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Abstract

A novel model approach is proposed to estimate the spatio-temporal distribution
of demand for free-floating Carsharing. The proposed model is based on a Pois-
son regression model for right censored data and estimates possibly time-varying
demand rates of small subareas of a service region based on booking data with
spatio-temporal information on pickups and dropoffs of cars. The approach allows
operators to gain insights into the spatio-temporal distribution of demand for their
service, and to estimate the loss of demand due to unavailability of cars. Moreover, it
can also be used as an input to improve the design of the service, through relocation
techniques or to analyze the service with macro-simulation models. Additionally,
the approach is applied to a case study with real data.

1 Introduction

Carsharing is a collaborative mode of transportation that, if used appropriately, can im-
prove urban transport services from a user and environmental perspective. Among the
environmental impacts that have attracted the attention of scientists, we can include the
reduction in vehicle kilometers traveled (Cervero et al., 2007), emission of pollutants (ac-
cording to Shaheen & Cohen, 2013, up to 56% reduction), energy consumption (Shaheen
& Cohen, 2013) and congestion (Baptista et al., 2014). Among the social impacts, it
was highlighted the reduction of the number of privately owned vehicles (according to
Shaheen & Cohen, 2013, up to 13 vehicles could be replaced with one shared car).

Carsharing may be classified into station-based and free-floating systems (e.g. Becker et
al., 2015). In station-based systems, users start and end their trip at stations distributed
within the service region. In free-floating systems, in turn, users pick up a vehicle parked
near the origin of their trip using an app for booking, and end their trip by dropping the
vehicle at some chosen parking within the service region. In comparison, station-based
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Carsharing seems to be easier to operate because vehicles are distributed in a few known
locations, while free-floating Carsharing offers the user higher flexibility and, therefore,
vehicles are spread throughout the service region.

Due to its flexibility, free-floating Carsharing often suffers from a mismatch between
the positioning of supply and the orientation of demand, i.e., the dropoff places do not
correspond to where other users want to pick up the car (Weikl, 2016). Therefore, to
operate free-floating Carsharing efficiently by positioning vehicles where demand exists, it
is crucial to know how demand is distributed across the service region. The contribution
of this article is to develop an approach specifically suited to estimate the spatio-temporal
distribution of demand in free-floating car-sharing systems.

The challenges that Carsharing research faces may be attributable to the following three
categories: (i) The definition of a transport system that is congenial to the needs of users
(trying to discover which are these needs), ii) Analysis of the environmental impact of this
service, and iii) The economic efficiency of the supply service (aligned with the expected
demand). Demand is a crucial input for tackling any of these challenges, and therefore
we believe that a good demand model estimation is essential for improving research for
free-floating car-sharing systems.

In this paper, we develop an approach to estimate the spatio-temporal distribution of
demand in a local free-floating car-sharing system. Thereby, we define the total demand
as the number of cars that would have been booked in presence of an infinite number of
available cars distributed across the service region, i.e., as the number of car-pickups (ob-
served demand) plus the loss of demand due to the unavailability of cars. However, this
problem is complex, as free-floating car-sharing systems deal with significant fluctuations
in demand, depending on daytime and the area of a city (e.g. Caggiani et al., 2017), and
is stochastic since it varies even between identical circumstances. Additionally, demand
can hardly ever be measured directly. In most cases, we only dispose of data on effective
bookings, while data on prematurely cancelled bookings are often unstructured or incom-
plete. Therefore, the total demand needs to be estimated based on incomplete data, using
additional assumptions on how people search and decide for booking cars and advanced
statistical techniques. Our approach requires the following four inputs, which we believe
to be available in most cases: (i) Position and time of available cars, and pickup place
and time, (ii) Study area divided into cells and time divided into intervals, with shape
and dimension of the cells and the interval length being the model inputs, (iii) Assump-
tions on how users search and decide for booking a car. Although our approach supports
various assumptions, we will assume that users start searching with a preferred pickup
place in mind, and book only if a car is available within a circle around that place, with
the radius of that circle being the model input, and (iv) Specification of a function for
how the total demand varies across time, including unknown parameters to be estimated
from the data. This time function can include month, weekdays, and daytime effects.

The remaining part of the paper is structured as follows. In Section 2, the relevant
literature review is presented. The postulated statistical model to estimate the spatio-
temporal distribution of the total demand is described in Section 3. In Section 4, the
approach is tested on real data from a service in a major city in Switzerland, and Section 5
summarizes the work together with the conclusions.
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2 Related research

The last 10 years of research have seen great growth in interest in vehicle sharing (Ataç et
al., 2021; He et al., 2019), but there are still a lot of questions that need to be addressed.
The main reason for these unanswered questions is that Vehicle Sharing is still missing
flexible service strategies that can maintain a high level of service and guarantee long-
term profitability. Below, we summarize the literature on demand forecast methods for
vehicle-sharing Services.

This section is organized according to five approaches. First, research that combines
demand forecasting with relocation strategies is discussed. Then, studies using multi-
agent simulation tools are described, followed by studies based on the stated preferences
of users. After, we focus on studies that use statistical models to estimate demand,
and finally, selected research using neural networks and techniques for censored data is
presented. The section ends with the identification of the Research Gap that we try to
fill with this work.

2.1 Demand estimation combined with relocation strategies

To be successful, Carsharing requires the availability of resources (in terms of available
vehicles and available parking spots) in the proximity of desired origin and destination
of a trip to keep the service attractive (Stokkink & Geroliminis, 2021). As introduced
earlier, our approach results in a loss of demand output, that could be used as an input for
a free-floating user-based relocation system, a solution for rebalancing the stochasticity of
cars’ spatial distribution, orienting them towards the expected demand. The relocation
problem is the most studied on the Carsharing’s supply side and has its first references in
Barth et al. (2004) and Kek et al. (2009). Further information about user-based relocation
approaches can be found in Angelopoulos et al. (2018); Ataç et al. (2022); Brendel et al.
(2016); Febbraro et al. (2012); Wagner et al. (2015).

Some papers include both a relocation strategy and its relative demand estimation method-
ology. H. Wang et al. (2010), for example, adapt a model of logistical inventory manage-
ment, to forecast demand and relocate vehicles in a one-way car-sharing system. This
work focuses on the specific forecasting method. Cucu et al. (2009) checks the bal-
ance between the stations, investigating them in relation to the time of departure, the
day of the week, the weather conditions, and the traffic conditions associated with their
addresses. Stokkink and Geroliminis (2021) develop a user-based vehicle relocation ap-
proach through the incentivization of customers and a predictive model for the state
of the system based on Markov chains, following the concepts of the previous work of
Repoux et al. (2019). This approach is specifically designed for one-way station-based
car-sharing systems, which are different from our free-floating case. In this approach, the
input demand for Markov chains is computed using the approximation method described
by Raviv and Kolka (2013). Raviv’s method assumes that the arrival processes of renters
and returners are non-homogeneous Poisson processes, and estimates the rates using an
approximation of a user-defined function. Jian et al. (2019) develop a discrete choice
model that includes vehicle availability as a parameter that directly affects the user’s
mode. In this way, supply and demand are strictly linked together. The model aims to
determine the optimal relocation decisions to maximize the Carsharing profit. The deci-
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sive variables are: i) Number of vehicles relocated from node i to j at time t, ii) Number
of vehicles available at node i at time t, iii) Number of users booking one-way trips from
node i to j at time t and iv) Number of users booking round trips from node i to j at time
t. This work has an interesting supply-demand focus, but it’s not applied to free-floating
Carsharing and, as input, it also needs the total travel demand of each origin-destination
pair at each time step (sum of demand from Carsharing and other transport services).

2.2 Activity-based multi-agent simulations

A big fraction of current platforms, used for demand estimation of new one-way car-
sharing systems, is based on activity-based multi-agent simulations i.e. micro-scale
computational models for simulating the actions and interactions of autonomous agents
(Vosooghi et al., 2018), that allow modelling the interaction of supply and demand. For
station-based operators, Benarbia et al. (2021) propose an agent-based relocation strat-
egy based on real-time inventory control within the framework of generalized stochastic
Petri Nets (PN) and a discrete event simulation. The work of Balac et al. (2016), using a
multi-agent simulation tool (MATSim), investigates the effects of supply on the demand
of the existing round-trip Carsharing (also implemented in the one-way station-based).
The use of MATSim with relocation agents is described by Paschke et al. (2016). MAT-
Sim was also used by Ciari et al. (2012) to estimate the demand for one-way Carsharing
in the urban area of Zurich. This type of solution needs complex inputs, such as the entire
transport network (including Public Transit scheduling) and population data, with which
the daily plans of each user will be generated. This methodology analyses in detail the
convenience of Carsharing for each user, shows the potential demand for this service, and
is useful for analyzing the possible impact of new policies and new services. On the other
hand, however, it does not allow analyzing the positioning of the vehicles with respect to
the users who actually use the service. The analysis tool is therefore more complicated
to set up than the one we will propose, and the goal is slightly different. Furthermore,
this type of demand estimation has not yet been carried out for free-floating Carsharing.

2.3 Stated preference technique

Many of the initial studies aimed at understanding the potential demand of station-
based Carsharing in the urban modal split. For example, Catalano et al. (2008) calibrate
a modal split model, stated preference technique (SP). An overview of the literature ad-
dressed until 2013 can be found in Jorge and Correia (2013). Until that time, demand
estimation had been developed almost exclusively for round-trip station-based Carshar-
ing. Stated preferences technique is still used to catch behavioural patterns, related to
specific location. Recent examples can be found in Carrone et al. (2020); Yoon et al.
(2017). Lately, Zhou et al. (2020) has also adopted a stated preference methodology to
elicit consumers’ valuation of vehicle self-driving capability, a factor rarely examined in
the literature. Regression models indicate that latent demand for this new technology
is associated with respondents’ travel patterns, demographics, values, lifestyles, and en-
vironmental concern (Long & Axsen, 2022). Stated preference techniques provide real
choice data on some individuals and can then be translated to a larger scale of the same
environment, on the basis of a series of hypotheses. However, these methods require time
to assess the service, they are not adaptable to territories with different characteristics,
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and do not provide information on the latent demand related to vehicles’ positioning.

2.4 Regression models

Descriptive statistics or regression models may also be used for demand estimation. For
example, Wagner et al. (2015) predict future demand for free-floating Carsharing, using
neighbourhood data and Point of Interest (POI) data. The technique includes zero-
inflated and geographically weighted regression models, from which they derive indicators
for the area’s attractiveness. Willing et al. (2017) extend that approach, by additionally
including daytime and weekday effects in the model. Within this family of methodologies,
but without regression models, Gammelli et al. (2020) predict shared mobility demand by
incorporating the censored likelihood within a Gaussian Process model, with a censored
likelihood function capable of handling time-varying supply. Finally, Negahban (2019)
propose a methodology that combines simulation, bootstrapping, and subset selection to
estimate the true demand in a bike-sharing Service. Between these approaches, only the
last two take into account how supply and demand are interconnected. Compared to the
neural network approaches listed below, they may also be less accurate to predict future
demand, but easier to be applied in different scenarios.

2.5 Demand forecasting using Neural networks

Neural networks can provide accurate forecasts for future demand, but require a large
number of parameters and context validation to be set up. Furthermore, loss of demand
due to the unavailability of cars is rarely taken into account by practical implementations.
N. Wang et al. (2020) study relevant indicators affecting car-sharing service’s demand at
the operational level and construct a micro demand forecasting model for one-way elec-
tric car-sharing systems, combining long short-term memory networks with the Granger
causality test (Granger, 1969). Yu et al. (2020) propose a new approach based on deep
learning techniques to assess the operation of a station-based car sharing system. They
employed Long Short-Term Memory (LSTM) structure to forecast short-term future ve-
hicle uses. Alencar et al. (2021) evaluate seven state-of-the-art forecasting models on a
given free-floating car-sharing service, highlighting the potential of each technique. The
assessed models include ARIMA and SARIMA, Prophet, variants of boosting algorithms,
and Long Short-Term Memory (LSTM). Guidon et al. (2019) apply Cox proportional-
hazards model and random survival forests to a free-floating E-bike-sharing system, using
locational characteristics, weather, day of the week, and bikes in the vicinity to predict the
time to pick up for each zone. Huttel et al. (2022), instead, have addressed the problem of
censored mobility demand and proposed to estimate the entire distribution of latent mo-
bility demand via Multi-Output Censored Quantile Regression Neural Networks. These
methods try to model the reality but need parameterization and a context-specific initial
study.

2.6 Supply-demand interaction in the analysed literature

Many of the above-mentioned studies ignore situations where there are not enough ve-
hicles available, in which case a part of the demand is lost. Vehicle availability is a key
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factor to attract new users for a car-sharing service, and, for this reason, low availability
can limit the creation of new demand (Le Vine, 2011). Demand for Carsharing is difficult
to model since the availability of vehicles is intrinsically dependent on the number of
trips and vice versa (Jorge & Correia, 2013). The supply-demand interaction for shared
cars is illustrated by Li et al. (2018), who analyse a free-floating Carsharing in a dynamic
user equilibrium model. Among the above-mentioned studies, Stokkink and Geroliminis
(2021) and Repoux et al. (2019) focus on the loss of demand, Balac et al. (2016); Ciari
et al. (2012); Jian et al. (2019); Raviv and Kolka (2013) focus on how supply influences
demand, doing a step over the simple supply-demand balance. Finally, Negahban (2019),
Gammelli et al. (2020) and Huttel et al. (2022) (together with our work) model the re-
lationship between supply and demand, taking into consideration the supply influence
on the demand: they do it by treating the number of pickups (the observed demand)
as a censored measurement of the total demand (the number of pickups plus the loss of
demand due to unavailability of cars).

2.7 Related research Conclusions

Data detail, accessibility and reliability, high computational time, calibration and valida-
tion still remain major challenges for travel demand estimation for car-sharing systems
(Vosooghi et al., 2018). Local characteristics make it complex to standardize many of
the listed methods. For this reason, we tried to develop a method that is easy to ap-
ply and ductile, keeping high reliability. This ductility allows future integration with
an origin-destination commuting matrix (including the estimate of its car-sharing modal
split). Between the listed methods, some are more easily transferable than others, but
we believe that ours reaches a higher level of reapplication easiness, maintaining convinc-
ing results. This transferability does not limit high-detail spatial and temporal analysis.
Finally, this is also one of the first car-sharing demand estimation methods suited for a
free-floating service.

Carsharing with shared autonomous vehicles can provide the combined benefits of au-
tonomous driving technology and access-based consumption (Merfeld et al., 2019). The
advent of self-driving vehicles will address Carsharing’s problems related to parking and
non-competitive access times. Solving these problems will make Carsharing a service that
will be almost equal to the automated-vehicles Taxi service. In these future scenarios,
users will not need to walk to pick a car that is parked far from them, because the car
will go towards their position. This means that the latent demand connected to vehicles’
positioning (related to accessibility) will be highly reduced, but it will still remain im-
portant to properly distribute cars following the expected demand, to further reduce the
time from the request and the start of the trip.

The problem that we reviewed does not have a resolution methodology that is universally
optimal, but a series of parallel methodologies, to be used on the basis of the characteris-
tics and constraints of the analyzed service, the availability of data, and the granularity
and logic of the desired outputs. The methodology that we are presenting, compared to
the state of the art, brings together different characteristics, and allows to make demand
forecasts with High Resolution on Free-Floating Car-Sharing Services, using few data as
inputs. When total origin-destination demand data is available, some of the analysed
works, such as Jian et al. (2019), could also be used to integrate our method and refine
our output. To summarise the gap that we want to fill, our methodology for car-sharing
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total-demand estimation covers the following four strengths: 1) Suitability (and appli-
cation) of the model on a free-floating car-sharing system, 2) High temporal and spatial
resolution, 3) Transferability due to a low amount of local-geography-related inputs and
4) Computation of the loss of demand, given a certain supply configuration. As far as
we know, previous studies never used methodologies that allowed to focus in parallel on
all of the four listed targets. We believe that this combination of strengths makes the
proposed methodology a valuable tool for transportation research, especially for contexts
that require an agile application and do not allow for time-consuming data preparation.

3 Space-time model

We postulate and implement a statistical model to estimate the total demand for cars of
a free-floating car-sharing system at a given time and location within a service region.
For this, the service region is divided into a grid of disjoint, bounded and equally sized
cells i = 1, 2, . . . , I and time is divided in discrete, consecutive and equally long intervals
t = 1, . . . , T . The index i refers to a 2-dimensional square-shaped cell defined by center
coordinates (e.g. 47◦33′17′′N 07◦35′26′′E) and a common side length (e.g. 250m) and t to
the interval [τt, τt +∆t) with τt the time stamp (e.g. June 16, 2022, 08:00:00) and ∆t the
interval length (e.g. 1 hour). For illustration, Figure 1 shows a discretization of a major
city in Switzerland into 222 adjacent cells with 500m side length.

47.52°N

47.54°N

47.56°N

47.58°N

47.60°N

7.55°E 7.60°E 7.65°E

Figure 1: Discretization of a service region in adjacent cells with 500m side length.

Square-shaped cells are chosen for simplicity, and because they can be scaled up easily
to any region. The model, however, can use any other shaped cells, like hexagons, or
other shaped cells better adapted to the service region. The size of the cells should
be chosen just small enough to allow precise conclusions about the spatial distribution
of the total demand, but not smaller as smaller cell sizes will increase the number of
parameters and therewith the expected computational complexity. For square-shaped
cells, we recommend to set the side lengths between 50m and 500m. The duration of
the intervals, ∆t, should be as large as the total demand can be assumed to be constant
within the intervals, which will be an implicit model assumption. Setting ∆t to 1 hour,
as in our case study of Section 4, may be a good rule of thumb.

The variable of interest is the total demand for booking a free-floating vehicle. Let Dit
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be a random variable for the number of users considering booking a car at cell i and time
interval t. We assume that Dit is Poisson distributed with rate λit ∆t, so that Dit has the
density f(dit) =

(λit ∆t)
de−λit ∆t

d!
and consequently the expectation E (Dit) = λit ∆t. Note

that, throughout this document, random variables are denoted with capital letters and
associated observations with small letters.

The total demand Dit is not directly observable, as when vehicles are not available, the
system does not register any information of users looking for a vehicle. We try to estimate
the above mentioned rate λit based on the number of cars available for rent, denoted by
C, and the number of pickups observed, denoted by P , in the proximity of cell i at
interval t. The model accounts for four situations, and is build sequentially: First, we
formulate a model that predicts pickups of available cars by linear combinations of the
total demand rates λit. Second, we extend that model by allowing the rates λit to vary
across time. Third, we take into account situations where the number of available cars
was potentially insufficient to satisfy the total demand. Fourth, a smoothing approach is
proposed to consider that neighboring cells are expected to have a similar total demand
and to simplify the parameter estimation.

To build up the model, we first discuss specific small case examples to outline the logic
of how the model spatially links the total demand rates with the observable pickups,
and how the model can deal with time-varying total demand. Afterwards, the model is
generalized to any grid and extended to situations where not enough cars are available.

Spatially linking the total demand and pickups A picked car at cell i and interval
t (that is, pit = 1) does not necessarily imply that the demand originates from cell i. It
is also possible that the user would have preferred to pickup the car from an adjacent
cell, where there was no car available at the time. To model the number of pickups P as
a function of the total demand rates λit, we assume that users have a preferred pickup
cell (i.e., the origin of the demand), but choose with equal probability any car standing
in a cell not further away than rmax (e.g. 500m) from that origin cell, as measured by the
distance between the centers of the cells. If no car is close enough, the demand gets lost.
Note that rmax becomes operative only if the center-to-center distances of neighboring
cells are smaller than rmax, otherwise a pickup is simply linked to the demand from the
same cell.

The rmax assumption is used for its simplicity, while the model below can accept other
assumptions better suited for the considered problem. For example, rmax may be set to
different values across sections of the service region. The prerequisite for an alternative
assumption is that it defines for each cell i an according set of cells that could be the
origin of demand for a pickup from cell i. In practice, rmax is generally unknown, and
may be determined by using the rule of thumb of Seign and Bogenberger (2021) of about
300-500m, by conducting a survey or by choosing rmax such that a goodness of fit measure
(such as the likelihood criterion, see below) is optimized.
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Figure 2: Example situation in a 5×5 grid
with cars at cell 18 and the according de-
mand area (yellow).
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Figure 3: Example situation in a 5×5 grid
with cars at cells 9 and 18 and the accord-
ing demand areas (orange and yellow).

Figure 2 shows a square grid with 5×5 cells and only one car (or more than one) at cell
18. As an example, we arbitrarily set rmax such that a picked up car can be assigned to
a demand from cell 18 or cells around. We call the corresponding set of cells, which is
highlighted in yellow in Figure 2, as the demand area for cars in cell 18. If we assume
temporarily that the rate parameters do not vary over time (i.e., λit ≡ λi) and the number
of cars available in cell 18 is higher than necessary to satisfy the total demand for cars
(i.e., C18,t >

∑
i∈{12,13,...,24} Dit), then the expected number of pickups from cell 18 is equal

to the sum of the expected total demand of the individual cells,

E (P18,t) = E (D12,t) + E (D13,t) + . . .+ E (D24,t) (1)
= (λ12 + λ13 + . . .+ λ24)∆t. (2)

Since the right hand of the above equation is a sum of Poisson distributed random vari-
ables, P18,t is also Poisson distributed with parameter (λ12 + λ13 + . . .+ λ24)∆t (see e.g.
Grimmet & Welsh, 2014, Exercise 4.40). Given that the rmax assumption holds, this equa-
tion collects all relevant information for estimating the parameters λi for the situation
shown in Figure 2. The demand of cells further away than rmax from cell 18 cannot be
served because there is no car in proximity, and therefore the situation does not provide
information on the corresponding parameters λit. In order to get estimates for each of
the parameters λit, we need to have several data of various moments in time where each
cell is part of a demand area of a standing car. Otherwise, if a cell i is never part of a
demand area, then the corresponding parameters λit cannot be identified.

In reality, users might have more than one vehicle in their proximity. For example,
Figure 3 presents a situation where two cars are available, one at cell 9 and another
at cell 18. Here, the demand areas around cells 9 and 18 overlap at cells 13 and 14.
To handle such situations, the total demand rates from cells which have more than one
vehicle at reach (i.e. closer than rmax distance) may be split in half, such that each of
the two cells with vehicles obtains half of the total demand rates. This results in the
following two equations for the expected number of pickups:

E(P9,t) = (λ3 + . . .+ λ10 + λ13/2 + λ14/2 + λ15)∆t and (3)
E(P18,t) = (λ12 + λ13/2 + λ14/2 + λ17 + . . .+ λ24)∆t.
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Alternative rules for dividing cells of intersections of demand areas could be considered.
For example, if we believe that users always pickup the closest car, then we would assign
λ13,t to the cars of cell 18, and λ14,t to the cars of cell 9. Therewith,

E(P9,t) = (λ3 + . . .+ λ10 + λ14 + λ15)∆t and (4)
E(P18,t) = (λ12 + λ13 + λ17 + . . .+ λ24)∆t.

It is not always possible to fully separate the demand areas with the closest car rule. If,
for example, the car of cell 18 in Figure 3 is moved to cell 17, then cell 13 has the same
distance to both cars. In these cases we split cell 13 in half as in Eq. (3).

The second step of the model accounts for total demand variation across time. For exam-
ple, total demand may change between mornings and evenings, weekdays or seasons. To
account for these variations, we adapt the equations from above with further parameters.
For example, suppose that the rates vary between weekdays (Monday to Friday) and
weekends (Saturday and Sunday) so that the total demand rate of cell i is λi at weekdays
and λi+β at weekends. Let vt be an indicator with value 1 if time interval t corresponds
to a weekend, and 0 otherwise. Eq. (3) for pickups of cars from cell 9 with an additional
weekend effect extends to:

E(P9,t) = ((λ3 + vtβ) + . . .+ (λ10 + vtβ) + (λ13 + vtβ)/2

+(λ14 + vtβ)/2 + (λ15 + vtβ))∆t

=(λ3 + . . .+ λ10 + λ13/2 + λ14/2 + λ15)∆t + 8vtβ∆t (5)

Basic model Eq. (5) refers to a specific situation for the considered 5×5 grid and a
simple specification for time effects. For general situations, grids and specifications for
time effects, we relate the total demand for available cars in some cell j and time t with
a linear combination of the expected total demand of the individual cells at some at a
chosen reference time interval and a linear combination of further parameters multiplied
with time-related variables Z, as below:

E(Pjt) =
I∑

i=1

ujti E(Dit) = xT
jt λ+ zTjt β (6)

Elements ujti indicate the share of the total demand rate of cell i that is assigned to cars
standing in cell j. They take values between 0 and 1, and the sum over all cells j with
vehicles must be 1 (i.e.,

∑
j ujti = 1). The linear predictor on the right of Eq. (6) has two

components. xjt and λ are design and parameter vectors of length I (number of cells) to
predict the expected number of pickups of cars from cell j for some reference time interval,
and zjt and β are design and parameter vectors of length P that take into account time
effects towards the reference time. For example, expressing Eq. (5) with Eq. (6) yields
xT
jt = (0, 0,∆t,∆t,∆t,∆t,∆t,∆t, 0, 0,∆t/2,∆t/2,∆t, 0, . . . , 0) and zTjt = 8vt∆t.

The proposed model is quite flexible to estimate how total demand is spatially distributed
and which time effects are taken into account. The main restriction is that the depen-
dencies between the expected pickups and the possibly time-varying total demand rates
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have to be linear regarding the unknown parameters. The linearity restriction is not as
limiting as it might appear at first sight. Nonlinear evolution along time may be modeled
using dummy variables or polynomials that are still linear in its parameters. Section 4
presents a case study with real data to provide a hands-on specification.

If we assume that the number of cars is always sufficient to satisfy the total demand of
the corresponding demand areas, then the parameters λ and β can be estimated using
tools for Poisson regression models, such as maximum likelihood estimation. For some
cell j with cars at interval t, the probability of the observed number of pickups pjt is

P (Pjt = pjt) =

(
xT
jt λ+ zTjt β

)pjt e−(xT
jt λ+zTjt β)

pjt!
, (7)

and λ and β can be estimated by maximizing
∑T

t=1

∑
j∈{i|cit>0} logP (Pjt = pjt), with cit

the number of cars available for booking in cell i and interval t.

The assumption that the number of cars available is always sufficient to satisfy the total
demand from the according demand areas may be realistic if ∆t is chosen small enough
to not expect more than one pickup within the time intervals. In general, however, this
assumption does not hold, e.g., when two users want to book the same and only car avail-
able practically at the same time. Moreover, bypassing the assumption by decreasing ∆t

blows up the data volume and therewith increases the already considerable computational
effort for estimation even more.

Using a Poisson model for right censored data (e.g. Famoye & Wang, 2004) allows to
account for situations where the total demand possibly exceeded the number of available
cars. The censored Poisson model assigns different probabilities depending on whether
the number of pickups is smaller or equal to the number of available cars: In the first
case, we assume that the demand was fully satisfied and compute its probability using
the Poisson density function. In the second case where the number of picked cars equals
the number of available cars, we assume that the number of picked cars is right censored,
i.e., could have been larger if there were more cars available. Therefore, we compute its
probability as the cumulative Poisson density function from the number of picked cars to
infinity. Expressed mathematically,

P (Pjt = pjt) =
P
([∑I

i=1 ujtiDit

]
= pjt

)
=

(xT
jtλ+zTjtβ)

pjte
−(xTjtλ+zTjtβ)

pjt!
if cit > pit

P
([∑I

i=1 ujtiDit

]
≥ pjt

)
= 1−

∑pjt−1
b=0

(xT
jtλ+zTjtβ)

b
e
−(xTjtλ+zTjtβ)

b!
otherwise.

(8)

Estimations for λ and β can be obtained by maximizing the log-likelihood,
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l(λ,β) =
T∑
t=1

∑
j∈{i|cit>0}

log

((xT
jtλ+ zTjtβ

)pjt e−(xT
jtλ+zTjtβ)

pjt!

)1(cit>pit)

+

(
1−

pjt−1∑
b=0

(
xT
jtλ+ zTjtβ

)b
e−(x

T
jtλ+zTjtβ)

b!

)1(cit=pit)
 . (9)

Since no closed form solution exists to maximize Eq. (9), we developed a gradient-based
implementation in R (R Core Team, 2022) based on the optimizer function nlminb()
(Gay, 1990). The implementation allows the parameters λ (and possibly β) to be log-
transformed to avoid negative estimates for rate parameters and automatically drops λi

parameters associated with cells that never were in a demand area and therefore cannot
be assessed. The estimating equations and the developed R functions are available on
request.

Smoothing The postulated model does not assume any relationship between total
demand rates from adjacent cells. In general, it is reasonable to think that adjacent
cells might have similar rates, or that the spatial distribution of these parameters should
change smoothly across the service region. Only in particular cases, like geographical
circumstances (e.g. a river) or other demand singularities (e.g. location of a big demand
attractor), the total demand rate parameters might experience an abrupt spatial change.

We propose to use a kernel smoothing approach (e.g. Hastie et al., 2009, Chap. 6) to con-
struct dependencies between the total demand rate parameters. The idea is to estimate
“pseudo” total demand rates λ̃k for K < I chosen supporting points, and calculate the
total demand rates λi of the I cells as weighted sums of these λ̃k, that is,

λi =
K∑
k=1

wikλ̃k = wiλ̃, with
K∑
k=1

wik = 1. (10)

Figure 4 shows as an example the use of K = 9 nine supporting points for a grid with
5×5 cells. The supporting points are located at the edges of the cells, which is not a
requirement.

Figure 4: Example of K = 9 supporting points (red) for a grid with 5×5 cells.
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Any kernel function can be used to compute the weights wik, such as the Epanechnikov
(Epanechnikov, 1969) or the Gaussian kernel. We propose an implementation that uses
higher weights if a supporting point is closer to cell i: Let rik be the euclidean distance
between the center coordinates of cell i and the support point k. Using the standard
Gaussian kernel, the wik are computed as:

wik =
ϕ(rik)∑K
k=1 ϕ(rik)

, ϕ(rik) =
e−r2ik/2

√
2 π

. (11)

Now we can rewrite the linear predictor of our model to:

xT
jt λ+ zTjt β =

(
xT
jt W

)
λ̃+ zTjt β, with W =

w
T
1
...

wT
I

 (12)

which is again linear in its parameters λ̃ and β and can be estimated with the previously
described tools.

The simulation studies in the Appendix show that estimates for λ from the smoothing
approach can have lower variance than those from the original model, due to the smaller
number of unknown parameters involved. The downside of this are potential biases for
the λis, which can also be seen in the Appendix.

The smoothing approach involves specifying the location and the number of supporting
points. An equally-spaced grid is used most frequently, for simplicity reasons. More
supporting points allow capturing demand distributions with finer structures (cf. Wand,
1994), but decrease the wiggliness and increase the computational effort. A practical
implementation is provided in Section 4.

4 Case study

We consider data provided by the Swiss commercial company Mobility1 from their so-
called Mobility-Go free-floating car-sharing service in a major city of Switzerland during
2021, where the service was operated with about 128 cars. The raw data consisted of
28’682 records on individual rentals without service trips and include information on the
vehicle number, coordinates and time stamps of the pickup and dropoff. To discretize
space and time, each record was assigned to one of 747 cells of 250m side length, based on
the pickup coordinates, and to one of 8’759 hourly intervals (e.g. June 16, 8 to 9 o’clock)
based on the pickup time. The number of cars available for an interval was computed
as the number of cars at the beginning of that interval plus the number of cars dropped
during the interval.

1https://www.mobility.ch
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Descriptive analysis

To provide an overview of the used data, we divided Basel into nine equally sized districts,
divided according to the cardinal direction from the center of the city. Figure 5 shows
the average number of pickups per hour along daytime, weekdays and months for each
area, together with the average of the nine districts.

Daytime presents a classical temporal demand pattern with few demand during night
period (below 0.2 PU/h per district), a first strong increase in the morning between
7:00 and 9:00, and a moderated continuous increase until the daily peak at 19:30 in
the afternoon. The values are higher in the afternoon because the graph also includes
non-working days. If we only consider working days, this daytime profile is much more
balanced between morning and afternoon.

Regarding the days of the week, we can see that, as expected, Saturday is the busiest day
with about 0.45 pickups per hour and area, followed by Friday and Sunday. For workdays
we see a slight growth from Monday to Thursday, while we could have expected a flat
profile for these days. Along the months we see a tendency of higher values in cold
months and lower values during summer. The relative maximum in May it is not self-
explicative, but it is important to remember that from this graph we can extrapolate
little information, considering that that we have a one-time pattern and not a pattern
that was repeated many times, such as the daily profile. The pattern along the months
could have been influenced by factors such as pricing, policies, information campaigns or
the COVID-19 pandemic that was still relevant in 2021.

The nine districts into which we divided the city differ in some cases from the average
profile, both in terms of frequency and in terms of profile shape. Readers can examine
Figure 5 to understand differences between the districts.

As mentioned above (Sec. 2), some relocation models (classified as non-predictive) rely
on few indicators to characterize the demand. Reiss and Bogenberger (2017) used three
indicators for each district to detect the attractiveness of a district: demand factor,
origin destination factor, and idle times. Here, we check the balance between supply and
demand in the nine districts by using their demand factor, which is defined as the ratio
between rentals and vehicles in a district.
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Pickups 7.24 11.24 9.17 13.62 10.79 7.71 5.87 7.28 3.82 8.53
Cars 13.69 16.27 12.85 19.67 12.77 9.95 11.99 10.79 6.93 12.77

Pickups/ Cars 0.53 0.69 0.71 0.69 0.84 0.77 0.49 0.67 0.55 0.66

Table 1: Daily average of the number of pickups (P), number of cars available (C) for
rent and demand factor (P/C) by district and average over the districts.

In Table 1 we can consider the demand factor as a as a parameter to evaluate where
relocation should be carried out (from the districts with many cars and low demand
factor to the districts with a high demand factor). We note that the South-West and
North-West districts have higher availabilities of cars than the center, despite having a
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Figure 5: Average number of car pickups per hour for the Mobility-Go data 2021, along
daytime, weekday and month and separately by 9 self-defined districts of the city (south-
west, . . . ). The black line represents the average of the 9 colored lines.

considerably lower number of pickups. Candidates for receiving cars through relocation
are the Center and the North districts, exhibiting with 84% and 77% the highest ratios
between pickups made and car availability. On the contrary, the South-East district
has, in average, twice as much cars available than car pickups, and is therefore the best
candidate to take cars away for relocation. Here, the demand factor is applied on a
large scale but could give further information if applied to smaller districts. Similar
conclusions on relocation can be obtained from the proposed modelling approach applied
in the subsequent analyses, which uses a much more detailed spatial resolution by design.

Spatio-temporal model specifications

In this section, a spatio-temporal model is estimated based on the previously described
data. Based on Seign and Bogenberger (2021) suggesting that cars should be available
within 300-500m walking-distance, we set rmax = 500m for all models. This implies that
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users book a car only if they find an available vehicle not further away than 500m from the
preferred cell, as measured by the distance between the centers of the cells. Furthermore,
we assumed the total demand rates to vary across months (Jan, Feb, . . . , Dec), weekdays
(Mon, Tue, . . . , Sun) and day intervals (night: [0-6), morning: [6-12), afternoon: [12-18)
and evening: [18-24)). Such time effects were implemented with dummy variables, where
the reference categories (September, Monday and night) refer to the interval with the
lowest average number of pickups. Using the dummy variable specification allows to deal
with nonlinear evolution across time, which can be identified from Figure 5.

We implemented four specifications of the proposed model (M1 to M4), which differ by
how overlaps of demand areas treated (cf. Sec. 3, Spatially linking the total demand and
pickups), and whether or not smoothing (cf. Sec. 3, Smoothing) was applied. The models
M1 and M2 use overlapping demand areas (total demand rates from cells which have more
than one vehicle at reach are distributed evenly across the intersecting demand areas),
whereas M3 and M4 use the closest car demand areas (total demand rates are assigned,
whenever possible, to the demand area of the closest car). Smoothing was applied only
on the models M2 and M4. A grid of 81 uniformly spread supporting points was used for
smoothing, reducing the total number of unknown parameters from 767 to 101.

To estimate the models, corresponding design vectors xjt and zjt had to be prepared
based on the stated assumptions for the demand areas around cars and time effects.
Smoothing additionally required the preparation of the weights w, see Eq. (12).

The number of unknown parameters is 767 for basic models (747 one for each zone and
20 temporal parameters) and 101 for smoothing models. For estimation, all parameters
λ and β were estimated on the log scale. This ensures the estimated total demand rates
to be always larger than zero.

Spatial distribution of the total demand rates Figure 6 shows the estimated λ
coefficients, which refer to the estimated total demand rates (per hour) at a Monday
in September 2021 from 0 to 6 o’clock AM. Most obvious is that basic models result a
patchwork of estimated rates, while smoothing models do not. Comparing the two basic
models it can be seen that overlapping demand areas result more peaks than the closest
car demand areas. This may be related to our findings from the simulation studies in
the Appendix, pursuant to which the total demand rate estimates of overlapping demand
areas have higher variance, see Figure A.13.

Figure 6 exhibits that the basic models may not be able to estimate the total demand
rates for all cells, see the black squares in the north-east. This is because there was never a
car available for rent within circle rmax around these cells. Smoothing results estimates for
these cells, however, these estimates should be interpreted carefully since kernel smooth-
ing approaches are known for boundary bias (e.g. Hastie et al., 2009, Sec. 6.1).

In terms of model fit, we found that the log-likelihood, the Akaike information criterion
(AIC, Akaike, 1974), the root mean squared error (RMSE) and the mean absolute er-
ror (MAE) of the basic models are slightly superior to smoothing, see Table 2. While
the superiority of the basic model regarding the log-likelihood, RMSE and MAE was
expected because the smoothing models are merely restricted submodels with fewer pa-
rameters, the superiority regarding the AIC indicates that the smoothing is too strong
and should be improved, e.g., by adding supporting points or placing them more more
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M1 : Overlapping demand areas, basic M2 : Overlapping demand areas, smoothing

M3 : Closest car demand areas, basic M4 : Closest car demand areas, smoothing
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Figure 6: Estimated spatial distribution of total demand rates per hour for renting cars
at the baseline setting (Mondays in September 2021, 0 to 6 o’clock AM) from the different
models M1 to M4.
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efficiently. Furthermore, the models M1 and M2 with overlapping demand areas perform
insignificantly better than the according models M3 and M4 with closest car demand
areas regarding the log-likelihood, AIC and RMSE, but insignificantly worse regarding
the MAE.

Model # Params. Log-Likelihood AIC RMSE MAE

M1: Overlapping, basic 754 -117605 236719 0.032080 0.06298
M2: Overlapping, smooth 101 -117612 236732 0.032214 0.06316
M3: Closest car, basic 754 -118920 238043 0.032084 0.06294
M4: Closest car, smoothing 101 -119030 238261 0.032222 0.06313

Table 2: Goodness of fit measures of the models M1 to M4. The RMSE and the MAE
were computed using the differences between the observed and the expected number of
pickups for each cell and interval with cars, pjt − EM̂(Pjt|cjt).

Figure 7 shows the estimated total demand rates of the model M2 with overlapping
demand areas and smoothing, which is the best among the smoothing models according
to the log-likelihood. Figure 7 is identical to the top right plot of Figure 6, but with a
finer color scale to facilitate closer examinations. The plot highlights two regions with
higher total demand within the center of the service region, which can be attributed to
regions close of the train station and the old town, and two local peaks at north-east and
south-east.
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M2 : Overlapping demand areas, smoothing

Figure 7: Estimated spatial distribution of total demand rates per hour for renting cars
at the baseline setting (Mondays in September 2021, 0 to 6 o’clock AM). Same as top
right panel in Figure 6, but with adjusted color scale.

The Figures 6 and 7 present the estimated distribution of the total demand rates for
the reference time Monday in September 2021 from 0 to 6 o’clock AM. The time effects
discussed below allow total demand rates to vary over time, e.g. because the demand
might vary across weekdays. However, because the considered models assume that time
effects are constant across the whole service region, the estimated spatial distribution will
not change, only the rates will be increased in every cell by the same factor.
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Temporal distribution of total demand rates Figure 8 shows the estimates of
the four models regarding the three considered types of time effects. The shape of the
coefficients along time is very similar between the four models. The plot on month effects
on the top left reveals that the total demand was highest in January, and there was a
temporary peak in May to June. We expect this pattern to be related to the Covid-19
pandemic and to not be repeated in 2022. Estimates for weekday and daytime effects can
better accommodate the expected: We find a clear peak for total demand on Saturdays,
and higher total demand at afternoon and evenings than at night and mornings.

Some coefficients almost reach value zero, which is the lowest possible value due to esti-
mating the coefficients on the log scale. This is especially notable for month effects where
the estimates indicate that the total demand of July, August, October and November was
pratically the same as in the reference month September. To find out if those estimates
with values close to 0 relate to convergence difficulties, we used different optimizer rou-
tines and applied a number of small model modifications, such as changing the reference
categories and the side lengths of the cells. However, the optimizer routines reported
to converge, and the model modifications did neither clear out the close-to-zero coef-
ficients nor change the findings for time effects fundamentally. Moreover, the order of
the estimated time effects is consistent with the results from the descriptive analyses, cf.
Figure 5. For these reasons, we assume that the estimated coefficients are reliable.
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Figure 8: Estimated total increase in total demand of months, weekdays and day intervals
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Loss of demand The estimated models may be used to estimate the loss of demand.
In line with our model, we distinguish between two types of loss of demand:

1. No cars in proximity In situations where there is no offer, the entire demand
gets lost. For some cell i and time interval t that is further away than rmax from the
nearest cell with cars, we estimate this type of loss of demand as l̂

(1)
it = λ̂i + zTitβ̂,

i.e., as the estimated total demand at the baseline setting (in our case: Mondays in
September 2021, 0 to 6 o’clock AM) plus the estimated time effect for interval t.

2. Not enough cars in proximity In situations where all available cares are picked
up, loss of demand occurs because more cars could have been rented with a larger
offer. Consider some cell j with cjt > 0 cars and pjt = cjt pickups at time t. The
conditional expectation for the total demand Djt is in this situation

E (Djt|Djt ≥ pjt) =

∑∞
k=pjt

k · P (Djt = k)

P (Djt ≥ pjt)
, (13)

where the model estimate for P (Djt = k) is P̂ (Djt = k) =
(xT

jtλ̂+zTjtβ̂)
k
e
−(xTjtλ̂+zTjtβ̂)

k!
.

Therefore, we estimate this type of loss of demand as l̂
(2)
jt = Ê (Djt|Djt ≥ pjt) −

pjt, i.e., the estimated conditional expectation minus the number of pickups. The
peculiarity of this type of loss of demand is that our model implies that it cannot
solely be attributed to cell j, but to all cells not further away than rmax from cell
j. However, we did not find an analytical formula of how to divide l̂

(2)
jt to the

neighboring cells, and therefore they are attributed to the cell j car in the following
results. It should be noted that in the presented case study this second type of loss
of demand is practically negligible compared to the first type.

The two proposed estimates for loss of demand above refer to the number of cars not
rented by the car-sharing system compared to the same system with the same demand
but an infinite number of cars available. The following results on the estimated loss of
demand are based on model M2 (overlapping demand areas, smoothing) and the 2021
data used for estimating the model.

For the entire service region, we estimated an average loss of demand of 14.2 cars per day,
thereof 12.9 because there were no cars in proximity, and 1.31 because there were not
enough cars in proximity. Compared to the average number of pickups per day of 77.0,
this means that the number of rentals could be increased by about 18.5% by providing an
unlimited number of cars, assuming that increased offer would not increase the demand.

To detect the loss of demand locally, Figure 9 shows the spatial distribution of the average
loss of demand per day, based on the model M2. According to Figure 9, loss of demand
is especially pronounced in the center of the city, and not exactly at the total demand
peaks situated on the left and bottom of the center, cf. Figure 7.
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Figure 9: Spatial distribution of the estimated average loss of demand per day in 2021,
based on the model M2.

5 Summary and conclusions

This article proposes an novel model approach to estimate the spatial and temporal
distribution of total demand rates for free-floating Carsharing. The proposed model is
based on a Poisson regression model for right censored data and estimates possibly time-
varying demand rates of discrete cells of the service region based on booking data with
spatio-temporal information on pickups and dropoffs of cars. The model is quite flexible
as it can accommodate various shapes of cells of selectable size and different temporal
effects. The model was successfully applied for a case study in a major city of Switzerland
with data from year 2021.

The proposed model is useful for the following purposes: First, the model provides insights
to operators on how total demand was spatially distributed and evolved over time. This
insight can hardly be gained using simple descriptive statistics, because total demand is
often not directly observable, and therefore must be estimated using auxiliary variables
such as the number of pickups, and an advanced modelling technique such as regression.
And second, the model may be used to estimate the loss of demand due to unavailability of
cars. These insights may prove useful to designate convenient dropoff places in incentive
schemes for user-based relocations or to extract input parameters for macro-simulation
models.

Limitations The total demand rates estimated with our approach refer to the free-
floating car-sharing service that provided the data. Therefore, for competitive situations
with multiple services, they cannot be interpreted as the global demand rates of the
considered service region. If global demand rates are of interest, the model must be
estimated using data that combine the competing services. Moreover, the estimated
total demand rates do not take into account for other transport services such as public
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transport. Therefore, they refer to a given split of available transport services, and may
be sensitive towards launches or discontinuations of other transport services.

Future work Further investigations could focus on practical aspects of the model.
Implementations for larger and more frequented service regions would help to define the
scope of our approach and to improve guidelines for model specification. Furthermore,
operators may be interested into forecasting future total demand. Forecasting involves
extrapolation and has yet not been elaborated with our model approach, partly because
it seemed difficult to be implemented for data from the Covid-19 era. A forecasting
approach should additionally take into account for auxiliary predictor variables such as
weather, and should be able to deal with temporal correlation (e.g., by using a model
with autoregressive errors) to provide reliable prediction intervals.
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Appendix

To validate our method, we performed a simulation study using a 5 × 5 grid of square-
shaped cells with side lengths 0.2. The total demand rates of the cells were proportional
to a multivariate normal distribution centered at the center cell 13 and varying between
0.05 and 0.3 cars per hour. To include time effects, the individual total demand rates
were increased at evenings (18-24 o’clock) by 0.1 on weekend days by 0.2. Figure A.10
illustrates the specified total demand rates by a map and a scatterplot.
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Figure A.10: Used total demand rates for the simulation study. Left: Spatial distri-
bution of the demand rates on weekdays between 0 and 18 o’clock. Right: The same
demand rates along the cell numbers and effects for evenings (Time.eve) and weekend
days (Time.we).

We generated pickups for independent hourly intervals. For this, we first generated for
each interval and cell the number of cars available using a Poisson distribution with
a common rate for all cells, and then generated the corresponding pickups based on
our postulated model (Eq. 6) and the specified total demand rates. Simulations were
performed for six scenarios regarding data generation and model specification. Each
scenario was replicated 512 times, resulting 512 estimated models per scenario.

For the baseline scenario, we used a car rate per cell of 0.16, which corresponds to the
average of the total demand rates on weekdays between 0 and 18 o’clock used in this
simulation study. Demand areas, which need to be found to construct the vectors xjt of
the postulated model, included adjacent and diagonally adjacent cells of the cells with
cars (rmax =

√
2 · 0.22 ≈ 0.28). Data for 4’321 hourly intervals were generated, which

corresponds to the number of hours of the first half year of 2021 (including summer
time changeover). Fitted models from the baseline scenario are correctly specified and
therefore should identify the data generating total demand rates.

For the alternative scenarios, we halved and doubled the car rate, misspecified the rmax

parameter for estimation (rmax = 0.2 and rmax = 0.4 instead of rmax = 0.28), halved and
doubled the number of time intervals, used the smoothing approach with 3 × 3 supporting
points and considered demand areas that include all adjacent or diagonally adjacent cells
including cells have a closer car somewhere else.
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Results Figure A.11 shows the distribution of the estimated parameters for the baseline
scenario. The estimates vary around the predefined total demand rates, suggesting that
the estimation procedure is able to identify the data generating total demand rates if the
model is correctly specified.
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Figure A.11: Simulation results for the baseline scenario: Estimated parameters (box-
plots, black) and according true values (red).

Figure A.12 compares the estimated parameters for cells 1 (lowest total demand rate) and
13 (highest total demand rate) between the baseline and three alternative scenarios. The
top left panel shows the effect of increasing the number of cars available. It can be seen
that increasing the number of cars increases the accuracy of the estimates. Interestingly,
the accuracy of the estimates for fewer cars are about the same or slightly better than
for the baseline scenario.

The middle panel of Figure A.12 shows the effect of misspecifying the parameter rmax,
i.e. the maximum deviation users would accept from the preferred pick up cell. While
misspecifying rmax seems not to affect the estimation of the total demand rate of cell 1, it
does for cell 13. Specifically, choosing rmax too small results a upward bias, and choosing
rmax to large a downward bias. This seems plausible because increasing rmax implies that
the total demand is spread over more cells.

The right panel of Figure A.12 shows the effect of decreasing or increasing the number
of observations. As expected, the accuracy improves with a increasing data size.

28



0.0

0.2

0.4

Cell01 Cell13

Es
tim

at
es

Fewer

Baseline

More

Number of cars available

0.0

0.1

0.2

0.3

0.4

0.5

Cell01 Cell13

Es
tim

at
es

Too small

Baseline

Too large

Misspecification of dmax

0.0

0.1

0.2

0.3

0.4

0.5

Cell01 Cell13

Es
tim

at
es

Fewer

Baseline

More

Data size

Figure A.12: Simulation results on comparing the baseline with alternative scenarios
(car rate, misspecification of dmax and data size): Estimated parameters (boxplots) and
according true values (red). For reasons of clarity, only the parameters for the cells 1
(lowest total demand rate) and 13 (highest total demand rate) are shown.

The left hand of Figure A.13 compares parameter estimates between the baseline scenario
and a smoothed estimation with 9 supporting points, which were evenly distributed within
the surface of the 5 × 5 grid. As could have been expected, the smoothing approach
decreases the variance of the estimates, however, in case cell 1, it introduces a bias by
overestimating the total demand rate.
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The right hand of Figure A.13 compares the parameter estimates between the overlapping
and the closest car demand areas. In both cases the estimates vary around the data
generating total demand rates. The estimates for the overlapping areas around cars have
slightly higher variance.
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