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Abstract
Goal-based investing is concerned with reaching a monetary investment goal by 
a given finite deadline, which differs from mean-variance optimization in mod-
ern portfolio theory. In this article, we expand the close connection between goal-
based investing and option hedging that was originally discovered in Browne (Adv 
Appl Probab 31(2):551–577, 1999) by allowing for varying degrees of investor risk 
aversion using lower partial moments of different orders. Moreover, we show that 
maximizing the probability of reaching the goal (quantile hedging, cf. Föllmer and 
Leukert in Finance Stoch 3:251–273, 1999) and minimizing the expected shortfall 
(efficient hedging, cf. Föllmer and Leukert in Finance Stoch 4:117–146, 2000) yield, 
in fact, the same optimal investment policy. We furthermore present an innovative 
and model-free approach to goal-based investing using methods of reinforcement 
learning. To the best of our knowledge, we offer the first algorithmic approach to 
goal-based investing that can find optimal solutions in the presence of transaction 
costs.
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1 Introduction

While modern portfolio theory (Markowitz 1952) posits that investors are risk 
averse and thus should seek to maximize their portfolios’ risk-adjusted returns, 
in reality, investors often find themselves in need of capital to finance future 
investment goals: a car, an apartment or their children’s college education. The 
importance of investment goals on a societal level can be appreciated in view of 
the exacerbating retirement problem in many Western countries, cf. Giron et al. 
(2018).

Goal-based investment strategies are not primarily concerned with risk prefer-
ences relating to portfolio volatility; instead, they are subject to the risk of falling 
short of reaching a goal by its maturity. Even exceeding an investment goal is not 
necessarily desirable; in this case, a strategy with less volatility could have led to 
an outcome matching the investment goal.

There are at least two ways to translate this practical problem into a math-
ematical optimization problem. Either, one attempts to maximize the probability 
of reaching an investment goal by a given maturity, or one tries to minimize the 
expected shortfall (or a function thereof).

This first approach was investigated in a series of papers by Browne (cf. 
Browne (1999b) and the references therein), who found the explicit portfolio allo-
cation formula for the probability-maximizing strategy in the context of complete 
markets. In his articles, Browne used techniques from stochastic control theory as 
well as from Partial Differential Equations (PDEs). While highly appealing theo-
retically, the probability-maximizing paradigm suffers from the binary nature of 
its optimum: a goal missed by a hair’s breadth is still a goal missed, and any 
such strategy will be discarded. Rather, more and more leverage will be applied 
to attain the goal—even as the maturity draws closer—resulting in either success 
or bankruptcy. This indifference for the size of the shortfall constitutes a major 
drawback of probability-maximizing strategies for practical purposes.

Leukert (1999), Föllmer and Leukert (1999, 2000), and Föllmer and Schied 
(2016) treated the closely related problem of maximizing the probability of hedg-
ing contingent claims successfully when replication is attempted with less than 
the required initial capital (corresponding to the discounted value under the 
equivalent martingale measure). Their solution is based on a static optimization 
problem of Neyman–Pearson type. Another approach can be found in Spivak and 
Cvitanić (1999).

In practice, measuring and minimizing downward risk is arguably more sig-
nificant than maximizing the probability of attaining a goal (in analogy with the 
dichotomy of Expected Shortfall versus Value-at-Risk, cf. Leukert 1999; Föllmer 
and Schied 2016). Downward risk can be quantified by the shortfall, i.e., the posi-
tive part of the distance between the profit a strategy has earned at maturity and 
the goal. Several authors have addressed this problem in the context of replicating 
contingent claims, cf. Leukert (1999), Föllmer and Leukert (1999, 2000), Pham 
(2002), Föllmer and Schied (2016), including Cvitanić and Karatzas (1999). The 
latter authors employ tools from convex duality to show that a solution exists and 
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state explicit solutions for several special cases with a single risky asset. It is 
also interesting to note that quantile hedging (cf. Föllmer and Leukert 1999), i.e., 
the probability-maximizing paradigm, can be interpreted as the most risk-seeking 
limit of efficient hedging, cf. Föllmer and Leukert (2000). Nakano (2004) studied 
a similar problem, considering coherent risk measures instead of lower partial 
moments.

An intriguing and novel approach via optimal transport has recently been used to 
target prescribed terminal wealth distributions in Guo et al. (2021).

Bühler et  al. (2019) introduced a flexible framework for hedging contingent 
claims by applying deep learning methods. This approach transcends the classical 
Black–Scholes model’s restrictions, e.g., the absence of transaction costs. Related 
reinforcement learning approaches can be found in Halperin (2020) and Szehr 
(2021). Ruf and Wang (2020) provide a comprehensive literature review regarding 
the application of neural networks for pricing and hedging purposes.

2  Main contributions

In our opinion, the potential that goal-based investing has for retirement saving and 
individual asset-liability management cannot be overestimated.

The theoretical foundations for the goal-based investment problem have been laid 
out in the—superficially unrelated—field of replicating contingent claims. There-
fore, we regard adapting these results and making them accessible and palatable to 
practitioners as one of the main contributions of this paper. In particular, we show 
how risk preferences can be integrated into the original goal-based investment prob-
lem (cf., e.g., Proposition 7.1), drawing on results on efficient hedging derived by 
Föllmer and Leukert (2000).

Another important contribution is the adaptation of deep hedging techniques (cf. 
Bühler et al. 2019) to incorporate transaction costs into the optimization problems 
arising in goal-based investing.

3  Outline of this paper

The remainder of this article is organized as follows.
After introducing the basic model in Sect. 4, we state the optimal policy for risk-

neutral and risk-taking goal-based investors in Sect. 5. The optimal policy for risk-
averse goal-based investors, whose utility is determined by a lower partial moment 
of the shortfall relative to the goal, can be found in Sect. 7. We discuss the shortcom-
ings of the probability-maximizing paradigm in Sect. 6, where we also provide an 
illustrative example. To mitigate the risk inherent in the quantile and efficient hedg-
ing approaches, we propose a policy allowing for downward protection in Sect. 8.

Finally, in Sect.  9, we show that an artificial neural network can be trained to 
minimize the expected shortfall as well as lower partial moments, thereby approxi-
mating the optimal policies from Sects. 5 and 7.

The proofs of this paper can be found in Section A of the Appendix.
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Remark 3.1 The explicit analytical results in Sects. 5–8 build upon the work in 
Browne (1999b) and Föllmer and Leukert (1999, 2000). In particular, the validity of 
our analytical results is restricted to complete markets. Föllmer and Leukert (1999, 
2000) also elaborate on the incomplete case using duality results. In Sect. 9, deep 
hedging, as adapted from Bühler et al. (2019), provides an appealing and highly flex-
ible approach, as it is model free and allows for the inclusion of transaction costs.

4  Preliminaries

4.1  The model

We consider a complete market with n ∈ ℕ correlated risky assets generated by n inde-
pendent Brownian motions (cf. Browne 1999b), i.e.,

where the drift ��� =
(
�(i)

)n
i=1

 and the full rank volatility matrix ��� =
(
�(i,j)

)n
i,j=1

 are 
constant.

shall denote a standard n-dimensional Brownian motion defined on the complete 
probability space (Ω,F,ℙ) satisfying the usual conditions (cf. Protter 2004).

We assume that there is, in addition, a risk-less bank account compounding at the 
risk-free rate r > 0 , i.e.,

The value of a zero-coupon bond at time t that pays 1 monetary unit at maturity 
T > t ≥ 0 will be denoted as

We will only consider bonds without default risk. Monetary goals will be denoted 
by H ∈ ℝ+ throughout. To ease notation, we shall write Ht,T ∶= Rt,TH for any 
t ∈ [0, T].

We will make use of the diffusion matrix ΣΣΣ ∶= 𝜎𝜎𝜎 𝜎𝜎𝜎⊤; the market price of risk will 
be denoted by the vector ��� defined as

We assume that all entries of ��� are strictly positive. According to Girsanov’s theo-
rem, the vector process defined via the market price of risk as

(1)dX
(i)
t = X

(i)
t

[
�(i) dt +

n∑
j=1

�(i,j) dW
(j)
t

]
, i = 1,… , n,

WWWt ∶=
(
W

(1)
t ,… ,W

(n)
t

)⊤

(2)dBt = r Bt dt, B0 = 1.

Rt,T ∶= e−r(T−t).

(3)��� ∶= ���−1(��� − r111).

WWW∗
t
∶=WWWt + ��� t
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is an n-dimensional Brownian motion under the probability measure ℙ∗ given by its 
Radon–Nikodym derivative

where ℙ denotes the objective probability measure. The expectation under the risk-
neutral measure ℙ∗ will be denoted as �∗.

The optimal growth portfolio (Platen 2005) maximizes the growth rate of wealth 
(Browne 1999b, Sect. 4.2). Its weights ���∗ and its volatility �∗ are determined via

The optimal growth portfolio evolves as (Browne 1999b, Sect. 4.2)

Remark 4.1 For ease of notation, we use constant coefficients throughout this arti-
cle. It is, however, straightforward to generalize all our results to deterministic time-
dependent coefficients.

4.2  Goal‑based investing and hedging

The goal-based investment problem can be expressed in terms of replicating a con-
tingent claim with a constant payoff at maturity T > 0 given by H > 0 , starting from 
a prespecified initial endowment V0 , cf. Browne (1999b). It is thus equivalent to 
finding an admissible1 strategy (V0, ���) , evolving for t ∈ [0, T] according to

where ��� is a predictable process with respect to the Brownian motion WWW such that

becomes minimal. Here, the expectation � is taken under the objective probabil-
ity measure ℙ , and � denotes a loss function that expresses the risk appetite of the 
investor. We will consider loss functions of the type

For these loss functions, the expression (6) is referred to as the lower partial moment 
of order p. Note that, as p → 0+ , the integrand in (6) tends to the indicator function 

(4)𝜌∗ ∶=
dℙ∗

dℙ
= exp

{
−𝜗𝜗𝜗⊤WWWT −

1

2
𝜗𝜗𝜗⊤𝜗𝜗𝜗 T

}
= exp

{
−𝜗𝜗𝜗⊤WWW∗

T
+

1

2
𝜗𝜗𝜗⊤𝜗𝜗𝜗 T

}
,

𝜋𝜋𝜋∗ ∶=
(
𝜎𝜎𝜎−1

)⊤
𝜗𝜗𝜗t, 𝜎∗

2 ∶= 𝜋𝜋𝜋∗
⊤ΣΣΣ𝜋𝜋𝜋∗ = 𝜗𝜗𝜗⊤𝜗𝜗𝜗 =

n∑
i=1

(
𝜇(i) − r

𝜎(i,i)

)2

.

Πt = Π0 exp
{(

r −
1

2
𝜎∗

2
)
t + 𝜗𝜗𝜗⊤ WWW∗

t

}
.

(5)Vt = V0 + ∫
t

0

𝜉𝜉𝜉s
⊤ dWWWs,

(6)�[�((H − VT )+)]

(7)�p(x) = xp, p ∈ ℝ≥0.

1 See, e.g., definition 8.1.1 in Delbaen and Schachermayer (2006).
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1(0,H)(VT ) . This situation is tantamount to quantile hedging as discussed in Föllmer 
and Leukert (1999). Conversely, risk aversion increases as p → ∞.

Let us assume that the investor initially posts the amount V0 = z > 0 . If z is 
such that z ≥ H0,T , then the zero-coupon bond can be perfectly replicated at no 
risk, and the expected loss (6) vanishes. On the other hand, if z < H0,T , then the 
investor faces the risk of falling short of her desired goal.

5  Risk neutrality and risk taking

The policy minimizing the expected shortfall for hedging a zero-coupon bond 
paying out H ≡ 1 at maturity was derived in Xu (2004). In what follows, we 
extend her approach to incorporate a constant risk-free rate r > 0 and an arbitrary 
constant payoff H ∈ ℝ+ subject to z < H0,T . Moreover, we show that the result 
of (Xu 2004, Sect. 2.2.1) is, in fact, equivalent to the one of Browne (1999b) for 
H ≡ 1 . In particular, the hedging strategy in the case of a single risky asset is 
indeed independent of its drift, which is not immediately obvious from the formu-
lae stated in Xu (2004).

Remark 5.1 In the following discussion, we treat the entire spectrum of risk appe-
tites ranging from risk neutrality ( p = 1 , also referred to as efficient hedging) to 
extreme risk taking ( p = 0 , also referred to as quantile hedging). The theoretical 
foundations can be found in Sect. 5.4 of Föllmer and Leukert (2000). The discussion 
in Sect. 7 will address higher degrees of risk aversion by considering lower partial 
moments of order p > 1.

Proposition 5.2 (Efficient hedging using several risky assets) Consider an invest-
ment with an initial capital endowment of z monetary units, whose objective is to 
minimize

Then the optimal policy for this objective is equivalent to the replication of a Euro-
pean digital call option on the optimal growth portfolio Πt with payoff H and strike 
price K∗ , where

Φ denotes the cumulative distribution function of the standard normal distribution, 
and Φ−1 the corresponding quantile function.

In particular, the investor’s wealth process can be expressed by means of

𝔼
[
(H − VT )+

p
]
, H ∈ ℝ+, p ∈ [0, 1].

(8)K∗ = Π0 exp

��
r −

1

2
�∗

2
�
T − �∗

√
T Φ−1

�
z

H0,T

��
,
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Remark 5.3 Note that, if z = H0,T , then the strike K∗ given in (8) will vanish. As a 
consequence, the value of the standard normal distribution function Φ in (9) will be 
1, so that the claim reduces to a risk-less bond, Vt = Ht,T . If z is even larger than the 
discounted goal, compounding will result in super-replication.

Corollary 5.4 (Efficient hedging using a single risky asset) In the case of a single 
risky asset, the contingent claim (9) can be simplified to

where

The corresponding delta-hedging strategy is obtained by differentiation:

where � denotes the probability density function of the standard normal distribution.

Corollary 5.5 In the case of a constant claim H ∈ ℝ+ , the optimal policies for quan-
tile hedging Föllmer and Leukert (1999) and efficient hedging Föllmer and Leukert 
(2000) coincide.

In particular, (Xu 2004, Corollary 2.8) concerning the efficient hedging of a bond 
with payoff H ≡ 1 yields the same optimal policy as (Browne 1999b, Proposition 
4.1) with goal b ≡ 1 and vanishing risk-free rate.

6  Practical considerations when maximizing probabilities

Let us assume that the investment universe consists of a single risky company share 
X = (Xt)t∈[0,T] and a risk-less bank account B = (Bt)t∈[0,T] , cf. (1), (2). A digital (or 
binary) European call option on the underlying X with strike K > 0 is a financial 
derivative with payoff 1{XT≥K} at maturity T. Its Black–Scholes price is given by

(9)Vt = Ht,T Φ

⎛
⎜⎜⎜⎝

log
Πt

K∗
+
�
r −

1

2
�∗

2
�
(T − t)

�∗

√
T − t

⎞
⎟⎟⎟⎠
.

Vt = Ht,T Φ

⎛
⎜⎜⎜⎝

log
Xt

K∗
+
�
r −

1

2
�2
�
(T − t)

�
√
T − t

⎞
⎟⎟⎟⎠
,

K∗ = x0 exp

{(
r −

1

2
�2
)
T − Φ−1

(
z

H0,T

)}
.

�1(t,Xt) =
�

�x

����x=Xt

Vt =
Ht,T

Xt �
√
T − t

�

⎛⎜⎜⎜⎝

log
Xt

K∗
+
�
r −

�2

2

�
(T − t)

�
√
T − t

⎞⎟⎟⎟⎠
,
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According to Corollary 5.4 (cf. Browne 1999b, Sect.  4), continuous rebalancing 
with

replicates this digital payoff starting from V0 = C(0;X0,K) monetary units. By 
inspection, the initial price V0 = V0(K) is monotonously decreasing with

Let us assume that a financial investor owns c0 > 0 monetary units at time t = 0 
and, by means of an admissible strategy in the investment universe, aims at owning 
cT > c0 monetary units at time T. For simplicity, let us exclude intermediate income 
and consumption. To ensure that the mathematical problem is well posed, one needs 
to establish in what sense a certain strategy becomes optimal. In Browne (1999b, 
Theorem 3.1), the author proved the intriguing fact that replicating cT digital call 
options with strike

maximizes the objective probability of reaching the goal. This result has an insight-
ful economic interpretation; K∗ coincides with the break-even point with respect to 
the strike where a single digital call option costs c0

cT
 at time 0. Notably, but also well 

known, the magnitude of the hardly ascertainable drift � does not affect K∗ . In fact, 
the above expression of K∗ is only well-defined provided that the argument of Φ−1 is 
within (0, 1). In our setting, this prerequisite is only violated in the degenerate case 
c0 ≥ R0,T cT , i.e., the goal can be super-replicated in terms of the bank account at no 
risk anyway. The maximized real-world probability of reaching the goal is

For real-world applications, the financial investor has two alternatives; either she 
buys it over-the-counter or she replicates the digital payoff herself. In the former 
case, she runs the risk of not getting the promised payoff due to the bankruptcy of 
the issuer. In the latter case, without further stop-loss measures in place, discrete 
rebalancing schedules imply the risk of arbitrarily large losses way beyond c0 due to 
the discontinuity of the payoff and, hence, the unbounded delta of the digital option. 
Notably, the strategy also requires an unlimited credit line at the bank which is 

(10)

C(t;Xt, K) = Rt,T Φ(d−(t;Xt,K))

d−(t; x,K) ∶=
log

x

K
+
�
r −

�2

2

�
(T − t)

�
√
T − t

.

�(t;Xt, K) =
Rt,T

Xt �
√
T − t

�
�
d−(t;Xt,K)

�

lim
K→0+

V0(K) = R0,T , lim
K→∞

V0(K) = 0.

K∗ = X0 exp

��
r −

1

2
�2
�
T − �

√
T Φ−1

�
c0

R0,T cT

��

ℙ
�
XT ≥ K∗

�
= Φ

�
�
√
T + Φ−1

�
c0

R0,T cT

��
.
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collateralized only to an insufficient extent by the company share. Transaction costs 
exacerbate the situation. By approximating the digital payoff by a classical bull call 
spread and by diversifying the involved derivatives across several bona fide coun-
terparties, the financial investor manages to deal with the mentioned impediments 
all the same. From a computational perspective, we lose analytical tractability with 
increasing degrees of complexity, e.g., additional constraints, more realistic price 
dynamics, transaction costs, etc. Despite all, and much more crucially, the all-or-
nothing feature of the proposed optimal strategy is not feasible in many real-world 
applications such as traditional pension funds. For obvious reasons, retirement sav-
ings are not supposed to be a Bernoulli experiment. Therefore, we will consider fur-
ther ways to control downward risk in Sect. 8.

Example 6.1 Let us consider a simple one-step financial market that hosts two finan-
cial assets over the time horizon t ∈ {0, 1} . For some 0 < 𝜀 ≪ 1 , a risk-less bank 
account carries a deterministic log-return of r − � for some r ∈ ℝ . The other invest-
ment alternative is a start-up company whose success is dichotomous; the log-
return r̃  of the company share satisfies ℙ[̃r = r − 1] = p and ℙ[̃r = r + 1] = 1 − p 
for some p ∈ (0, 1) . Let � ∈ [0, 1] denote the portion of the initial wealth that 
is kept in the risky asset. The log-return of any strategy � is then given by 
R(�) = log

(
�er̃ + (1 − �)er−�

)
 . From a practitioner’s perspective, if the investor’s 

ultimate goal was to reach a continuously compounded yield of r, then it would not 
be advisable to invest in the risky asset at all. However, a strict application of maxi-
mizing the probability of reaching the goal would involve shortfall risk. Indeed, it 
holds ℙ[R(0) ≥ r] = 0 , whereas ℙ[R(�) ≥ r] is maximal for any

This example shows that the probability-maximizing paradigm might be too 
rigid in the context of goal-based investing as it does not take into consideration the 
investor’s risk appetite. In the next section, we will discuss optimal policies for risk-
averse investors.

Remark 6.2 The quantile hedging approach toward goal-based investing is a dynamic 
portfolio allocation strategy that shifts wealth between the optimal growth portfolio 
and the risk-free asset (Browne 1999b, Theorem  3.1). We analyze the goal-based 
investor’s wealth process using historical S&P 500 Index returns and compare it with 
the optimal growth portfolio process in Fig. 1.2 Notice that in the top plot, the goal-
based investor keeps all her funds in the optimal growth portfolio and misses the 
goal, while in the middle one, she narrowly reaches the goal by shifting wealth into 
the risk-free asset very late. Finally, in the bottom plot, the goal-based investor exits 
the optimal growth portfolio as soon as a wealth level is reached which equals the 
present value of the financial goal discounted at the risk-free rate. In this situation, 
she takes just enough risk to achieve her goal, while the optimal growth portfolio 

� ≥ e� − 1

e1+� − 1
.

2 We constrain leverage to 100% in both cases to avoid excessively high exposures. This entails that the 
optimal growth portfolio in our example coincides with a buy-and-hold strategy.
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investor remains fully risk-on to maximize long-term growth, yet suffers from the 
drawdown of US Large Caps starting in 2022. A mean-variance optimal portfolio, on 
the other hand, reflects an investor’s risk preferences and thus usually bears less risk 
than the optimal growth portfolio; however, as the latter, the mean-variance optimal 
portfolio does not take into account any financial goals by its very design.

7  Risk aversion

We consider the case of p > 1 , so that (�p)p>1 (cf. (7)) denotes a series of con-
vex loss functions corresponding to increasing levels of risk aversion as p grows. 
According to (Leukert 1999, Lemma 11) the optimal strategy to minimize (6) 
consists in hedging the modified claim

(11)�pH = H −min

(
ap �

1

p−1

∗ ,H

)
,

Fig. 1  Wealth processes of a goal-based investor (GBI) versus a Kelly Portfolio (i.e., optimal growth) 
investor for three different  4 year periods. The initial endowment is USD 100, while the financial goal 
is USD 175. The available securities are the S&P 500 Index and a nondefaultable bond with a risk-free 
interest rate of 2%
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where the constant ap is implicitly determined by the capital requirement 
�
∗[�p H] = z.

Proposition 7.1 (Risk aversion with several risky assets) Consider an investor 
endowed with z monetary units at time t = 0 . We assume that her objective is to 
minimize the lower partial moment

for p > 1 , cf. (6). Then, the optimal strategy is equivalent to replicating the contin-
gent claim on the optimal growth portfolio Πt with value process

Here, p� = 1∕(p − 1) , and the threshold L is implicitly determined by the capital 
requirement V(0,Π0) = V0 = z.

Corollary 7.2 (Risk aversion with a single risky asset) If there is only one risky asset 
X = (Xt)t∈[0,T] available to the investor, then the optimal strategy to minimize the 
lower partial moment (6) with exponent p > 1 will be equivalent to replicating the 
value process Vt = V(t,Xt) equal to

where �p ∶= �∕(p − 1) and � ∶= (� − r)∕�2 . The hedging strategy �p is given by

Remark 7.3 The first term in the expression for the modified claim �pH in (12) con-
stitutes a digital European call option with strike L and terminal payoff H1{XT≥L}.

�
[
(H − VT )+

p
]
,

Vt = V(t,Πt)

= Ht,T

�
Φ(d−(t;Πt, L)) −

�
L

Πt

�p�

exp

�
p�(p� + 1)

�
1

2
�∗

2 − r

�
(T − t)

�

× Φ

�
d−(t;Πt, L) − p� �∗

√
T − t

��
.

(12)

Ht,T

�
Φ(d−(t;Xt, L)) −

L�p

X
�p
t

exp

�
�p(�p + 1)

�
1

2
�2 − r

�
(T − t)

�

Φ

�
d−(t;x, L) − �p �

√
T − t

��
,

�p(t,Xt) = Ht,T

�
�(d−(t;Xt, L))

Xt�
√
T − t

−
L�p

X
�p
t

exp

�
�p
�
�p + 1

��1

2
�2 − r

�
(T − t)

�
�(d−(t;Xt, L) − �p �

√
T − t)

Xt �
√
T − t

+
�pL

�p

X
�p+1

t

exp
�
�p
�
�p + 1

��1
2
�2 − r

�
(T − t)

�
Φ(d−(t;Xt, L) − �p �

√
T − t)

�
.
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Remark 7.4 From a practical viewpoint, plausible values for � would be around 1, 
assuming � = 5% , r = 1% , and � = 20% . The exponent �p would then be positive 
and decrease from 1 to 0 as p → ∞ (p > 1).

Remark 7.5 If the term corresponding to a digital European call option in Eq. (12) 
matures in-the-money (i.e., XT > L) , then the second term in this equation equals 
(L∕XT )

�p , which is less than 1 and decreasing in XT if 𝛼p > 0 . Conversely, if the 
digital call expires at-the-money, the second term in Eq. (12) will be 1, so that 
the entire claim matures worthless. The same holds true if the digital call expires 
out-of-the-money.

Remark 7.6 What happens in the case of extreme risk aversion, i.e., as p → ∞ ? By 
Eqs. (11) and (17),

Hence,

i.e., the entire endowment is kept in the bank account. This observation is consistent 
with the concept of total risk aversion, and it is in line with (Leukert 1999, Lemma 
14). There, it is demonstrated that �pH → (H − a∞)+ for p → ∞ almost surely and 
in L1(ℙ∗) , for general (not necessarily constant) payoff functions H = H(XT ).

Remark 7.7 The knock-out feature of the digital European call that is present for 
risk-neutral/risk-taking investors ( p ∈ [0, 1] ) makes hedging increasingly difficult if 
the underlying is close to the strike as maturity approaches, because the digital call’s 
delta becomes unbounded. Appealingly, however, this knockout feature disappears 
for risk-averse investors ( p > 1 ), as one can see in Fig.  2, and the delta of these 
modified claims becomes more and more well behaved as risk aversion increases 
( p → ∞).

8  Downward protection

The probability of reaching the target for the probability-maximizing policy, given by 
(Browne 1999b, Theorem 3.1)

is the counter-probability of going bankrupt, which can be prohibitively high for 
practical purposes.

lim
p→∞

ap = H − RT ,0z,

(
L

XT

)�p

= ap
k

1

p−1

XT

�

p−1

.

lim
p→∞

�p H = lim
p→∞

(1 − ap)1{XT≥0} = RT ,0z ⇒ z = R0,T ⋅ �∞H,

(13)sup
f

ℙ(t,x)[XT
(f ) ≥ H] = Φ

�
Φ−1

�
x

Ht,T

�
+
√
𝜗𝜗𝜗⊤𝜗𝜗𝜗 (T − t)

�
,
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Fig. 2  Wealth of an investor who seeks to minimize expected shortfall (top) or lower partial moments of 
order p relative to the investment goal H, respectively. The vertical lines denote the strike L = L(p) . Left 
column: wealth; right column: dollar hedge. Circles denote the initial state, while dots show terminal val-
ues. The maturity is T = 10 , the (annualized) drift � = 8% , the volatility � = 30% , and the risk-free rate 
r = 1% . The investment goal is H = 1 , and the initial capital endowment is z = 0.7 . The required annual-
ized return thus would be (H∕z)0.1 − 1 ≈ 3.6% ≫ r
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Remark 8.1 If we assume an initial investment of two-thirds of the desired goal and a 
single risky asset with a drift of 6% , a volatility of 20% , and a zero risk-free rate, then 
the “optimal” strategy entails a probability of losing everything of approximately 25%.

Clearly, this all-or-nothing strategy is too risky for most practical applications. 
Browne (Browne 1999b, Sect.  8.2) therefore proposed to control downside risk in 
the context of active portfolio management (cf. also Browne 1999a). We adapt his 
approach to goal-based investing as follows.

Proposition 8.2 Consider an investor whose objective is to minimize the expected 
shortfall of her terminal wealth VT versus the goal H ∈ ℝ+ , with the additional 
requirement that the expected shortfall versus the discounted goal H0,T never exceed 
a predefined percentage � ∈ [0, 1] of the latter. Then

Corollary 8.3 (cf. Cvitanić and Karatzas (1999), Example 4.1) Let � be a given posi-
tive real number. It follows from Proposition 8.2 that the smallest initial endow-
ment x𝜀 > 0 required so that the probability of violating the shortfall constraint is 
bounded from above by � is given by

Note that, as � → 1 , the initial endowment x� tends to the discounted goal H0,T 
minus the shortfall allowance �H0,T.

8.1  The nature of the claim with downward protection

If maximizing the probability of reaching an investment goal is equivalent to rep-
licating a digital European call option (cf. Browne 1999b, Proposition 4.1), what 
interpretation can be given to the situation in this section?

First, let us rephrase the optimal policy, given for the general case in (Browne 1999b, 
Theorem 3.1) for constant coefficients and in the presence of a downward risk limit:

Now, if we evaluate f ∗
t
 at x = C(t,Xt;�) , where

sup
f

ℙ

�
X
(f )

T
≥ H, inf

0≤s≤T X
(f )
s

≥ (1 − 𝛿)H0,T

����Xt = x

�

= Φ

�
Φ−1

�
x − (1 − 𝛿)Ht,T

𝛿Ht,T

�
+
√
𝜗𝜗𝜗⊤𝜗𝜗𝜗 (T − t)

�
.

x𝜀 =
�
Φ
�
Φ(−1)(1 − 𝜀) −

√
𝜗𝜗𝜗⊤𝜗𝜗𝜗 T

�
+ 1 − 𝛿

�
H0,T .

f ∗
t
(x − (1 − �)Ht,T ;�H) =

�Ht,T

�
√
T − t

�

�
Φ−1

�
x − (1 − �)Ht,T

�Ht,T

��
.

C(t,Xt;�) = �Ht,T Φ
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log

Xt

K∗
+ (r −

�2

2
)(T − t)
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then

where Δt is the delta of the digital European call option paying �H at maturity if 
XT ≥ K∗ , and nothing otherwise. The optimal policy thus consists of initially invest-
ing (1 − �)H0,T into a bond, and the remainder into a digital European call option 
with said characteristics. As before, the strike K∗ of this contingent claim depends 
implicitly on the initial endowment z.

9  Deep hedging

The investment strategies derived in the previous sections cannot be transferred to more 
realistic settings without further ado. The optimality fundamentally relies on the com-
pleteness of the financial market model as well as the simplistic distributional assump-
tion on the price dynamics. More sophisticated price dynamics, for instance involving 
rough volatility, inevitably lead to incomplete market models. Furthermore, minimizing 
lower partial moments in such intricate environments may hardly be analytically tracta-
ble. It remains unclear whether the duality principle between the optimization problem 
and the hedging of a qualitatively similar payoff prevails. In contrast, simply applying 
the proposed delta hedging strategies for different price dynamics can be arbitrarily bad. 
Another impediment for applications in the real world are discrete hedging schedules 
and transaction cost. Therefore, we investigate whether we manage to circumvent these 
delicate issues by applying the striking approach of deep hedging as proposed in Bühler 
et al. (2019). Subsequently, we present our findings for the one-dimensional case.

For any t ∈ {0, 1, 2,… ,N} in some discrete time grid with horizon N ∈ ℕ , we con-
sider a feedforward neural network

with some affine functions

and the sigmoid activation function �(x) = (1 + e−x)−1 . The input layer consists of 
the current holding �t– before rehedging and the moneyness Xt∕X0 , where Xt is the 

f ∗
t
(C(t,Xt;�) − (1 − �)Ht,T ;�H)

=
�Ht,T

�
√
T − t

�

�
Φ−1

�
C(t,Xt;�) − (1 − �)Hr,T

�Ht,T

��

=
�Ht,T

�
√
T − t

�

⎛
⎜⎜⎜⎝

log
Xt
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+
�
r −

�2

2

�
(T − t))
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⎞
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marginal distribution of a geometric Brownian motion as considered above. The out-
put layer reveals the outcome �t of the rehedging at the time instance t, i.e.,

Similarly as above, we aim at optimizing a function of the terminal wealth VT that 
can be derived iteratively. Let b0– denote the initial holdings in the bank account 
bearing the risk-free rate r ∈ ℝ , �0– denote the initial holdings in the underlying, 
� ≥ 0 the coefficient for proportional transaction cost, and 𝜏 > 0 the year fraction of 
a time step. Hence, the value of the portfolio before and after rehedging at time 0 is 
given by

where b0 ∶= b0– −
(
�0 − �0–

)
X0 − �||�0 − �0–

||X0 satisfies the self-financing princi-
ple. Then, we proceed consistently in terms of the iteration

where bt– = bt−1e
r� , �t– = �t−1 and bt = bt– −

(
�t − �t–

)
Xt − �||�t − �t–

||Xt for 
t ∈ {1, 2,… ,N − 1} . At maturity, we have to bear the unwinding cost additionally. 
Hence,

For experimental purposes, we chose similar parameters as in Fig.  2; a maturity 
T = 10 , a discretization N = 52T  (i.e., weekly rehedging with � = 1∕52 ), a risk-free 
rate r = 1% , a drift � = 8% , and a volatility � = 30% . The initial state of the mar-
ket and the wealth are standardized to X0 = 100 , b0– = 70 and �0– = 0 . The ultimate 
goal is to reach the deterministic payoff H = 100 ; this refers to as a continuously 
compounded return of h ≈ 3.6% . Let J ∈ ℕ be a sufficiently large number3 of simu-
lated paths X(j) = (X

(j)
t )t=0,1,2,…,N , e.g., J = 104 . Given this parameter set, we seek to 

find optimal rehedging strategies. This can be achieved by applying a suitable back-
propagation algorithm on the deep neural network architecture that consolidates the 
above feedforward neural network instances together with the intermediary account-
ing routines. A direct translation of the above concept is the minimization of the loss

We modify the loss function for two crucial reasons. Firstly, the function 
x ↦ max{H − x, 0} is nondifferentiable at the point H and ignores any points 

�t = Ft

(
�t–,Xt∕X0

)
.

V0– = b0– + �0–X0,

V0 = b0 + �0X0,

Vt– = bt– + �t–Xt

Vt = bt + �tXt,

VT = bT−1e
r� + �T−1XT − �||�T−1||XT .

1

J

J∑
j=1

max
{
H − V

(j)

T
, 0
}p

.

3 Whereas the trade-off between hedging, bearing transaction cost, and leaving a position open is 
involved, the mathematical complexity of the solution is low. Experiments demonstrate that 104 paths are 
sufficient to learn the desired behavior.
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beyond H. This raises concerns on the stability of the learning algorithm. Therefore, 
we replace the maximum with the softplus function log (1 + ex) . Secondly, the natu-
ral extension of the loss function apparently has an undesirable local minimum for 
strategies with a deterministic equity portion �t ≡ � ∈ [0, 1] ; see Fig. 3 above.

Without further interventions, the learning algorithms often gets stuck in the sub-
optimal neighborhood of static strategies. Therefore, we also penalize deviations 
beyond H in terms of

for a regularization parameter � = 0.1 . It needs to be noted that the introduction 
of the positive second summand does not alter the global optimum. The following 
charts exhibit the out-of-sample performance of a trained artificial financial agent 
for p ∈ {1, 1.5, 5} and � ∈ {0, 0.005} . For the training, we relied on the default con-
figuration of the Adam algorithm of TensorFlow Keras with a batch size of 64 over 
500 epochs. All charts are generated with the same sample data. The training phase 
of the Jupyter notebook takes in each case approximately 2.5h on Google Colab. As 
a benchmark, we also show the performance of naively applying the continuous-
time optimal hedging strategy on the same weekly time grid.

For p ∈ {1, 1.5} , deep hedging mitigates the risk of large losses. In the absence 
of transaction costs, our simulations suggest that deep hedging does not surpass the 
benchmark consistently, at least not for the selected parameters and without further 
measures. However, in the presence of transaction costs, the strength of deep hedging 
is particularly evident, cf. Table 1. Moreover, it could be extended to more realistic 
dynamics of the underlying for which analytical solutions are typically not available. 
The empirically derived expected terminal wealth, the value-at-risk to a significance 
of 5% as well as the success rates and the success ratios for the different investment 

1

J

J∑
j=1

(
log

{
1 + exp

{
H − V

(j)

T

}})p

+ � log
{
1 + exp

{
V
(j)

T
− H

}}
.

Fig. 3  This chart exhibits the local minimum of the lower partial moments in the neighborhood of static 
strategies
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strategies are lined up in Table 1. Remarkably, due to accounting for offsetting effects 
of an adjusted hedge and borne transaction cost, deep hedging leads to an improved 
value-at-risk in the presence of transaction cost (Table 1; cf. also Figs. 4, 5, 6, 7).

10  Conclusions and outlook

We have discussed two approaches to goal-based investing in this article. The first—
analytical—approach yields several explicit continuous dynamic trading strategies 
that risk-taking, risk-neutral, and risk-averse investors need to implement to maxi-
mize their goal-based utilities.

Table 1  Selected empirically derived characteristics of the terminal wealth distribution for 
p ∈ {1, 1.5, 5} and � ∈ {0, 0.005}

The success rate ℙ
[
V
T
≥ H

]
 is the counter probability of the shortfall risk. The success ratio is the gener-

alized success rate �
[
1{V

T
≥H} +

V
T

H
1{V

T
<H}

]
 as defined in (Föllmer and Leukert 2000, Definition (2.32)). 

Not only does deep hedging yield a flatter right tail in the presence of transaction costs—as can be 
deduced from the figures for the 5%-quantile—deep hedging moreover provides a superior success rate, 
and can keep up with the success ratio of discrete delta hedging

Mean Theoretical Deep hedging Discrete delta hedging

� = 0 � = 0 � = 0.005 � = 0 � = 0.005

p = 1 93.18 91.07 89.10 93.19 88.39
p = 1.5 88.52 88.53 87.44 91.55 87.97
p = 5 80.17 80.50 79.89 80.28 79.81

5%-quantile Theoretical Deep hedging Discrete delta hedging

� = 0 � = 0 � = 0.005 � = 0 � = 0.005

p = 1 0 48.71 48.98 4.05 −2.98

p = 1.5 49.63 54.63 57.17 54.96 48.84
p = 5 73.59 71.96 74.00 73.64 73.11

Success rate Theoretical Deep hedging Discrete delta hedging

� = 0 � = 0 � = 0.005 � = 0 � = 0.005

p = 1 0.93 0.41 0.36 0.47 0.01
p = 1.5 0 0.21 0.12 0.29 0.02
p = 5 0 0.00 0.00 0.00 0.00

Success ratio Theoretical Deep hedging Discrete delta hedging

� = 0 � = 0 � = 0.005 � = 0 � = 0.005

p = 1 0.93 0.89 0.88 0.92 0.88
p = 1.5 0.89 0.87 0.87 0.91 0.88
p = 5 0.80 0.80 0.80 0.80 0.80
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In the real world, however, continuous-time trading is not feasible. We show 
that this drawback can be addressed with a more flexible deep hedging approach. 
Not only is this approach well-suited for discrete rebalancing, it also allows for the 
inclusion of transaction costs. Curiously, goal-based investing provides a use case 

Fig. 4  For different choices of the risk aversion p, the empirical probability density function of the final 
payoffs depict the performance of a trained artificial financial agent in the absence of transaction cost in 
the left column compared with naively applying the corresponding continuous time optimal delta hedg-
ing strategy in the right column. The solid line represents the primary target payoff
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Fig. 5  For different choices of the risk aversion p, the scatter plots depict the final payoffs depending 
on the performance of the underlying for a trained artificial financial agent in the absence of transaction 
cost in the left column compared with naively applying the corresponding continuous time optimal delta 
hedging strategy in the right column. The solid line represents the secondary target payoff originating 
from the duality result of the continuous-time problem
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Fig. 6  For different choices of the risk aversion p, the empirical probability density function of the final 
payoffs depict the performance of a trained artificial financial agent in the presence of proportional trans-
action cost in the left column compared with naively applying the corresponding continuous time opti-
mal delta hedging strategy in the right column. The solid line represents the primary target payoff
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for deep hedging with a probability-maximizing objective function, due to the prob-
lem’s equivalence with efficient hedging.

There are many ramifications of our work on hedging goals that we will investi-
gate elsewhere. In particular, open research questions that we will address include:

Fig. 7  For different choices of the risk aversion p, the scatter plots depict the final payoffs depending on 
the performance of the underlying for a trained artificial financial agent in the presence of proportional 
transaction cost in the left column compared with naively applying the corresponding continuous time 
optimal delta hedging strategy in the right column. The solid line represents the secondary target payoff 
originating from the duality result of the continuous-time problem
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• hedging goals under general market dynamics, e.g., GARCH Ghalanos (2019), 
or scenarios generated with Generative Adversarial Networks (GAN, cf. Ni et al. 
(2020));

• hedging goals with downward protection in the spirit of Sect. 8;
• hedging goals with exogenous income (Browne 1999b, Sect. 7) and liabilities 

Browne (1997);
• beating stochastic benchmarks (as in Sect. 8.1 of Browne 1999b) using deep 

learning.

Appendix A: Proofs

Appendix A.1: Proofs of the results with risk neutrality and risk taking ( p ∈ [0, 1])

Proof of Proposition 5.2 (Leukert 1999, Theorem 9) states the test function

needs to be used to modify the claim H. Here, ap is determined implicitly by the 
capital requirement z = �

∗[�p H] . To avoid trivial cases, let us assume that z lies 
within the open interval 

(
0,H0,T

)
 . It is straightforward to show that the constant ap is 

given by

Let us introduce the density process (Zt)t≥0 as

Note that ZT = �∗ , cf. (4). The density process and the optimal growth portfolio are 
related via

With these notations, we can show that the value process corresponds to a digital 
European call option, namely,

(14)�p = 1{
dℙ

dℙ∗
≥ap H1−p

},
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where the strike K∗ is given by

This furthermore shows that the solution for the multivariate problem of minimizing 
the expected shortfall is identical to the one derived by Browne in the case of maxi-
mizing the probability of reaching an investment goal Browne (1999b).   ◻

Proof of Corollary 5.4 By virtue of (4), we can express the test function �p as the 
indicator function

Hence, for a standard normal random variate Y,

𝔼
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Thus,

It can be shown that �∗ = k XT
−� , for a real constant k. In fact,

and hence

The test function �p in (14) can therefore be rewritten as

Let ZT ∶= �∗ , with the density process Z = (Zt)t∈[0,T] defined as

Then we have that (cf. Xu 2004, Corollary 2.8)
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where K∗ is given by

The modified claim �pH thus corresponds to a digital call option with strike K∗ ; cf. 
(10).   ◻

𝔼
∗[�pH �Ft] = ℙ

∗

�
ZT ≤ Hp−1

ap

����Ft

�

= ℙ
∗

�
ZT

Zt
Zt ≤ Hp−1

ap

����Ft

�

= ℙ
∗

�
ZT

Zt
≤ Hp−1

ap Zt

����Ft

�

= ℙ
∗

�
WT

∗ −Wt
∗ ≥ −

1

�

�
log

�
Hp−1

apZt

�
−

1

2
�2(T − t)

��

= 1 − Φ

⎛
⎜⎜⎜⎝

log ap + (1 − p) logH +
1

2
�2(T − t) −

�

�

�
log

Xt

x0
−
�
r −

�2

2

�
t
�
+

1

2
�2t

�
√
T − t

⎞
⎟⎟⎟⎠

= 1 − Φ

⎛
⎜⎜⎜⎝

Φ−1
�
1 −

z

H0,T

�
�
√
T −

�

�

�
log

Xt

x0
−
�
r −

�2

2

�
t
�

�
√
T − t

⎞
⎟⎟⎟⎠

= Φ

⎛⎜⎜⎜⎝

log
Xt

x0
−
�
r −

�2

2

�
t − Φ−1

�
1 −

z

R0,T H

�
�
√
T

�
√
T − t

⎞⎟⎟⎟⎠

= Φ

⎛⎜⎜⎜⎝

log
Xt

K∗
+
�
r −

�2

2

�
(T − t)

�
√
T − t

⎞⎟⎟⎟⎠
,

logK∗ = log x0 + Φ−1

�
1 −

z

H0,T

�
�
√
T +

�
r −

�2

2

�
T .
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Remark A.1 Note that, as z approaches 0, the inverse cumulative distribution func-
tion diverges to +∞ , so that K∗ tends to ∞ and, as a consequence, the (initial) value 
of the modified claim Vt vanishes.

Conversely, as z approaches H0,T from below, K∗ diverges to −∞ , so that 
�p → 1

ℝ+
 : in the limit, the modified claim coincides with the original one.

Appendix A.2: Proofs of the results with risk aversion

Proof of Proposition 7.1 Recall that, in the case of increasing risk aversion, we need 
to consider the problem (11). For this purpose, we note that the density process 
(Zt)t∈[0,T] (cf. (15)) relates to the optimal-growth portfolio via

The modified claim of (11) thus takes the form

where we have used the shorthand p� = 1∕(p − 1) . This equation in turn can be 
rewritten as

where the threshold is given by L ∶= p�
√
ap RT ,0 Π0 . This claim consists of a Euro-

pean digital option that is modified by a factor. The difference now, however, is that 
the digital option is a contingent claim on the optimal growth portfolio, whose 
wealth at time t is given by Πt.

Calculations analogous to those in the case of a single risky asset (cf. the proof of 
Corollary 7.2 below) show that the modified claim on the optimal-growth portfolio 
takes the form specified in Proposition 7.1.   ◻

Proof of Corollary 7.2 The modified claim (11) in this case reads as

Recall from the proof of Corollary 5.4 that

where

ZT = �∗ =
Π0

R0,T ΠT

.

�p =

(
1 − ap

(
Π0

R0,T ΠT

)p�
)

+

,

�p =

(
1 −

(
L

ΠT

)p�
)
1{ΠT≥L},

�p =
(
1 − ap �∗

p�
)
+
.

�∗ =
k

XT
� ,
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Therefore,

Let us denote the threshold by L ∶= ap
p−1

� k
1

� . Thus Eq. (16) can be rewritten as

Defining the function fp(y) ∶=
(
1 −

L�p

y�p

)
1{y≥L} for y ∈ ℝ , we set

so that, for � ∶= T − t,

The threshold L is determined implicitly by the initial endowment z via

  ◻

Appendix A.3: Proofs of the results with downward protection

Proof of Proposition 8.2 This follows from applying the results in Browne (1999b, 
Sect. 8).   ◻

k = x0
� exp

{
�(� + r − �2)T

2

}
.

(16)�p =

(
1 − ap

kp
�

XT
�p�

)
1{

XT≥ap p−1
� k

1
�

}.

(17)�p =

(
1 −

(
L

XT

)�p
)
1{XT≥L}.

Vt = �
∗[�pH |Ft]

= HT ,t �
∗
[
fp(Xt exp

(
� (W∗

T
−W∗

t
) + (r − �2∕2) (T − t)

) |Ft

]

=∶ HT ,t Fp(t,Xt),

(18)

HT ,t Fp(t, x) = ∫
ℝ

fp(x exp[�
√
� y + (r − �2∕2) �]) exp(−y2∕2)

dy√
2�

= Φ(d−(t;x, L)) −
L�p

x�p ∫
∞

−d−(t;x,L)

e−�p(�
√
�y+(r−�2∕2)�)e

−y2

2

dy√
2�

= Φ(d−(t;x, L)) −
L�p

x�p
e�p(�p+1)(�

2∕2−r)�Φ
�
d−(t;x, L) − �p�

√
�
�
.

z = �
∗[�pH] = H0,T Fp(0, x0)

= H0,T

�
Φ(d−(0;x0, L)) −

L�p

x
�p

0

e�p(�p+1)(�
2∕2−r)TΦ

�
d−(0;x, L) − �p�

√
T
��

.
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