
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

Towards Practical Dynamic Trust Monitoring of
Containerized Services in NFV Infrastructure

Valeria De Riggi, Raphael Vogt, Onur Kalinagac and Giirkan Giir
Inst. of Applied Information Technology (InIT)
Zurich University of Applied Sciences (ZHAW)

Winterthur 8401, Switzerland
valeria@deriggi.ch, raphael.vogt@grosswies.ch, {kalo, gueu }@zhaw.ch

Abstract-Although Network Function Virtualization (NFV)
and containerized services embedded therein are an already
active research field while becoming increasingly widespread in
practice (e.g., SG networks), the trust and security challenges still
deserve more attention. To tackle relevant issues for this aspect,
our work deals with the question of whether and how the issue
of trust assessment can be addressed in such infrastructures. Dif-
ferent trust models are reviewed, and the trust attributes used in
the literature are analysed and evaluated. These parameters are
subsequently included in a trust calculation framework for their
confidence analysis. Finally, a Dynamic Trust Monitoring (DTM)
solution, namely MicroDTM, that supervises the trustworthiness
of containerized services in an NFV infrastructure is proposed. By
collecting and processing the trust parameters, a containerized
service environment is evaluated according to trustworthiness
for different scenarios. In addition to performance analysis,
improvements and extensions necessary to use the system in a
practical environment are identified.

I. INTRODUCTION

Service providers, network operators and companies with
ICT infrastructure have been able to reduce capital and oper-
ating expenditure costs with the help of virtualised networks
and cloud computing [1]. From an economic point of view,
getting rid of own hardware or consolidated ICT environments
is lucrative. However, virtualised network environments, which
are used today in cloud environments or mobile infrastructure
such as 5G networks have the common feature of being
complex constructs [2]. As virtualised service environments
are highly software-based, they also offer a larger attack
surface in terms of software vulnerabilities and new attack
vectors [3]-[5]. Actionable and dynamically-assessed trust in
the infrastructure and software becomes a challenging problem
in this setting. Therefore, practical mechanisms such as trust-
awareness and monitoring solutions in addition to conventional
security measures for securing and protecting these systems
are imperative.

The deployment of these pervasive digital systems is driven
by many mission critical applications being transformed into
connected ubiquitous services. For instance, 5G networks
found numerous use cases such as in the areas of health,
manufacturing or transport systems, e.g., in autonomous ve-
hicles or in smart city context [6]. The requirements imposed
by those applications also lead to the question of how to
dynamically monitor and appropriately measure the trustwor-
thiness of containerized services and NFV infrastructures. That

capability is crucial for taking mitigation actions in deterio-
rating security posture, achieving resilience or optimizing the
placement of critical services (e.g., in the selection of network
slices). It is expected to be even more instrumental with the
introduction of native cloud architectures and Containerized
Network Functions (CNFs) in future networks such as 6G [7].
Moreover, these networks are expected to have an open, multi-
party and service-based architecture where the infrastructure
includes not just the network operator assets, but third-party
services and devices working together to realize advanced
services. Therefore, it is crucial to monitor and quantify trust
for deployed assets and services from different entities, since
zero-risk security cannot be achieved [6].

The main objective of this work is to address the question of
how the trustworthiness of these complex virtual network envi-
ronments can be evaluated practically and with lean schemes.
We first assess related work and explain and lay out basic terms
as they are used in our work. Subsequently, we address theo-
retical aspects of trustworthiness and present the Microservices
Dynamic Trust Monitoring (MicroDTM) solution1. The open-
source MicroDTM Proof-of-Concept (PoC) is run in a test
environment which presents a reference NFV framework and
deployed microservices therein. The adopted trust metrics are
then evaluated and assessed in terms of effectiveness. Finally, a
review of the experimental results is described and conclusions
are drawn.

II. BACKGROUND AND RELATED WORK

In the technical literature, the definition of trust varies as
demonstrated in [8]-[11]. Before discussing the definitions of
the individual MicroDTM trust attributes, various concepts
of trust from different related work are presented in this
section. [8] describes trust as a belief with dynamic fixed
value tied to a context and time. The authors assign dynamic
values of this "firm belief' using a trust range consisting of
six grades. Moreover, trustworthiness can decay over time: If
x should trust y at t1 the level of trust will be set lower a year
later at a time t2 assuming that no more interactions have taken
place between x and y during this time. Goyal et al. uses [8]'s
definition of trust as a basis for their Quality of Service (QoS)

1 MicroDTM source code is available at https://github.com/BA22gueu01/
MicroDTM as an open-source project.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

TABLE I
TRUST NOTATIONS ACCORDING TO SUN AND DENKO [10].

Term I Description
TA(B) Trust-value device A looks at device B
OA(B) Observation value derived from the direct observation of

device B by device A
RA(B) Recommendation value derived from the recommendations to

A by other devices regarding B

based trust mode in [9]. In that regard, trust is described as "an
entity based on reliability and firm belief based on attribute
of the entity". The authors state that numerous works consider
behaviour-based algorithms as well as rank-based trust models
to map their models to real paradigms but data center and QoS
parameters are not considered. In [10] three stages are shown,
where the first two stages are for calculating and periodically
updating the trust value, and the last is to delete expired
entries. The definitions used for the trust value computations
are depicted in Table I. The trust value ranges from -1 to
1, where the more a device trusts another device the higher
the trust value is. A trust value of 0 indicates that no trust
information is available. For instance, TA(B) = 1 means
Device A has complete trust to Device B while -1 means
complete mistrust.

The direct trust computation is represented by:

(1)

where f represents the particular function transferring the
direct observation value to the corresponding trust value. The
indirect computation is represented as:

W1 • J(OA(B)) + W2 • RA(B)
if OA(B) =f. 0, where w1 + w2 = l,

w1 > 0, and w2 > 0
W3 • RA(B)

if OA(B) = 0, where 0 < w3 ::; land
W3?: W2

(2)

where w1 and w2 represent the weights by which the observa-
tion and recommendation value scale. RA(B) represents the
recommendation value and results from the average of trust
values given to device B by all neighbouring devices of A as:

(3)

where TA (Di) > 0. This is to prevent device A from accepting
recommendations from untrustworthy devices. Furthermore,
the trust value should be updated and maintained periodically
for reliability and safety reasons after the initial trust calcula-
tion. The update calculation is based on the current behaviour
and previous trust value as:

if T,4(B) + CA(B)?: 1
if T,4(B) + CA(B):::; -1
otherwise

(4)

where TA(B) represents the new trust value after re-
computation and T,4(B) the old trust value. CA(B) is a
customizable parameter based on the current behaviour of
device B where -1::; CA(B) :::; 1.

Trust attributes differ depending on the reference which
defines trust and related concepts [12]-[14]. [15] describes
the trustworthiness of software systems with the help of six
key attributes with the attribute QoS subdivided into three
quality characteristics, namely Availability, Reliability and
Performance. We can define these six attributes as follows:

a) Correctness describes the degree to which a system
satisfies its requirements. With the help of verification and
validation, the correctness of a software system is reviewed
whether it meets the specified requirements respectively if the
system fulfils the expectations of its users.

b) Safety implies that nothing bad happens. The term bad in
this context describes a measure of the probability and severity
of harm to a user or its environment. This parameter was
omitted from the implementation of our MicroDTM due to
the complexity of its measurability.

c) Availability is the probability that a system can provide
and fulfil a certain service at a certain time without errors or
interruptions.

d) Reliability depends on how likely it is that the system
will generate errors or that the system will fail completely
with reference to how long it will take to recover the system.

e) Performance refers to the ability of a system to process
a certain request in a given unit of time.

f) Security: The most used definition for security is the CIA
triad, which stands for confidentiality, integrity, and availabil-
ity. This means that data should be secured from unauthorised
read access, unauthorised modification, and available.

III. MICRODTM DESIGN AND IMPLEMENTATION
For MicroDTM operation, the open-source platform Open-

Stack is used as IaaS with the lightweight Kubemetes distri-
bution MicroK8s [16]. The latter is used for the automated
construction of containerised applications. In this system, a
cluster is running based on the Kubemetes example appli-
cation Sock Shop [17]. The data from different Sock Shop
Kubemetes pods are then collected by Prometheus for trust
calculation.

A. Trust Calculation Workflow
The MicroDTM trust workflow is shown in Figure 1. Our

trust calculation is based on the trust score concept by Joseph
et al. in [14]. A streamlined mechanism for trust calculation
was proposed, with each main parameter equally weighted.
We changed their five parameters, namely persistence, com-
petence, reputation, credibility, and integrity, to the trust pa-
rameters listed and detailed in [15]. Our changes also include

Dynamic Trust
Decision

Availability Performance Reliability Security Correctness

Grade >
Threshold?

Gathering
Parameter Values

False

Value allocation
of 0

None/
unclassifiable

System under
Test

Parameter Monitoring

Parameter Calculation

Positive value
between 0 and

5

True

Negative value
between 0 and -5

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

/ z z z z 7

Fig. 1. Flow chart of gathering trust parameter grades and dynamic trust
scoring in MicroDTM.

additional attributes for the trust calculation that we consider
to be essential. A discussion about the sub-parameters and
weights used is provided in the following sections. Table ill
summarises the most important metrics.

a) Scale: Our scale for trustworthiness is based on [10].
The authors used an intuitive scale ranging from -1 to 1, with
-1 as untrusted, 0 as neutral, and 1 as trusted. Furthermore, we
increased the scale to [-5,5] to have a bigger range. This allows
us to detect the effects on the trust score more granularly.

b) Trust T Calculation at t = 0: We implemented our
MicroDTM to use historical data if available. If the data was
available, we calculated the grades for the last 24 hours as
if our system was running. If the data was not available, we
set the grade to O for every hour. That provided us a flexible
deployment and test setup.

c) Updating and Averaging Grades: We split our sub-
parameters into two groups: the first was updated daily and the
second hourly. For the latter, we saved the last 24 values and
calculated the final score by averaging. We used this approach
to mitigate the effect of spikes in our parameter measurements.

d) Multiple Pods: Our test environment consisted of multi-
ple pods with multiple containers. To counteract the problem
of different number of containers per pod, hree subcategories
for trust calculation were used: Prometheus request, kubectl
request, and external request. For Prometheus requests, each
container was graded. The average of all container grades
resulted in the final sub-parameter grade. If data could be
collected with the kubectl request, we calculated a grade
for each container per pod. Afterwards, their mean value
was calculated for the grade value of the corresponding pod.
The sub-parameter grades were calculated by averaging over
the pod grades. All queries containing external requests were
directly mapped into a single grade.

B. MicroDTM Trust Parameters
Please note that our trust parameters are not mutually

orthogonal, i.e., they may have overlapping behavior due to
dependencies between system elements.

TABLE II
GRADING S CHEMA FOR RELIABILITY AND PERFORMANCE

Reliability Performance
Grade Status Initial hourly Patch Response Memoi; Disk CPU

Code Log Log Level Time Usage Ac- Us-
Com- Level Level Count cess age
pari- Count Count
son

5 < 0.25 < 1000 < 10 OS < 0.5s < 70% < 25% < 75%
updated,
all pods
updated

0 < 0.5 :<=;3000 :<=;40 OS <Is :<=;85% :<=;50% :<=;90%
updated,
some
pods
outdated

-5 :2'.0.5 > 3000 > 40 OS out- :2'. ls > 85% > 50% >90%
dated

1) Availability: For availability, we used uptime U which
is calculated every hour with values queried from Prometheus.
The current value and the value from an hour ago were
queried. Then we calculated the normalized uptime U as
follows:

U = uptimenow - uptime1ast
timenow - time1ast

(5)

We then classified the uptime according to the availability
nines as per the SLAs of Telstra Corporation [18], AWS,
and Microsoft Azure [19] leading to the ranged values
(Availab-ility : Grade) E{(99.9%:5), (95%:4), (90%:3),
(75%:0), (50%:-5)}

2) Reliability: For reliability, we used three sub-
parameters: Status Code Comparison, Log Level Count,
and Patch Level. The scoring per individual sub-parameter
grade is depicted in Table II.

a) Status Code Comparison: This is a comparison between
the 500 HTTP request state, i.e. calls with errors, and the
200 HTTP request state, i.e. calls without errors. We queried
Prometheus for the current number of these responses and
the number of responses an hour earlier. We then calculated
the amount of 200 and 500 responses in the last hour and
then divided the amount of 500s by the amount of 200s. This
quotient was then made into a grade according to Table II.

b) Log Level Count: To get this value we accessed the logs
of every pod and counted the number of warnings and errors.
Afterwards, we calculated the overall average. For the initial
calculation, we counted the number of all errors found in the
logfiles. Since the age of the log files is not determined, the
thresholds for errors and warnings were set high. After the
initial calculation, we saved the number of the Log Level
Count, so we could constantly update the number of newly
added log messages at hourly intervals. We calculated the
grades during the updates with the errors and warnings from
the last hour. For the Log Level Count grading, two different
scales were used as depicted in Table II.

c) Patch Level: To calculate the Patch Level, we examined
every pod for available updates by using the kubectl and exec
commands and the internal update system of the corresponding

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

Linux distribution. If the system is outdated and updates are
available, we returned -5 as a grade. If the operating system
is up to date but some of the used packages are outdated, the
system returned -2.5 or 2.5 as a grade according to the number
of out-of-date packages. And if everything was up-to-date, we
set the grade to 5.

As the Log Level Count can be high even in a good
and reliable system we weighed this sub-parameter half in
comparison to the other two, i.e., the Status Code Comparison
and Patch Level parameters.

3) Performance: The performance grade is calculated with
the help of four sub-parameters: Response Time, Memory
Usage, Disk Access, and CPU Usage. These four parameters
are gathered from Prometheus and include the standard per-
formance values similar to common monitoring solutions. The
contribution of each parameter is context-dependent including
the application. We weighed them equally except for response
time, which we gave a doubled weight, because our test system
is a web shop and response time is the parameter that is
directly experienced by customers.

Response Time: These grades were calculated based on [20].
Memory Usage: These grades were calculated based on [21].
Disk Access: Disk Access was split into two parts: Disk

Write and Disk Read. Grades were calculated according
to [22]. Since the Prometheus query includes the quotient
of the time of the disk read to the write query in seconds
for the completed queries, percentages are assigned to the
grades for the weighting of the parameters. After calculating
the grades for each part an average of the two was calculated.
This resulted in the Disk Access grade.

CPU Usage: For mapping the CPU usage to the highest
grade, the recovery grade in [23] was used. The overload
value in [24] was used for the worst weighting. For the neutral
weighting, the medium threshold in [25] was used.

4) Correctness: For Correctness, an API call was executed
every hour. Subsequently, we compared the response to the
values stored in the database. If the values corresponded to
the values stored in the database, the grade 5 was given.
Otherwise, the grade -5 was set.

5) Security: Security is a wide topic which can be in-
tegrated into trust calculation in various schemes. We have
picked three important elements for our PoC.

a) Vulnerability Check (security testing based): We imple-
mented a vulnerability check scheme consisting of SSL Labs
Scan [26], Nikto [27], [28], and Mozilla's HTTP observa-
tory [29]. All these products were queried via their APis and
then each result was mapped to a grade from -5 to 5. As the
final grade, we took the average of these three grades. SSL
Labs Scan and Mozilla's HTTP observatory returned grades
from A to F, where SSL Labs additionally returns the values
T and M if the tool encounters an out-of-scope situation. This
occurs in the case of certificate name mismatch (M) and if the
site certificate is not trusted (T)* [30]. Nikto's result consists
of a list of vulnerabilities and misconfigurations detected. We
linearised this number V into a grade according to (6):

TABLE ill
MICRODTM PARAMETERS AND THEIR WEIGHTS IN THE TRUST

CALCULATION.

Parameter Sub- Weight Update Initial Cal- Avera-
Parameter Time culation ging

Availability (A) Uptime 1.0 Hourly Last 24h Last 24
Reliability (R) Status 0.4 Hourly Last 24h Last 24

Code
Compari-
son
Log Level 0.2 Hourly No Last 24
Count
Patch 0.4 Daily No No
Level

Pe,fonnance (P) Response 0.4 Hourly Last 24h Last 24
Tune
Memory 0.2 Hourly Last 24h Last 24
Usage
Disk 0.2 Hourly Last 24h Last 24
Access
CPU 0.2 Hourly Last 24h Last 24
Usage

Correctness (C) Call Cor- 1.0 Hourly No Last 24
rectness

Security (S) Vulnerability 0.5 Daily No No
Check
Certificate 0.3 Daily No No
Check
AppArmor 0.2 Daily No No

Grade = 5 - min[V /2, 10] (6)

b) AppArmor (host based): AppArmor is a security system
which provides access control mechanisms for programs. If
AppArmor was enabled, we gave the grade 5, otherwise, the
grade -5 was assigned. After checking all pods, we calculated
an average over all pods.

c) Certificate Check (PKI based): We verified the certificate
by sending an HTTP and HTTPS request to the corresponding
domain name. The HTTP request in advance to the HTTPS
request was used to check if the site was available. If the
site was not available, we gave the grade 0. If the site was
available, we gathered the certificate information and checked
if the certificate was valid and not expired. The validity
is determined similar to the validity check of a browser
or operating system with the help of the certificates in the
certificate store. If the certificate was invalid or no certificate
was available, we gave the grade -5. If the certificate was valid
but expired, we gave the grade O and if the certificate was valid
and not expired, we gave the grade 5.

d) Weighting: Because the vulnerability check consists of
three different sub-parameters which check different aspects
of security, the vulnerability check is given a weighting of 0.5.
The web page certificate is one of the first indicators regarding
security for a customer. Thus we gave the Certification
Check a higher weighting compared to AppArmor, i.e., 0.3
for Certification Check and 0.2 for AppArmor.

Table III summarises all parameters and their sub-
parameters including their weighting. In addition, the update
and initial calculations are given and whether or how an
average is calculated over the values.

Namespace: monitoring

Namespace: sock-shop

grafana

Namespace: trustcalc

trust-calc

MicroDTM

prometheus

...

WAN

External Requests
(certificate and vulnerabilities check)

orderspayment

carts

... ...
Prometheus Requests

Data Collection

Visualization

trust calculation

User

User Traffic

HTTP(s) request

HTTP(s) response

kubectl Requests

Gathering Trust Metrics

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

,,.:[E
,

.:.-----, 0 ----

Fig. 2. MicroDTM system and deployment.
Finally, the trust score was calculated with the following

formula.

T = WA * A + w R * R + w p * P + we * C + ws * S (7)

where T is the trust score and Wx was set to the factor 0.2 for
each parameter.

C. Test Environment
The overall MicroDTM system is shown in Figure 2.

As test environment, the 5G testbed of the National Centre
of Scientific Research Demokritos (NCSRD) in Greece was
used. In this network, the open-source platform OpenStack
and MicroK8s as the container environment are used. The
deployment of Sock Shop application consists of different
Kubemetes pods within one namespace. Istio service mesh has
a running container to get the data out of the pods. This data
is then collected by Prometheus and visualized by Grafana.
MicroDTM was implemented in Python. Microk8s was used
for deploying our MicroDTM as a Docker image in our test
system. Grafana was used to display the different values of
our MicroDTM graphically.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted in stages and focused on
dynamic changes in the (sub-)parameters and the resulting
trust score in MicroDTM. Due to different parameters, we
considered how individual parameter groups could be changed,
and also how cascading scenarios could be achieved.

A. Baseline
Before the first tests were implemented, we collected initial

data of the test environment in the normal state, i.e., without
high load and in everyday operation. This allowed us to make
comparisons with the values that emerged from the experi-
ments. Immediately, after starting the MicroDTM, a warm-up
period is needed to initialise the results before the parameters
converge to the normal state. This applies especially to those
parameters that do not have vector values of historical data to
calculate an average as a parameter grade. In the normal state,

TABLE IV
THE SYSTEM'S NORMAL STATE (NC: NOT CONSISTENT).

I Parameter I Value I Sub-Parameter I Value I

Availability 5 Uptime 5
Reliability 1.94 Status Code Comparison 5

Log Level Count 5
Patch Level -2.35

Performance 3.55 Response Time 5
Memory Usage 2.5
Disk Access 5
CPU Usage 5

Correctness NC Call Correctness NC
Security 4.88 Vulnerability Check 0.5

Certificate Check 5
AppArrnor 4.71

5 • ••• e Availability

4 e Reliability •••••• • ••• Q) • Performance
i63
(5 e correctness ••• •••••• • ••• •••• •••••• • ••• e security

e Trust Score

0
0 25 50 75 100 125 150

Time [min]

Fig. 3. Results of second DoS test.

the trust score is observed to reach an average value of 3.36.
The (sub-)parameters except for Correctness remain constant
at the values shown in Table IV. Particularly. the Correctness
grade changes sporadically and reaches different values.

B. Scenario 1: Denial of Service (DoS)
The idea behind a DoS test is to be able to influence as many

trust parameters as possible. In addition to Istio's Request
Timeouts module, the open-source Python program Golden
Eye [31] was used as a test kit for the DoS attack. Three
attempts of the DoS test were performed. At the first time, it
was impossible to read out data because the system crashed.
In the other two attempts, data could be read out. The second
run is shown in Figure 3 and the third in Figure 4. During the
unresponsiveness of the system, the affected sub-parameters
returned the grade 0. Therefore, it looks like most of the
parameters are missing. This also led to a small drop of about
0.15 in the trust score.

C. Scenario 2: Invalid Certificate
This test involves checking the trust score in the absence of a

valid intermediate and root certificate. The Sock Shop had not
implemented a certificate in our test environment since the web
request takes place directly via the IP address. Therefore, we
decided to perform the invalid certificate test on the website of
our university ZHAW. The results are shown in Figure 5. It can
be seen that after the installation of the root and intermediate
certificates the Certificate grade, Security grade and trust score
increase immediately.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

5 ••••••••••••••

4
•

3 ::::aa:1 : ::a:: • • • • • ..•
2

Q)

16 1
(9

0 •••••••

Q)

-1
-2 •••••••••••••• •

-3 •••••••••••••• •
-4

0 50 100 150
Time [min]

Fig. 4. Results of third DoS test.

••••••••••••••••••••••••
4 •••••••••••••••••••••••• ... ::
0

C, ••••••••••••
-2

-4
••••••••••••

-6
0 20 40 60 80 100 120

Time [min]

Fig. 5. Results of certificate test.

D. Vulnerability

• Trust Score
• Response Time
• Memory Usage
• Disk Read Usage
• Disk Write Usage
• CPU Usage

e Availability
e Reliability
• Performance
e correctness
e security
e certificate
e Trust Score

For the vulnerability tests, different domains were checked
iteratively for their dissimilarities so that wide-ranging results
could be achieved. With each daily update, i.e., during testing
for two hours, the next domain was reviewed. The correspond-
ing domain names are listed as { moodle.zhaw.ch, zhaw.ch,
mozilla.org, google.com, wikipedia.org}. As can be seen in
Figure 6 the Vulnerability test influenced the Security grade
as expected.

V. DISCUSSION

a) Baseline and (Sub-)Parameter Behavior: Most of the
(sub-)parameters achieved the expected results . The exceptions
are the Patch Level , Disk Write, and Correctness grades.

The Patch Level grade achieved negative values as most of
the pods in the sock-shop namespace are not patchable. Since

5---------------

0
0 100 200 300 400 500 600

Time [min]

Fig. 6. Results of vulnerability test.

e Availability
e Reliability
e Performance
e correctness
e security
e Trust Score

most of the pods cannot be checked and the ones that could
be successfully verified are outdated, the test results are in a
negative range.

The Disk Write grade also achieved negative values for the
most part. During the DoS test, this value increased while the
Disk Read Access value decreased. This change was to be
expected as during a system overload the disk has no data to
write and therefore the Disk Write Access value increases
because it requires fewer resources.

b) The Correctness Fluctuation: The Correctness pa-
rameter returned unexpected results. The variations occurred
during tests as well as in the normal state. Errors in the
implementation of the Correctness check in the MicroDTM
could be excluded. Analyses comparing the front end data with
the database values via API calls showed that values actually
do not match to some extent. Since we concluded that these
changes were due to poor application design, we omitted the
effects of it in further discussions.

c) DoS: The overall influence of the DoS test was
smaller than expected. If in a production scenario, the Mi-
croDTM were to decrease the Trust Score by only about 0.3
in total in the case of unresponsiveness of a system, this
would not lead to a change from trustworthy to untrustworthy
and accordingly the user would not be able to rely on the
MicroDTM in this respect. This is a potential improvement
for MicroDTM.

d) Interpretation of the Security Parameter Tests: The
effect of the security parameter tests was bigger than the effect
of the DoS test. Nevertheless, the tests still were not able to
give out a negative trust score.

e) Interpretation of the MicroDTM and Trust Scoring:
The MicroDTM is currently a PoC. This means that it has
been feasible to demonstrate the possibility of developing an
executable DTM which performs calculations, mappings, and
decisions about trusted and untrusted systems based on our
proposed trust metrics and thresholds. The important practical
limitations in the current implementation of MicroDTM are as
follows :

Memory: It has a limited "memory span" of 24 hours. This
could be a configurable system parameter.

Warm-Up Period: The MicroDTM needs a warm-up period
as long as the historical data it relies on.

Persistence: The collected data is not retained after system
restarts. Meaning that in case of a reboot, all the historical
data is lost, and the warm-up period must be re-initialised.

Single Process: The MicroDTM runs as a single process
application. This already led to problems during the testing
period where the daily update in the test environment took
longer than expected and blocked the hourly update. The daily
and hourly updates should be developed as two individual
processes for a production-grade MicroDTM.

Trust Restoration: During the testing period of MicroDTM,
we found that an untrusted system can regain trust much
faster than we intended. If we do small changes, for example
replacing an untrusted certificate with a trusted one, the overall
security grade increases rapidly. This is not the desired effect,

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICC45041.2023.10279302

as negative incidents in the MicroDTM should be "remem-
bered" for a longer period of time.

Trust Loss: In other experiments, we have seen that it is
difficult to lose trust after a single incident. Therefore, the
underlying trust calculation still needs to be improved in case
high sensitivity to such incidents is desired.

VI. CONCLUSION

In this work, we have developed an open-source dynamic
trust monitoring scheme based on network and service mea-
surements for service-based 5G networks. The MicroDTM
approach is also applicable for future networks since they
are envisaged to heavily rely on microservices for providing
elastic, pervasive and high-performance services. We identified
the practical problems on how such a system could be designed
(e.g., the utility of some common trust parameters) and the
practical problems of trust monitoring.

Future research includes the examination of whether the
division into processes for the calculation of the individual
parameter groups would lead to better results. Another im-
portant research direction is a more methodological selection
of threshold values and their optimization for more techni-
cally sound trust scoring. At the moment, these values are
determined based on related work and a heuristic approach.
Similarly, the weights of different parameters could be opti-
mized for a more realistic and accurate trust score calculation
in MicroDTM. Those weights may depend on the specific
characteristics of the monitored service chain or could be
optimized using some pre-generated or collected data sets via
machine learning approaches.

VII. ACKNOWLEDGEMENT

The research leading to these results received funding from
the European Union's Horizon 2020 research and innovation
programme under grant agreement no 871808 (5G PPP project
INSPIRE-5Gplus). The paper reflects only the authors' views.
The EC is not responsible for any use that may be made of
the information it contains.

REFERENCES

[1] M. D. Ananth and R. Sharma, "Cloud management using network
function virtualization to reduce CAPEX and OPEX," in 2016 8th Inter-
national Conference on Computational Intelligence and Communication
Networks (CICN), pp. 43-47, 2016.

[2] C. Suraci, G. Araniti, A. Abrardo, G. Bianchi, and A. Iera, ''A
stakeholder-oriented security analysis in virtualized 5G cellular net-
works," Computer Networks, vol. 184, p. 107604, 2021.

[3] T. Komperda, "Vrrtualization security." https://resources.infosecinstitute.
com/topic/virtualization-security-2/, 2012. Accessed: 2022-11-03.

[4] M. Alenezi and M. Zarour, "On the relationship between software
complexity and security," International Journal of Software Engineering
& Applications, vol. 11, no. 1, pp. 51-60, 2020.

[5] Y. Javed, M. Alenezi, M. Akour, and A. Alzyoud, "Discovering the
relationship between software complexity and software vulnerabilities,"
Journal of Theoretical and Applied Information Technology, vol. 96,
pp. 4690-4699, 2018.

[6] C. Gaber, J. S. Vilchez, G. Giir, M. Chopin, N. Perrot, J.-L. Grimault,
and J.-P. Wary, "Liability-aware security management for 5G," in 2020
IEEE 3rd 5G World Forum (5GWF), pp. 133-138, 2020.

[7] P. Porambage, G. Giir, D. P. M. Osorio, M. Liyanage, A. Gurtov, and
M. Ylianttila, "The roadmap to 6G security and privacy;' IEEE Open
Journal of the Communications Society, vol. 2, pp. 1094-1122, 2021.

[8] F. Azzedin and M. Maheswaran, "Towards trust-aware resource man-
agement in grid computing systems," in 2nd IEEF/ACM International
Symposium on Cluster Computing and the Grid, pp. 452-452, 2002.

[9] M. K. Goyal, A. Aggarwal, P. Gupta, and P. Kumar, "QoS based trust
management model for cloud IaaS," in 2012 2nd IEEE Int. Conference
on Parallel, Distributed and Grid Computing, pp. 843-847, 2012.

[10] T. Sun and M. K. Denko, ''A distributed trust management scheme in
the pervasive computing environment," in 2007 Canadian Conference
on Electrical and Computer Engineering, pp. 1219-1222, 2007.

[11] P. Govindaraj, ''A review on various trust models in cloud environ-
ment," Journal of Engineering Science and Technology Review, vol. 10,
pp. 213-219, 03 2017.

[12] H. Hassan, A. I. El-Desouky, A. Ibrahim, E.-S. M. El-Kenawy, and
R. Amous, "Enhanced QoS-based model for trust assessment in cloud
computing environment," IEEE Access, vol. 8, pp. 43752-43763.

[13] S. Romdhani, G. Vargas-Solar, N. Bennani, and C. Ghedira-Guegan,
"QoS-based trust evaluation for data services as a black box," in 2021
IEEE Int. Conference on Web Services (ICWS), pp. 476-481, 2021.

[14] A. J. John Joseph and M. Mariappan, ''A novel trust-scoring system
using trustability co-efficient of variation for identification of secure
agent platforms," PLOS ONE, vol. 13, pp. 1-19, 08 2018.

[15] S. Becker et al., "Trustworthy software systems: a discussion of basic
concepts and terminology," ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 6, pp. 1-18, 2006.

[16] Microk8s Project, "MicroK8s system." https://microk8s.io. Accessed at
2022-06-30.

[17] Sock Shop, "Microservices demo: Sock shop." https://microservices-
demo.github.io/. Accessed at 2022-05-10.

[18] M. Lewis, "Telstra guarantees 5G network uptime with enhanced enter-
prise wireless." https://www.mobilecorp.com.au/blog/telstra-guarantees-
5g-network-uptime-with-enterprise-enhanced-wireless. Accessed at
2022-05-24.

[19] 0. Shushan, "AWS vs. Azure vs. GCP I detailed compar-
ison." https://www.cloudride.co.il/blog/aws-vs.-azure-vs.-gcp-detailed-
comparison. Accessed at 2022-11-10.

[20] T. Hamilton, "What is response time testing? how to measure for API,
tools." https://www.guru99.com/response-time-testing.html. Accessed at
2022-06-05.

[21] Trend Micro Incorporated, ''Alert: The memory warning threshold
of manager node has been exceeded I deep security." https://help.
deepsecurity.trendmicro.com/aws/memory-warning-threshold.html. Ac-
cessed at 2022-05-08.

[22] B. Candler, "Interpreting prometheus metrics for linux disk i/o
utilization." https://brian-candler.medium.com/interpreting-prometheus-
metrics-for-linux-disk-i-o-utilization-4db53dfedcfc. Accessed at 2022-
06-05.

[23] Huawei, "Configuring the thresholds of CPU usage and memory usage
- NE05e and NE08e v300r003cl 0spc500 configuration guide - system
management 01 - huawei." https://support.huawei.com/enterprise/
en/doc/EDOC1100058923/bfc52bc9/configuring-the-thresholds-of-

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

cpu-usage-and-memory-usage#dc_ vrp_dev _cfg_0004. Accessed at
2022-05-08.
Progress Community, "Configuring a CPU threshold monitor - Progress
community." https://community.progress.com/s/article/Configuring-a-
CPU-threshold-monitor. Accessed at 2022-04-30.
Hewlett Packard Enterprise, "monitor cpu-usage threshold."
https://techhub.hpe.com/eginfolib/networking/docs/switches/5950/5200-
4005_fund_cr/content/499752694.htm. Accessed at 2022-04-30.
SSL Labs, "ssllabs-scan/ssllabs-api-docs-v3.md at master
ssllabs/ssllabs-scan." https://github.com/ssllabs/ssllabs-scan. Accessed
at 2022-06-05.
C. Kumar, "How to find web server vulnerabilities with Nikto Scanner?."
https://geek:flare.com/nikto-webserver-scanner/. Accessed at 2022-06-
05.
Sullo, "Nikto Web Server Scanner." https://github.com/sullo/nikto. Ac-
cessed at 2022-06-05.
Mozilla, "Mozilla HTIP observatory." https://github.com/mozilla/http-
observatory/blob/0b7928ee9d09a3f5dffdb8 lf27d3e5f80ef2024c/httpobs/
docs/api.md. Accessed at 2022-06-05.
SSL Labs, "SSL server rating guide - ssllabs/research wiki." https://
github.com/ssllabs/research. Accessed at 2022-06-08.
J. Seidl, "GoldenEye." https://github.com/jseidl/GoldenEye. Accessed at
2022-05-27.

