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Abstract

Enzymatic halogenation is a rapidly developing tool in the
synthetic chemist’s toolbox. Utilizing oxygen, halide salts and
operating at ambient temperatures in aqueous media, halo-
genating enzymes, particularly flavin- or Fe(ll)/a-ketoglutarate
dependent halogenases, allow the regio- and stereoselective
installation of halogen atoms to yield valuable building blocks
and uniquely derivatized complex molecules, including natural
products. Apart from modulating the physico-chemical prop-
erties of molecules and, in consequence, their biological ac-
tivity, halogen atoms can also serve as chemical linchpins for
further derivatization of the molecular scaffold, for example in
chemo-enzymatic cascades. Thanks to rapid advances in
bioinformatic enzyme sourcing, biosynthetic pathway elucida-
tion and enzyme engineering strategies, the palette of enzy-
matically produced halogenated structures is constantly
growing. In addition, successful studies to improve catalytic
performance of the halogenation biocatalysts are boding well
for industrial applications.
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Introduction

Halogens are privileged substituents in the synthesis of
biologically active ingredients [1,2]. Beyond the ability of
halogen atoms to tune the hydrophobicity of small mol-
ecules, compounds containing chlorine, bromine, iodine
and—in some cases—fluorine [3] can form directed close
contacts with electron donor moieties, the so-called

Check for
updates.

halogen bond. Thus, the incorporation of a halogen can
significantly alter a molecule’s property and may impact
its bioactivity, metabolism, and pharmacokinetic profile
[4]. Perhaps unsurprisingly, the list of the 200 best-
selling small molecule drugs of 2021 thus contains a
remarkable 87 compounds that carry a halogen atom [5].
Examples include blockbusters such as the anticoagulant
rivaroxaban and the antidiabetic medicine empagliflozin
with annual sales revenues of $7.7 and $5.8 billion in
2021, respectively. This trend is similarly reflected in
agriculture: A startling 96% of all pesticides launched
since 2010 contain a halogen atom [6]. Furthermore,
carbon-halogen motifs are useful handles for chemical
modification, explaining why halogenated species repre-
sent common intermediates in synthetic manufacturing
routes [7,8].

Even though chemical halogenation is a well-established
technology, it suffers from the use of hazardous or even
toxic chemicals, including halogen gas and Lewis cata-
lysts, and sometimes poor atom efficiency [9,10]. In
addition, chemical methods often lack selectivity or
have specific demands on the substrate structure [9].
Consequently, development of alternative methods for
the selective halogenation of small molecules is of great
interest for the pharmaceutical and agrochemical in-
dustry. Within this context, Nature has developed a
multitude of halogenating enzymes that combine
oxidative power with selectivity. The diverse molecular
scaffolds of the more than 5000 halogenated natural
compounds that have been discovered to date demon-
strate the catalytic power of these enzymes [11]. Hence,
biocatalytic approaches to obtain halogenated small
molecules appear particularly desirable as the use of
enzymes is typically associated with high regio- and
stereocontrol, while at the same time, the biological
catalysts operate under mild reaction conditions.

Halogenating enzymes are often classified according to
the catalytic mechanism they employ [12,13]. While the
rare S-adenosyl-L-methionine (SAM) fluorinases react via
a nucleophilic pathway to generate a small set of fluori-
nated metabolites [14—16], heme-, vanadium- and flavin-
dependent halogenases (FDH) follow an electrophilic
mechanism in which hypohalous acid is generated and
ultimately reacts with electron-rich substrates. Notably,
while heme- and vanadium dependent enzymes typically
do not achieve regio- or stereospecificity because the
reactive acid can diffuse out of the enzyme active site,
FDH architecture has been found to allow for site
directed halogenation [17—19]. Mechanistically, flavin-
dependent halogenases use reduced flavin and oxygen
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to form a peroxyflavin species, which in turn reacts with a
halide ion, generating the reactive hypohalgus acid [20—
22]. After traversing an approximately 10 A long tunnel
within the enzyme [22—25], the hypohalous acid then
reacts with an active site lysine—either covalently or
through hydrogen bonding [21,26,27]—Dbefore the se-
lective electrophilic aromatic substitution of an aromatic
compound occurs (Figure 1a, b).

Mechanistically distinct from the above-mentioned
FDHs, Fe(Il)/a-ketoglutarate dependent halogenases
(aKGHs) exploit a radical mechanism for halogenation
(Figure 1c¢). Within thClI’JCHY roll fold, @ KGHs harbor an
active site in which an Fe!l is coordinated by two histi-
dines, o-ketoglutarate and a halogen ligand (Figure 1d).
Upon reaction with oxygen and subsequent oxidative
decarboxylation of the a-ketoglutarate ligand, an Fe V=0
species is generated which can abstract a H-atom from a

properly positioned sp’-carbon of the substrate molecule
[28—30]. Radical recombination of the substrate with the
halogen ligand leads to the desired halogenated product
whereas a hydroxyl rebound, which is equally possible,
generates the corresponding hydroxylated side product.
The halogenation versus hydroxylation selectivity is
considered to depend on the positioning of the substrate
in the active site relative to the iron complex [31—36].

In recent years, halogenating enzymes have become a
profitable target for the expansion of the biocatalytic
toolbox. Within this review, we highlight recent exam-
ples of halogenase biocatalysts strategically employed
for the modification of building blocks, the late-stage
functionalization of complex molecules and in combi-
nation with chemocatalysts. By delineating success
stories of enzymatic halogenation published primarily in
the last two years, we hope to give a helpful overview of
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Catalytic machinery of selected halogenase families. a) Proposed reaction mechanism of flavin dependent halogenases [21-27].

b) Snapshot of

the geometric arrangement of active site residues (blue) and halogenide (green ball) derived from the crystal structure of the tryptophan 7-halogenase
RebH in complex with substrate L-tryptophan (green) and FAD (purple) (PDB: 20A1) [22] ¢) Proposed reaction mechanism of a-ketoglutarate
dependent halogenases adapted from Mitchell et al. [28,29] and Galoni¢ et al. [30] d) Snapshot of the geometric arrangement of the Fe(ll) ion coor-
dinated by active site residues (blue), a-ketoglutarate (light grey) and chloride (green ball) derived from the crystal structure of a-ketoglutarate
dependent halogenase WelO5 in complex with its substrate 12-epi-hapalindole C (pink) (PDB: 51QT) [28].
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the current state-of-the-art and aim to inspire novel
synthesis routes that rely on powerful enzymatic
halogen installation.

Building block derivatization by wildtype and
engineered halogenases

In medicinal and agricultural chemistry, indoles are
among the most widespread nitrogen-containing het-
erocycles [37]. Consequently, methods enabling their
chemical diversification are highly desirable. To date,
several FDHs have been identified that allow for indole
halogenation [38,39], however, the described enzymes
were often found to exhibit a narrow substrate scope.
Thus, the discovery of novel halogenases capable of
accepting a wider chemical substrate space remains at
the forefront of biocatalytic halogenation research.

To expand the current toolbox of FDHs, several research
groups have employed bioinformatic search algorithms.
In this spirit, Lee et al. successfully identified a novel
tryptophan 6-halogenase (SatH) from Strepromyces albus
[40]. SatH was characterized in an Escherichia coli whole—
cell reaction system supplemented with 1.5 mM of L-
tryptophan. The enzyme showed high regiospecific
halogenation at the C6-position of the indole ring of L-
tryptophan and a product yield of 0.86 mM. Notably,
tryptophan halogenases (Irp halogenases) are classified
depending on the position of halogenation and are
accordingly defined as Trp 5-, 6-, and 7-halogenases.
However, while some determinants for the enzymes’
regiospecificity are well understood, for example struc-
tural elements defining Trp 7-halogenases [23], the fac-
tors causing the differing regioselectivity between 5- and
6-halogenases have remained mostly elusive: only muta-
tions L456F/P357E/P458T were previously reported to
have an influence on regioselectivity by affecting in-
teractions with the amino acid backbone of tryptophan
[41]. Informed by comparing substrate-docked homology
models of Trp 5-halogenase PyrH from Strepromyces
rugosporus 1.1-42D005 [24,42] and the newly discovered
Trp 6-halogenase SatH, the authors identified two resi-
dues, A78/V79 in SatH and G77/178 in PyrH, as further
determinants for regioselectivity. Accordingly, when
substituting the “AV” with “GI” residues in SatH, the
authors could switch the regioselectivity of bromination
reactions to also yield 5-Br-Trp (63%), whereas in chlo-
rination reactions the “GI” motif had to be supple-
mented with mutations LA456F/P357E/P458T to
modulate the product pattern. The resulting quintuple
mutant, dubbed SatH-GI-FET, produced 50% 5-Cl-Trp
and 50% 6-Cl-Trp (compounds 1—2, Table 1).

Similarly looking to find FDHs with a broader substrate
scope in nature, the Sewald group recently developed a
hidden Markov model based on the PFAM tryptophan
halogenase model [43] and used it to screen the bac-
terial associates of the Borryococcus braunii consortia
(PRJEB21978) leading to the identification of several
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putative, flavin-dependent halogenase genes [44]. After
heterologously expressing two of these proteins (named
SpH1 and SpH2) stemming from one gene cluster of the
B. braunii symbiont Sphingomonas sp, in vitro activity tests
(substrate load of 1 mM) revealed that both enzymes
were able to halogenate indole and indole derivatives
(compounds 3—8, Table 1). Interestingly, SpH1 was
found to exclusively catalyze monohalogenation,
whereas SpH2 yielded both mono- and dihalogenation
for many of the selected indole derivatives.

Biosynthetic pathways can be another rich source of
halogenation biocatalysts. When investigating the
mechanistic basis of aetokthonotoxin biosynthesis,
Breinliger et al. [45] and Adak et al. [46] recently
identified and characterized two flavin-dependent
halogenases (ActF and AetA) capable of synthesizing
brominated tryptophan building blocks, which are sub-
sequently enzymatically coupled to yield the mature
toxin. While purified AetF was shown to accept trypto-
phan as the substrate leading to the 5,7-dibrominated
product (compound 9, Table 1) in the presence of
NADPH, the other investigated enzyme, AetA, which
bioinformatically clustered as a pyrrole halogenase, was
shown to accept 5-bromoindole, vyielding 3,5-
bromoindole and 2,3,5-tribromoindole (compounds
10—11, Table 1) in the presence of FAD, NADPH and
flavin reductase SsuE [46]. Simplifying synthesis, AetF
is the first example of a naturally occurring single-
component, flavin-dependent halogenase which does
not require a separate flavin reductase partner protein to
exhibit activity.

Besides enzyme sourcing, creative engineering ap-
proaches have also led to the construction of more
powerful halogenase variants to be used for the synthesis
of halogenated small molecules. Building on a thermo-
stable RebH variant, Sana et al. used a structure guided
semi-rational mutagenesis approach to engineer RebH
variants that—while becoming completely inactive for
their native substrate tryptophan—were capable to
halogenate a broad spectrum of formerly not accepted
indoles (compounds 12—14, Table 1). The highest
conversion was reported for 5-nitroindole using the
RebH-M1 variant (S130L/N166S/Y455C/F465K/
Q494R), which could achieve 50% chloination and 40%
bromination on a 2.5 mM scale. Notably, the enzymatic
synthesis of 3-chloro-5-nitroindole had never been re-
ported before. In addition, computational modeling and
molecular dynamics simulations provided structural in-
sights into the guiding role of key residues lining the
substrate binding site and their importance in defining
substrate specificity [47].

Focusing on molecular scaffolds beyond indoles, Lewis
and co-workers elegantly engineered RebH to accept 4-
methoxyphenyl-4-pentenoic acid, a substrate selected
for its intrinsic ability to undergo halocyclization, a key
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Table 1

Overview of enzymatically halogenated compounds.

Halogenase Halogenated compounds References
SatH o o [40]
OH OH

“NH; Br “NH;
N N
B/l N N
1 2
SpH1/SpH2 Br Br [44]
Cr OG- -
3 4 5
Br Br
R H Br N N N
6 7 8
AetF/AerA o Br Br [45,46]
OH Br. Br.
Br NH, N N
N\ H H
N 10 11
Br
9
RebH M1/RebH M2 Br/CI Br/CI Br/Cl [47]
N R N N
H H Br .
12 13 14
RebH 4V + S o [48]
o
Br
MeO
15
SmP4H o o [50]
NOH
NH
16
Hydrox o [36]
HoN -
Gl NH,
17
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Table 1 (continued)

Halogenase Halogenated compounds References
OrfA [56]

XanH [57]
DkIH HO o [59]
OH O O -
25
26
OH
HO. o O
o O OH
OH
OH O
27 28
ChmK/ChmN OH O OH O [60]
o <l (0]
HO HO
Cl Cl
29 30
PloK OH O [60]
o
HO &
R Cl
31
WelO5* variants cl . O/I [61,62]
[63]
RebH 3-T [65]

38 39

Blue sphere = wildtype halogenase, Green sphere = engineered halogenase; R = CN, NO,, CO,H, CO.Me, OMe, Me, Br, Cl, F, CO.H, F [44];
R = CN, NO,, Cl, Br, F [47]; R = H, CI [60]; R = H, CH3 [65].
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step in the biosynthesis of several natural products [48].
Screening a panel of 45 wildtype FDHs and 99 previ-
ously engineered RebH variants, the authors identified
several variants capable of carrying out the desired non-
native bromolactonization reaction yielding the cyclized
product (compound 15, Table 1). Reaction parameter
optimization targeting to disarm any prematurely
released HOBr enabled an increase in enantioselectivity,
while evaluation of the substrate scope highlighted the
influence of electron-rich, electron-neutral and
electron-poor substrates on yield. This broadening of
the catalytic repertoire of RebH revealed that the active
sites of FDHs can tolerate intermediate and transition
state structures that are distinct from those associated
with electrophilic aromatic substitution (Figure 2).

With the goal to limit the detrimental HOX leakage from
FDH active sites, the Chaiyen group embarked on a
mechanism-guided enzyme engineering campaign of
tryptophan 6-halogenase Thal [49]. Bioinformatically
analyzing residues lining the tunnel connecting the two
FDH active sites, where one is dedicated to HOX gen-
eration and the other enables HOX-mediated halogena-
tion of the substrate, the researchers interrogated three
amino acid positions by full randomization (NNK li-
braries). Remarkably, the best variant, Thal-V82I, showed
reduced HOX leakage and multiple catalytic improve-
ments such as faster halogenation, a broader substrate
scope and improved thermostability and pH tolerance
with respect to the wild-type enzyme. Transient kinetics
and molecular dynamics simulations revealed that the
improvements exemplified by Thal-V82I resulted from
changes in the hydrophobic interactions in the tunnel
which regulate tunnel dynamics.

Complementing FDH catalysis, ¢-ketoglutarate-depen-
dent dioxygenases permit the delivery of halogenated

building blocks derived from more electron-poor sub-
strates. In this context, Papadopoulou et al. have explored
the possibility of reprogramming an o-ketoglutarate-
dependent hydroxylase into a halogenase with the goal to
deliver halogenated L-proline (compound 16, Table 1)
[50]. Following bioinformatic screening to identify a
suitable starting scaffold, the L-proline cis-4-hydroxylase
from Swmorkizobium meliloti was selected and successfully
converted into a halogenase by introducing a single point
mutation (D108G) into the enzyme’s active site. The
reprogrammed halogenase displayed a striking regiodi-
vergent reaction chemistry incorporating the halogen at
the C3 position of the pyrrolidine ring of L-proline instead
of the C4 position, where the native hydroxylation occurs.
Several rounds of directed evolution delivered an opti-
mized halogenase variant with 98-fold improved apparent
kea Ky for the chlorination of L-proline with respect to
the parent enzyme SmP4H (D108G). Similarly relying on
hydroxylase re-programming to supplement the bio-
catalytic halogenation toolbox, the Chang group bio-
informatically identified a L-lysine hydroxylase (Hydrox)
with 71% amino acid sequence identity to the putative
halogenase from Actinoplanes teichomyceticus [36]. The high
degree of sequence similarity between these two en-
zymes enabled the researchers to carry out DNA shuffling
and generate a library of chimeric enzymes. The library
was screened for variants with retained halogenation ac-
tivity, which facilitated the identification of key residues
that control reaction selectivity. Building on these learn-
ings, the chemoselectivity of Hydrox could be switched
from hydroxylation to halogenation (compound 17,
Table 1). The reprogrammed enzyme differed from the
parent by a total of 14 residues, many of which were
located on two B-strands adjacent to the o-ketoglutarate
binding pocket. Together, these examples highlight the
potential of altering the pathway selectivity of a-

Figure 2
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FDH catalyzed halocyclization. a) RebH variant 4V + S (A442V/F111S) was found to be the most active and enantioselective variant for the bromo-
lactonization of 4-methoxyphenyl-4-pentenocic acid. Optimized reaction conditions permitted the halocyclization of 4-methoxyphenyl-4-pentenoic acid on
a 15 mg scale to provide compound 15 in 84% yield and 95:5 e.r. b) 4-methoxyphenyl-4-pentenoic acid docked in the structure of RebH 3-LSR F111S
(S130L/N166S/Q494R/F111S) in which the carboxylate moiety of the substrate is suitably arranged for halocyclization. Key active site residues, including
K79, H109, S111, Q357 and N470, are shown in violet. The critical F111S mutation is presumed to lead to a closer substrate positioning to the catalytic

residue K79 compared to the wildtype.
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ketoglutarate-dependent hydroxylases as a strategy to
increase the substrate scope of enzymes for radical
halogenation.

Functionalization of complex molecules by wildtype
and engineered halogenases

Biosynthetic pathways also prove to be a valuable source
for the identification of halogenases, whose substrate
scope goes beyond amino acids, indole, and phenol de-
rivatives. For example, an oKGH known as AdeV,
capable of halogenating nucleosides, has been identified
in the biosynthesis of the chlorinated natural product
adechlorin in Actinomadura sp. ATCC 39365 [51]. AdeV
represents the first halogenase that can selectively
install a chlorine atom at the C2’ position of 2’-deoxy-
adenosine-5'-monophosphate (2’7dAMP) to afford 2’-
chloro-2'-deoxyadenosine monophosphate (compound
18, 'Table 1). In vitro assays revealed that 2’ deoxy-
adenosine, structurally identical to 2°’dAMP apart from
the 5'-phosphate moiety, was not accepted as a sub-
strate, indicating that the presence of this phosphate is
essential for substrate binding and halogenation activity.
In keeping with this theory, 2’,3’-dideoxyadenosine-5'-
monophosphate (2'-ddAMP) and 2’-deoxyinosine-5'-
monophosphate (2’-dMP) (compounds 19—20, Table 1)
were also halogenated. However, in a competitive
experiment the authors showed that the conversion of
2'-ddAMP was 20 times lower with respect to the con-
version of 2’-dAMP. Similarly, the conversion of 2'-dMP
was 2 times lower, demonstrating that 2'-dAMP is the
preferred substrate of AdeV. Adding to the biochemical
characterization, the recently solved crystal structure of
AdeV gives further insights in the structural elements
governing catalysis [52]. Extending the search for novel
aKGHs to the plant kingdom, the Weng group reported
the discovery of a novel «KGH, SaDAH, from Menis-
permaceae plants that performs the terminal chlorina-
tion reaction in (—)-acutumine (compound 21, Table 1)
biosynthesis [53]. SaDAH represents the first example
of an aKGH found in plants and phylogenetic analysis
indicates that the enzyme evolved independently from
other aKGHs previously identified from bacteria
[51,54,55]. In vitro assays against a wide range of alka-
loids illustrated that SaDAH was highly selective to-
wards its natural substrate, with no other small
molecules being accepted for halogenation. Despite its
narrow substrate scope SaDAH exhibited promiscuous
azide activity and was able to convert (—)-dechlor-
oacutumine to 11-azido-dechloroacutumine.

Complementing a-ketoglutarate-dependent halogenases
responsible for natural product modification, FDHs have
similarly been described as suitable instruments for late-
stage functionalization of complex molecules. In this
context, FDH OrfA was shown to halogenate albofungin, a
hexacyclic aromatic natural product with broad-spectrum
antimicrobial activity (compound 22, "Table 1) [56], while
XanH, a bifunctional protein capable of flavin reduction

Halogenating Enzymes in Synthesis Hegarty et al. 7

and chlorination, has recently been shown capable of
regioselectively chlorinating a complex late stage
xanthone intermediate in the biosynthesis of the poly-
cyclic antibiotic xantholipin (compound 23, Table 1) [57].
Despite XanH’s bifunctional nature, the authors found
that the halogenation activity of the FDH could be
boosted in the presence of an external flavin reductase.
Thus, a self-sufficient FDR-XanH fusion protein was
constructed, which, however, did not lead to additional
activity benefit. It should be noted, though, that in other
cases the genetic fusion of flavin reductase to FDHs can
indeed improve halogenation yields, at least n wvivo,
suggesting that increased local concentrations of FADH,
can positively affect the efficiency of halogenation bio-
catalysis in some settings [58].

In the same spirit, the identification and characteriza-
tion of the promiscuous FDH, DKkIH, from Frankia alni
ACN14a has yielded a useful biosynthetic tool for the
selective derivatization of flavonoids [59]. Notably, a
variety of flavonoid subclasses, such as flavones (com-
pound 24, Table 1), isoflavones (compound 25, Table 1),
flavonols (compound 26, Table 1), flavanones (com-
pound 27, Table 1) and flavanonols (compound 28,
Table 1), were accepted as substrates. While capable of
utilizing bromide, this enzyme showed a strong prefer-
ence for chlorination. Finally, the Oikawa group inves-
tigated oxygenated cyclopentene systems, unique
structural motifs found in fungal polyketides [60]. When
investigating the biosynthetic machinery responsible for
transforming 6-hydroxymellein derivatives into cyclo-
helminthols and palmaenones, the researchers identi-
fied and characterized two FDHs, ChmK and ChmN,
from Helminthosporium velutinum capable of installing
chlorine at the 5- and 7-position of 6-hydroymellein,
respectively (compound 29—30, Table 1). In addition,
halogenase PloK from Lachnum Palmae was found to
derivatize the 3-position of the substrate (compound 31,
Table 1), putatively through a mechanism via the
enolate.

Going beyond bioinformatic sourcing, halogenases can
also be tailored for the late-stage functionalization of
non-native substrates by means of directed evolution.
Presented with the challenge to create halogenation
catalysts for the derivatization of a martinelline-derived
fragment (compounds 32—33, Table 1) with reported
anti-cancer activity, our group recently engineered
WelO5* variants using rational protein design [61]. In
this work, key amino acid positions (V81/A88/1161) were
identified which play an important role in modulating
substrate acceptance of WelO5* towards non-natural
substrates in addition to serving as regioselectivity
switches. Preparative scale experiments were performed
with the best performing variants, leading to isolated
product yields of 6% (7.7 mg) for compound 32 and 30%
(14.4 mg) for compound 33. Building on this work, Voss
etal. highlight that the modification of the key active site
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residues (V81/A88/1161) can also modulate the substrate
stereopreference of WelO5*. For example, the screening
of a 3-site combinatorial library led to the identification
of two variants, WelO5* CB2 (V81R/1161S) and WelO5*
MGA (V81M/A88G/1161A), that are capable of selec-
tively chlorinating stereo-complementary martinelline-
derived fragments (compounds 33—34), directly from a
racemic mixture [62]. In the quest to further expand the
biocatalytic toolbox for the halogenation of more com-
plex molecules, Blichler et al. demonstrated that through
the application of algorithm-assisted enzyme evolution,
WelO5* could be tailored for the selective halogenation
of the bulky non-natural substrates soraphen A and
soraphen C (compounds 35—37, Table 1) [63]. Notably,
the most active engineered variant, WelO5* VLA, cata-
lyzes the halogenation of soraphen A to yield the chlori-
nated product (compound 35, Table 1) with an apparent
#cqac value and a total turnover number which mirror the
activity of the wildtype enzyme for its natural substrate
(WelO5* VLA (soraphen A): £¢,e = 1.96 + 0.51 min '
TTN = 92 + 22; WelO5* wildtype (12-¢pi-fischerindole
U): kops = 1.8—1.9 min~!; WelO5 wildtype (12-¢pi-
fischerindole U): /e = 1.8 min~'; TTN = 75)
[54,63,64]. Furthermore, the use of machine-learning
guided engineering facilitated the reliable prediction of
functional properties such as improved activity and
regioselectivity ultimately leading to enzyme variants
enabling the biocatalytic production of the derivatized
macrolides for application in structure—function activity
studies.

Similarly applying the principles of directed evolution to
flavin dependent halogenases, the Lewis group engi-
neered RebH for the site- and atroposelective bromi-
nation of 3-aryl-4(3H)-quinazolinones via kinetic or
dynamic kinetic resolution [65]. The final variant 3-T]
which harboured 14 mutations relative to RebH, showed
> 99:1 e.ar. for the (M)-atropisomer of the major
brominated product, 25-fold improved conversion, and a
91-fold improved site selectivity compared to the parent
enzyme. Similar activities and selectivities were also
obtained for the halogenation of a range of structurally
diverse quinazolinone substrates (compound 38—39,
Table 1). In addition, the authors demonstrated that
compound 38, prepared via upscaled reactions in 58%
yield (40 mg), could be further elaborated, for example
through Suzuki couplings or Paal—Knorr reactions, with
no significant loss of enantiomeric purity.

Bio- and chemocatalytic cascades centered around
halogenases

Halogenases are not only used in a stand-alone fashion but
can be strategically combined with other enzymes or with
chemocatalysts. Menon et al. showed the production of
halogenated indole-3-acetamide and indole-3-acetic acid,
molecular scaffolds present in many therapeutic drugs,
using a panel of regioselective halogenases in combination
with tryptophan-2-monooxygenase (iaaM) and indole-3-

acetamide hydrolase (iaaH, Figure 3a) [66]. In a first
attempt, the flavin dependent halogenases, 1aaM and
iaaH were produced individually and cell lysates were
mixed in the presence of L-tryptophan and all required
cofactors leading to 0.73—0.76 mg of the amide and 0.2—
0.4 mg of the carboxylic acid. The authors further
improved the enzyme cascade by creating cross linked
enzymes aggregates (CLEAs) of the regioselective FDHs
(PyrH for indole position C5, SttH for position C6 and
PrnA for position C7), flavin reductase (Fre) and glucose
dehydrogenase (GDH, for the regeneration of NAD™).
Subsequent catalysis with CLEAs of iaaM with or without
iaaH afforded halogenated indole-3-acetamide or halo-
genated indole-3-acetic acid, respectively (compounds
40—41, Figure 3a). This setup yielded 10 mg of the amide
while the carboxylic acid production was also boosted
yielding 4.2 mg of the desired product [66]. Adding
complexity to the FDH-containing enzymatic cascades,
Lee etal. [67] showed that FDHs can be used to produce
indigoid dyes from L-tryptophan. Using a consecutive
two-cell reaction system, L-tryptophan was first regiose-
lectively halogenated at the C5, C6 or C7 position of the
indole moiety. Afterwards, the supernatant of the first
step was added to cells expressing the tryptophanase
TnaA from FE.coli and the flavin-containing mono-
oxygenase MaFMO from Methylophaga aminisulfidivorans to
produce the indigo dye. Depending on the position of
halogenation and the halogen used, a different colored
dye was obtained (compounds 43a-43f, Figure 3c).

Going beyond purely enzymatic cascades, halogen
functionalities can be effectively used as chemical
linchpins for further chemocatalytic modification. Such
a combination of bio- and chemocatalysis allows the
construction of diverse molecular scaffolds as exempli-
fied by the work of Craven et al. [68]. In this work,
CLEAs of FDHs (RebH, SttH, PyrH, PrnA, RebH var-
iants and SttH wvariants) with GDH and Fre were
encapsulated in a molecular weight cut off (MWCO)
membrane allowing for a parallel palladium-catalysed
cyanation of the product without damaging the bio-
catalysts (Figure 3b). Subsequent incorporation of
nitrile hydratase or nitrilase enzymes afforded the amide
or the carboxylic acid, respectively. Following this
strategy allowed the authors to selectively introduce
amides or carboxylic acid whereby the chemo-and
regioselectivity was determined by the FDH in the
first reaction step (Figure 3b). For example, by using the
FDH SttH on the drug precursor 42a, the selective
installation of a cyanide was possible even though
similarly activated C—H positions were present in the
starting scaffold, giving the active pharmaceutical
ingredient donitriptan (compound 42¢, Figure 3b) [68].

Finally, with the goal of integrating an enzymatic halo-
genation step into biosynthetic pathways, Lai et al. [69]
expressed Fre (RebF) and FDH (RebH) together with
the violacein pathway in £. co/i. Employing this strategy,
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Utilization of FDHs in bio- and chemocatalytic cascades. a) Single integrated one-pot process using CLEAs of glucose dehydrogenase (GDH),
flavin reductase (Fre), flavin dependent halogenase (FDH) and tryptophan-2-monooxygenase (iaaM) as well as indole-3-acetamide hydroxylase (iaaH)
to produce modified indole-3-acetamide and indole-3-acetic acid. b) Single integrated one-pot process using CLEAs of GDH-Fre-FDH encapsulated in
a MWCO membrane in combination with a Pd catalyst for regioselective cyanation at the halogenation site. Subsequent treatment with a nitrile
hydratase (NHase) or a nitrile reductase (NITR) affords the amide or the carboxylic acid (R, = CH3—CH,—OH/COOH/NH,) in the context of diverse
heterocycle containing substrates (R = O, S, NH, CH>,—NH, CH,—N—-CHj3) [68]. ¢) Two cell reaction system producing different indigo dyes whose color
depends on the site of modification and type of halogen introduced. d) FDH co-expressed in E. coli together with the violacein pathway to produce
chlorinated violacein.
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six halogenated analogues of violacein or deoxyviolacein
were generated (compound 44, Figure 3d), including a
5-brominated derivative which was directly processed
via the Suzuki—Miyaura cross coupling.

Conclusion and perspective

Halogen atoms are integral components of many com-
mercial small molecule drugs. Nevertheless, chemical
methods for the direct regio- and stereospecific intro-
duction of halogens remain underdeveloped. Before this
backdrop, selective enzymatic halogenation offers an
attractive alternative to established chemical strategies:
1) enzymatic halogenations rely on sodium salts as the
halide source and oxygen as the terminal oxidant and
allow to reduce the use of energy, organic solvents,
protecting groups and expensive metals, which have
become scarcer and (geopolitically) more difficult to
source; 2) halogenases can act on elaborate structures
allowing for late-stage diversification of small molecules,
particularly attractive for medicinal chemistry cam-
paigns and 3) if integrated in biosynthetic pathways or
chemoenzymatic cascades, halogenases lead to diverse
portfolios of biologically active compounds which may
accelerate the discovery of new therapeutics.

Encouragingly, elaborate bioinformatic searches and
powerful enzyme engineering campaigns have substan-
tially increased the number and diversity of available
halogenating enzymes during the last decade. In this
context, a recent highlight is the discovery and charac-
terization of AetF [45], a single-component flavin
dependent halogenase, which operates without the
need of a supplemented flavin reductase (see section
1.2). Notably, AetF’s intrinsic versatility has already
triggered follow-up studies including its application for
the halogenation of relatively electron-poor heterocycles
and aromatic compounds, such as furan, thiophene and
pyrazoles lacking additional electron donating groups, as
well as the enzyme’s application in asymmetric catalysis.
Excitingly, AetF was additionally reported to catalyze
aromatic iodination and cycloiodoetherification [70]. In
the case of Fe(Il)/a-ketoglutarate dependent halo-
genases, for which enzyme discovery rates tend to be
much lower [35], enzyme engineering has proven an
indispensable tool to broaden substrate scope and tailor
reaction scope: excitingly, novel d-ketoglutarate
dependent halogenases were designed starting from
related hydroxylases [36,50], while the substrate scope
of a native indole-alkaloid halogenase could be broad-
ened to comprise molecules as large as the macrolide
soraphen A [63].

Nevertheless, several challenges, including improved
productivity and scalability, need to be addressed
before the full biocatalytic potential of halogenating
enzymes can be unlocked. Most important will be the
development of universal mechanism-based methods
that target the improvement of enzymatic

performance, which can suffer from the applied en-
zyme’s low total turnover number: For example, Fe(IT)/
a-ketoglutarate dependent halogenases typically
display a total turnover number of below 100 even for
native substrates [13]. In the context of FDH catalysis,
escaping (“free”) hypohalous acid was recognized as
detrimental for biotransformations. Successful reaction
condition engineering (high pH, addition of GSH as
HOX scavenger) [48] and enzyme tunnel reshaping to
confine the hypohalous acid to the protein environ-
ment [49] are exciting concepts that have broadened
selected FDH’s application scope (RebH, Thal). In
addition, optimizing the concentration of oxygen in the
reaction medium has been proposed as a further lever
which could increase the productivity of FDHs [18].
Looking forward, analyzing the effect of these strate-
gies in additional FDH systems will be an important
endeavor. Similarly, improved mechanistic under-
standing of a-ketoglutarate dependent halogenases
might be profitably employed to achieve higher total
turnover numbers when targeting C(sps) centers.

Overall, the efforts described above demonstrate the
strides that have already been made within the field in
terms of process development and in using rational
protein engineering or directed evolution toward the
development of performant halogenating enzymes. The
substrate and reaction scope of halogenases reported to
date is remarkable and thanks to the ingenuity of the
many involved research groups is constantly growing.
Complementary to chemocatalysis, biocatalytic haloge-
nation approaches have already found their way into
medicinal chemistry routes and, as more robust catalysts
become available, will contribute to the more sustain-
able production of halogenated molecules.
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