default threshold is 0, for classifiers trained using cross-entropy to produce class
probabilities, the default threshold is 0.5.

9This was due to time constraints.



Table 4
Performance of our Systems on 𝐷𝑡𝑒𝑠𝑡 based on different decision thresholds. Best values in each column
in bold. See text for more details.
System Default Threshold Tuned Threshold Optimal Threshold

P R F1 P R F1 P R F1

gpt-answer 0.536 0.903 0.673 - - - - - -
img-untrained-kernel 0.498 0.556 0.526 0.476 0.657 0.552 0.440 0.852 0.581
text-ngram 0.676 0.458 0.546 0.728 0.397 0.514 0.517 0.809 0.631
gpt-ngram 0.630 0.664 0.647 0.695 0.567 0.624 0.566 0.863 0.684
electra-kernel 0.768 0.657 0.708 0.775 0.635 0.698 0.724 0.740 0.732
multi-modal-kernel 0.812 0.545 0.652 0.812 0.516 0.631 0.756 0.704 0.729
submission 0.768 0.657 0.708 0.832 0.556 0.667 0.733 0.722 0.727
all-kernels 0.768 0.657 0.708 0.834 0.509 0.632 0.724 0.747 0.735
electra-clf 0.765 0.657 0.707 - - - 0.708 0.780 0.742
multi-modal-clf 0.830 0.527 0.645 - - - 0.730 0.780 0.754

Figure 1: Precision Recall Curves for all Systems computed on 𝐷𝑡𝑒𝑠𝑡

noticed this during development, where system performance varied greatly between 𝐷𝑑𝑒𝑣 and
𝐷𝑑𝑒𝑣−𝑡𝑒𝑠𝑡, and therefore we chose the default classification threshold.

Finally, in Table 4 we also include the scores that could be achieved if we had access to the
ideal threshold. We computed it by selecting the threshold which maximizes the F1 score on
𝐷𝑡𝑒𝑠𝑡. Of course, in reality one never has access to this knowledge, but we include it here to
show how much influence threshold selection can have on the system comparison.

In Figure 1 we can also see that the curve for submission lies above the individual kernel
based systems over the most recall values. Meaning that for most fixed recalls it achieves higher
precision. This indicates that our ensembling method indeed yields an improved classifier. On
the other hand, we can also see that electra-clf and multi-modal-clf perform even better.



Figure 2: ROC Curves for all Systems computed on 𝐷𝑡𝑒𝑠𝑡

In Figure 2 we show the Receiver Operating Characteristic (ROC) curves for all our systems.
We can again see that electra-clf and multi-modal-clf have the highest area under the curve
(AUC), meaning that for most fixed false positive rates they have a higher true positive rate
than other systems. We can also see that our ensembling method outperforms individual kernel
methods.

5. Conclusion

We have laid out our solution to the CheckThat! Lab 2023 sub-task 1A on multi-modal check-
worthiness classification. Our solution includes diverse components that we combine using a
multiple kernel learning approach. Our submission achieved second place out of 7 teams with an
F1 score of 0.708. While analysing our results, we noted that the performance measure can vary
drastically based on the selected decision threshold. When considering threshold-free methods
such as ROC and PR curves, we find that our ensemble indeed seems to perform better than its
individual components. Nevertheless, we note that the directly fine-tuned models outperform
our submission under this lens. The performance gap between electra-clf and electra-kernel as
well as multi-modal-clf and multi-modal-kernel is an open question requiring further study.
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