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A B S T R A C T   

Enzymes are potent catalysts with high specificity and selectivity. To leverage nature’s synthetic potential for 
industrial applications, various protein engineering techniques have emerged which allow to tailor the catalytic, 
biophysical, and molecular recognition properties of enzymes. However, the many possible ways a protein can be 
altered forces researchers to carefully balance between the exhaustiveness of an enzyme screening campaign and 
the required resources. Consequently, the optimal engineering strategy is often defined on a case-by-case basis. 
Strikingly, while predicting mutations that lead to an improved target function is challenging, here we show that 
the prediction and exclusion of deleterious mutations is a much more straightforward task as analyzed for an 
engineered carbonic acid anhydrase, a transaminase, a squalene-hopene cyclase and a Kemp eliminase. 
Combining such a pre-selection of allowed residues with advanced gene synthesis methods opens a path toward 
an efficient and generalizable library construction approach for protein engineering. To give researchers easy 
access to this methodology, we provide the website LibGENiE containing the bioinformatic tools for the library 
design workflow.   

1. Introduction 

Enzymes are remarkable catalysts capable of facilitating complex 
reactions with high substrate specificity and exquisite chemo-, regio- 
and enantioselectivity [1,2]. However, when used in conditions neces
sary to drive a process at an industrial scale, the performance of 
wild-type enzymes often remains insufficient from an economic stand
point. Thus, to better harness the capabilities of nature’s catalysts in 
industrial settings, much focus has been placed on advancing protein 
engineering strategies to proficiently tailor enzymes’ catalytic, bio
physical, and molecular recognition properties [3,4]. In this way, 
enzyme engineering has allowed to broaden the substrate scope of 
natural enzymes [5], change their chemistry [6], improve catalytic ac
tivity [7–9], or alter enantioselectivity [10,11]. Yet, despite their suc
cessful outcome, these protein engineering examples did not explore all 
possible amino acid configurations of the target enzymes, and conse
quently, the solutions found in evolution campaigns might be far from 
optimal. However, since the number of possible enzyme variants scales 

exponentially with protein sequence length, the screening burden 
imposed on researchers quickly becomes intractable when attempting to 
explore enzyme composition comprehensively. For illustration, a pro
tein composed of only 100 amino acids can be altered in 20100 ways, an 
astronomical number far exceeding even the estimated number of atoms 
in the universe [12]. Faced with this challenge, also called "the numbers 
problem in directed evolution" [13], protein engineers aim to navigate 
sequence space as efficiently as possible and constantly seek to develop 
novel methods to optimize the process. Existing approaches can broadly 
be classified into the categories of 1) directed evolution, 2) 
semi-rational, and 3) rational protein design (Fig. 1) and are often 
employed in accordance with the available screening capabilities and 
prior information about the enzymatic system [14]. 

Traditional directed evolution, which relies on gene recombination 
or whole-gene error-prone PCR to create diversity, is often associated 
with a heavy screening burden as many of the introduced mutations in 
the libraries are either neutral or unfavorable [15]. Positively, however, 
directed evolution does not require any prior knowledge about enzyme 
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function or structure to be effective. In contrast, rational enzyme design 
[16] aims to limit enzymatic screening efforts to only a few distinct 
amino acid substitutions [17]. The approach relies on an intimate 
knowledge of a protein’s function and/or structure and, as such, requires 
high predictive accuracy, which can be obtained – at least in part – 
through the interpretation of experimental data. Although bioinformatic 
tools such as AlphaFold 2 [18] have facilitated the access to high quality 
protein models, rational modulation of crucial residues often requires 
far more fine-grained information on receptor-ligand interaction net
works and dynamics. Additionally, significant in-silico efforts might be 
required to resolve uncertainty around specific mechanisms and illu
minate required factors between interaction partners to drive a desired 
reaction [19]. Even with the advanced bioinformatic methods available 
today, it can be challenging to rationalize which sites, specific residues, 
or combinations should be selected when optimizing a protein for a 
certain task. 

Lastly, semi-rational protein engineering fuses elements of rational 
design and directed evolution to create more focused enzyme libraries of 
higher quality [4,20]. This combination leads to a more efficient sam
pling of the sequence space, resulting in a lower screening burden than 
completely random approaches [21,22] while allowing more leniency 
for computational limitations and inaccuracies. For example, re
searchers can investigate the 3D structure of an enzyme to identify the 
catalytic pocket and focus their engineering efforts only on this region 
which is likely to react more directly to amino acid exchanges. In this 
way, sequence space can be reduced while beneficial mutations can be 
largely sampled, as many of them are typically situated in the active site 
[23,24]. In practice, researchers often aggregate information from 
sources such as the target enzyme’s 3D structure, function, previous 
knowledge (for example, mutational data), phylogeny, docking, or 
machine learning to preselect potential hotspots [16,20]. Based on this 
information, focused libraries ranging in size from ~200–2000 enzyme 
variants are constructed. Such screening efforts are within the scope of 
what GC or HPLC systems can handle within a reasonable timeframe 
[25]. It should be noted, though, that semi-rational enzyme design also 
suffers from the "numbers problem in directed evolution", and in many 
cases, only a small fraction of the targeted variants can be analyzed 
experimentally. In addition, experimental throughput is hampered by 
limitations in the physical construction of complex gene libraries. 

Using standard molecular biology strategies, the creation of large, 
randomized libraries through methods such as error-prone PCR or the 
construction of a few specific variants through site-directed mutagenesis 
is easily possible. However, building large libraries made up of 

predefined enzyme variants often remains expensive and challenging. 
One exciting prospect to address the existing library construction bot
tlenecks is the use of micro-array-based "oligo-pools". These pools are 
mixes of up to several hundred thousand individually designed poly
nucleotides with < 300 bp length, synthesized through phosphor
amidite chemistry [26]. Notably, array-based oligo synthesis is orders of 
magnitude cheaper than traditional column-based synthesis routes, with 
costs ranging from US$ 0.00001–0.001 per nucleotide, depending on 
length, scale, platform, or vendor [27]. Considering a typical library size 
for semi-rational enzyme design (< 2000 variants) and a protein of 
approximately 300 amino acid length, oligo pools for focused libraries 
can consequently be ordered for roughly 2000 US$ [28], leading to 
material costs of approximately 1 US$ per variant. Consequently, 
despite issues like truncated DNA molecules and high error rates [29], 
the oligo-pool option could be more cost-effective than degenerate or 
reduced codon coverage primers traditionally employed for library 
construction strategies while allowing for much more flexibility in li
brary design. 

Relevant enzymatic properties to be optimized for industrial appli
cations include activity, thermo- and solvent stability, selectivity, and 
specificity [30]. As delineated above, reliably selecting appropriate 
amino acid residues for randomization to improve any of these traits is a 
challenging aspect of semi-rational enzyme design. Guiding principles 
might be to select residues near the binding pocket to engineer enan
tioselectivity [11] or substitute specific residues to redesign unstable 
protein regions to improve thermostability [31]. Especially the latter, 
namely the modulation of protein stability through the introduction of 
mutations, is a widely pursued goal, and different computational pro
cedures have been established to this end, including the use of sophis
ticated physical force fields, deep learning, and hybrid approaches 
[32–38]. 

Intriguingly, computational techniques can be helpful in ways that 
might not be immediately obvious. For example, we followed the logic 
that it seems much easier to predict destabilizing mutations than amino 
acid changes that stabilize a protein scaffold [38]. We consequently 
reasoned that methods developed to predict enzyme sequences with 
improved stability might be used in a much broader sense if they were 
uniquely used to identify destabilizing mutations. Through the exclusion 
of such destabilizing mutations, the design of solution-enriched enzyme 
libraries for the optimization of enzyme activity or any other desirable 
traits would be made possible. The resulting complex libraries could 
then, in turn, effectively be built using specifically designed oligo-pools. 

The ease of access to a new methodology plays a major role in its 

Fig. 1. Overview of protein engineering techniques. The different categories are sorted by their required screening effort from left (highest) to right (lowest). In 
traditional directed evolution, the sequence space (red box) is commonly explored randomly, with little additional information required. Rational design can be 
viewed as a complementary approach. Information about the system, which can include experimental data, knowledge of the mechanism, as well as computational 
techniques, is used to reduce the sequence space as much as possible, and areas within it are sampled selectively. Semi-rational design also relies on additional 
information to reduce the screening space; however, experiments and physical evaluation are still required. Notably, the boundaries between these techniques are 
often fluid, and the optimal engineering method depends on many factors, such as the complexity of the functional assay, available screening capabilities, or previous 
knowledge of the enzyme. Image inspired by Bornscheuer et al. [14]. 
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adoption [10]. Popular protein engineering tools such as PROSS [38, 
39], HotSpot Wizard [40] as well as FuncLib [41] and htFunclib [42] 
play a significant role in bridging the gap between computational and 
biological skills, allowing for faster and more efficient evolution cam
paigns [43]. The enumerated web servers help researchers design more 
stable enzymes, identify mutational hot spots, or develop specific 
multiple-point mutants in active sites to improve activity, respectively. 
Complementing these tools, we introduce LibGENiE, a web platform to 
pre-filter sequences with the aim to provide researchers with a list of 
deleterious mutations to exclude from enzyme libraries. Following the 
filtering step, which can be supplemented with additional information 
from other protein engineering webservers, LibGENiE can be used to 
design oligo-pools to construct the complex libraries. These 
information-enriched libraries will be particularly helpful in evolution 
campaigns that can accommodate the throughput of hundreds to thou
sands of variants per round. 

2. Results 

2.1. Predicting (and excluding) destabilizing mutations 

To set the basis for our approach, we analyzed available literature 
data of successful evolution campaigns, including data generated during 
the optimization of a carbonic anhydrase [8], a transaminase [44], a 
squalene-hopene cyclase [45] and a Kemp eliminase [7]. In a first step, 
we calculated the ΔΔG values, a measure of free energy changes upon 
mutation [34], for all possible amino acid substitutions at all sites in the 
selected wild-type enzymes using a cartesian ΔΔG protocol imple
mented in the Rosetta Protein Modelling Suite [46]. For example, in the 
case of an enzyme consisting of 300 amino acids, all possible 20 * 300 
ΔΔG values were calculated. These ΔΔG values can help approximate 
how mutations affect protein stability by comparing the free energy of 
the native and altered conformation of a protein. Negative values typi
cally refer to a stabilizing mutation, while strongly positive values 
denote destabilizing mutations. 

Following this protein-wide stability profiling, we analyzed in which 
range the ΔΔG values of the experimentally determined beneficial 
mutations of the selected enzymes were located: For example, we 
studied data generated by Codexis, a US-based company specialized in 
protein engineering, which evolved a carbonic anhydrase towards 
improved activity at higher temperatures. To do so, the researchers 
saturated all non-catalytic residues in a first evolution round [8], iden
tifying 84 unique carbonic anhydrase variants that performed better 
than the wild-type under their screening conditions. Our ΔΔG analysis 
indicated that most of the mutations observed in improved variants were 
within the lowest (stabilizing) 60% of predicted ΔΔG values hinting that 
a large part of the screening space could have been excluded a priori 
(Fig. 2b). Interestingly, we noted that while we could identify destabi
lizing mutations, the predicted ΔΔG values became much less infor
mative beyond a certain exclusion threshold. In general, it is estimated 
that 0.01 – 1% of all mutations are beneficial [47]. In the ΔΔG range 
where most of these improved enzyme variants were found (−7.5 to 4.7 
Rosetta energy units (REU), Fig. 2a), the measured fold improvement 
over wild-type did not show a correlation to the calculated ΔΔG values 
(Pearson correlation coefficient 0.006, Fig. 2a). 

To test the general applicability of this finding with examples from 
distinct enzyme families beyond enzyme class 4 (carbonic anhydrase), 
we turned to analyze the evolutionary trajectories of enzymes stemming 
from enzyme class 2 (transaminase), enzyme class 5 (squalene hopene 
cyclase) as well as a computationally designed enzyme (Kemp elimi
nase) based on a scaffold from enzyme class 3 (xylanase). The trans
aminase ATA-217, engineered towards synthesizing a chiral precursor of 
sacubitril, an active ingredient in the blockbuster drug Entresto, 
harbored 26 mutations in the final variant [44] whereas four mutations 
allowed the squalene hopene cyclase AciSHC to gain 
enantio-complementary access to valuable monocyclic terpenoids [45]. 
Kemp eliminase HG3, a computationally designed enzyme capable of 
catalyzing a proton abstraction reaction from 5-nitrobenzisoxazole, was 
optimized in 17 rounds of directed evolution to yield a variant with 17 
mutations whose catalytic activity rivals that of natural enzymes (kcat =

Fig. 2. a.) Density plot of predicted ΔΔG values (lower values correspond to higher predicted stability) of a carbonic anhydrase [8]. The blue density curve depicts 
the ΔΔG values of all possible single-point mutants, and the orange plot represents the ΔΔG distribution of the 84 beneficial single-point variants identified in the 
first round of carbonic anhydrase evolution. The ΔΔG range in which hits were identified is highlighted in orange. Additionally, the Pearson correlation coefficient 
between the activity of identified hits and predicted ΔΔG is shown. b.) Line chart of the same dataset as in a.). The x-axis refers to the sequence space when reducing 
it only through predicted ΔΔG values. For example, if we remove the variants with the highest 10% of predicted ΔΔG values (most destabilizing), 90% of the 
sequence space remains. The y-axis represents how many of the 84 reported hits can be found in a given remaining sequence space. For example, none of the 84 
reported hits are within the sequence space characterized by the highest 10% predicted ΔΔG values. This analysis is shown for the 20, 30, 40, 50, and 84 
best-measured hits (out of 84). As a comparison, the gray dashed line highlights the impact of reducing the sequence space randomly. 
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700 ± 60 s−1, kcat/Km = 230,000 ± 20′000 s−1 M−1) [7]. 
In all investigated evolution projects, we observed the general trend 

that destabilizing mutations were not incorporated in evolved enzyme 
variants. Notably, when comparing amino acid mutations predicted to 
be destabilizing as single point mutations in the wild-type enzymes to 
any reported beneficial single point mutation within the evolution 
campaigns (Fig. S1/S2), we deduced that almost all the strongly desta
bilizing mutations could be excluded confidently at the outset of the 
enzyme optimization projects (Table 1, Table S1, Fig. S1, Fig. S2). 
Concretely, from our datasets, we observe that 30–50% of mutations 
have a strongly destabilizing effect, which is in good agreement with 
previous reports [47–52]. This sequence space can be thus cut confi
dently from the outset of library design. Interestingly, in the case of 
evolved AciSHC, we observed a single outlier: Mutation A169P was 
flagged as destabilizing (21.5 REU) yet still appeared in the optimized 
squalene-hopene cyclase variant. Potentially, the destabilizing mutation 
was incorporated because AciSHC is a thermophilic enzyme whose 
scaffold would generally allow for more leeway toward introducing 
destabilizing mutations. 

Conclusively, the relationship between activity and stability is often 
complex, with reports of both negative [53–56] and positive correlations 
[57,58] between stability and function attesting to the fact that different 
enzymatic systems behave differently to mutations. Strikingly, as high
lighted in this work, employing the opposite approach for the con
struction of information-enriched libraries seems much more reliable: 
Strongly destabilizing mutations are often accompanied by a loss in 
function (Table 1, Fig. 2), consequently enabling their early exclusion 
from the sequence pool. 

2.2. Oligo pools for library creation 

Promisingly, as seen above, reducing the amino acid alphabet in gene 
library preparation can be facilitated through computational tech
niques. Yet, it is equally important to have in mind that such a process 
might lead to libraries that are too diversified to be easily and 
economically constructed. In this respect, it is important to consider the 
redundant nature of the genetic code in which the 20 natural amino 
acids are encoded by 61 sense codons. In consequence, researchers have 
tried to avoid using the heavily redundant NNN codon in library con
struction which additionally suffers from the occurrence of stop codons 
(N standing for any of the four DNA bases). Instead, they have turned to 
using primers harboring degenerate codons such as NNK (32 codons, 20 
amino acids), NDT (12 codons, 12 amino acids) or using the 22c (22 
codons, 20 amino acids), and 20c (20 codons, 20 amino acids) tricks [13, 
59,60]. 

Unfortunately, the current strategies using degenerate codons are 
not suitable to build the information-enriched libraries stemming from 
our computational workflow, in which each targeted mutation site 
would demand the inclusion of only certain amino acids (Fig. S3). Thus, 
we set out to evaluate the feasibility of using micro-array-synthesized 
oligonucleotides, commercially available under the term "oligo-pools", 

for constructing the complex libraries derived from our stability filtering 
strategy (Fig. 3a, Fig. S3). 

In particular, we opted to focus our attention on single-point residue 
exchanges. As there are limitations to the synthesis length of oligo-pools 
[29], desired mutations must be split across multiple fragments or 
"sub-pools" (Fig. 3a), which can be separated from the main pool with 
sub-pool specific primers. These sub-pools consist of individual oligo
nucleotides, each carrying a single mutation, which can be introduced 
into the gene of interest through traditional molecular biology tech
niques, such as gene splicing by overlap extension PCR (SOEing) [61]. 

To evaluate the suitability of the oligo-pools for the construction of 
tailored enzyme variant libraries, we ordered a pool of 200 oligo se
quences encoding the initial 157 bases of the Kemp eliminase HG3 [7]. 
To create diversity for sequence analysis, three consecutive adenine 
nucleotides were introduced within four spatially distinct regions of the 
157 bp gene fragment (sequence A: bp 30 – 32; sequence B: bp 62 – 64; 
sequence C: bp 93 – 94; sequence D: bp 124–126) and each such 
sequence was ordered in the pool fifty times. Following fragment 
amplification and cloning, we noted relatively high rates (~50%) of 
undesirable sequences, split between either wild-type sequences or 
multiple-point mutants (Fig. 3b). This high fraction of incorrect se
quences was not wholly unexpected and correlates to the range reported 
in previous projects that leverage oligo pools for single-point mutation 
library creation [62–64]. 

Oligo pools suffer from the low concentration of individual oligo
nucleotides [29] making an initial amplification step indispensable 
[65]. In fact, depending on the number of projects combined within one 
oligo pool, it might be required to perform this amplification twice: once 
to isolate the sub-pools [66] and then again to separate the individual 
fragments. We suspected that these PCR amplification steps introduce 
additional errors into the oligo-pool libraries through uncoupling events 
that lead to truncated PCR products. These truncated gene products can 
serve as primers during the next PCR cycle [67,68], either picking-up 
additional mutations (leading to multiple-point variants) or over
writing desired mutations altogether (resulting in wild-type). As the 
prevalence of PCR abortions is affected by multiple factors, such as the 
concentration of nucleotides, the number of PCR cycles, and the poly
merase used for amplification [69], we opted to optimize the amplifi
cation procedure. 

To do so, we investigated ways how to improve the overall sampling 
efficiency of oligo-libraries by testing different polymerases (Q5, Phu
sion, and KAPA polymerase), dNTP concentrations, and varying 
amounts of PCR cycles (15, 30, and 45) for their impact on the formation 
of undesired gene fragments. Using the same oligo-pool analysis set-up 
as described previously, it became clear that neither the dNTP concen
tration nor the number of PCR cycles significantly impacted the number 
of corrupted sequences (Fig. S4). However, the choice of polymerase 
showed an influence on gene fragment integrity (Fig. 3b): While Q5 and 
Phusion polymerase led to 47.5 – 60% correct fractions, KAPA poly
merase was found to be most suited for oligo-pool amplification (> 60% 
correct fragments). The remaining undesirable sequences were split 

Table 1 
Overview of how ΔΔG values of single mutations found in the final improved variants of the selected evolution campaigns are distributed within the context of all 
possible calculated ΔΔG values for the wild-type enzymes. In this analysis, the most destabilizing mutations in the context of the wild-type enzyme are gradually 
removed (in 10% steps), reducing the theoretical sequence space from left to right. The remaining sequence space is analyzed with respect to its harboring the amino 
acid substitutions found in evolved enzyme variants and the value is given in percent (%). For example, in the case of HG3 evolution, a focused library in which the 40% 
most destabilizing mutations are removed from sequence space would still contain all the 17 beneficial mutations identified in the final variant.    

Sequence space (%) 

Dataset  # Mut 100  90  80  70  60  50  40  30  20  10 
ATA217 26 100  100  96.2  92.3  88.5  73.1  73.1  61.5  53.8  42.3 
HG3.17 17 100  100  100  100  100  82.4  52.9  52.9  47.1  41.2 
DvCA 36 100  100  100  97.2  91.7  77.8  61.1  44.4  38.9  13.9 
AciSHC 4 100  75  75  75  75  75  75  50  50  50                      

average  100  93.8  92.8  91.1  88.8  77.1  65.5  52.2  47.4  36.8  
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between wild-type (28.3%) and primarily double-point mutants (8.1%) 
(Fig. 3c). In summary, we advise that these rates should be considered 
when designing the sampling strategy of directed evolution studies. 

3. LibGENiE: a webserver for smart library creation 

To facilitate the design of solution-enriched gene libraries and their 
subsequent construction with the oligo-pool technique, we set up a web 
server named LibGENiE (available at www.libgenie.ch). 

LibGENiE provides data sets compiling common protein properties 
relied upon in rational design, including phylogenetic conservation 
(extracted from a multi-sequence alignment generated from three 
rounds of PSI-BLAST with default settings [70]), stability (predicted 
from protein free energy changes upon point mutations, ACDC-NN 
[71]), and flexibility (generated from MEDUSA [72]). 

These tools were chosen based on open access (e.g., license situation) 
and computational demands. For example, Rosetta, a highly accurate 
and widely used modeling tool (Table S1), can only be freely accessed by 
academic users and government laboratories. Additionally, the compu
tational resources required to perform stability predictions with Rosetta 
for all possible single-point mutations in a target protein can be pro
hibitive for a free-of-charge webserver. With these limitations in mind, 
we designed the webserver LibGENiE with the intention of giving the 

broadest possible access to the filtering and oligo design methodology. 
Complementary information, such as ΔΔG calculations by other 
methods (for a comparison of available methods please consult [73]), 
knowledge about relevant amino acid sites, the location of the active 
pocket, tunnels, or hot spots derived from alternative predictive tools (e. 
g., HotSpot Wizard [40], Caver [74], PLIP [75], or FireProsASR [76]) 
can be valuably employed to further fine-tune the filtering step. 

Following library design, LibGENiE allows to generate custom oli
gonucleotides for library construction (Fig. 4), which can be designed 
based on the preceding in-silico filtering. In addition, based on a selected 
maximum gene length, LibGENiE splits the input sequence into even 
sections and designs the required amplification primers. 

Initializing LibGENiE only requires the user to provide a protein 
sequence in the range of 80 – 600 residues. From this, a sequence 
alignment for the input sequence is generated through three rounds of 
iterative PSI-BLAST [70]. As detailed below, the multiple sequence 
alignment then serves as the foundation for all further processing. 

3.1. Thermodynamic stability 

Quantifying the change in free energy between the wild-type protein 
and a single point variant is mainly associated with expression or sta
bility optimization; however, as delineated above, knowing which 

Fig. 3. a.) As oligonucleotides ordered within oligo-pools are limited to < 300 bp in length, the target gene must be split into smaller fragments below this size. These 
mutations can then be introduced into the desired gene through standard molecular biology techniques such as SOEing [61]. b.) Fraction of correct sequences in the 
amplified oligo-pool. The experiments were conducted with varying amounts of PCR cycles (15, 30 and 45), as well as different polymerases (Q5, Phusion, KAPA). 
The error bars denote the average and error of experiments that vary in their dNTP concentration. c.) Overview of library quality resulting from fragment ampli
fication with KAPA polymerase using 30 amplification cycles. Sequencing highlighted that 63.6% of variants were produced correctly (one desired mutation – green), 
while 28.3% wildtype sequences (blue) and 8.1% sequences that contain two or more mutations were observed (red). 

Fig. 4. Schematic overview of the LibGENiE landing page and workflow. Based on the user input sequence, three rounds of PSI-BLAST are performed through the 
EMBL-EBI API [70]. The acquired multiple sequence alignment (MSA) information is then further processed to predict stability (ACDC-NN [71]), flexibility (MEDUSA 
([72]), and conservation (MSA from PSI-BLAST). LibGENiE provides raw access to this data, which can be used to restrict the sequence space. In addition, LibGENiE 
offers a tool for the design of oligo sequences. 
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residues completely destabilize an enzyme provides a valuable input to 
reduce sequence space of enzyme libraries dedicated to the optimization 
of functions beyond these enzyme characteristics. To allow filtering of 
sequence space, LibGENiE will initially attempt to predict the stability of 
each possible single site variant from the corresponding protein 
sequence employing the structure-based version of ACDC-NN, an anti
symmetric neural network [71]. The structure required to run the al
gorithm is modeled through the ESM-esmfold_v1 API [77]. If no 3D 
structure of the protein of interest can be modeled, LibGENiE falls back 
to sequence-only predictions through ACDC-NN Seq, a model that has 
been described to favorably compare with other state-of-the-art 
sequence-based prediction tools as well as some structure-based ones 
[78]. 

Even though the Rosetta cartesian-ΔΔG protocol outperforms ACDC- 
NN on our benchmark datasets (Table S1 and S2), it is important to note 
that inference on ACDC-NN is orders of magnitude faster and published 
under a very permissive license allowing to give unrestricted access to a 
broad user community. As delineated above, fine-tuning of the filtering 
step with information obtained from complementary web servers can be 
used to further reduce the size of the resulting information-enriched 
libraries. 

3.2. Evolutionary information 

Using the MSA, the observed conservation percentages of all 20 
amino acids at each position is calculated. This information might be 
used to "restrict" the allowed sequence space or implement consensus/ 
frequency ratio-based engineering techniques. The intuition behind 
restricting the allowed sequence space – which is to exclude residues 
that are never observed in closely related wild-type enzymes – is that 
deleterious mutations tend to be purged by natural selection [38]. 
Consensus or frequency ratio techniques introduce changes where the 
wild-type residue diverges the most from the most common amino acid 
(consensus) in the multiple sequence alignment. Such changes have 
been observed to increase stability [79–84] and are explained in detail 
by Damborsky et al. in their publication accompanying the release of 
HotSpot Wizard 2.0 [85]. 

3.3. Structural flexibility 

Introducing mutations to rigidify flexible positions can yield proteins 
with improved stability [86]. This technique builds on the notion that 
selective substitutions of mobile residues can introduce additional 
interactions/contacts between neighbors [87,88], causing enhanced ri
gidity, which in turn leads to higher thermostability [89]. A typical 
experimental metric for protein flexibility is the B-factor, which reflects 
the X-ray scattering caused by thermal motion [90]. However, as 
B-factors are an experimental metric, and crystal structures are not 
available for all proteins, computational tools have been developed to 
predict them. In LibGENiE, we provide predictions of flexibility from 
one such tool, MEDUSA [72], a deep-learning-based protein flexibility 
model trained on experimentally determined B-factor values. 

3.4. Oligo design 

As outlined above, oligo pools are limited in length. To enable the 
introduction of single point mutations at any desired position within a 
target sequence, the gene must consequently be split into smaller sec
tions. Based on the provided input DNA sequence, LibGENiE’s oligo 
design tool divides the gene into fragments of desired length including 
all targeted single-point mutations. In addition, the sequences of the 
required amplification primers are designed. 

4. Conclusion 

Semi-rational protein engineering is an elegant compromise between 

directed evolution and rational design. It directly addresses the 
screening bottleneck of classical directed evolution while circumventing 
the need to have an absolute understanding of the sequence-function 
relationship in enzymes (and, consequently, the required computa
tional resources). To conduct semi-rational protein engineering, several 
strategies to reduce sequence space have been developed and allowed 
the construction of powerful enzymes for synthesis [16,21,60,91]. In 
this spirit, we present how the prediction and removal of destabilizing 
mutations in gene libraries is an effective way to reduce sequence space 
resulting in information-enriched gene libraries for functional screening. 

However, when reducing sequence space, practical “wet-lab" 
experimental considerations also must be taken into account. Arbitrarily 
complex libraries cannot be constructed economically in most cases. 
Thus, improved DNA synthesis techniques will be essential to fuel the 
demands of an age defined by ever-increasing automation and powerful 
and accessible DNA sequencing instrumentation. In this vein, on-chip 
solid-phase gene synthesis presents itself as a compelling asset to 
semi-rational design as it allows to rapidly construct diverse and com
plex gene libraries [92]. Using this technology, researchers can build 
libraries tailored to their screening capabilities that can be scaled 
dynamically, often with no additional molecular biology overhead. 

To facilitate the adoption of mutational pre-filtering, for example 
through the exclusion of destabilizing mutations, we introduce the 
webserver LibGENiE for the construction of information-enriched gene 
libraries. By providing data sets comprising selected common metrics 
used for protein engineering, LibGENiE affords researchers with a 
starting point for identifying hot spots and a way to restrict the sequence 
space to match the bounds of their screening capabilities. LibGENiE was 
designed to be easily extendable with additional information, whether 
from already available web servers for protein design such as PROSS 
[38], HotSpot Wizard [40] and 3DM [93] or other computational tools. 
In fact, unlike other platforms, LibGENiE provides information for all 
possible single-point mutants in a user’s input sequence rather than 
suggesting preselected variants or hot spots. By providing unprocessed 
data, users of LibGENiE have more flexibility to introduce additional 
custom information and to define the number of variants to be evalu
ated, which can range from hundreds to thousands, depending on 
screening capabilities. 

5. Materials and methods 

5.1. Data 

The enzyme engineering datasets used for analysis were obtained 
from published manuscripts [7,8,44,45]. The dataset of single mutations 
in ATA217 [44] was generated by extracting the 26 mutations intro
duced in the final variant compared to the wild-type sequence. The same 
procedure was applied to obtain the HG3.17 dataset [7]. The 84 bene
ficial mutations and their activity for the DvCA dataset were published 
in the supplement information of [8]. The beneficial mutations for 
AciSHC stem from publication [45]. Beneficial single-site mutations 
refer to the highlighted beneficial variants obtained from a 14 single-site 
saturation screen (Table S1). 

5.2. Cartesian ΔΔG protocol 

ΔΔG predictions were based on a protocol published by the official 
Rosetta forums: https://www.rosettacommons.org/node/11126. Each 
mutant was predicted three times, and the lowest energy obtained was 
compared to the wild-type energies to calculate differences in free en
ergy. The protocol has been adapted from the original publication [34]. 

5.3. Oligo design 

A pool of 200 oligo sequences with a length of < 200 bp was ordered 
from Twist Bioscience. The sequence used were the first 157 bases of the 
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Kemp eliminase HG3 [7]: 
TGGCAGAAGCAGCACA

GAGCGTTGACCAGCTGATTAAAGCACGTGGTAAAGTT
TATTTTGGTGTTGCCACCGATCA
GAATCGTCTGACCACCGGTAAAAATGCAGCAATTATTCAGGCA
GATTTTGGTATGGTTTGGCCTGAAAATAGCATGAAAT. 

Four distinct spatial regions along the 157 bp fragments were 
changed to three consecutive adenines to create diversity for analysis. 
Each sequence was ordered 50 times in the pool. 

SeqA index: 30, 31, 32; SeqB index: 62, 63, 64; SeqC index: 93, 94, 
95; SeqD index: 124, 125, 126. 

The full sequences are listed in the supplementary information. 

5.4. Oligo pool amplification 

The oligo pools were amplified according to the protocol provided by 
Twist Bioscience [65]. For optimization purposes, the final dNTP con
centrations (0.3 mM each dNTP or 0.6 mM each dNTP), DNA polymer
ase (KAPA HiFi HotStart DNA Polymerase (Roche KK2601), Q5 
High-Fidelity DNA Polymerase (NEB #M0493), and Phusion 
High-Fidelity DNA Polymerase (NEB #M0530S) and the number of 
amplification cycles (15, 30, 40) were changed. 

5.5. Amplified pool sequencing 

After PCR amplification, the PCR pools were prepared, sequenced, 
and analyzed using Nanopore sequencing according to the protocol 
outlined in [94]. Correct sequences in which the expected nucleotide 
changes were detected were annotated as “1 mutation” (Fig. 3c). Se
quences harboring no or multiple mutations were classified as wild-type 
or multiple-point variants, respectively. 
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