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Abstract—The accuracy of indirect 3D Time-of-Flight (3D ToF)
measurements is often limited by multi-path interferences (MPI)
caused by multi-layer ToF conditions. Taking multiple measure-
ments of the same scene at different modulation frequencies
allows separating the interfering signal components of the indi-
vidual paths according to several optimization methods described
in literature. Orthogonal matching pursuit (OMP) optimization
has been reported to achieve good path separation performance
and superior results compared to particle swarm optimization
(PSO). This work presents improved PSO performance for MPI
separation based on new experimental data and refined PSO
strategy. The current PSO approach achieves good distance
separation in the setup used with low RMS distance errors in the
order of 20 cm in situations where the OMP approach shows RMS
errors higher than 100 cm. The previously reported minimum
distance difference limitation between two separate objects of
2.7 m for the OMP algorithm could be reduced to roughly 0.75 m
for the PSO algorithm. The trade-off between image accuracy
and computing effort is explored and presented with respect to
PSO parameter settings.

Index Terms—3D Time-of-Flight (3D ToF), Multi-Path Inter-
ference (MPI), Multi-Layer ToF, Orthogonal Matching Pursuit
(OMP), Particle Swarm Optimization (PSO)

I. INTRODUCTION

The indirect 3D Time-of-Flight (iToF) measurement method
is shown in simplified form in Fig. 1. A light source with
modulated light illuminates the objects and the reflected light
is demodulated in each pixel of the camera [1], [2]. The phase
detection measures the time-of-flight from the light source to
the camera and yields the distance of the object in each pixel
and thus a 3D point cloud of the scene.

Using a sine wave signal for modulation, the delayed sine
wave signal with phase delay φ and relative amplitude a
appears in the camera pixel. The signal delay and attenuation

Fig. 1. Indirect 3D ToF camera measurement principle.

can be modelled as a complex vector for the demodulated
signal m:

m = a · exp(j · φ) (1)

The phase delay φ of the received signal caused by the time-
of-flight results in an object distance of:

d = c · tToF

2
= c · φ

4π · f
(2)

In many situations, multi-path interference (MPI) occurs
and leads to significantly wrong distance data in iToF mea-
surements [3]. MPIs are often caused by sharp edges, semi-
transparent layers, mesh structures, mirroring surfaces or stray
light. In these cases, multiple signals with different delays and
amplitudes may interfere and a superposition signal m of the
K multi-path signals is measured and interpreted as a single
phase delay φ and amplitude a. To obtain the correct distances
dk of the K individual paths, the different superimposed
signals of the multiple paths have to be separated. This can
be done by measuring multiple superposition signals mn at N
different modulation frequencies fn:

mn =
K−1∑
k=0

ak ·exp
(
j · 4π · fn

c
· dk

)
= an ·exp (j · φn) (3)

According to [3], the K individual distances dk can be
extracted from the N different measurements mn with the
closed-form Prony method (CF) [4], Orthogonal Matching
Pursuit Optimization (OMP) [5], or Particle Swarm Optimiza-
tion (PSO), where OMP has been reported to be superior to
PSO [3]. This paper demonstrates that this assertion is not
valid with proper PSO parameters.

In section II the performance and limitations of the reported
OMP method are briefly reviewed. Section III presents the
achieved performance improvements using the PSO approach
and in section IV the computing effort of a PSO based imple-
mentation is analysed. Section V summarizes and concludes
this work.
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(a) Raw image (at fMOD = 12MHz) (b) Closed-form (Prony) method (c) OMP method (d) PSO method

Fig. 2. 3D point cloud with amplitude vs. distance scatter plot of reference scene A according to the different methods.

II. OMP PERFORMANCE AND LIMITATIONS

In [3] it has been shown that OMP optimization can achieve
good multi-path separation. However, this optimization strat-
egy implies some severe drawbacks that can drastically limit
the accuracy and the minimum distance difference between
two objects/paths that can still be separated. The follow-
ing results have been achieved using an ESPROS DME 660
camera with appropriate distance, amplitude and temperature
compensation. 14 modulation frequencies from 10 to 36 MHz
in 2 MHz steps have been used. The number of individual
paths K is determined based on prior knowledge of the scene.
The open research data are available on Zenodo as 3D ToF
MPI multi-frequency mesh dataset [6].

A. Accuracy

Fig. 2 shows the multi-path separation results of the dif-
ferent approaches with regard to scene A that suffers from
MPI as shown in Fig. 3. The scene consists of a stray light
component from a close object at a distance of about 0.3 m,
a semi-transparent mesh at 2 m distance, and a background
wall at 4 m. K = 3 has been used for the CF, OMP and
PSO methods. TABLE I compares the algorithms based on the
absolute error of the mean value ||µe||, the distance standard
deviation σe, the RMS value of the absolute error RMSE,
and the experimentally found minimum distance difference
∆dmin. Due to the MPI, the raw image shows a single, wrong
distance of about 3 m in all pixels (Fig. 2a). The CF result
can somewhat separate the stray light from the other objects,
but the other two components are mixed and the mesh is not
visible (Fig. 2b). The OMP approach succeeds in separating
stray light, mesh and wall, however all these objects have
significantly wrong distances with mean errors in the order of
1 m (Fig. 2c). This behaviour is due to the fact, that in the first
step the OMP reproduces the superposition of the strong signal
from the mesh and the wall by a single estimated signal, which

leads to a wrong estimated distance in between the mesh and
the wall that is neither the mesh nor the wall. In the next steps,
the OMP produces signals to compensate for the errors due to
the mismatch in the previous steps, which leads to consecutive
errors.
The PSO result shows good separation of all three paths
including some distance noise with mean errors of about
0.06 m (Fig. 2d).

Fig. 3. Measurement setup similar to scene A

TABLE I
DISTANCE ERROR STATISTICS OF BENCHMARK MEASUREMENT.

Dataset ||µe|| σe RMSE ∆dmin

Raw image 1m 0.1m 1m
Closed-Form (Prony) 0.5m 0.7m 0.9m > 4m

OMP 1m 0.3m 1.1m ≈ 2.7m
PSO 0.06m 0.3m 0.3m ≈ 0.75m

B. Minimum Distance Difference

The OMP is apparently capable of separating the objects
in scene A, but in fact the mesh and the wall are merged
due to the low distance difference between the layers. OMP
results are good for distance differences of typically > 2.7 m
[3]. Lower differences lead to merged layers and therefore
high distance errors.



III. PSO IMPROVEMENTS

The above limitations of the OMP approach can be over-
come by using a global optimizer like the PSO and adjusting
the parameters and the strategy accordingly. Fig. 2d shows the
improved accuracy of the PSO result in scene A with respect
to the OMP. Fig. 4 shows the multi-path separation results of
both the OMP and the PSO approach with regard to a new
scene B that suffers from MPI and features a low distance
difference of 1 m. Scene B consists of a semi-transparent mesh
at 2 m and a background wall at 3 m. The layers have been
separated for both methods with the assumption of two layers
(K = 2).

The OMP algorithm is unable to separate the two objects,
resulting in an incorrect single distance value. The PSO is able
to separate the two objects and yields correct distances. The
RMS distance error is 13 cm. This shows that the PSO is able
to achieve good separation, low distance error, and reduced
minimum distance difference of the multiple paths. Similar
performance can be attained by reducing the number of fre-
quencies from 14 to 4 uniformly distributed frequencies across
the bandwidth for scene B. This speeds up the acquisition and
the computing time. Additional research is required to explore
the relationship between the number of frequencies, accuracy,
and the minimum distance difference between objects.

Fig. 5 shows the improved MPI separation of scene C
applied to a toy horse hidden behind a mesh at 2 m distance.
The toy horse is at 3.3 m distance in front of a background wall
at 5 m. The raw image on the left shows an unreal merged layer
at completely wrong distances, while the processed image on
the right shows the toy horse in front of the background wall
in correct 3D representation. The layers have been separated
using PSO with K = 2 and the front layers at d ≤ 2.6m
have been removed from the data to make them invisible. This
proves that this method can be used to see semi-transparent
layers or virtually see through them using Multi-Layer ToF.

IV. COMPUTING EFFORT

One major advantage of the OMP algorithm is the relative
low computing effort in contrast to the PSO. The addition
of a subsequent gradient-based optimizer to the PSO allows
reducing its complexity, as shown in TABLE II. Adding a

(a) OMP method (b) PSO method

Fig. 4. 3D point cloud with scatter plot of reference scene B according to
the OMP and PSO methods.

(a) Raw image (at fMOD = 12 MHz) (b) Processed image (PSO method)

Fig. 5. Scene C: Raw image (a) and processed image with separated multi-
paths and removed front layers using PSO (b).

TABLE II
COMPARISON OF COMPUTING EFFORT AND ACCURACY FOR K = 2 ON AN

I7-8550U AT 3.5GHZ FOR SCENE B.

Swarm
size

# iter.
of PSO

subsequent
optimizer (# iter.)

||µe|| σe time
per pixel

80 295 - 4 cm 11 cm 256 ms
20 90 - 7 cm 29 cm 26 ms
20 39 interior-point (114) 4 cm 10 cm 24 ms
5 5 interior-point (109) 3 cm 9 cm 16 ms
5 5 interior-point (66) 9 cm 15 cm 12 ms

gradient-based optimizer and reducing the swarm size from
80 to 5 and the number of iterations from 295 to 5 results
in roughly the same accuracy at much lower computing time
for scene B. With this optimized parameter set, PSO is mainly
used to find optimal starting points for the subsequent gradient-
based optimizer. A gradient-based optimizer on its own is
insufficient; it requires appropriate initial values supplied by
the PSO.

Significant reduction in computation time can be achieved
by parallelizing the algorithm on a GPU and by porting
the algorithm from MATLAB to a faster language such as
OpenCL.

V. CONCLUSION

The global optimizer approach employing the PSO offers
enhanced multi-path interference separation and achieves sig-
nificantly better accuracy and a lower minimum distance dif-
ference limitation than the previously reported sequential OMP
approach. The experimental data provided achieved RMS
distance errors of approximately 0.2 m and minimum distance
differences of around 0.75 m. The efficient combination of a
PSO with small swarm size and a subsequent gradient-based
optimizer achieves reduced computing effort of typically 10-
20 ms per pixel. Efficient parallelized implementations of the
algorithm on GPUs are mandatory for real-time applications
using the PSO approach.
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