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ABSTRACT
Nowadays, Machine Learning (ML) systems are widely used in
various businesses and are increasingly being adopted to make de-
cisions that can significantly impact people’s lives. However, these
decision-making systems rely on data-driven learning, which poses
a risk of propagating the bias embedded in the data. Despite various
attempts by the algorithmic fairness community to outline different
types of bias in data and algorithms, there is still a limited under-
standing of how these biases relate to the fairness of ML-based
decision-making systems. In addition, efforts to mitigate bias and
unfairness are often agnostic to the specific type(s) of bias present in
the data. This paper explores the nature of fundamental types of bias,
discussing their relationship to moral and technical frameworks.
To prevent harmful consequences, it is essential to comprehend
how and where bias is introduced throughout the entire modelling
pipeline and possibly how tomitigate it. Our primary contribution is
a framework for generating synthetic datasets with different forms
of biases. We use our proposed synthetic data generator to perform
experiments on different scenarios to showcase the interconnec-
tion between biases and their effect on performance and fairness
evaluations. Furthermore, we provide initial insights into mitigat-
ing specific types of bias through post-processing techniques. The
implementation of the synthetic data generator and experiments
can be found at https://github.com/rcrupiISP/BiasOnDemand.
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1 INTRODUCTION
The increasing digitisation of society has led to a surge of available
data, driving the widespread adoption of Machine Learning (ML)
in various businesses, governments, and organisations. In many
domains, more and more ML-based decision-making systems are
used and produce outcomes that affect people’s lives. However,
algorithms, like humans, are susceptible to biases that might lead
to unfair outcomes [2]. Bias is not a recent problem; rather, it is
ingrained in human society and, as a result, it is reflected in data
[49]. The risk is that the adoption of ML algorithms could amplify
or introduce biases that will recur in society in a perpetual cycle
[14, 47, 51]. To prevent harmful consequences, it is essential to
comprehend how and where bias is introduced and how to mitigate
it.

Recent developments show the importance of trustworthy and
fair development of AI-based solutions. Many countries have started
debating the opportunity of introducing explicit regulation for AI-
based automated solutions, one of the risks being precisely that of
uncontrolled bias exacerbation and unfair discrimination.

The most important example in this respect is that of the Euro-
pean Union (EU). The European Commission has put out, in April
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2021, a Proposal for a “Regulation laying down harmonised rules
on artificial intelligence” (Artificial Intelligence Act) [20]. This Pro-
posal – currently in advanced stages of negotiation – is based on EU
values and fundamental rights, and seeks to foster trust in AI-based
solutions among users1 while encouraging their development by
businesses. Not surprisingly, much attention has been paid to ad-
dressing the issue of bias since the very first version of the Proposal.
In the US, the White House Office of Science and Technology Policy
has recently published a Blueprint for an AI Bill of Rights with 5
overarching guiding principles for AI systems design, development
and use, one of which is titled “Algorithmic Discrimination Protec-
tion” [50]. Alongside, binding legislation has been proposed, now
under discussion [48] – the Algorithmic Accountability Act. The UK
government published in July 2022 an AI Regulation Policy paper
where one of the pillars is “Embed considerations of fairness into
AI” [25], while more advanced and binding legislative proposals
are still to come.

Both academia and industry have recently launched many ini-
tiatives and projects with the ambitious goal of fostering the de-
velopment of bias-aware ML models. Following [49], we divide
these works into three main categories: understanding bias, which
includes approaches that help to understand how bias is generated
in society and manifests in data [59]; accounting for bias, which
includes approaches discussing how to manage bias depending on
the context, regulation, vision and strategy on fairness [14, 16];mit-
igating bias, which includes technical approaches aimed at reducing
bias throughout the ML development pipeline [6, 17, 22, 32].

One common approach to investigate algorithmic developments
is through synthetically generated data [40, 55]. The benefits of
this strategy include the possibility of examining circumstances not
available with real-world data but that may occur, and – even when
real-world data is available – to precisely control and understand
the data generation mechanism. Moreover, it is indisputable that
making data, and related challenges, accessible to the research
community for analysis could be of help for the development of
sound policy decisions and thus benefit society [55]. However, to the
best of our knowledge, a structured approach to generate synthetic
data including (various types of) bias is currently still missing.

1.1 Contributions
In this work, we aim to contribute to understanding, accounting for,
and mitigating bias by introducing a model framework for generat-
ing synthetic data with specific types of bias. Our formalisation of
these various types of bias is based on the theoretical classifications
present in the relevant literature, such as the surveys on bias in ML
by Mehrabi et al. [47], Ntoutsi et al. [49], and Suresh and Guttag
[59]. We provide an explicit mathematical representation of the
fundamental types of bias and link it with the stream of literature
that investigates their relation with moral worldviews. In particular,
following [30, 33, 35], we analyse some biases that our framework
is able to generate, considering their fundamental relation with
the worldview assumed. We leverage our framework to generate
different scenarios characterised by the presence of various types

1According to the AI Act, “users” are entities that employ AI systems after self-
development or purchase from the market. We shall use the same meaning throughout
the paper.

of bias. These scenarios highlight initial empirical insights relating
the effects of the presence of specific types of bias on the fairness
of ML-based decision-making systems on a group level and also on
the mitigation strategies that can be applied.

Our findings confirm previous theoretical results and intuitions:
We find that post-processing predicted scores can effectively miti-
gate different types of bias unless there is measurement bias on the
target variable and that this does not necessarily cause a decrease in
accuracy. This confirms the findings of Baumann et al. [6], Baumann
and Heitz [7], Rodolfa et al. [57]. However, many group fairness
criteria are mutually exclusive, i.e. satisfying some fairness criterion
comes at the cost of other notions of fairness, which is a logical
consequence of the impossibility theorems provided by Choulde-
chova [19], Kleinberg et al. [39]. Interestingly, the accuracy costs
of enforcing the fairness criterion demographic parity are higher
throughout many of the experiments compared to other notions of
fairness. Furthermore, our experimental results show that in the
case of measurement bias on some features, blinding a classifier (i.e.,
removing the protected attribute during training and prediction)
may introduce unfairness since using information regarding the
group membership would enable the classifier to cope with the bias,
which confirms the findings of Lipton et al. [41].

Our experiments do not cover the full range of possible scenarios
and applications in the field of fairness-aware ML that our system
can generate. Through an open-source implementation of the pro-
posed model framework, we aim to allow the research community
to exploit our synthetic data generator to create ad hoc scenarios
that are difficult to find in benchmark datasets available online. This
work aims to draw attention to the issue of bias in AI systems and
its potential impact on fundamental rights and legal compliance.
The objective is to raise awareness and promote the development
of equitable AI systems, aligning them with a shared set of ethical
principles.

The paper is structured as follows: in Section 2 we briefly dis-
cuss related work on synthetic data in ML; Section 3 is devoted to
background and related work on the bias landscape. In addition, we
discuss different types of bias, definitions of fairness, and bias miti-
gation techniques. Then, in Section 4, we provide a mathematical
formulation for these biases, which is implemented in our synthetic
data generator. Section 5 is devoted to presenting a series of ex-
periments where we make use of the synthetic data generator to
simulate different scenarios.We discuss some relevant findings from
the experiments in Section 6, together with concluding remarks.

2 SYNTHETIC DATA GENERATION
Synthetic data generation is a relevant practice for both businesses
and the scientific community. Two main directions in the research
on synthetic data are: the emulation of certain key information in
real dataset while preserving privacy [3, 55], and the generation of
different testing scenarios for evaluating phenomena not covered
by available data [40]. According with Assefa et al. [3], synthetic
representations should possess several desirable properties, includ-
ing human readability, compactness and privacy preservation. Notice
that synthetic data generation may also be a valid alternative to
data anonymisation as a means of preserving privacy in data to be
published or shared [46]. Indeed, synthetic data are typically newly

1003



Bias on Demand: A Modelling Framework That Generates Synthetic Data With Bias FAccT ’23, June 12–15, 2023, Chicago, IL, USA

generated data (thus different, by design, from real observations),
subject to constraints to protect sensitive personal information
while still allowing valid inferences [55].

Synthetic data generation can be approached in several ways, de-
pending mainly on the objective – see [28] for a detailed overview
of the techniques for generating synthetic data. When there is
(enough) real data available and the main goal is to emulate the
“structure” of that data, synthetic samples can be drawn from a
probability distribution learned from the real data. This is achieved
through distribution fitting approaches, such as Gaussian Mix-
ture Models or Hidden Markov Models, as well as modern Deep
Learning-based approaches, ranging from Autoencoders to Genera-
tive Adversarial Networks, Diffusion models and Language Models,
which are collectively referred to as Generative AI. If the objec-
tive is to create benchmark scenarios that comply with specific
properties, a possible strategy is to simulate instances using a set
of (stochastic) equations that represent the desired relationships
among variables. This approach is aligned with the method we
propose in the following.

Researchers in the field of algorithmic fairness acknowledge the
difficulty in finding suitable datasets for their experiments, relying
heavily on a handful of benchmark datasets, e.g. for studying and de-
veloping bias mitigation strategies [26]. To overcome this limitation,
it is not uncommon to use synthetic datasets to demonstrate specific
properties of a novel discrimination-aware method, as highlighted
in algorithmic fairness dataset surveys, such as [29, 40]. They show
that some works, such as [23], use well-known benchmark syn-
thetic datasets to validate fair representation learning, whereas
other studies, such as [6, 15, 24, 42, 56, 63], generate ad hoc toy
datasets for their testing scenarios. Reddy et al. [56], e.g. evaluate
different fairness methods trained with deep neural networks on
synthetic dataset: different imbalances and correlations are embed-
ded in the data to verify the limits of the current models and better
understand under which setups they are subject to failure.

3 BIAS LANDSCAPE IN ML
There is little consensus in the literature regarding bias classifi-
cation and taxonomy. Indeed, the very notion of bias depends on
deep philosophical considerations, and ethical issues are rarely re-
solved in a definitive and univocal way. Different understandings
of bias and fairness depend on the assumption of a belief system
beforehand. Friedler et al. [30] and Hertweck et al. [35] talk about
worldviews. In particular, Friedler et al. [30] outline two extreme
cases, referred to asWhat You See Is What You Get (WYSIWYG) and
We are All Equal (WAE).

Starting from the definition of three different metric spaces, these
two perspectives differ because of the way they consider the rela-
tions in between. The first space is the Construct Space (CS) and
represents all the unobservable realised characteristics of an indi-
vidual, such as intelligence, skills, determination or commitment.
The second space is the Observable Space (OS) and contains all the
measurable properties that aim to quantify the unobservable fea-
tures, think e.g. of IQ or aptitude tests. The last space is the Decision
Space (DS), representing the set of choices made by the algorithm
on the basis of the measurements available in OS.

According to WYSIWYG, CS and OS are essentially equal, and
any distortion between the two is altogether irrelevant to the fair-
ness of the decision resulting in DS. Contrarily, WAE does not make
assumptions about the similarity of OS and CS, and moreover, as-
sumes that we are all equal in CS, i.e. that any difference between
CS and OS is due to a biased observation process that results in
an unfair mapping between CS and OS. If WYSIWYG is assumed,
non-discrimination is guaranteed as soon as the mapping between
OS and DS is fair, since CS ≈ OS. On the other hand, according
to WAE the mapping between CS and OS is distorted by some
bias whenever a difference among individuals emerges (this differ-
ence is named Measurement Bias in [35]); therefore, to obtain a
fair mapping between CS and DS those biases should be mitigated
properly.

Building on [30], Hertweck et al. [35] describe a more nuanced
scenario by introducing the notion of Potential Space (PS): individu-
als belonging to different groups may indeed have different realised
talents (i.e. they actually differ in CS), and these may be accurately
measured by resumes (i.e. CS ≈ OS), but, if we assume that these
groups have the same potential talents (i.e. they are equal in PS),
then the realised difference must be due to some form of unfair
treatment of one group, that is referred to as life bias. Hertweck et al.
[35] call this view We Are All Equal in Potential Space (WAEPS).

With a different perspective, Suresh and Guttag [59] argue that
bias can also be seen as a source of harm that arises during different
stages of the ML life cycle. Indeed, the entire ML life cycle, from
data collection to model deployment, involves a series of decisions
and actions that can lead to unintended consequences. Even if
detected, it is difficult to establish the proper mitigation method for
dealing with biases. A first step in this direction is to understand the
different types of bias, their sources and consequences. Figures 1
and 2 exemplify the representation of the fundamental biases from
a philosophical (Figure 1) and technical (Figure 2) point of view.

It is important to distinguish between biases that arise during the
data collection (affecting the data generation) and biases that arise
during the development and deployment of the model (affecting
the system’s outcome). Namely, because in real cases, the former
typically depend on context and are inherent in the data without the
user being able to eliminate them during data collection, whereas
the latter depend on user’s decisions in handling the data. The
proper mitigation strategy depends on the comprehension of the
biases that affect the data generation and should be determined
through both technical and philosophical considerations.

3.1 Fundamental Types of Bias
In what follows we focus on what we consider the core building
blocks of most types of bias involved in data generation, namely:
historical bias, measurement bias, representation bias, and omitted
variable bias.

User to Data. Biases going from user to data impact the phenom-
enon to be studied and thus the dataset [47].

Historical bias – sometimes referred to as social bias, life bias,
or structural bias [35, 47, 49] – occurs whenever a variable of the
dataset relevant to some specific goal or task is dependent on some
sensitive characteristic of individuals, but in principle it should not.
An example is the different average income amongmen and women,
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Figure 1: Schematic representation of biases in terms of abstract spaces, as introduced in [30] and extended in [35].

Figure 2: Schematic representation of biases in the ML modelling pipeline, as introduced in [59].

due to long-lasting social barriers and not reflecting intrinsic dif-
ferences among genders. A similar situation may arise when a
dependence on sensitive individual characteristics is present with
respect to the variable that we are trying to estimate or predict.
These are the cases in which the target of model estimation is itself
prone to some form of bias, e.g. because it is the outcome of some
human decision. Note that the actual presence of historical bias is
conditioned by the previous assumption of the WAEPS worldview.
Indeed, arguing that, in principle, there should be no dependence
on some sensitive features only makes sense if a moral belief of sub-
stantial equity is required in the first place. Otherwise, according
to WYSIWYG, CS is fairly reported in OS, and therefore structural
differences between individuals are legitimate sources of inequality.

Data to Algorithm. Biases going from data to algorithm impact
the dataset but not the phenomenon itself [47].

Measurement bias occurs when a proxy of some variable rele-
vant to a specific goal or target is employed, and that proxy happens
to be dependent on some sensitive characteristics. For instance, one
may argue that IQ is not a “fair” approximation of actual “intelli-
gence”, and it might systematically favour/disfavour specific groups
of individuals. Statistically speaking, this type of bias is not very dif-
ferent from historical bias – since it results in employing a variable
correlated with sensitive attributes – but the underlying mecha-
nism is nevertheless different, and in this case the bias needs not to
be present in the phenomenon itself, but rather it may be a conse-
quence of the means chosen to translate unobservable properties
into OS. This is an example of bias from data to algorithm in the
taxonomy of [47], i.e. a bias due to data availability, choice and
collection. Note, incidentally, that this form of bias might as well
occur with the target variable (i.e. the label). In this situation, it is
the quantity that we are trying to estimate/predict that is somehow
“flawed”. Further, notice that the WYSIWYG worldview assumes
that CS ≈ OS, i.e. that there is no measurement bias. On the other
hand, the WAE worldview assumes equality among groups only in
the CS, which allows for measurement bias (i.e. 𝐶𝑆 ≠ 𝑂𝑆).

Representation bias occurs when, for some reason, data are not
representative of the world population. For example, one subgroup
of individuals, identified by a sensitive characteristic such as ethnic-
ity, age, etc., may be heavily underrepresented. This may occur in
different ways. It may be at random, i.e. the subgroup is less numer-
ous than it should be, but without any particular skewness in the

other characteristics: in this scenario, this single mechanism is not
sufficient to create disparities, but it may exacerbate existing ones.
Alternatively, the under-represented subgroup might contain indi-
viduals with disproportionate characteristics with respect to their
corresponding world population, e.g. only low-income individuals
or only low-education individuals. In the latter case, representation
bias may be sufficient to create inequalities in decision-making
processes based on that data.

Omitted variable bias may occur when the collected dataset
omits a variable relevant to some specific goal or task. If the vari-
ables that are present in the dataset have some dependence on
sensitive characteristics of individuals, an ML model trained on
such a dataset will learn those dependencies, thus producing out-
comes with spurious dependence on sensitive attributes. Notice
that the omission of a relevant variable alone cannot, in general, be
a source of disparities and bias in the data, but it can amplify and
exacerbate other biases already present (e.g. historical biases).

The above list of biases should be seen as the set of the most impor-
tant mechanisms through which unfairness can be introduced to
ML-based decision-making systems due to the used dataset. How-
ever, biases can also occur during the development of the ML al-
gorithm (algorithm to user biases) or when the system is deployed
(user to world biases). We provide an overview of these types of bias
in Section S1 of the Supplementary Material. For the remainder of
this paper, we focus on the biases introduced above, which affect
the dataset.

In terms of consequences on the data, it maywell be that different
types of bias result in very similar effects. For example, represen-
tation bias may create in the dataset spurious correlations among
sensitive characteristics of individuals and other characteristics
relevant to the problem at hand, a situation very similar to the cor-
relations present as a consequence of historical bias. This reminds
us that, in general, we are not aware of the type of bias (or biases)
affecting the data and that their interpretation depends on former
assumptions.

3.2 Fairness Metrics and Bias Mitigation
Techniques

The complex nature of biases, as well as the corresponding moral
and technical perspectives, results in a large number of possible
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fairness metrics [58, 60]. According to recent literature, fairness
definitions can be broadly categorised into three groups: disparate
impact (DI ), disparate mistreatment (DM), and disparate treatment
(DT ) [13, 62]. Table 1 provides mathematical definitions for all DI
and DM criteria expressed using a binary label 𝑌 , binary decisions
𝐷 , and binary sensitive attribute 𝐴 (i.e. 𝑌, 𝐷,𝐴 ∈ {0, 1}).

DI is a “group” fairness notion closely related to the concept of
Independence [4]. A decision-making process suffers from DI if it
grants a disproportionately large fraction of beneficial outcomes
to certain sensitive attributes. The most popular metrics used to
measure independence are demographic parity (DP, also called sta-
tistical parity) and conditional demographic parity (CDP) – both of
which are unconditional on the decision 𝐷 and the outcome 𝑌 . CDP
is slightly weaker than DP as it only requires equal decision rates
across subgroups of 𝐴 that are equal in their value 𝐿 = 𝑙 , which
denotes so-called “legitimate” attributes.

A decision-making process suffers from DM if its accuracy (or
error rate) is different for different subgroups based on sensitive
features. The concept of DM can be further divided into separation
(sometimes referred to as equalised odds) and sufficiency (also called
conditional use accuracy equality or calibration by groups if enforced
over the entire range of predicted scores) [4]. Separation prescribe a
conditioning on the outcome 𝑌 and requires true positive rate (TPR)
parity (also known as equality of opportunity, false negative error
rate balance, or equal recall) and false positive rate (FPR) parity (also
known as false positive error rate balance or predictive equality).
Compared to DP, TPR parity and FPR parity require equal decision
rates across all subgroups of𝐴 that have the same label𝑌 . Sufficiency
conditions on the decision 𝐷 and requires positive predictive value
(PPV) parity (also known as predictive parity, the outcome test, or
equal precision) and false omission rate (FOR) parity. PPV parity
requires individuals that are assigned a positive decision 𝐷 = 1 (a
negative decision 𝐷 = 0 in the case of FOR parity) to be equally
likely to belong to the positive class 𝑌 = 1 across 𝐴.

DT, also known as individual fairness, is based on the following
principle: similar individuals should be given similar decisions [27].
The simplest way to represent DT is to define similar individuals
as couples belonging to different groups with respect to sensitive
features but with the same values for all the other features. In
this approach, the outcome for each observation is required not
to change when the sensitive attribute is flipped. This concept
is usually referred to as Fairness Through Unawareness (FTU) or
blindness [61], and is expressed as the requirement to avoid explicitly
employing protected attributes when making decisions – though,
alternative conceptualisations of individual fairness exist.

Bias mitigation techniques are usually divided into pre-processing
[36, 45], in-processing [1, 13, 38, 63] and post-processing [6, 22, 32, 43].
Pre-processing methods are based on the idea of directly removing
potentially unfair biases from the training dataset. A standard clas-
sifier is then trained to learn on this cleaned dataset. However,
these methods do not guarantee the mitigation of DM. In-processing
approaches consist of forcing a model to produce fair outcomes
by adding constraints or penalties to the optimisation problem,
thus imposing fairness at the training stage. This method is highly
tailored to the specific underlying model and is, therefore, difficult
to generalise. In this work, we specifically focus on post-processing

techniques as they can be easily used for any ML model, only re-
quiring access to the model’s outputs and the sensitive attribute
information [17].

The algorithmic fairness community has provided formal proofs
and implementations for optimal post-processing solutions satisfy-
ing existing notions of group fairness, as described in the last col-
umn of Table 1 [6, 22, 32]. These include finding a so-called decision
rule, which transforms theML prediction into a final decision. Hardt
et al. [32] and Corbett-Davies et al. [22] showed that among rules
satisfying DP, CSP, TPR parity, or FPR parity, the optimum always
takes the form of group-specific thresholds.2 Furthermore, Bau-
mann et al. [6] showed that among rules satisfying PPV parity or
FOR parity, the optimum always takes the form of group-specific
upper- or lower-bound thresholds. This means that, in certain situ-
ations, it can be optimal to assign a positive decision to the ‘worst’
individuals of one group (i.e. those with the lowest predicted scores)
and omit the most promising ones. This can happen if, for a utility-
maximising decision-maker, it is overall better to ‘sacrifice’ the
‘best’ individuals of the smaller group in favour of ‘keeping’ the
‘best’ individuals from the larger group. For the fairness notions
that combine two parity constraints (i.e. separation and sufficiency),
some randomisation is needed to satisfy both constraints at the
same time. Among rules satisfying separation or sufficiency, the
optimal decision rules always take the form of randomised group-
specific upper- or lower-bound thresholds (see Hardt et al. [32] for
separation and Baumann et al. [6] for sufficiency).

4 DATASET GENERATION
We propose a simple modelling framework able to simulate the
bias-generating mechanisms described in Section 3.1.

The rationale behind the model is that of being at the same
time sufficiently flexible to accommodate all the main forms of bias
while maintaining a structure as simple and intuitive as possible
to facilitate human readability and ensure compactness avoiding
unnecessary complexities that might hide the relevant patterns.

As noted in Section 3.1, following [47], we can distinguish be-
tween from user to data and from data to algorithm biases. Namely,
between biases that impact the phenomenon to be studied and thus
the dataset and biases that directly impact the dataset but not the
phenomenon itself.3 Formally, we model the relevant quantities
describing a phenomenon as random variables, in particular, we
label 𝑌 the target variable, namely the quantity to be estimated or
predicted on the basis of other feature variables, that we collectively
call 𝑋 . As usual, we assume that the underlying phenomenon is
described by the formula

𝑌 = 𝑓 (𝑋 ) + 𝜖, (1)

where 𝑓 represents the actual relationship between features and
target variables, modulated by some idiosyncratic noise 𝜖 . Often-
times, what we observe in the OS is not equivalent to the construct
we would like to grasp (in the CS). Formally, this refers to how
features and labels are generated and collected:

𝑋 = 𝑔(𝑋 ), 𝑌 = ℎ(𝑌 ); (2)
2For the fairness criterion CSP, the group-specific thresholds additionally depend on
the “legitimate” attributes 𝐿.
3Bias From algorithm to user (impacting the predictor) and from user to world (impacting
the final decisions) are described in Section S1 of the Supplementary Material.
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Table 1: Group fairness criteria

Conditioning on 𝒀 ,𝑫 Group fairness criterion Mathematical representation Post-processing bias mitigation

Unconditional
Demographic parity 𝑃 (𝐷 = 1 | 𝐴 = 0) = 𝑃 (𝐷 = 1 | 𝐴 = 1) Corbett-Davies et al. [22]

Conditional demographic parity 𝑃 (𝐷 = 1 | 𝐿 = 𝑙, 𝐴 = 0) = 𝑃 (𝐷 = 1 | 𝐿 = 𝑙, 𝐴 = 1) Corbett-Davies et al. [22]

Conditioned on 𝑌
Separation 𝑃 (𝐷 = 1 | 𝑌 = 𝑖, 𝐴 = 0) = 𝑃 (𝐷 = 1 | 𝑌 = 𝑖, 𝐴 = 1), 𝑖 ∈ {0, 1} Hardt et al. [32]
TPR parity 𝑃 (𝐷 = 1 | 𝑌 = 1, 𝐴 = 0) = 𝑃 (𝐷 = 1 | 𝑌 = 1, 𝐴 = 1) Corbett-Davies et al. [22],
FPR parity 𝑃 (𝐷 = 1 | 𝑌 = 0, 𝐴 = 0) = 𝑃 (𝐷 = 1 | 𝑌 = 0, 𝐴 = 1) Hardt et al. [32]

Conditioned on 𝐷
Sufficiency 𝑃 (𝑌 = 1 | 𝐷 = 𝑗, 𝐴 = 0) = 𝑃 (𝑌 = 1 | 𝐷 = 𝑗, 𝐴 = 1), 𝑗 ∈ {0, 1} Baumann et al. [6]
PPV parity 𝑃 (𝑌 = 1 | 𝐷 = 1, 𝐴 = 0) = 𝑃 (𝑌 = 1 | 𝐷 = 1, 𝐴 = 1) Baumann et al. [6]
FOR parity 𝑃 (𝑌 = 1 | 𝐷 = 0, 𝐴 = 0) = 𝑃 (𝑌 = 1 | 𝐷 = 0, 𝐴 = 1) Baumann et al. [6]

where 𝑔 and ℎ represent the collection and measurement of relevant
individual attributes and outcomes. The use of (𝑋,𝑌 ) instead of
(𝑋,𝑌 ) describes the fact that the set of variables and outcomes em-
ployed to make inferences about a phenomenon may not coincide
with the actual variables that are relevant to that phenomenon. This
is precisely what happens in some biases, such as measurement bias
or omitted variable bias, but also in case of representation issues.

A data-driven decision-maker infers from a (training) set of sam-
ples {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, an estimate for 𝑓 that we label 𝑓 , thus producing
its best estimate for 𝑌 , namely

𝑌 = 𝑓 (𝑋 ) . (3)

The prediction 𝑌 is then used to inform a final decision 𝐷 .
Thereby, the decision rule, which we denote by 𝑟 , specifies how a
decision is taken based on the individual prediction.

𝐷 = 𝑟 (𝑌 ) . (4)

In its simplest, fully automated, form without any fairness con-
straints, optimal decision rules 𝑟∗ usually take the form of a uni-
form threshold, i.e. all individuals with a prediction that lies above
a certain value 𝜏 (i.e. 𝑌 > 𝜏) are assigned a positive decision 𝐷 = 1,
all others are assigned a negative decision 𝐷 = 0. As described
in Section 3.2, post-processing techniques to ensure a certain fair-
ness constraint act on the decision rule 𝑟 and take the form of
group-specific (upper- or lower-bound) thresholds, i.e. 𝐷 = 𝑟 (𝑌,𝐴).
However, in many real-world scenarios, decisions are not fully
automated but are taken by human decision-makers who take a
decision (potentially) based on the predicted outcome. In this case,
decisions are not necessarily just based on 𝑌 (on 𝑌 and𝐴 if a group-
specific post-processing is applied), i.e. it can depend on any other
environmental information 𝑍 (𝑟 : 𝑌,𝐴, 𝑍 → 𝐷). If the decision
rule 𝑟 applied by (human or machine) decision-makers introduces
unexpected behaviour resulting in disparities between the decision
received by individuals from different groups deployment bias can
arise [59].

Notice that user to data types of bias impact directly Equation (1),
data to algorithm biases affect the data observation process de-
scribed in Equation (2), algorithm to user biases (i.e. algorithmic
bias) occur at the level of Equation (3), and user to world biases
(i.e. deployment bias) is linked to the decision rule formalised in
Equation (4).4

4See Section S1 of the Supplementary Material for a more detailed description of
algorithmic bias and deployment bias.

Our framework is very much in line with the discussions out-
lined by Suresh and Guttag [59]. In particular, we refer to Figure 2
in [59] and the corresponding discussion. Incidentally, notice that
while Suresh and Guttag [59] make explicit reference to the sam-
pling process, i.e. the act of drawing specific observations from the
target population, we embed this aspect directly in the measure-
ment Equations (2). What we propose in the following is a simple
and explicit mathematical formalisation of the framework.

First, it is useful to illustratively represents the building blocks
of biases as discussed in Section 3.1 via Directed Acyclic Graphs
(similar to [52–54]). In general, in order to provide an intuitive grasp
on interesting mechanisms and patterns, we shall use the following
notation: 𝑅 are variables representing resources of individuals – be
them economic resources, or personal talents and skills – which
are relevant for the problem, i.e. they directly impact the target 𝑌 ;
𝐴 denote variables indicating sensitive attributes, such as ethnicity,
gender, etc.; 𝑃𝑅 stand for proxy variables that we have access to
instead of the original variable 𝑅; 𝑄 denote additional variables,
that may or may not be relevant for the problem (i.e. impacting
𝑌 ) and that may or may not be impacted either by 𝑅 or 𝐴, e.g. the
neighbourhood one lives in.

In particular, Figure 3 shows four minimal graph representations
of historical, omitted variable and measurement biases that make
use of the notation just introduced. Historical bias occurs when
the relevant variable 𝑅 is somehow impacted by sensitive feature
𝐴. Omitted variable bias occurs when, for some reason, we omit
the relevant variable 𝑅 from our dataset and we employ another
variable which happens to be impacted by 𝐴. Measurement bias
occurs when the relevant variable 𝑅 is, in general, free of bias, but
we cannot access it. Therefore, we employ a proxy 𝑃𝑅 (which is
typically strongly dependent on 𝑅) that is impacted by sensitive
characteristic 𝐴. Measurement bias can also occur on the target
variable 𝑌 when we only have access to a (biased) proxy 𝑃𝑌 of the
phenomenon we want to predict.

The system of Equations (5) formalises the relationships between
variables used to simulate specific forms of biases. Notice that the
variables 𝑁 · and 𝐵 · denote independent random variables, either
continuous-valued (𝑁 · ) or integer-valued (𝐵 · ). Intuitively, they rep-
resent the sources of variability in the generated dataset, while the
structure of the equations imposes the (desired) dependence among
the relevant variables. The continuous variable 𝑅 could represent,
e.g., salary and the discrete variable𝑄 – which can take 𝐾 + 1 differ-
ent values – could represent a zone in a city. Indeed,𝑄 is distributed
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as a binomial variable in {0, . . . , 𝐾}, with Bernoulli marginal prob-
ability 𝑝𝑄 dependent on 𝑅 and 𝐴 via a simple logistic function.
The binary sensitive variable (𝐴) is distributed as a Bernoulli {0, 1}
variable, with 𝑝𝐴 proportion. Variable 𝑆 is an auxiliary variable
used to effectively generate a binary target 𝑌 by thresholding 𝑆 .5

𝐴 =𝐵𝐴, 𝐵𝐴 ∼ B𝑒𝑟 (𝑝𝐴); (5a)

𝑅 = − 𝛽𝑅
ℎ
𝐴 + 𝑁𝑅, 𝑁𝑅 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑘𝑅, 𝜃𝑅); (5b)

𝑄 =𝐵𝑄 , 𝐵𝑄 | (𝑅,𝐴) ∼ B𝑖𝑛(𝐾, 𝑝𝑄 (𝑅,𝐴)),

𝑝𝑄 (𝑅,𝐴) = sigmoid
(
−(𝛼𝑅𝑄𝑅 − 𝛽𝑄

ℎ
𝐴)

)
; (5c)

𝑆 =𝛼𝑅𝑅 − 𝛼𝑄𝑄 − 𝛽𝑌
ℎ
𝐴 + 𝑁𝑆 , 𝑁𝑆 ∼ N(0, 𝜎2𝑆 ); (5d)

𝑌 =1{𝑆>𝑃𝑆 } . (5e)

When simulating measurement bias, either on resources 𝑅 or on
target 𝑌 ,6 we are going to use the following proxies as noisy (and
biased) substitutes for the actual variables:

𝑃𝑅 =𝑅 − 𝛽𝑅𝑚𝐴 + 𝑁𝑃𝑅 , 𝑁𝑃𝑅 ∼ N(0, 𝜎2𝑃𝑅 ); (6a)

𝑃𝑆 =𝑆 − 𝛽𝑌𝑚𝐴 + 𝑁𝑃𝑆 , 𝑁𝑃𝑆 ∼ N(0, 𝜎2𝑃𝑆 ); (6b)
𝑃𝑌 =1{𝑃𝑆>𝑃𝑆 } . (6c)

We denote with 𝛽’s the parameters governing the presence and
strength of each form of bias, while we use 𝛼 ’s for parameters that
regulate the relationships among variables not directly involving
bias introduction. By varying the values of the parameters, we are
able to generate different aspects of biases as follows:

- 𝛽 𝑗
ℎ
determines the presence and amplitude of the historical

bias on the variable 𝑗 ∈ {𝑅,𝑄,𝑌 };
- 𝛽 𝑗𝑚 , when the proxy 𝑃 𝑗 is used instead of the original variable
𝑗 , governs the intensity of measurement bias on 𝑗 ∈ {𝑅,𝑌 };

- 𝛼𝑅 , 𝛼𝑄 control the linear impact on (𝑆 and thus)𝑌 of 𝑅 and𝑄 ,
respectively; 𝛼𝑅𝑄 represents the intensity of the dependence
of 𝑄 on 𝑅.

Additionally, in order to account for representation bias, we un-
dersample the group 𝐴 = 1. The amount of undersampling is gov-
erned by the parameter 𝑝𝑢 defined as the proportion of the under-
represented group 𝐴 = 1 with respect to the majority group 𝐴 = 0.
We draw the undersampling conditioned on 𝑅 by selecting the𝐴 = 1
individuals with lower values for 𝑅. Finally, simulating omission
bias is as simple as dropping the variable 𝑅 from the set of features
the model uses to estimate 𝑌 .

We want to make clear that what we propose is by no means
the more general modelling framework to generate any form of
bias: we just propose one possibility to formalise different types
of bias mathematically, guided by two principles: simplicity and
exhaustiveness with respect to bias types. One can easily think
of many variations (some of which are also included in the code
implementation) of the modelling framework generating the same
bias types in a different way. For example, one could use other
5A more detailed description of all parameters is provided in Section S2.1 of the
Supplementary Material.
6We use the distribution mean of 𝑃𝑆 , denoted by 𝑃𝑆 , to derive binary values for 𝑌 and
its proxy 𝑃𝑌 to avoid predominantly positive or negative labels for one of the groups
in the dataset.

distributions for 𝑁𝑅 , 𝑁𝑃𝑅 , 𝑁𝑆 , and 𝑁𝑃𝑆 . Other alternatives lie in
the functional forms relating the variables, which are here assumed
mostly linear for sake of simplicity. Moreover, in some cases, even
the mechanism underlying the biases can be more complicated
than the simple shift in the expected values: e.g. historical bias
could be due to a different variance of 𝑅 among sensitive groups,
or, in general, to the fact that the distribution of 𝑅 | 𝐴 varies
with the specific value of 𝐴. Further, note that we understand bias
as systematic differences across groups, which is in line with [5].
Thus, as can be seen in Equations (5) and (6), we multiply the bias
parameters 𝛽 with the sensitive attribute 𝐴 and do not make any
explicit assumptions on the underlying causal paths.

5 EXPERIMENTS
As previously stated, the main goal of this work is to provide a
simple generative model able to reproduce datasets with (combina-
tions of) fundamental types of bias. Such datasets can be useful to
illustrate how various biases may occur in data and to investigate
them. In particular, we shall make reference to the two specific
examples of biased features in college admissions and biased labels
in financial lending to showcase the effect of measurement bias
and historical bias on features and labels.7 Similar to Binns [12] we
use these two specific examples to show that considerations w.r.t.
fairness primarily depends on the ethical and social assumptions
about the underlying phenomenon. In line with his consideration,
we emphasise that the assumptions about worldviews also deter-
mine the understanding of the type of bias present in the data, with
significant implications on the performance and fairness of ML-
based decisions and on the effectiveness of different bias mitigation
strategies.

We first generate datasets simulating toy scenarios with different
assumptions about the presence and magnitude of relevant biases.8
Then, each generated dataset is used to train and test a supervised
ML classifier9 that aims to maximise performance by utilising all
available variables. Alongside the unmitigated ML model, we train
the same model blinding the sensitive variable 𝐴 (i.e. implementing
the FTU approach), and we use post-processing mitigation strategies
to enforce DP and TPR parity.10 We evaluate the outcomes both in
terms of predictive performance (we shall use the overall accuracy)
and of fairness (through the group differences with respect to the
metrics introduced in Section 3.2.

5.1 Example 1: Biased Features in College
Admissions

For the first example, we focus on the decision-making context of
college admissions, where the task is to determine which candi-
dates are more suitable for a degree program. Let us assume that

7In Section S2.3 of the Supplementary Material, we provide additional results for
experiments that showcase other types of biases.
8Parameters not directly related to bias are fixed as by Tables S1 and S2 in the Supple-
mentary Material.
9Specifically, for the experiments presented here we use a Random Forest [10], but
any other supervised ML classifier could be used as well. Also, notice that all bias
examples presented here result in a disadvantage for individuals of the group𝐴 = 1 if
left unmitigated.
10In the Supplementary Material we provide additional results for the remaining post-
processing bias mitigation techniques enforcing the following group fairness criteria:
FPR parity, separation, PPV parity, and FOR parity (see Table 1).
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Figure 3: Illustrative representation of biases. Grey-filled circles represent variables employed by the model 𝑓 .

the committee responsible for the admission decision heavily relies
on SAT scores of applicants and that these are not independent
of individual sensitive characteristics. We shall consider two alter-
native assumptions: a) SAT scores are a faithful representation of
applicants’ skills and competencies, vs. b) SAT scores do not faithfully
represent applicants’ skills and competencies. A general underlying
assumption is that, absent any bias, skills and competencies should
be uniform across sensitive groups. Case a) is an example of the
assumption CS ≈ OS. Thus, as argued in Section 3, SAT score dis-
parities should be a consequence of some form of historical bias
impacting the actual skills and competencies of applicants. On the
other hand, case b) is the result of a measurement bias, where SAT
scores are not the proper way to assess skills and competencies,
and this creates the undesired disparities. Referring to our notation
in Section 4, case a) represents a form of historical bias on 𝑅, and
case b) represents a form of measurement bias on 𝑅.

Case a): historical bias on 𝑅. The generative model in this sce-
nario is 𝑌 = 𝑓 (𝑅,𝑄) + 𝜖, 𝑅 = 𝑅(𝐴), 𝑄 ⊥⊥ 𝐴, with 𝑌 depending on
𝐴 through 𝑅. Figure 4a shows the effect of different magnitudes of
historical bias on 𝑅 (denoted by the parameter 𝛽𝑅

ℎ
). In the uncon-

strained case, all group fairness criteria are violated, and the group
disparities are proportional to the size of 𝛽𝑅

ℎ
. Interestingly, blinding

the model w.r.t. the sensitive attribute (i.e. FTU ) has no effect since
the dependence on 𝐴 is embedded in 𝑅. However, all other bias mit-
igation techniques manage to ensure the associated group fairness
criteria. Post-processing the ML model to achieve DP (requiring
equal acceptance rates across groups) is the only mitigation tech-
nique that is unconditional on𝑌 . As a result, group-level differences
in SAT scores are not reflected in the admission decisions, reducing
the accuracy with increasing historical bias. However, as can be
seen in Figure 4a, the between-group differences of other group
fairness metrics (TPR, FOR and PPV differences) increase. Other bias
mitigation techniques do not reduce the overall accuracy but also
come at the cost of other fairness criteria, empirically confirming
their theoretical incompatibility [19, 39]: for example, enforcing
TPR parity increases PPV and FOR differences (even though it also
brings the groups’ acceptance rates closer together and thus has a
positive effect on DP and FPR differences).

Case b): measurement bias on 𝑅. In contrast to case a), 𝑌 and 𝑅
do not depend on 𝐴, with the only dependence on 𝐴 being in the
proxy of 𝑅 (𝑃𝑅 ). Figure 4b (and Figure S3b in the Supplementary
Material, which contains the full results) shows that, in general, the
models can cope with the measurement bias on 𝑅 by leveraging
the sensitive attribute 𝐴 (with a slight accuracy reduction), without
any increase in unfairness. This is not the case when the model
is blinded w.r.t. 𝐴 (FTU ), i.e. the ML model can only cope with

measurement bias on SAT scores as long as it is aware of the group
memberships 𝐴. As can be seen in Figure 4b, FTU further reduces
the accuracy and generates unfairness w.r.t. to all of the considered
fairness metrics. This shows that FTU is not a suitable technique to
deal with measurement bias on the features. In Section S2.3 of the
Supplementary Material, we show the results for an experiment
that combines both cases a) and b) of this example, i.e. using a
dataset that contains different magnitudes of historical bias on 𝑅
and measurement bias on 𝑅 (see Figure S11).

5.2 Example 2: Biased Labels in Financial
Lending

For a second example, we focus on the scenario in which a bank
uses an ML model to determine whether loan applications should
be approved or denied. Let us assume that the bank notices that
the labels are biased, i.e. the rate of repayment is not uniform with
respect to gender. As in the first example, we are again consid-
ering two distinct scenarios, corresponding to the following two
alternative assumptions: a) historical bias on 𝑌 , i.e. the repayment
rate disparity reflects a real mismatch in creditworthiness between
men and women; and b) measurement bias on 𝑌 , i.e. the observed
repayments are a skewed measure of real creditworthiness.

Case a): historical bias on 𝑌 . Analogously to case a) in the first
example (Section 5.1), the observed disparity represents a historical
bias on 𝑌 and is a consequence of a structural discrimination, e.g.
via factors like income disparities. As can be seen in Figure 5a, the
resulting effects on the fairness and accuracy of the outcomes are
very similar to the ones with historical bias on the labels 𝑅 (shown
in Figure 4a). Only the bias mitigation technique FTU produces
very different results: in contrast to historically biased features, the
FTU approach is able to reach equality of acceptance rates in the
case of historically biased features. Indeed, the generative equation
reads 𝑌 = 𝑓 (𝑅,𝑄,𝐴) + 𝜖, 𝑅,𝑄 ⊥⊥ 𝐴, which is why blinding 𝐴 is
enough to achieve DP.

Case b): measurement bias on 𝑌 . For this scenario, the observed
proxy 𝑃𝑌 of the true outcomes 𝑌 is increasingly biased with larger
values of 𝛽𝑌𝑚 .11 The ML model is trained on the biased label 𝑃𝑌 , and
also all bias mitigation techniques are conducted on 𝑃𝑌 . However,
the final results aremeasuredw.r.t. the real𝑌 , which is unobservable
in reality. Hence, Figure 5b shows that with increasingmeasurement
bias on the labels, the accuracy continuously decreases, as the
trained model is unaware of the bias in observed proxy 𝑃𝑌 for the
true label 𝑌 (see Figure S4b in the Supplementary Material for the
full results).
11We show in Figure S5 in the Supplementary Material that in the case of measurement
bias on 𝑌 ,𝐴 is correlated with the observed 𝑌 and 𝑌 but not with the real 𝑌 .
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In this case, we assume that instead of measuring the actual cred-
itworthiness of applicants, the repayment rate results are skewed
in favour of men, for whom conditions are easier.12 In this case,
the underlying phenomenon reads 𝑌 = 𝑓 (𝑅,𝑄) + 𝜖, 𝑅,𝑄 ⊥⊥ 𝐴, and
the observed dependence on the sensitive attribute comes entirely
from the proxy 𝑃𝑌 . The classifier is trained on this proxy, which
is why it is calibrated against 𝑃𝑌 but increasingly miscalibrated
against the real 𝑌 for group 𝐴 = 1 the larger the measurement bias
𝛽𝑌𝑚 .13 Consequently, the produced outcomes are unfair w.r.t. the
true 𝑌 , as visualised in Figure 5b. More precisely, measurement bias
on the labels shifts the calibration curve of the ML model against 𝑌
upwards, i.e. predicted scores underestimate the ratio of positives.

Most post-processing bias mitigation techniques fail to achieve
any group fairness criteria (see Figure S4b in the Supplementary
Material for the full results). However, similarly to the decreasing
accuracy, this is due to the fact that, in Figure 5b, accuracy and
fairness are measured w.r.t. 𝑌 , and the “distance” between 𝑌 and 𝑃𝑌
grows with 𝛽𝑌𝑚 . Only FTU and enforcingDP through post-processing
are effective in mitigating measurement bias on the labels. Both
methods behave very similarly since they do not depend on the
observed outcome 𝑌 (and because the feature 𝑅 is free of any bias,
i.e. it does not depend on 𝐴, see Figure S5 in the Supplementary
Material) – in contrast to other group fairness criteria as shown
in Table 1. Notice that those two techniques manage to fully miti-
gate any measurement bias on 𝑌 . For FTU, this effect occurs since
using the unbiased feature 𝑅 without being aware of the group
membership𝐴 makes it impossible for the ML model to capture the
group-level disparities in 𝑃𝑌 . In contrast, for DP, this is due to the
linear implementations of the measurement bias and of the effect of
𝑅 on 𝑌 (through 𝑆) using the parameters 𝛽𝑌𝑚 and 𝛼𝑌 , respectively
(see Equations (6) and (5)). Namely, this shifts the distribution of
𝑃𝑆 (and, thus, its mean 𝑃𝑆 ), which is equivalent to flipping the la-
bel from 𝑌 = 1 to 𝑃𝑌 = 0 for those individuals of group 𝐴 = 1
that have 𝑆 > 𝑃𝑆 > 𝑃𝑆 . In a non-linear implementation of the
measurement bias, where the label flipping of the individuals in
group 𝐴 = 1 depends on other variables, the application of group-
specific thresholds would not be as effective as it is in the simple
scenario presented here. Notice that in the lending scenario, we
are considering, 𝑆 could represent an individual’s true probability
of repaying on due time. Thus, the linear shift of 𝑆 makes sense
to replicate the lower leniency of bank clerks towards women (de-
noted by𝐴 = 1) when it comes to the repayment deadline. However,
in other scenarios, non-linear implementations of bias might be
more realistic. See Section S2.4 in the Supplementary Material for
an experiment showing the results of a non-linear implementation
of measurement bias on 𝑌 .

In the Supplementary Material, we show the results of an exper-
iment that combines both cases, i.e. using a dataset that contains
different magnitudes of historical bias on 𝑌 and measurement bias
on 𝑌 (see Figure S12).

12Binns [12] mentions that such discrimination against women can be the result of
bank clerks being systematically more lenient with loan repayment deadlines for men.
This means that men (𝑚) are more likely to end up repaying their loan despite not being
more creditworthy compared to women (𝑤), i.e. E(𝑃𝑌 | 𝐴 =𝑚) > E(𝑃𝑌 | 𝐴 = 𝑤 )
but E(𝑌 | 𝐴 =𝑚) = E(𝑌 | 𝐴 = 𝑤 ) .
13This is visualised in Figure S2 in the Supplementary Material.

6 DISCUSSION AND CONCLUSION
Connecting worldviews and bias mitigation techniques. As out-

lined in both examples of Section 5, the type of bias present in a
dataset may depend crucially on assumptions about moral world-
views and, ultimately, about the data generation mechanism. This
is even more important in light of the fact that mitigation strategies
behave differently when facing different types of bias: measurement
and historical bias have very similar patterns on data observable
statistics but quite different consequences on the choice of the most
appropriate bias mitigation strategy, as exemplified in the difference
between Figures 4a and 4b, and between Figures 5a and 5b.

The biased label problem. Our findings show that the solutions
proposed by Baumann et al. [6], Corbett-Davies et al. [22], Hardt
et al. [32] to post-process predicted scores effectively manage to
mitigate biases as long as there is no measurement bias on the label.

As Figure 5b shows, the case of measurement bias on labels is
particularly subtle: having access only to the (biased) proxy 𝑃𝑌 , it
is only possible to control the bias when imposing fairness criteria
that do not make use of target variable, namely DP and FTU in our
experiments. For all other criteria (TPR, FPR, PPV, and FOR parity or
combinations of these), one would mitigate the group differences
of errors with respect to 𝑃𝑌 (and not to 𝑌 ), and thus would be
erroneously induced to judge the model as fair and accurate when
it is not.

On the trade-offs of ML-based decision-making systems. Our find-
ings empirically confirm the existence of different trade-offs emerg-
ing when enforcing fairness in ML-based decision-making sys-
tems [31]. There is a trade-off between fairness and performance
(e.g., measured by the accuracy), as well as between different no-
tions of fairness.

Figures 4-5 show that in certain cases, a biased dataset results in
lower overall performance compared to an unbiased dataset. Fur-
thermore, the application of bias mitigation techniques generally
comes at an increasing cost, in terms of performance, as the bias
increases. However, this is not necessarily the case in all situations,
meaning that the performance-fairness trade-off may sometimes be
negligible, which is in line with the findings of Rodolfa et al. [57].
As our experiments show, depending on the bias present in the
dataset, certain bias mitigation techniques are ‘cheaper’ in terms of
accuracy. At the same time, not all post-processing bias mitigation
techniques result in equal outcomes for the affected individuals.
Assessing whether the system is fair for the affected individuals
requires normative choices w.r.t. what constitutes a just outcome.
Several works emphasise how the moral appropriateness of certain
notions of fairness heavily depends on the context, such as Bau-
mann and Loi [9], who provide an ethical argument in favour of
the sufficiency criterion in the context of personalised insurance
premiums or Binns [11], who argues that in other applications (such
as the selection of candidates from a pool of job applicants) equality
of opportunity might be more appropriate. However, in this paper,
our main focus is on the connection between different biases and
fairness metrics.14

14We refer the interested reader to [7, 33, 44], who provide a framework to choose a
morally appropriate group fairness criterion, and to [8, 34] for a unification, extension,
and interpretation of group fairness metrics.
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Figure 4: Accuracy and fairness metrics for biased features 𝑅 in the college admission example.
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Figure 5: Accuracy and fairness metrics for biased labels 𝑌 in the financial lending example. Notice that all metrics in (b) are
computed with respect to the “true” target 𝑌 .

Our findings empirically confirm that there is a trade-off between
different notions of fairness: enforcing some fairness criteria may
come at the cost of others. This is a logical consequence of the
mathematical incompatibility between certain fairness criteria [19,
39]. As can be seen in Figures 4-5, group-level differences in PPV s
are usually relatively small compared to acceptance rate differences,
and enforcing TPR or FPR parity oftentimes brings those acceptance
rates closer together. Furthermore, our experiments show that DP
mitigates every group fairness criteria in the case of measurement
bias on the label 𝑌 or on the feature 𝑅. However, as explained in
Section 5.2, this is due to the linear implementations for those biases.
Alternatively, if there is historical bias, clear trade-offs between the
different bias mitigation techniques and w.r.t. accuracy emerge.

On the effect of blinding. Despite its simplicity, FTU should be
applied with particular care, as other works have pointed out [18,
21, 27, 37, 41]. Even though the reason for applying FTU is not pri-
marily to achieve group fairness, we believe that it is still relevant
to take its effects on different group fairness criteria into account. In
fact, in some very particular cases, FTU can be effective even w.r.t.
group fairness metrics, e.g. when the observed proxy for the target
variable 𝑃𝑌 is wrongly assumed to be free of bias (see Figure 5b).
However, in general, it is not an effective bias mitigation technique
w.r.t. the fairness of the produced outcome for the affected indi-
viduals, as shown for the example of historically biased features
𝑅, where FTU has no effect whatsoever since the information on
group membership is redundantly encoded in 𝑅 (see Figure 4a).
And, in fact, there are even cases in which the application of FTU
leads to biased results and performance deterioration even when
the unconstrained model does not (see Figure 4b).

Conclusion. In this work, we contribute to investigating bias in
ML-based decision-making systems by introducing a modelling
framework to generate synthetic data, including specific types of
bias. We present an explicit mathematical representation of the
fundamental types of bias discussed by the algorithmic fairness
community. Furthermore, we show that the assumptions on dif-
ferent worldviews influence the interpretation of biases that could
be present in data. We showcase our framework by simulating dif-
ferent plausible scenarios with various types of bias. Thereby, we
observe the effects of employing ML models on biased datasets
as well as the behaviour of several bias mitigation techniques. In
real-world scenarios, data is typically observed without a clear
knowledge of the underlying generation mechanism. We argue that
the assumptions on the data generation mechanism are crucial to
shaping the interpretation of bias present in the use case under
consideration.

This work aims to raise awareness of bias in AI systems and its
potential impacts on individuals and society, promoting the develop-
ment of bias-free AI systems that are consistent with the universal
ethical principle of non-discrimination. Through the open-source
implementation of the presented framework, we hope to encourage
the research community to conduct further studies using synthetic
datasets where real-world datasets are missing, by exploiting our
synthetic data generator.
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