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Heiko Neumann, Taye Girma Debelee, Abraham Gebreselasie, Dereje Yohannes,
Kamran Kazemi, Mohammad Javad Dehghani, Jonathan Gruss, Yves D. Ste-
bler, Ahmet Selman Bozkir, Marco Calandri, Ricardo Chavarriaga, Yvan Putra
Satyawan, and Dandolo Flumini. Each has left an indelible mark on my academic
journey, and I am grateful for their collaborative efforts.

I also want to acknowledge the colleagues I’ve worked with at Ulm University,
Zurich University of Applied Sciences (ZHAW), and the Swiss Federal Institute of
Technology in Lausanne (EPFL). Special thanks to Patrick, Viktor, and Heinke
from Ulm. Your inspiration and shared commitment to academic excellence have
impacted my Ph.D. journey. Special thanks to my colleagues and collaborators
at ZHAW: Jonas, Katrin, Yasmin, Sean, Adhiraj, Yvan, Sebastiano, Susanne,
Norman, Raphael, Pascal, Peng, Katsiaryna, Daniel, Philipp, Jonathan, Cather-
ine (for her invaluable proofreading), Claude, Gabriel, and Ahmad. And to my
colleagues at EPFL: Mary-Anne, Anastasia, Lie, Matteo, Amirkeivan, El Mahdi,

i



Atli, Thijs, Jean-Baptiste, Tao, Prakhar, Praneeth, and Seyed-Mohsen. Your
shared experiences, diverse backgrounds, and academic commitment have en-
riched my academic journey.

I expand my appreciation to the administrative staff at Ulm University, ZHAW,
and EPFL, including Traude, Birgit, Annette, Cornelia, Regula, Pamela, and
Jennifer, whose efficient and supportive work has facilitated my academic journey.

Special mention to my flatmates, Patrick, Draženka, Patrick, Valentina, and San-
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Abstract

Recent breakthroughs in machine and deep learning (ML and DL) research have
provided excellent tools for leveraging enormous amounts of data and optimizing
huge models with millions of parameters to obtain accurate networks for image
processing. These developments open up tremendous opportunities for using
artificial intelligence (AI) in the automation and human assisted AI industry.
However, as more and more models are deployed and used in practice, many
challenges have emerged. This thesis presents various approaches that address
robustness and explainability challenges for using ML and DL in practice.

Robustness and reliability are the critical components of any model before certi-
fication and deployment in practice. Deep convolutional neural networks (CNNs)
exhibit vulnerability to transformations of their inputs, such as rotation and scal-
ing, or intentional manipulations as described in the adversarial attack literature.
In addition, building trust in AI-based models requires a better understanding
of current models and developing methods that are more explainable and inter-
pretable a priori.

This thesis presents developments in computer vision models’ robustness and
explainability. Furthermore, this thesis offers an example of using vision mod-
els’ feature response visualization (models’ interpretations) to improve robustness
despite interpretability and robustness being seemingly unrelated in the related
research. Besides methodological developments for robust and explainable vision
models, a key message of this thesis is introducing model interpretation tech-
niques as a tool for understanding vision models and improving their design and
robustness. In addition to the theoretical developments, this thesis demonstrates
several applications of ML and DL in different contexts, such as medical imaging
and affective computing.
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1 Introduction

As a result of the widespread interest in applying artificial intelligence (AI) in
practice, several intriguing challenges and research topics have recently emerged
due to the trustworthiness of models in various circumstances being brought into
question [109]. Researchers have cited explainability, robustness, and fairness
among other hindrances in developing trustworthy AI [123]. Therefore, under-
standing the reasons for failure and creating ability to explain the inner workings
of neural networks has attracted researchers’ attention [64, 268]. Furthermore,
developing interpretable and explainable models has become a research focus in
its own right [85].

The three terms robustness, explanability, and interpretabilty are the fundamen-
tal concepts behind this thesis. The term robustness refers to a clearer concept
compared with explanability and interpretabilty. Model robustness is propor-
tional to the consistency of the model’s performance against naturally-induced
or manually-computed corruption and alterations affecting the data to deviate
from the training distribution [66, 170]. However, the other two terms, explain-
ability and interpretability, and their boundaries and overlaps are still subjects
of research at the taxonomy level [92]. In this thesis, the terms explanability and
interpretabilty are used analogously to their usage in [222]. Accordingly, explan-
ability refers to the explanation of models’ decisions (even though these models
can be intrinsically black boxes), and interpretability refers to the design patterns
that are inherently interpretable and understandable by humans.

The scope of this work is narrowed down from AI in general to focus on computer
vision models, including convolutional neural networks (CNNs) and vision trans-
formers (ViTs). This thesis is motivated by practical applications and presents
relevant research concerning neural networks’ robustness, fairness, interpretabil-
ity, and explainability. Moreover, the thesis provides not only theoretical and
fundamental advances but also offers several applications in which computer vi-
sion models have been successfully used. The remainder of this chapter explains
the motivations for this research and describes the scientific problem we address.
Finally, this chapter provides a list of papers and publications related to this
research, followed by the thesis organization.

1
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1.1 Motivation

This thesis aims at using ML and DL in practical applications, and presents sev-
eral success stories in Chapter 5 and Chapter 6. Despite the numerous successful
applications of DL, there are deterrents for putting it into practice in sensitive
applications where humans are involved. This thesis presents relevant research
tackling such challenges as follows: 1) adversarial robustness in Chapter 4, 2)
explainability via interpretable classifiers in Chapter 3. The remainder of this
section describes the motivation of the researchers, elaborates on related efforts,
and describes the niches to which this thesis contributes.

Researchers attempted to expose the complications of using DL in practice by
studying robustness [22], fairness [179], explainability [64], interpretability [36],
accountability [130], reliability [226], safetly [2], and privacy [107] etc. Although
these themes were independently the subject of research and scientific concern,
they have only recently been grouped under the overarching topic referred to
as trustworthy AI in the literature [123]. Trustworthy AI literature summa-
rizes the research effort as developing models which are effective in practice and
aligned with positive societal effects. The following paragraphs explain the key
components of trustworthy AI which are considered in this thesis,explanability,
interpretability, robustness and fairness, and describe the goals of the related
research.

After researchers found flaws in the preciseness and biasedness in vision mod-
els [262, 48] as well as natural language processing methods [28, 301], the Eu-
ropean Union introduced the “right to explain” in the general data protection
regulation (GDPR) as an attempt to protect human rights when decisions are
automated [64]. This human right relates to the human’s ability to understand
the AI-based agent logic in human-machine interaction [220]. Some of the re-
search work related to explainability targets explaining the models’ decisions even
if researchers treat the models as black boxes [47]. The concept of interpretabil-
ity includes research attempting to open the black box of neural networks with
revealing patterns about the inner mechanism of models [315]. Saliency map vi-
sualizations [26] and feature response visualization methods [247] are examples
of researchers’ endeavors in targeting interpretability.

The topic of robustness is directly related to the performance of vision models.
Vision models have shown a drop in performance as the consequence of changes in
data distribution based on naturally-induced variations [66] or manually-computed
perturbations [170]. Robustness is a significant hurdle to overcome in life-long
deployments of vision models, which has inspired many recent research works. An
example of the output of such research is equivariant CNNs, which aim to improve
robustness against rotation and translation of input images [45, 218, 111]. More-
over, adversarial training research attempts to neutralize the targeted attack’s
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effect in fooling vision models [270]. Still, there are several gaps in dataset collec-
tion and robust model development for naturally-induced variations and different
illumination conditions [149].

Social activists and computer vision researchers recently raised concerns regard-
ing fairness in automated decisions [99, 23]. Automated decisions are considered
unfair if they rely on sensitive variables such as gender, ethnicity, sexual orienta-
tion, or disability [281]. The researchers identified sources of bias leading to unfair
decisions, which can be divided into two general categories of algorithmic biases,
and biases in the training datasets [179]. This topic gained much attention and
media coverage after the deployment of face recognition (FR) systems in public
surveillance [99, 169, 161, 48]. Since then, many researchers have attempted to
tackle the problem of biasedness at the algorithmic level [217, 238] and collect
diverse datasets to achieve fair modeling for all genders and races [289, 244].

This thesis explores the obstacles to using AI, particularly machine learning (ML)
and deep learning (DL), in practical applications of computer vision in which ro-
bustness and explainability are of high importance. The ultimate goal of this
work is the successful application of ML and DL algorithms, although this is not
a trivial task and raises many additional questions that require further research.
A short phrase that summarizes the long-term goal alongside the focus of this
work is the development of trustworthy AI. Although the term trustworthy AI
has only recently come into vogue, this thesis addresses its various components,
including fairness, robustness, interpretability, and explainability. Trustworthi-
ness includes other elements outside the scope of this research, such as security,
privacy, and accountability. This thesis presents several applications besides fun-
damental research that support robust and explainable AI (XAI).

Understanding the behavior of computer vision models (explainability) has al-
ways been a subject of curiosity for scientific endeavors. The first group of re-
searchers who analyzed current models considered them to be black boxes and
predicted their performance by changing the input and observing the behavior of
the models’ output. The second group of researchers proposed intrinsically more
interpretable and explainable models. This thesis presents a chapter on using ra-
dial basis function networks (RBFs) as classifiers on top of CNNs to improve the
interpretability of decision-making in computer vision models which contributes
to XAI research.

Early in the development of CNNs, researchers found that computer vision models
were only robust in a limited range of rotation and scaling in the input images1.
In addition, lighting conditions and other environmental disturbances caused er-
rors in recognizing image patterns. Last but not least, the researchers found that
optimizing images made it possible to fool the computer vision models into in-
terpreting two images, which humans perceive to be identical, differently, leading

1http://yann.lecun.com/exdb/lenet

http://yann.lecun.com/exdb/lenet
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to the computation of so-called adversarial perturbations. Since then, improving
the robustness of computer vision models has become a popular research topic.
Researchers have made enormous efforts to understand the models, identify the
reasons behind failures, and improve the computer vision models. Interpreting
the behavior of computer vision models can serve as a tool to monitor the rea-
sons for failures. Therefore, interpretability and robustness are closely related in
the literature. For example, researchers have found that computer vision models
can focus on the wrong features or background information when classifying an
object. This thesis includes a chapter on using feature response maps–where a
computer vision focuses its attention in response to the visual input–for identify-
ing adversarial examples.

In addition to the above theoretical developments, this thesis presents many ap-
plications inspired by its original goal. It targets the vulnerabilities (motion
artifacts) found in classical computed tomography (CT) reconstruction methods
as the main practical contribution. Moreover, it presents many other side contri-
butions to affective computing, pain estimation, AutoML, AutoDL, medical data
homogenization, and fairness in face recognition systems.

1.2 Problem Statement

This thesis is motivated by solving real-world problems using computer vision
methodology. The applications presented in Chapter 5 and Chapter 6 are derived
from several real-world problems where ML and DL are useful. However, there are
still gaps in the current methodologies that must be addressed in order to achieve
trustworthy models for general applications. Chapter 3 and Chapter 4 present the
fundamental research targeting the explainability and robustness gaps required to
apply computer vision models in practice. The remainder of this section details
the scientific problems addressed in each chapter individually.

Current architectures for computer vision models based on CNNs and ViTs use
a stack of convolutional or self-attention layers to develop a representation of the
inputs. Despite the different architectures in the image encoder of most computer
vision models, all of these models use a stack of multiple fully connected (FC) lay-
ers or multilayer perceptrons (MLP), on top of learned latent representations [24].
Researchers commonly used FC layers as the optimal classifiers for deep models
because of their efficiency in gradient backpropagation [148]. MLPs divide the
embedding space in their last layer into multiple classes using hyperplanes. The
distance of the input image representations from the decision boundary drawn by
the hyperplanes in the last layer of such classifiers determines the decision con-
fidence of the models. Researchers found that such classification is not optimal
for outliers, since models developed using MLP classifiers demonstrate low relia-
bility for random (garbage) classes. This is due to the outliers being far from the
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classifier’s decision boundary, which contributes to the models’ flawed high confi-
dence in these samples. In addition, computer vision models trained using linear
classifiers are vulnerable to optimized perturbations (adversarial attacks). Ian
Goodfellow has attempted to thoroughly analyze various classifiers to evaluate
their robustness to adversarial attackers and garbage classes [89]. His prelimi-
nary speculations hint that RBFs might be more robust than MLPs. However,
the study was inconclusive due to the difficulties in optimizing RBF networks,
even for simple tasks such as classifying handwritten digits. This thesis pro-
poses modifications to RBF networks that improve the optimization of RBFs and
shows how RBF classifiers are beneficial for interpreting the decision-making of
computer vision models.

After the advent of CNNs, researchers were very skeptical and curious about
their functionality. They work as highly accurate models but seem to appear as
black boxes. The result of this curiosity and scientific venture is a vast amount
of literature analyzing the behavior of CNNs by computing the models’ feature
response maps through the inversion of the forward path. As extensive as the
techniques for visualizing models are, their applications are rare. This thesis
presents an example of detecting adversarial attacks using feature response maps.
The intention is that this idea inspires researchers to use their knowledge of
interpreting computer vision models for architecture development and debugging.

Neural networks have outperformed their competitors in approximating arbitrary
functions and learning patterns from enormous amounts of data. However, AI
projects still face high risks due to not achieving the intended goal, unforeseen
delays, extensions, and application failures. This thesis presents several successful
applications that allow the reader to understand where using ML and DL-based
methods are beneficial. For example, we address motion artifacts in cone beam
computed tomography (CBCT) scans. Volumetric (3D) data from CBCT scans
are reconstructed from hundreds of 2D X-ray images from different angles. The
analytical reconstruction algorithms are robust when the target volumes are con-
stant and free of motion. However, this assumption does not hold due to respira-
tory or cardiac motions present in the human body. In this work, we demonstrate
how CNNs can be used to compensate for motion artifacts in CBCT scans. Along
with this application, this thesis offers several other applications to show some
possible and successful venues in which ML- and DL-based models are superior
to classical computer vision methods in practice.

1.3 Contributions

The main contributions of this thesis to ML and DL research are as follows:

• Chapter 3: Modern vision architectures use multilayer perceptrons (MLPs)
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in the form of fully connected layers as classifiers, as researchers have largely
abandoned radial basis function networks (RBFs) due to optimization prob-
lems. This thesis provides the following developments in training RBFs as
classifiers for convolutional neural networks (CNN) backbones: 1) Presen-
tation of the first successful attempt to use RBFs as the classifier of modern
computer vision models for object classification. 2) Introduction of a novel
quadratic activation function to build a linear computational graph with
RBFs. 3) Simultaneous optimization of supervised loss for classification
and unsupervised loss for clustering [14].

• Chapter 3: Solving the technical problems of optimizing RBFs as classifiers
for computer vision models opens several possibilities for training computer
vision models: 1) Combining supervised and unsupervised learning by si-
multaneously optimizing two target losses. 2) Learning a similarity distance
metric to find similar images by optimizing the covariance matrix in the
embedding space. 3) Improving the interpretability of the computer vision
models by visualizing the data using prototypes and learning more about
the models’ decision-making [14].

• Chapter 4: This thesis presents findings on a well-known vulnerability in
the robustness of computer vision models referred to as adversarial attacks
in related literature. First, the research presented in Chapter 4 shows how
adversarial perturbations leave a detectable trace on the feature response
map of CNNs, even though the input image remains identical. Then, feature
response maps of CNNs are used with a simple and effective algorithm to
detect adversarial attacks with a very competitive accuracy compared to
state-of-the-art methods [15].

• Chapter 5: Motion artifacts in medical images are a common problem, es-
pecially for lengthy acquisition times. This work provides a data-driven
solution based on supervised learning to reduce motion artifacts where no
analytical solution exists. The proposed solution addresses motion reduc-
tion in two reconstruction methods (analytical and iterative) and reduces
artifacts in raw data (acquired projections) and reconstructed scans (vol-
ume domain). The target domain of this method is cone-beam computed
tomography (CBCT) scans, which are used for automatic segmentation and
dose calculation in cancer therapy. In this thesis, we present techniques for
training models on simulated data that achieve an improvement of over
6 dB in terms of signal-to-noise ratio (PSNR). Moreover, the proposed
models generalize to real-world data, and clinical experts have verified their
performance in the first attempt at motion compensation for CBCT scans.

• Chapter 6: Optimizing ML and DL models and finding the best models
and architectures for small datasets is an intriguing area of research. This
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thesis presents the most relevant findings from research in automated ma-
chine and deep learning (AutoML and AutoDL). The experiments in the
context of automated machine learning show that optimizing the parame-
ters of Gaussian processes as surrogate models for hyperparameter spaces
(HPs) is the most successful method for HP tuning and meta-learning in
AutoML. Moreover, the experimental results in the context of automated
deep learning show that regularization and augmentation are the keys for
fitting computer vision models to small datasets, that pre-trained models
consistently outperform randomly initialized ones, and that large classifiers
train faster than smaller ones [272, 271].

• Chapter 6: Domain adaptation and merging datasets from multiple data
sources in medical imaging is a current research challenge. This thesis
proposes an autoencoder-based architecture trained using an adversarial
loss to preprocess 2D computed tomography scans for merging multiple
datasets with minimal changes in the original scans. The proposed method
extends classical training, validation, and testing performance to evaluate
cross-dataset generalization and improves the cross-dataset performance for
COVID detection from lung CT scans by over 10% [11].

• Chapter 6: This thesis presents relevant findings on the measurement of dif-
ferent sorts of biases in face recognition (FR) systems and the relationship
between algorithmic bias and awareness. First, after analyzing the results of
different models and network embeddings, this work concludes that aware-
ness is not a good proxy for measuring racial bias in FR systems. Second,
this thesis presents evidence that models which are designed to be unaware
of race are not necessarily unbiased and suggest that further measures are
critical for achieving fairness in FR systems [87, 295].
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1.4 Publications

This section presents the list of peer-reviewed and published research papers
connected to this thesis, divided based on the publication venue into two groups
of journal and conference contributions.

1.4.1 Journal Papers

The following is a list of peer-reviewed and published research papers in scientific
journals contributing to this thesis:

• Mohammadreza Amirian, Javier Montoya, Thilo Stadelmann, Frank-
Peter Schilling, Rudolf Marcel Füchslin, Ivo Herzig, Peter Eggenberger
Hotz, Lukas Lichtensteiger, Marco Morf, Alexander Züst, Pascal Paysan,
Igor Peterlik, and Stefan Scheib. “Mitigation of motion-induced artifacts
in Cone Beam Computed Tomography using Deep Convolutional Neural
Networks.” Journal of Medical Physics, pp. 6228-6242 (2023) [12].

• Ivo Herzig, Pascal Paysan, Stefan Scheib, Alexander Züst, Frank-Peter
Schilling, Javier Montoya, Mohammadreza Amirian, Thilo Stadelmann,
Peter Eggenberger Hotz, Rudolf Marcel Füchslin, Lukas Lichtensteiger.
“Deep learning-based simultaneous multi-phase deformable image registra-
tion of sparse 4D-CBCT”. Medical Physics, pp. e325-e326 (2022) [98].

• Samuel Wehrli, Corinna Hertweck, Mohammadreza Amirian, Stefan
Glüge, and Thilo Stadelmann. “Bias, awareness, and ignorance in deep-
learning-based face recognition.” AI and Ethics, pp. 1-14 (2022) [295].

• Lukas Tuggener, Mohammadreza Amirian, Fernando Benites, Pius von
Däniken, Prakhar Gupta, Frank-Peter Schilling, and Thilo Stadelmann.
“Design patterns for resource-constrained automated deep-learning meth-
ods.” AI, pp. 510-538 (2020) [271].

• Mohammadreza Amirian, and Friedhelm Schwenker. “Radial basis func-
tion networks for convolutional neural networks to learn similarity distance
metric and improve interpretability.” IEEE Access, pp. 123087-123097
(2020) [14].

• Patrick Thiam, Viktor Kessler, Mohammadreza Amirian, Peter Bell-
mann, Georg Layher, Yan Zhang, Maria Velana, Sascha Gruss, Steffen
Walter, Harald Christhelm Traue, Daniel Schork, Jonghwa Kim , Elisa-
beth André, Heiko Neumann, and Friedhelm Schwenker. “Multi-modal pain
intensity recognition based on the senseemotion database.” IEEE Transac-
tions on Affective Computing, pp. 743-760 (2021) [265].
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• Taye Girma Debelee, Abrham Gebreselasie, Friedhelm Schwenker, Mo-
hammadreza Amirian, Dereje Yohannes. “Classification of mammo-
grams using texture and cnn based extracted features.” Journal of Biomimet-
ics, Biomaterials and Biomedical Engineering, pp. 79-97 (2019) [55].

• Markus Kächele, Mohammadreza Amirian, Patrick Thiam, Philipp Werner,
Steffen Walter, Günther Palm, and Friedhelm Schwenker. “Adaptive confi-
dence learning for the personalization of pain intensity estimation systems.”
Evolving Systems, pp. 71-83 (2017) [116].

• Markus Kächele, Patrick Thiam, Mohammadreza Amirian, Friedhelm
Schwenker, Günther Palm. “Methods for person-centered continuous pain
intensity assessment from bio-physiological channels.” IEEE Journal of Se-
lected Topics in Signal Processing, pp. 854-864 (2016) [117].

• Kamran Kazemi, Mohammadreza Amirian, Mohammad Javad Dehghani.
“The S-transform using a new window to improve frequency and time res-
olutions.” Signal, Image and Video Processing, pp. 533-541 (2014) [124].

1.4.2 Conference Papers

Here is the list of the peer-reviewed and presented research papers in scientific
conferences contributing to this thesis:

• Mohammadreza Amirian, Javier A. Montoya-Zegarra, Jonathan Gruss,
Yves D. Stebler, Ahmet Selman Bozkir, Marco Calandri, Friedhelm Schwenker,
and Thilo Stadelmann. “PrepNet: A Convolutional Auto-Encoder to Ho-
mogenize CT Scans for Cross-Dataset Medical Image Analysis.” In 2021
14th International Congress on Image and Signal Processing, BioMedical
Engineering and Informatics (CISP-BMEI), pp. 1-7 (2021) [11].

• Mohammadreza Amirian, Lukas Tuggener, Ricardo Chavarriaga, Yvan
Putra Satyawan, Frank-Peter Schilling, Friedhelm Schwenker, and Thilo
Stadelmann. “Two to trust: Automl for safe modelling and interpretable
deep learning for robustness.” In International Workshop on the Founda-
tions of Trustworthy AI Integrating Learning, Optimization and Reasoning,
pp. 268-275 (2021) [16].

• Stefan Glüge, Mohammadreza Amirian, Dandolo Flumini, and Thilo
Stadelmann. “How (not) to measure bias in face recognition networks.”
In Proceedings of the IAPR Workshop on Artificial Neural Networks in
Pattern Recognition, pp. 125-137 (2020) [87].
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• Mohammadreza Amirian, Katharina Rombach, Lukas Tuggener, Frank-
Peter Schilling, Thilo Stadelmann. “Efficient deep CNNs for cross-modal
automated computer vision under time and space constraints.” In Proceed-
ings of the ECML-PKDD 2019, pp. 16-19 (2019) [13].

• Lukas Tuggener, Mohammadreza Amirian, Katharina Rombach, Stefan
Lör- wald, Anastasia Varlet, Christian Westermann, and Thilo Stadelmann.
“Automated machine learning in practice: state of the art and recent re-
sults.” In Proceedings of the 6th Swiss Conference on Data Science (SDS),
pp. 31-36 (2019) [272].

• Thilo Stadelmann, Mohammadreza Amirian, Ismail Arabaci, Marek
Arnold, Gilbert François Duivesteijn, Ismail Elezi, Melanie Geiger, Stefan
Lörwald, Benjamin Bruno Meier, Katharina Rombach, and Lukas Tuggener.
“Deep learning in the wild.” In IAPR Workshop on Artificial Neural Net-
works in Pattern Recognition, pp. 17-38 (2018) [250].

• Benjamin Bruno Meier, Ismail Elezi, Mohammadreza Amirian, Oliver
Dürr, and Thilo Stadelmann. “Learning neural models for end-to-end clus-
tering.” In Proceedings of the IAPR Workshop on Artificial Neural Net-
works in Pattern Recognition, pp. 126-138 (2018) [180].

• Mohammadreza Amirian, Friedhelm Schwenker, and Thilo Stadelmann.
“Trace and detect adversarial attacks on CNNs using feature response maps.”
In Proceedings of the IAPR Workshop on Artificial Neural Networks in Pat-
tern Recognition, pp. 346-358 (2018) [15].

• Viktor Kessler, Patrick Thiam, Mohammadreza Amirian, Friedhelm
Schwenker. “Pain recognition with camera photoplethysmography.” In Pro-
ceedings of the Seventh International Conference on Image Processing The-
ory, Tools and Applications (IPTA), pp. 1-5 (2017) [128].

• Viktor Kessler, Patrick Thiam, Mohammadreza Amirian, Friedhelm
Schwenker. “Multimodal fusion including camera photoplethysmography
for pain recognition.” In Proceedings of the International Conference on
Companion Technology (ICCT), pp. 1-4. (2017) [127].

• Taye Girma Debelee, Mohammadreza Amirian, Achim Ibenthal, Günther
Palm, Friedhelm Schwenker. “Classification of mammograms using convo-
lutional neural network based feature extraction.” International Conference
on Information and Communication Technology for Development for Africa,
pp. 89-98 (2017) [54].

• Mohammadreza Amirian, Markus Kächele, Günther Palm, and Fried-
helm Schwenker. “Support vector regression of sparse dictionary-based fea-
tures for view-independent action unit intensity estimation.” In Proceedings
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of the 12th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2017), pp. 854-859 (2017) [8].

• Mohammadreza Amirian, Markus Kächele, Patrick Thiam, Viktor Kessler,
Friedhelm Schwenker. “Continuous multimodal human affect estimation us-
ing echo state networks.” In Proceedings of the 6th International Workshop
on Audio/Visual Emotion Challenge. pp. 67–74 (2016) [10].

• Mohammadreza Amiria, Markus Kächele, Friedhelm Schwenker. “Using
radial basis function neural networks for continuous and discrete pain esti-
mation from bio-physiological signals.” In Proceedings of the IAPR Work-
shop on Artificial Neural Networks in Pattern Recognition. pp. 269-284
(2016) [9].

• Markus Kächele, Patrick Thiam, Mohammadreza Amirian, Philipp Werner,
Steffen Walter, Friedhelm Schwenker, Günther Palm. “Multimodal data
fusion for person-independent, continuous estimation of pain intensity.” In
Proceedings of the International Conference on Engineering Applications of
Neural Networks, pp. 275-285 (2015) [118].

1.4.3 Book Chapter

Here is the contribution published as a book chapter in conjunction with this
thesis:

• Lukas Hollenstein, Lukas Lichtensteiger, Thilo Stadelmann, Mohammadreza
Amirian, Lukas Budde, Jürg Meierhofer, Rudolf M Füchslin, Thomas
Friedli. “Unsupervised learning and simulation for complexity management
in business operations.” Applied Data Science. pp. 313-331 (2019) [102].
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1.5 Organization of Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of the necessary prerequisites and theoreti-
cal background for understanding this thesis, summarizes the related work,
and relates the following chapters to the current literature. This chapter
begins with preliminary content, such as the fundamentals of convolution
operation and self-attention. The chapter continues with best practices in
architecture search and hyperparameter tuning methods.

• Chapter 3 introduces the main theoretical contribution of this thesis, namely
the use of RBF networks as classifiers of CNNs for interpretable decisions.
This chapter also proposes changing the training process and introduces a
novel quadratic activation function to adapt RBFs for optimization with
conventional CNNs.

• Chapter 4 demonstrates how understanding neural networks using feature
response map visualizations can improve their robustness by detecting ad-
versarial attacks. In addition, this chapter explains guided backpropagation,
a well-known technique for inverting CNN architectures and visualizing the
regions of input images which are relevant to the model’s classification, and
shows the application of feature responses in detecting adversarial attacks.

• Chapter 5 presents the main practical contribution of this thesis, in which
neural networks reduce motion artifacts from CBCT scans for various re-
construction techniques. This chapter describes the first attempt to reduce
motion artifacts in CBCT scans. It explains the architecture and under-
lying idea of how supervised learning with simulated data can address a
solution for a real-world problem in which there are no ground-truth labels.
This chapter includes a clinical evaluation of this method using real-world
data and shows how improvement in numerical measures translates to the
preferences of clinical experts.

• Chapter 6 provides an overview of several applications in conjunction with
this thesis. This chapter aims to draw the readers’ attention to several
practical problems with ongoing research, present related solutions, and
suggest promising areas for future research in these applications.

• Chapter 7 concludes the thesis and discusses a roadmap for future research
opportunities in the niches to which this research work contributes.



2 Theoretical Foundations

This chapter summarizes the general prerequisites and theoretical background
necessary to understand the remainder of the thesis. Specific niche techniques
used in each part of the scientific and applied contributions are explained in each
chapter individually. Therefore, reading this chapter is recommended only for
those interested in refreshing their fundamental knowledge of computer vision
techniques. Furthermore, the following chapters contain a more detailed theo-
retical overview of the related concepts, a knowledgeable reader can read them
independently of this chapter.

This thesis’s main fundamental and methodological contributions are related to
computer vision techniques for object recognition. First, this chapter explains
the basics of convolutional neural networks (CNNs) in Section 2.1, which have
revolutionized computer vision research by outperforming the classical methods.
Second, this chapter briefly reviews the history of CNNs, including their major
architectures and exciting recent developments. CNN-based models are the most
recurring theoretical theme in this thesis, and understanding these models is
important for being able to follow Chapter 3, Chapter 4, and parts of Chapter 6.
The brief introduction to 3D-CNNs at the end of Section 2.1 is also necessary for
understanding Chapter 5.

Moreover, this chapter briefly summarizes computer vision techniques using vi-
sion transformers (ViTs) in Section 2.2.6. Researchers investigating machine and
deep learning (ML and DL) methods have long sought efficient methods for mod-
eling attention-inspired mechanisms to focus on the most relevant information in
time series, images, and to fuse information from several data modalities. Trans-
formers and self-attention provide an excellent solution for attention in natural
language processing (NLP). Transformers have recently been applied to computer
vision problems by adapting self-attention for object recognition and segmenta-
tion. ViTs belong to more recent research compared to CNNs. Although their
underlying theory only supports Section 6.5 in this thesis. ViTs are more likely
to gain more attention in future computer vision research because of their ability
to train on very large datasets compared to CNNs.

13
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Deep learning has opened a great opportunity to distill information from massive
datasets and optimize millions of parameters. However, these methods depend on
optimization techniques that converge rapidly to an optimum which generalizes
well. Therefore, understanding optimization techniques is necessary to bring the
computer vision models to their optimal performance. The computer vision mod-
els presented in this thesis can overcome challenging problems that occur when
using enormous datasets. These models are prone to overfitting, but they can be
optimized to make correct predictions for the training data. However, the mod-
els cannot generalize to the unseen data, as is expected and observed in human
vision. The last two sections of this chapter discuss the optimization methods,
how to avoid overfitting, and how to improve the performance of computer vision
architectures in generalization tasks with unseen data. The optimization and
generalization of vision models are not the direct subjects of any chapter in this
thesis; they are running themes throughout all chapters, especially in Chapter 3,
Chapter 5 and parts of Chapter 6.

2.1 Convolutional Neural Networks

This section reviews the basics as well as recent advances in developing CNNs
for computer vision. It begins with explanations of the building blocks used in
CNNs. The computer vision community initially focused on manually improving
these models’ internal building blocks and introduced novel and suitable building
blocks. The focus changed to automated model developments and architecture
search when compute resources became widely available. After explaining the
basics, this section presents some of the architectural breakthroughs that have
improved the accuracy of computer vision models.

Automated neural architecture search has replaced manual architecture develop-
ment attempts in the next generation of image processing models. Therefore,
this section also describes some of the efforts in the automated search for optimal
computer vision neural architectures. Finally, this section concludes with an ex-
planation of the basics of 3D-CNNs and UNet architectures, which are necessary
for understanding the content in the final chapters of this thesis.

CNN backbones have replaced hand-crafted feature extraction techniques such as
scale-invariant features (SIFT) [163] because they can automatically learn repre-
sentations of images during the optimization process. Based on this analogy, a
model can be divided into two parts: 1) an encoder that converts the visual in-
formation (e.g., images) into a set of latent (intermediate) representations (model
embeddings), and 2) a classifier that identifies the existing objects or segment pat-
terns in the images. The main advantage of CNNs over manual feature extraction
is the ability to optimize and fine-tune millions of parameters for encoding visual
information into discriminative representations using large datasets. Much com-
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puter vision research focuses on optimizing models’ architecture to compute more
generic representations (embeddings) of images. The ultimate goal of this area
of research is not only to develop models that can learn image representations
but also to train models that generalize well to unseen images from the same
data distribution as the training data. A computer vision model’s ultimate goal
is learning representations that generalize to new categories of images outside the
data sets used for optimization. Although the encoder part of neural networks
has been the subject of much recent research, feed-forward neural networks have
often been chosen for classifiers in the literature because of their efficiency in
optimization.

2.1.1 Convolution Operator

The convolution operator of two functions shows how two input functions change
their shape when shifted against each other for all possible shift values. For two
one-dimensional real-valued time series (x and w), their convolution (s) can be
defined as follows:

s(t) =

∫
x(a)w(t− a)da = (x ∗ w)(t) (2.1)

where t is the time, and ∗ denotes the convolution operator. For a given time
shift (t), the convolution of two time series is equal to the dot product of one
multiplied by the mirrored and shifted version of the other. The convolution
operator is commutative due to the time inversion in the definition of the function
(f ∗ g = g ∗ f). Similarly, the convolution operator can be defined for two 1D
discrete functions (X and W ) with time stamps i and j within the validity range
determined by m as follows:

S(i) =
m∑
j=1

X(j)W (i− j) = (X ∗W )(i) (2.2)

Based on this interpretation of the 1D convolution operator, we can define the
2D convolution (S) for the two-dimensional image as follows:

S(i, j) = (I ∗W )(i, j) =
∑
m

∑
n

I(m,n)W (i−m, j − n) (2.3)

where I and W represent two images, i and j define the spatial coordinates of
these images. The valid range for images is indicated by m and n, respectively.
The convolution function shows how a given kernel (W ) changes an input im-
age (I) after the kernel is applied. The commutativity properties also apply to
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two-dimensional convolutions because of the mirroring the images. Since com-
mutativity is not an essential property of neural networks, most libraries use
cross-correlation instead of convolutions for implementation:

Ŝ(i, j) = (I ∗W )(i, j) =
∑
m

∑
n

I(m,n)W (i+m, j + n) (2.4)

The cross-correlation function computes the dot product of an image patch and
the kernel (W ) by shifting the kernel vertically and horizontally over the input
image in the range of the images’ definition. The step size at which the ker-
nel shifts after each convolutional step is called stride and is a parameter of a
convolutional layer in neural networks.

Figure 2.1: The cross-correlation function is often implemented in deep learning
libraries for convolutional neural networks. For an input image, the output (kernel
response) is the dot product of the vectorized kernel with a field which is the same size
as the input image. The kernel slides over the entire image area with a given step size
(figure adopted from [146]).
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2.1.2 Feature Maps

Applying a kernel with the cross-correlation function in equation 2.4 to an image
leads to computing a so-called feature map. Depending on the type of kernels, the
feature maps contain different information (see figure 2.1). Feature maps are the
first representations of the images computed in the CNNs, and visually inspecting
them, along with the first layer inputs, is crucial for understanding the behavior
of the entire network. The filters have the same depth as the input images (three
for RGB and one for grayscale), and it is possible to visualize them along with
the feature maps without complications.

2.1.3 Pooling Layers

The pooling layers aim to summarize the previous layer’s output by merging the
information in a given neighborhood. Two standard techniques for pooling local
information are using the maximum or average value around the center of the
kernel. The output of a pooling operator, as shown in Figure 2.2, is independent
of the order of values in that specific region. The pooling layer and the cross-
correlation function are the key components of the CNN for translation invariance
as inductive bias1 in CNNs.

Figure 2.2: Max-pooling (MP) and average-pooling (AP) layers with kernel size and
stride of 2 for CNNs (figure adopted from [291]).

2.1.4 FeedForward Neural Networks

Deep feedforward neural networks, also called multilayer perceptrons (MLPs),
are often used in deep architectures to approximate functions. The goal of these
networks is to approximate a function (f) that maps a set of input features (x) to
ground truth labels (y ≈ f(x)). Feedforward networks, as shown on the right side
of the figure 2.3, consist of an input, an output, and several hidden layers. Each
hidden layer of the feedforward network is a fully connected layer that contains an
intermediate representation of features by computing the weighted combination of

1Inductive biases are a set of assumptions encoded in a learning algorithm to counter hypothet-
ical input data and cases.
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all features in the previous layer. Each fully connected layer in the architecture of
an MLP can have a trainable bias term, denoted by x0 in Figure 2.3 and trainable
weights. Feedforward networks are optimized using backpropagation as described
in the next sections.

2.1.5 Convolutional Neural Networks

The simplest form of convolutional nets consists of the two basic layers (convo-
lution and pooling) explained in the previous sections. Basic networks can be
constructed using successive convolutional layers to compute input representa-
tions and a pooling layer to summarize the information. However, modern con-
volutional architectures for vision use much more than these two layers. Figure
2.3 illustrates a simple convolutional network. The original image’s pixel values
reveal only the mapped object’s information for the given pixel size. Feature
maps, which show the representations of the first convolutional layer, combine
the local information for a given filter size (usually 3 × 3). The pooling layer
combines more local information from multiple filter activations (typically 2× 2)
and increases the size of the input region that contributes to a single activation
value. The region’s size in the original input image contributing to a single value
at each network’s layer determines the so-called receptive field at a given layer.

Finally, multiple convolutional and pooling layers are connected to a feedforward
network for classification. A convolutional net, also called convolutional backbone,
aims to compute discriminative (latent) representations of the images for each im-
age class. These representations are finally transformed into the form of a feature
vector in the last layer by flattening or global pooling. Flattening rearranges
all the activations of a convolutional layer into a single vector, whereas global
pooling applies the maximum and average functions to the spatial dimensions
of the representations. The one-dimensional vector computed for each image is
often referred to in the literature as embeddings. The embeddings of a convolu-
tional neural network are passed to a feedforward network for object classification
(Figure 2.3).

Figure 2.3: A convolutional neural network for representation learning from an input
image, followed by a feedforward network for object classification.
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2.1.6 Advanced Blocks

The recent history of convolutional neural networks has had many exciting break-
throughs. However, one of the first modern convolutional neural network pro-
totypes (LeNet-5) was only able to classify handwritten digits [148]. Training
AlexNet [140], a relatively small model compared to currently available networks,
was only made possible by splitting the model between two graphics processing
units (GPUs). Even two years after introducing AlexNet, it was impossible to
train very deep VGG models end-to-end without pretraining the model layer by
layer [243]. Given the limitations of resources and algorithms prior to the feasi-
bility of automatic neural architecture search, computer vision researchers mainly
tried to incorporate inductive biases to develop better convolutional architectures.
These techniques are inspired by image processing tasks and failure cases in the
classification task or improvement of the optimization process and gradient flow.
The following sections review three interesting architectural advances in computer
vision.

2.1.6.1 Residual Connections

Residual connections in CNNs establish a bridge between the input and output of
a layer [96]. Although using a stack of multiple convolutional layers and forming
deep models showed better generalization properties than shallow networks, the
researchers have traditionally proposed residual connections to improve gradient
flow on the backward path. Researchers introduced the idea of using residual
connections at the same time that gradient vanishing was the focus of research
in computer science for long short-term memory (LSTM) models [100]. The im-
provement of the gradient flow also led to the breakthrough of highway networks
at the same time [249]. However, in the following years, residual networks were
more commonly used in the research community. Figure 2.4 from the original
paper shows one of the most straightforward and practical ideas in the history of
deep learning.

Figure 2.4: The residual connection between a layer’s input and output improves the
gradient flow (figure is adopted from [96]).
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2.1.6.2 Inception blocks

The original idea of inception blocks is to summarize the sparse latent repre-
sentations of image patches into a dense form and cluster the relevant samples
using convolutional filters with different patch sizes. Inspired by Arora et al. [19],
the naive inception block finds the correlations between image patches or repre-
sentations and clusters them into groups and units of highly correlated samples.
Szegedy et al. [260] suggested using a layer of 1× 1 convolutions to cover a small
region with many clusters, which is practical for regions where clusters are densely
distributed. Furthermore, larger convolutions of size 3 × 3 and 5 × 5 are used
for the more spatially spread clusters. Inception blocks also include a pooling
operator to maintain the translation invariance property (see Figure 2.5a).

The concept of a naive inception block is immensely appealing; however, it suffers
from practical feasibility since the computational cost of such blocks blows up
within the first few layers. Thus, to reduce the computational complexity of
naive inception blocks, they are implemented with 1 × 1 filters to downsample
the input representations in practice, while the outputs of the layers are computed
by concatenating the representations of the input computed using all four sets of
filterbanks depicted in Figure 2.5b. As a result, the inception models improved
state-of-the-art performance in image recognition tasks after their advent.

(a) Naiive inception block (b) Practical inception block

Figure 2.5: This figure, adopted from [260], depicts the idea of the inception blocks
and their practical implementation.

2.1.6.3 Convolutional Block Attention Module

The main goal of the attention module in convolutional layers is to provide the
ability to focus on a specific channel as well as spatial information [302]. There-
fore, this module uses a channel attention module similar to squeeze and excita-
tion techniques [105] in addition to a very similar spatial attention module. The
high-level idea, shown in Figure 2.6a, is to compute a channel and a spatial atten-
tion map for the input of a given layer and multiply the activation values by these
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maps to focus on specific channel-spatial information. The whole convolutional
block attention module (CBAM) can profit from residual connections to improve
gradient flow and allow the model to skip the attention modules.

The computation of the attention maps is relatively straightforward, as shown in
Figure 2.6. To compute the channel attention maps (see Figure 2.6b), we first
employ a mean and a max pooling over the input feature maps to obtain a vector
of the average and maximum of the activation values for each channel. Then,
these two vectors are passed through a trainable MLP with shared weights for
both pooling outputs. Finally, the activations of the MLPs are averaged and
passed through a sigmoid activation to form the final channel attention maps. A
similar system is used for spatial attention mechanisms by computing the average
and max-pooling over the spatial information instead of the channels and by
replacing the MLP with a convolutional layer (see Figure 2.6c).

(a) Convolutional block attention module

(b) Channel attention module

(c) Spatial attention module

Figure 2.6: Convolutional block attention module (CBAM) with its two main com-
ponents for refining channel and spatial features (figures are adopted from [260]).
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2.1.7 Architecture Search

With the rapid increase in computer resources, computer vision researchers began
to find ways to expand their search space, from optimizing hyperparameters to ex-
ploring new model architectures. Scientists who intuitively invented novel blocks
for imaging models began to use their intuition to find the best search space for
computer vision architectures and to optimize search techniques. The remainder
of this section presents two breakthroughs in neural architecture search.

2.1.7.1 NASNets

Zoph et al. [327] introduced NASNets in the first famous attempt to search for
the optimal architecture for image recognition. They performed the architecture
search on a dataset with images of size 32 × 32 pixels from 10 object classes
(CIFAR10 [139]). However, the heuristics and inductive biases allowed successful
scaling of the sought after architectures to a large dataset with 299× 299 images
of 1000 classes (ImageNet [58]). Zoph et al. designed a controller using recurrent
neural networks (RNN) to find the optimal architecture of two motifs named nor-
mal cell and reduction cell. The convolutional architecture is constructed using a
stack of such searched architectures. They considered the number of initial con-
volutions and motif repetitions as free parameters to solve the problem of scaling
from a small dataset (CIFAR10) to a larger dataset (ImageNet). Although this
research improved state-of-the-art image recognition performance by 1.2% and
reduced the number of best model parameters by 28%, it was only the beginning
of more exciting research in this area.

2.1.7.2 EfficientNets

Tan and Le made the next breakthrough in the search for a neural architecture
with a model that achieved the same performance as state of the art in image
recognition, importantly it was 8.4× smaller and 6.1× faster [264] than competi-
tor models. Their research focused on two directions: 1) improving architectural
search and 2) introducing a compound scaling technique. As in their previous
research on developing mobile neural architectures for searched networks (Mnas-
Net [263]), Tan and Le used a reinforcement learning (RL) based method to
optimize their objective function. Their objective function is to find a Pareto-
optimal mobile network called EfficientNet. It includes two components: 1) max-
imizing the accuracy of the network, similar to MnasNets (mobile NasNets), and
2) minimizing the number of FLOPs (required floating point computations) in-
stead of latency, which is considered in MnasNets. Inspired by the architecture
of mobile networks (MobileNet and MobileNetV2 [104, 225]), the authors used
the mobile inverted bottleneck (MBCon [225]) as the building block of Efficinet-
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Net. This work’s second breakthrough was introducing a compound approach to
scaling neural architectures, while maintaining a balance between their height,
width, and depth. Their scaling method demonstrates improvements in scaling
EfficientNets, MobileNets, and ResNets.

2.1.8 3D Convolutional Neural Networks

Researchers have extended the idea of two-dimensional convolutions to three-
dimensional spaces where data samples span multiple images (slices) per input in-
stance, such as in videos and volumetric medical images [185]. Although the goal
of video processing and 3D medical image processing is different, both can utilize
3D convolutional neural networks with the same architectures as in Figure 2.7.
3D convolutional neural networks (3D-CNNs) aim to find temporal dependencies
in video processing [110] and 3D spatial dependencies in medical imaging and
point clouds [317]. As an extension of 2D filters, 3D filters have one dimension
higher - a size of 3× 3× 3 voxels2 is a common choice - to find spatial or tempo-
ral information in (3D) volumetric data. The feature responses of 3D filters are
computed similarly by finding the correlation between the filter and a particular
spatial position of the data volume. Applying a single 3D filter to a data volume
results in a 3D feature map calculation. Stacking the feature maps of multiple
3D filters results in a four-dimensional feature map at each layer of a 3D model.
The pooling operation is extended to find a volume’s average or maximum value
with the typical size of 3 × 3 × 3. Similar to techniques used with 2D-CNNs,
such as flattening and global spatial pooling, the feature maps of the last layer
can be converted into embeddings for classification. The high dimensionality of
the feature maps of 3D-CNNs makes their implementation very memory inten-
sive, and processing the 3D inputs increases the computational complexity of the
3D-CNNs. However, researchers have recently explored 3D-CNNs for medical ap-
plications as the memory limits of modern GPUs have increased significantly. It
seems that 3D CNNs will receive more attention in the future as computational
resources continue to develop.

(a) 2D-convolution (b) 3D-convolution

Figure 2.7: Two- and three-dimensional convolutions. 2D convolutions target images,
while 3D convolutions are suitable for volumetric data (figures are adopted from [108]).

2Voxel is a single value in a data volume analogous to pixels in images.
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2.2 Vision Transformers

Vision transformers (ViTs) for computer vision have emerged through the adap-
tion of the self-attention mechanism developed in the field of natural language
processing (NLP) [279]. Researchers have searched for efficient attention mecha-
nisms to optimally focus on the most relevant information to recognize patterns
from different information sources. However, researchers in the field of NLP have
only recently discovered a practical and efficient implementation of attention. The
use of attention in NLP was so successful that the models developed in several
NLP applications quickly outperformed the state-of-the-art [60, 158]. The core of
these recent breakthroughs in NLP promptly found its way to image processing
applications. The remainder of this section aims to review ViTs and explain the
main components of these models used in computer vision. This section lays the
theoretical foundation for the ViTs used in the following chapters of this thesis.

2.2.1 Preliminaries

The theoretical background of ViTs and attention mechanisms is grounded in
machine translation. A brief explanation of the basic concepts is necessary to
understand the rest of this section. Let us use a simple example from daily life
to explain these concepts. Imagine that we make a text query to find a relevant
research paper in a search engine. The search engine evaluates the query based
on several keys that summarize the titles of the available papers and return the
most relevant papers (values)3. Upon receiving a query, the search engine may
use a tokenizer to segment the query sentence or break it into multiple tokens
(words or punctuations). The model maps the tokens to their token IDs based
on a particular tokenizer and pads it with zeros up to a certain length to form
the embedding vectors of queries, keys, and values.

Dosovitskiy et al. introduced information conversion into tokens in image pro-
cessing for the first time [65]. Based on this definition, commonly used in recent
studies, they divided the input images into smaller patches of size 16 × 16 with
three color channels. A random projection of the vectorized shape of these im-
age patches is computed, and then the tokens that form the input of the vision
transformer are generated. After tokenizing the information from any source,
including images or text, the model focuses on the most relevant information in
a query and relates them with a key to find the most appropriate values.

3The terms key, query, and values are used frequently in this section with very similar meanings
to those used in the information retrieval literature.
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2.2.2 Attention

The concept of attention, as first described in [21], is nothing more complicated
than a weighted average of values (h) defined as follows:

c =
∑
j

αjhj (2.5)

where
∑

j αj = 1. αj = 1 corresponds to the importance of each element in the
vector h.

Attention has been the key component in training outstanding models in NLP,
such as BERT and RoBERTa [60, 158], through the use of keys, queries, and
values from different sources in a supervised scenario. In addition, the attention
mechanism is also used in self-supervised training of language models to predict
missing information in training models such as GPT [32]. Attention can estimate
dependencies between two sequences and can be extended to self-attention (SA)
for modeling dependencies within a text sequence. Self-attention techniques are
commonly used in image processing to find local correlations between tokens
computed from the same image.

2.2.3 Self-Attention

The following steps describe how to compute the self-attention (SA) layer’s out-
put for an image ((X) ∈ IRN×T) converted into N projected patches (tokens):
1) Calculate the projections of all tokens based on three different matrices to
compute the keys, queries, and values based on all tokenized image patches. 2)
Compute the attention matrix by multiplying keys and queries and normalizing
the results using the softmax operation, which is defined for a vector x as fol-
lows: softmax(x) = exp(xi)∑

j exp(xj)
. 3) Multiply the attention matrix by the values to

calculate the SA matrix. In practice, ViTs consist of a stack of several such SA
layers, which provide the opportunity to compute the dependencies of each pixel
to every other one and combine the correlations based on their importance using
the attention matrix.

2.2.4 Postional Encoding

SA layers, as described, are an effective tool for finding correlations between
individual pixels. However, after converting an image to patches and computing
the tokens, the SA layer is invariant to the order of the input tokens. In other
words, the SA layer is independent of the order of the patches in the input images
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and ignores the order of the tokens in the input data. To address this deficiency
of the transformers, researchers added an (absolute) positional encoding that
considers the order of the input tokens in NLP models and the image patches
in the ViTs. The vector of positional encoding contains additive information
proportional to the absolute position of words in a phrase or patches in an image.

2.2.5 Relative Postional Encoding

Absolute positional encoding in transformers retains the spatial information of
a single patch, but fails to account for the relative distances between various
patches. Shaw et al. used relative positional coding to address this shortcoming of
self-attention in ViTs [239]. First, relative positional coding computes a distance
function between image patches. Then, it applies a function based on these
distances to the attention matrix, instead of absolute positional encoding, which
adds the positional encoding to the input tokens.

2.2.6 Vision Transformers for Classification

Dosovitskiy et al. trained the first vision of ViTs on ImageNet [65], three years
after Vaswani et al. introduced the attention mechanism [279]. The architecture
of their vision transformer, as shown in Figure 2.8, consists of a transformer
encoder (backbone) with a multilayer perceptron (MLP) head for classification.
The input images used for image recognition are divided into patches of size
16 × 16. Then, each patch is converted (flattened) into a vector, and a linear
projection is applied to compute the input tokens for the transformer architecture.
The backbone of the transformer contains multiple layers of multi-head attention4.
Positional embeddings corresponding to the position of the patches in the original
image are added to the computed tokens. A stack of multiple layers of multi-
head attention computes a deep representation of the input images. These latent
representations of the input images are passed to the classifier to classify them
into distinct categories, such as dog, cat, and car. The possibility of computing
the correlation between each pixel in the input images via an attention matrix
makes ViTs more powerful than CNNs for a given dataset; nevertheless, ViTs are
prone to overfitting. However, the higher learning capacity of ViTs provides the
opportunity to use more data for training. The larger version of ImageNet with
more than 21, 000 classes (ImageNet-21k) is useful for pre-training ViTs (usually,
optimal performance of pre-trained CNN models is achieved with ImageNet-1k.
Additional data was not as helpful as in the case of ViTs).

4Multi-head attention is an extension of the attention mechanism that computes multiple at-
tention matrices with different weights from keys and queries and combines the results of these
many self-attention layers [279].
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Figure 2.8: Vision transformers (ViTs) for image classification (figure is adopted
from [65]).

2.2.7 Vision Transformers for Segmentation

ViTs can be extended from classification to semantic segmentation using similar
encoding backbones. Figure 2.9 shows how pre-trained ViTs for classification can
serve as the first building block of ViTs for semantic segmentation. The main dif-
ference between classification and segmentation ViTs starts after encoding the im-
ages into patch embeddings (zL ∈ RN×D with N patches and tokens of D dimen-
sions). Classifiers then predict a vector with elements that sum to one, with the
values being proportional to the probability of the predicted class. The segmenter
ViTs, on the other hand, approximate a segmentation map s ∈ RH×W×K that
represents the segmentation predictions for each pixel of K classes in an image
of a given height (H) and width (W ). Two additional components of randomly
initialized class embeddings and a mask transformer support the adaptation of
ViT architecture to compute the segmentation map. After calculating the patch
embeddings of the input images using pre-trained classification ViTs, the patch
embeddings are concatenated with class embeddings (([cls1, ..., clsk] ∈ RK×D)).
The mask transformer includes several multi-headed self-attention layers where
each class embedding attends each patch’s pixel. At the end of the mask trans-
former, the normalized patch embeddings z′L ∈ RN×D and the class embeddings
are separated, normalized based on their `2, and a scalar dot product of each class
embedding and patch embedding is computed to create a mask for each class. To
predict the final image masks, the segmentation model includes an argmax func-
tion to find the most likely class per pixel and reduce the predictions to the same
size as the input image.



28 Chapter 2. Theoretical Foundations

Figure 2.9: Vision transformers (ViTs) for image semantic segmentation (figure is
adopted from [253]).

2.3 Optimizing Neural Networks

So far, this chapter has explained several aspects of different models for image
processing. This section describes how these models are optimized to fit a given
dataset and find patterns in the images within a dataset. The goal of the op-
timization process is tunning the trainable parameters of the models (θ) for an
objective function (L) such that the model can generalize to unseen data.

2.3.1 Optimizing Trainable Parameters

The optimization’s objective function, the so-called loss function, reflects the
dataset’s target task. For example, a classifier has a loss function that provides
the highest probability for the presence of the correct class in an input image.
Likewise, the segmenter computes the highest probability for the object surround-
ing a single pixel. The goal of the optimization algorithms is to minimize the
expected value (E) of a loss function over the entire training dataset (p̂data) as
follows [88]:

J(θ) = Ex,y∼p̂data L(f(x;θ), y) (2.6)

where x and y denote the pair of data samples and ground truth labels. Although
the training process of ML and DL models uses the training data (p̂data) for
optimization, the main goal is to find a model that fits the data distribution
(pdata):
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J∗θ = Ex,y∼pdata L(f(x;θ), y) (2.7)

where J(θ)∗ is the expected value of the error over the data distribution (not
just the training set). The main difference between ML and DL optimization
and classical problems is that the loss function depends on the training data.
The search for optimal parameters for an ML (θML) for a maximum likelihood
problem can be described as follows:

θML = arg max
θ

N∑
i=1

pmodel(x
(i), y(i);θ) (2.8)

Maximizing the likelihood of predictions with ground truth labels is equivalent
to minimizing the prediction error. For discrete pairs of data samples and labels
(x and y), generalization is expressed as follows:

J∗θ =
∑
x

∑
y

pdata L(f(x;θ), y) (2.9)

The gradient of the loss function (g) is calculated for all parameters using training
data in practice to find the optimal model’s parameters:

g = ∇θJθ = Ex,y∼p̂data(x, y) ∇θL(f(x;θ), y) (2.10)

Theoretically, to use a gradient descent algorithm to optimize the neural networks
based on the gradients of the parameters with respect to the loss function, we
need to compute the average of gradients over the entire training dataset before
updating the parameters. However, this method is computationally very expen-
sive, and the optimization algorithm converges faster when multiple updates are
made from subsets of the training dataset (mini-batches). Therefore, the gradient
of the parameters with respect to the loss function is calculated for a mini-batch
with a size of m samples:

ĝ =
1

m
∇θ
∑
i

L(f(x(i);θ), y(i)) (2.11)

Larger mini-batch sizes result in cleaner gradients toward the minima of the ob-
jective function, and gradients computed with smaller batch sizes are noisier.
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However, this gradient noise can regularize the training process and improve the
models’ generalization. The use of mini-batches became a practical optimization
approach due to their advantages in generalization and convergence speed. Neu-
ral networks and deep vision models consist of many layers with a depth of more
than a hundred. The algorithm for computing the gradient of parameters for all
layers is based on the chain rule, which is called backpropagation. After calculat-
ing the loss function at the end of the models’ computational graph, its partial
derivatives are calculated with respect to the trainable variables of the models’
last layer. These gradients are backpropagated toward input images to compute
the gradients of all parameters minimizing the loss function. Then, the gradients
are multiplied by a learning rate, and the parameters are updated based on these
multiplications. The iterative training process continues until a stopping criterion
is met.

2.3.2 Optimization to Generalization

Training neural networks and computer vision models, as described in Section
2.3.1, focuses on minimizing the prediction error on the training set. However, the
main goal of training is to optimize models that generalize well to the entire data
distribution outside the training set. The art of bringing computer vision models
to optimal performance involves many techniques and a lot of empirical trial and
error. The main goal of these techniques is to limit the networks’ capacity or
artificially increase the amount of data by presenting different variations of the
original dataset, which forces the model to learn more generic patterns instead of
memorizing individual images from the training dataset. The remainder of this
section describes some well-known methods for improving generalization after
optimization.

Dropout

There are several reasons for poor generalization (overfitting) in deep neural net-
works described in the literature. These reasons include neurons’ coadaptation
to a particular image with poor generalization and learning dense representa-
tions of the input images. Srivastava et al. [248] proposed dropout as an effective
technique to improve the neural network’s generalization to address the above
reasons for overfitting. Dropout is equivalent to randomly setting the activations
of a layer for a given input image to zero with a certain probability during train-
ing. The random suppression of activations via dropout prevents the model from
coadapting neurons. Furthermore, dropout leads to learning sparse representa-
tions of input images and consequently improving the generalization. Although
the usage of dropout in the classifiers (fully connected layers or MLPs) is more
common, it is possible to use dropout in convolutional layers as well. Srivastava
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et al. [248] originally introduced dropout to reduce overfitting during training.
Nonetheless, Gal and Ghahramani proposed a framework for estimating neural
network uncertainty using dropout in test time as an additional application of
dropout [81]. In their theoretical framework, dropout in neural networks has
been successfully used for Bayesian inference in Gaussian processes to estimate
uncertainty.

Regularization

The other technique to limit the neural networks’ capacity is adding a penalty
to the neural network loss function that increases with the absolute value of the
trainable weights. Researchers used different functions of the trainable weights
as additive penalties to the original (classification or segmentation) loss func-
tion. Tibshirani and Zheng used the `1 − norm of the weights to calculate such
a penalty [267, 323]. The `1 − norm regularization, also called Lasso regression
regularization, keeps the sum of the absolute values of the trainable parameters
small. Lasso regularization leads to sparse weight vectors by setting some weights
to zero. An alternative to Lasso regularization is to compute the penalty term
using the square of the weights (`2− norm), which leads to Ridge regression reg-
ularization [192]. The computed regularization penalty (loss) is multiplied by a
regularization factor and then added to the loss value of the training. Loshchilov
and Hutter have shown that decoupling the regularization penalty from the clas-
sification loss by defining an independent weight decay from the learning rate for
adaptive gradient algorithms improves the generalization performance [162].

Augmentation

Besides dropping neurons from the neural network architecture and regularizing
the weights, neural network generalization improves by presenting the models
with different variations of the input data. Since the early days of deep learning
research, studies have shown that CNNs have limited robustness to rotation and
scaling [148]5. However, researchers quickly found that computer vision models
can recover such weaknesses by presenting variations of input images to the net-
work during training time. Thus, computer vision models trained with rotated
versions of the input images are robust against rotations. Augmentation is the
term proposed in the literature for training computer vision models with trans-
formed images. Since then, researchers have used various strategies to augment
their input images depending on the application. Techniques for augmentation
such as shearing, translation, rotation, rectification, and changing contrast, color,
brightness, and sharpness are broadly used in the computer vision research com-

5http://yann.lecun.com/exdb/lenet/

http://yann.lecun.com/exdb/lenet/
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munity [42, 228, 242, 283, 140].

Similar to the architectural design literature explained in section 2.1.7, augmen-
tation methods have also evolved towards automation. An important work of
research on this subject resulted in AutoAugment [50], which presents optimal
strategies that are automatically checked against one of the largest computer
vision datasets (ImageNet [58]). Further improvement in the speed of such a
resource-exhaustive search led to the development of Fast AutoAugment, an al-
gorithm that is lighter in terms of computational complexity and more suitable
for exploring optimal augmentation strategies on private datasets [156].

2.4 Related Work

Two critical components of the rapid increase in computational resources and
datasets’ size have revived machine and deep learning (ML and DL) techniques
in practical applications for image pattern classification [147]. Initially, raw pixel
values for simple tasks such as classifying handwritten digits were sufficient to
train neural networks and support vector machines for pattern classification [46].
However, the urge to extract robust features for more complex computer vision
problems led researchers to develop advanced methods for representation learn-
ing [164].

ML pipelines became increasingly complicated in the first decade of the twenti-
eth century as problem-oriented feature extraction techniques grew rapidly [142].
Classical computer vision researchers, who moved away from Fourier transforms
and brought image-based prior knowledge to multiscale wavelet transform, be-
gan training sparse dictionaries from data [221], and robust hand-crafted fea-
tures [163] for pattern recognition received enormous attention. Moreover, the
growth of datasets quickly saturated the performance of classical ML models, and
task diversity made the search space for the best priors exhaustive. DL appeared
as the next breakthrough to increase the capacity of models for massive datasets
and automate feature extraction and representation learning in a wide range of
different tasks [146].

The first DL milestone in computer vision was reviving the convolutional neu-
ral networks (CNNs) for pattern recognition [147]. CNNs introduced in the late
1980s finally found their way into practice by overcoming their high computational
complexity. LeNet5 [148] is one of the first CNN models applied to handwritten
digit classification algorithms, and AlexNet [80] is among the first successes of
deep CNNs in image classification on large datasets. The second half of the
2010s is the most prosperous time in the history of DL and CNNs in computer
vision with a lot of exciting research and developments regarding various archi-
tectures [243, 261, 225, 263] and optimization techniques [216, 129, 135, 162].
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Researchers trained CNNs using neural architectures, search became fashionable,
optimization methods evolved based on large datasets such as ImageNet [223],
and this distilled knowledge was successfully applied to smaller datasets using
transfer learning [197].

After CNNs matured in image classification [24] and segmentation [145], the next
generation of research focused on automatic neural architecture search [69] and
finding optimal search spaces for efficient networks with minimal delay [263] and
computational power consumption for mobile applications [264]. However, the
parallel increase in computational resources and the presence of massive datasets,
motivated by data-driven artificial intelligence (AI) research, created the oppor-
tunity for the next breakthrough in computer vision. The next breakthrough
occurred in the early 2020s by introducing vision transformers (ViTs) [65],
and adapting self-attention, originally discovered in natural language process-
ing (NLP) literature [279], for computer vision tasks. ViTs are widely used for
image classification and segmentation, and these models have improved their per-
formance with a larger version of the ImageNet dataset called ImageNet-21k with
over 21, 000 classes [213].

Researchers have expressed doubts and concerns about the robustness of computer
vision models using CNNs [89] and their explainability [1] from their inception.
CNNs lack some basic properties of classical methods, such as rotation equivari-
ance6, despite their capability to learn translational equivariant features [148].
Due to the lack of rotation equivariance, the performance of CNNs decreases
when the input images rotate [120]. Similar instabilities and inaccuracies have
been reported due to changes in lighting conditions, contrast, image acquisition
techniques, and overall data distribution drift [62]. Studies even show that CNNs
focus more on the texture than the shapes when classifying objects [84]. Re-
searchers also discovered that they could compute minimal perturbations, called
adversarial attacks, for an input image to fool CNN models with images that are
indistinguishable from one another to the human eye [89]. They even optimized
a so-called universal adversarial attack that generalizes to many images [187].
Among all of the challenges mentioned in computer vision research related to
robustness, this work presents a solution for rotational invariance in ViTs and
adversarial attack detection in CNNs [15].

CNNs were known as powerful black-box models following a similar trend to many
other ML and DL-based techniques in information processing [33]. These models
can be used in many applications without additional reasoning; however, under-
standing these high-precision decisions is critical for applications that affect hu-
man safety and health, such as autonomous driving systems [20] or healthcare [6].
The literature that has developed around explainable AI (XAI) [268] and inter-

6A rotationally equivariant representation of an image rotates with the same angle as its input
rotates. Edge detection filters, for example, are rotationally equivariant
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pretation of computer vision models [318] is the result of researchers’ concerns
about the usage of black-box models in critical applications. Researchers have
two main approaches to the interpretability and explainability of neural networks.
The first group analyzes the trained models to understand the predictions using
post-processing and post-hoc techniques [47]. Another group disagrees with the
idea of interpretability solely as an add-on for neural networks. Instead, these
researchers point to changing the design of the neural architectures so that the
decisions are transparent and explainable [175]. Concerning the issue of explain-
ability, this thesis proposes using radial basis neural networks as classifiers on top
of the CNNs to provide more understandable information to humans about the
decision-making of the models [14].

Despite all the challenges mentioned above, computer vision breakthroughs have
found their way into numerous applications [5]. CNNs have outperformed all other
methods in the majority of applications, such as object detection, recognition, and
segmentation [24, 145]. Furthermore, CNNs perform well in other classical image
processing tasks such as image denoising [63], super-resolution [308], and motion
deblurring [256]. Moreover, the applications of CNNs extend not only to medical
imaging for diagnosis [227] and automatic segmentation [290], but also to image
quality enhancement and motion artifact reduction [157]. In addition to all the
above theoretical contributions, this paper presents practical applications of ML
and DL, especially in medical imaging, and demonstrates a variety of empirical
findings [251].



3 RBF Classifiers for Explainable
Computer Vision Using CNNs

Radial basis function neural networks (RBFs) are prime candidates for pattern
classification and regression and have been used extensively in classical machine
learning applications. However, RBFs have not been integrated into contempo-
rary deep learning research, and computer vision has continued using conventional
convolutional neural networks (CNNs) because of technical difficulties. This chap-
ter presents the techniques to adapt RBF networks as a classifier on top of CNNs
by modifying the training process and introducing a new activation function to
train modern vision architectures end-to-end for image classification. The spe-
cific architecture of RBFs enables them to learn a similarity distance metric to
compare and categorize similar and dissimilar images. Furthermore, this chap-
ter demonstrates that using an RBF classifier on top of any CNN architecture
provides new human-interpretable insights about the decision-making process of
the vision models. Finally, RBFs are successfully applied to a range of CNN
architectures, and their performance on benchmark computer vision datasets is
presented in this chapter. This chapter is adopted from the research published
in [14], licensed under CC BY 4.0 1.

1https://creativecommons.org/licenses/by/4.0
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3.1 Introduction

Figure 3.1: Figures on the top and bottom rows visualize the position of a test image
in the clusters optimized using the unsupervised loss function. The output of CNN
backbones is connected to RBFs’ input through a fully connected layer, and the input
features of the RBFs are referred to as embeddings in this chapter. The model compares
the embeddings of each image with cluster centers using a trainable similarity distance
metric. The same distance metric can be used to find similar and dissimilar images
to a test sample amongst training images (visualized in the table in the middle row).
The RBFs apply an activation function to the distance of the training images from the
cluster centers to compute activation values. The output layer of the RBF is optimized
for classification based on these activation values. The entire CNN-RBF architecture
is optimized end-to-end with a specific initialization (figure adopted from [14]).

Inspired by the locally tuned response of biological neurons, Broomhead and
Lowe introduced radial basis function neural networks (RBFs) in 1988 [31]. The
modeling concept behind RBFs is a combination of unsupervised and supervised
learning for pattern classification and regression. However, due to structural defi-
ciencies, RBFs have not been integrated into contemporary research in computer
vision using Convolutional Neural Networks (CNNs). This chapter presents de-
velopments in a new area of research and lays the foundation for using RBFs
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in deep learning and computer vision by modifying their architecture and learn-
ing process. The results demonstrate that integrating RBFs into CNN models
for computer vision provides a similarity distance metric and an interpretable
decision-making process.

This chapter is motivated by RBF architectures’ unique opportunities when used
with CNN models because of their explainability and robustness compared to
linear classifiers. The new training process introduced for RBFs in this chapter
provides the opportunity to use labeled and unlabeled data by optimizing two loss
functions combining supervised and unsupervised learning. Moreover, the train-
ing process of RBF architectures includes optimizing a distance metric that serves
as a similarity distance metric to find similar and dissimilar images. Addition-
ally, this chapter proposes visualization techniques to illustrate the clusters and
activations with training and test images to gain more insights about the reason
behind the decisions made by the networks, thus improving interpretability. The
contributions of this chapter to computer vision literature can be summarized as
follows:

• Combining supervised and unsupervised learning.

• Learning a similarity distance metric to find similar images.

• Improving the interpretability of decision-making.

Despite the advantages of combining RBFs with modern CNN architectures, two
factors in the architecture and training process of RBFs hinder their integration
into CNNs. First, the nonlinear activations and computational graphs of RBFs
used in the literature prevent efficient gradient flow. Secondly, RBFs assume that
the training features are fixed, so the cluster centers are initialized accordingly.
Nonetheless, CNN architecture dynamically learns the embeddings used as input
features of RBFs. This chapter tackles the limitations of the original RBFs and
presents the following contributions to RBF literature:

• Introducing a quadratic activation function and a linear computational
graph for end-to-end learning.

• Adding an unsupervised loss term to update the cluster centers in the train-
ing process with the learned embeddings.

• Applying the RBFs to computer vision in a first attempt at using deep CNN
architectures.

The remainder of the chapter covers the related work in Section 3.2 followed by
the theoretical background of RBFs in Section 3.3. Then, Section 3.4 presents
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the original research and contributions with the proposed modifications to RBFs,
followed by a visual explanation of the new proposed training and decision-making
process in Section 3.6.1. The experimental results of applying the proposed RBF-
CNN architectures using a range of CNN backbones on benchmark datasets are
presented in Section 3.5. The potential contributions of the proposed similarity
distance metric on computer vision to enhance the transparency of the decision-
making process is demonstrated in Section 3.6.2. This chapter concludes with
discussions and conclusions in Section 3.7.

3.2 Related Work

The research followed two approaches to optimize RBF architectures. The first
approach concentrates on the training process and initialization of the networks,
while the second aims to find superior activation functions. This chapter presents
improvements in both research directions to integrate the RBFs into contempo-
rary computer vision models using CNNs.

RBFs were originally introduced as supervised models for classification and regres-
sion tasks. Broomhead and Lowe initially proposed drawing the cluster centers
either from a uniform distribution or randomly from the training samples and
then optimizing the output weights using a pseudo-inverse analytic solution [31].
Initializing the cluster centers randomly and only training the output weights
is called a one-phase training process for RBFs. Two-phase training for RBFs
uses various methods to initialize the cluster centers before optimizing the output
weights. Research since 1988 has used supervised and unsupervised methods to
initialize the cluster centers. Moody and Darken proposed an unsupervised al-
gorithm to initialize these cluster centers [186], while Schwenker et al. proposed
supervised vector quantization [236]. Decision trees were used to find centers
independently by [141] and [234] before training the output weights. Finally,
Schwenker et al. proposed the third phase to optimize the entire RBF network
end-to-end, including output weights, the cluster center, and trainable parameters
of activation functions using gradient descent [235].

These methods for cluster center initialization assume a fixed feature space for the
input layer. However, CNNs learn the embeddings automatically and develop the
feature space of the images during the training process. Therefore, this research
suggests optimizing an unsupervised learning loss during the training to cope
with this change in the feature space. This work differs from previous research
as it combines supervised and unsupervised learning by optimizing two separate
losses simultaneously using gradient descent.

The technical requirements of new applications and implementations have moti-
vated the use of several activation functions presented in the literature of RBFs [67].
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The Gaussian function is the kernel developed by modeling the data through a
multivariate Gaussian distribution [31]. Other functions adapted in the RBF ar-
chitecture include linear kernels, thin-plate splines, logistic functions, and multi-
quadratic functions [79, 208, 155, 40]. Hardy’s multiquadratic functions motivated
an activation function for RBFs used by Karimi et al., and Zhao et al. [121, 322].
Du et al. proposed a kernel for digital signal processing (DSP) units 3.9. This
chapter presents a novel quadratic kernel to build a linear computational graph
for efficient gradient flow and RBF integration for end-to-end training with CNN
architectures.

Besides the mature fundamental research, RBFs have been applied to many ap-
plications for pattern classification and regression in recent years. For example,
Nicodemou et al. used RBF networks for 3D hand pose estimation [191], De-
hghan and Mohammadi estimated a numerical solution for Fokker-Planck differ-
ential equations with RBFs [57], Li et al. used sparse multiscale RBFs for seizure
detection in EEG signals [152]. Furthermore, Zhao et al. predicted interfacial
interactions by training RBFs [322], and Geng et al. introduced deep RBF net-
works and applied the method to food safety inspection data. Finally, RBFs are
used to train models for classification and regression in discrete and continuous
pain quantification [9].

RBFs can be applied to computer vision tasks and image classification as well.
Schwenker et al. used raw images as feature vectors to classify hand-written
digits [235]. Er et al. extracted the features from facial images using princi-
pal component analysis (PCA) and processed these features using Fisher’s linear
discriminant (FLD) technique before classifying the faces using RBFs [182]. How-
ever, the successful rise of modern CNNs, such as LeNet-5 [148] and AlexNet [224],
led to a paradigm shift from using hand-crafted features to automated deep CNN-
based feature and representation learning. In recent years, most computer vision
tasks, like facial recognition [177], are dominated by modern CNN architectures
as they present superior performance compared to classical methods for image
processing. To the best of our knowledge, this chapter presents the first attempt
to integrate RBFs into modern CNN architectures for computer vision.

This chapter relates to literature focusing on deep metric learning since RBFs
automatically optimize a similarity distance metric during training based on their
architecture. Euclidean distance, Mahalanobis distance, and cosine similarity
have been used to evaluate the similarity between the embeddings (the features
extracted from CNNs) of two images in the literature [101, 304, 300]. Researchers
have applied different strategies and loss functions to optimize these similarity
metrics for same-class images while also maximizing the distance of different-
class images. The research in this area concentrates on the training process and
the design of a loss function which brings similar images closer in the embedding
space based on a similarity measure. Hu et al. proposed minimizing the inter-class



40 Chapter 3. RBF Classifiers for Explainable CNNs

scores and maximizing the intra-class scores based on Euclidian distances [106].
Hoffer and Ailon suggested optimizing a similarity-based loss function defined for
selected triplets of images [101]. Song et al. used the pairwise distances between
images of an entire batch and proposed a structured loss function for metric
learning [246]. Similar research work has aimed at optimizing angular distance,
cosine distance, and large-margin Euclidean distance of similar and dissimilar
images [287, 300, 41].

This chapter presents a method to retrieve a ranked list of similar and dissimilar
images, leading to visually appealing similarity metric learning results. How-
ever, the proposed similarity metric learned by the RBFs does not require any
complicated triplet sample section or loss design. Instead, these results have
been obtained using a typical supervised loss function for classification (softmax
cross-entropy). Furthermore, RBFs can not only optimize for Euclidean and Ma-
halanobis distances but also for the entire covariance matrix.

3.3 Radial Basis Function Networks

This section briefly reviews and explains the theoretical foundation of radial basis
function networks. RBFs are presented in the literature as a global approximation
method for learning a mapping F from a given feature space with the dimension-
ality of d to a label space with K dimensions (F : IRd → IRK) [31]. In this
chapter, the function F of features x approximates the one-hot encoded labels y.
The features used to train the RBFs in this chapter are the embeddings of deep
CNNs, which are used to predict the class labels using end-to-end optimization.
A fully connected layer connects the CNN architectures and RBFs to provide
compatibility between the two architectures. The architecture of the RBF con-
sists of input layers, a single trainable hidden layer with C cluster centers (cj) 3.1,
and an output layer.

During the evaluation, also known as inference in deep learning, the RBF com-
putes a distance between embeddings of CNNs and the cluster centers and applies
an activation function to this distance. The network outputs are then computed
by multiplying the output layer weights with the activation values. This forward
path of RBFs is formally defined as:

r2 = (x− cj)TRj(x− cj) (3.1)

yk = F k(x) =
C∑
j=1

wjkh(‖ xµ − cj ‖2
Rj

) + w0k (3.2)

where r represents the distance, Rj is the positive definite covariance matrix
(trainable distance metric), T denotes the matrix transposition, wjk shows the



3.3. Radial Basis Function Networks 41

Figure 3.2: Activation functions for RBF networks. Here is the list of the parameters
for depicting the kernels: σ = 1, α = 1/2, and β = 1/2. The proposed quadratic
activation kernel is linear based on the r2. Consequently, the CNN goes through a
completely linear forward path, and thus, gradients are computed and backpropagated
efficiently (figure adopted from [14]).

weights of the output layers, h is the activation function, and w0k are the biases.
In these Equations, µ, j, and k enumerate the number of samples, cluster centers,
and classes. Trainable parameters in Equation 3.1 and 3.2 are the output weights,
cluster centers, and covariance matrix.

Optimizing the RBF networks with an identity covariance matrix is equivalent to
training in Euclidean space. It is possible to optimize a Mahalanobis distance [53]
by training the main diagonal on the covariance matrix. Any arbitrary distance
metric can be trained by optimizing the entire covariance matrix, while projecting
the matrix to the space of positive definite matrices. The distance, r, computed
in Equation 3.1 is not only a measure of the proximity of an image to a cluster
center; it can also be used to compare images and find similar and dissimilar
images in the embedding space.

The linear and nonlinear activation functions used in RBFs are as follows [208,
155, 40]:

Linear : h(r) = r (3.3)

Gaussian : h(r) = e−r
2/2σ2

(3.4)

Thin-plate spline : h(r) = r2 ln r (3.5)

Logistic function : h(r) =
1

1 + e(r2−r20)/σ2
(3.6)

h(r) =
1

(r2 + σ2)α
, α > 0 (3.7)

h(r) = (r2 + σ2)β, 0 < β < 1 (3.8)

h(r) =
1

1 + r2/σ2
(3.9)
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In addition to the standard machine learning activation kernels in Equations 3.3
to 3.6, the kernel presented in Equation 3.7 is derived from the generalized Hardy’s
multiquadratic function [79]. Du et al. [67] proposed the kernel in Equation 3.9
because of its convenience for implementation on DSP units. Various activation
functions for RBFs are depicted in Figure 3.2.

The complete process of training RBFs was introduced by Schwenker et al. [235]
as a three-phase process:

Unsupervised learning: This step aims to find cluster centers that are repre-
sentative of the given dataset. The k-means [17] clustering algorithm is widely
used for this purpose. K-means iteratively finds a set of cluster centers and min-
imizes the overall distance between cluster centers and members over the entire
dataset. The target of the k-means algorithm can be written in the following
form:

Lossunsupervised =
K∑
j=1

∑
xµ∈ϑj

‖ xµ − cj ‖2 (3.10)

where xµ ∈ ϑj denotes the members of the jth cluster shown by ϑj.

Computing weights: The output weights of an RBF network can be computed
using a closed-form solution. The matrix of activation of the samples is defined
from the training set (H) as follows:

H = h(‖ xµ − cj ‖2
Rj

)µ=1, ... ,M,j=1, ... ,C (3.11)

Based on Equation 3.2, the matrix of output weights (W ), which estimates the
matrix of labels (Y ), is computed using the following equation:

Y ≈HW ⇒W ≈H†Y (3.12)

whereH† is the Moore–Penrose pseudo-inverse matrix [206] ofH and is computed
as:

H† = lim
α→0+

(HTH + αI)−1HT (3.13)

End-to-end optimization: After initializing the RBF weights and cluster cen-
ters with clustering algorithms such as k-means, it is possible to optimize the
network end-to-end via backpropagation and gradient descent. Schwenker et al.
computed the gradients of the loss function for a Gaussian activation function
in [235].
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3.4 Adapting RBFs for CNNs

This section presents the adaptation steps for using RBF classifiers for CNNs
as depicted in Figure 3.1. The deep embeddings of the CNNs, computed using
standard convolutional layers and inception blocks, are flattened and fed to RBFs
after a fully connected layer in the architecture. The network ends in an output
layer with softmax activation and is optimized end-to-end. Integrating the RBFs
into deep structures and using them in conjunction with CNNs presents three
challenges:

Initialization: Training the RBFs from scratch with randomly initialized weights
using gradient descent is quite inefficient due to inconvenient initial cluster cen-
ters. The large initial distances in high dimensional spaces lead to small activa-
tion values, and the gradients attenuate considerably after the RBF hidden layer
during backpropagation. Therefore, the k-means algorithm initializes the cluster
centers before starting the training. Furthermore, computing the weights from
Equation 3.12 is not feasible due to the scale of computer vision datasets such as
ImageNet [58], which has over 14 million images and 1000 classes. Hence, using
gradient descent and optimizing randomly initialized output layer weight is the
optimal way to proceed.

Dynamic input features: The input features of classical RBFs are fixed, but
this assumption is not valid with respect to CNNs. As the embeddings of CNNs
develop during the training process, the cluster centers initialized by the k-means
algorithm are no longer optimal after a few epochs of training. This research work
proposes the optimization of the k-means algorithm’s target with unsupervised
loss during the training process as defined in Equation 3.10.

Activation: The nonlinear computational graph drawn by computing the dis-
tance in Equation 3.1 and applying the activations in equations 3.3-3.9 leads to
inefficient gradient flow. Therefore, this research attempts to build a linear com-
putational graph in RBFs through the introduction of a new activation function.

This section presents two modifications to classical RBFs to make them suitable
for deep CNNs. First, it introduces an additional loss term to the RBFs’ hidden
layer. This term is based on the target function of the k-means algorithm defined
in Equation 3.10 and continues in the unsupervised learning process during the
development of the embeddings. The second contribution of this section is the
introduction of a new quadratic kernel to build a linear computational graph for
efficient optimization using backpropagation.

3.4.1 Introducing Unsupervised Learning Loss

The embeddings of CNNs change during the training process, which necessitates
updating the cluster centers with an unsupervised loss. Therefore, introducing
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an additional term to the RBFs’ supervised loss function to optimize the cluster
centers during training using the k-means unsupervised loss in Equation 3.10 is
crucial for optimizing CNNs with an RBFs classifier (CNN-RBFs) end-to-end.
The final loss of a CNN-RBF network is computed as follows:

Lossrbf = Losssupervised + λLossunsupervised (3.14)

where the classification loss Lossclassification is any arbitrary loss function, for in-
stance categorical cross-entropy.

It is conventional to use clustering algorithms such as the k-means or expectation-
maximization (EM) algorithms to initialize the cluster centers. The loss function
in Equation 3.14 is optimized using gradient descent by minimizing the distance
of the embeddings for each sample from its nearest cluster center regardless of
the class labels. The distance from the nearest cluster center is computed using
the distance metric Rj defined in Equation 3.1.

3.4.2 Quadratic Kernel

The kernels used for classical RBFs are nonlinear and increase the model’s com-
plexity. The architectures proposed in Figure 3.1 profit from using the state-of-
the-art models for representation learning, i.e., CNNs, as a backbone. Therefore,
CNN-RBF architectures can be trained with simpler linear models to improve
the gradient flow during backpropagation. The proposed quadratic activation
function is linear in the space of r2 and is defined as follows:

h(r) = 1− r2/σ2 (3.15)

where σ is the trainable parameter that determines the width of the kernel. The
proposed kernel is depicted in Figure 3.2 alongside the conventional activation
functions. The proposed quadratic kernel reduces the nonlinearity of the CNN-
RBF computational graph for backpropagation. The squares of the distances
between cluster centers and samples are computed by linear matrix multiplication
in Equation 3.1 and the application of the proposed linear activation for r2.
Thus, the gradients of deep embeddings propagate backward through a distance
computation with matrix multiplication and linear activations.

3.5 Experimental Results

This section presents the experimental results that reinforce the applicability of
RBFs to CNNs on several standard computer vision benchmark datasets and
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investigates the effect of tweaking various hyperparameters of the CNN-RBF ar-
chitectures in the training phase and generalization to test data. Three convo-
lutional backbones EfficientNet-B0 [264], InceptionV2 [261], and ResNet50 [96]
compute the embedding of CNN-RBFs in this section. A list of the benchmark
computer vision datasets used in this section is presented in Table 3.1.

Dataset Train Size Test Size # Classes

CIFAR-10 [139] 50 000 10 000 10
CIFAR-100 [139] 50 000 10 000 100
Oxford-IIIT Pets [200] 3 680 3 369 37
Oxford Flowers [193] 1 020 6 140 102
FGVC Aircraft [173] 6 667 3 333 100
Caltech Birds [297] 5 996 5 794 200

Table 3.1: An overview of computer vision benchmark datasets used to evaluate the
performance of CNN-RBFs (table adopted from [14]).

Figure 3.3 shows the hyperparameter search results for object classification on
two benchmark computer vision datasets: CIFAR-10 and CIFAR-100. The back-
bone CNN model in these experiments is EfficientNet-B0, with a layer of RBFs
for classification. The image preprocessing pipeline, called AutoAugment [50],
consists of a set of optimal and automatically discovered augmentation poli-
cies for the ImageNet [58] dataset. The CNN-RBF architecture demonstrated
in Figure 3.1 has two further hyperparameters: the number of cluster centers and
the input dimensions of the RBF network. The models are optimized using an
AdamW [162] optimizer with different learning rates and weight decay serving as
tunable hyperparameters. The other hyperparameters are the loss constant (λ)
from Equation 3.14, dropout rate, and batch size.

The hyperparameter searches in Figure 3.3 are conducted using the hyperband [150]
algorithm with 4 agents running in parallel on two Tesla V100 graphic process-
ing units (GPUs) for approximately 10 days. It should be noted that dropout is
only applied after the CNN backbone and before the fully connected layer in Fig-
ure 3.1. The output of the fully connected layer, without any activation function,
is used as input features of the RBFs. The results in Figure 3.3 show that training
CNN-RBF architectures leads to high performances, even with a wide range of
hyperparameters. However, achieving good test performance with a high dropout
rate and a large input dimension is challenging. CNN-RBF architectures show a
better performance without dropout and rectified linear unit (ReLU) activations
in the input layer of RBFs. Thus, dropout is neglected for further hyperparam-
eter searches conducted on the other datasets in Table 3.1. The list of optimal
hyperparameters for all datasets is presented in Table 3.2.

Several CNN-based backbone architectures are used within the CNN-RBFs to
train models for all computer vision datasets. The experimental results of apply-
ing the CNN-RBFs to the computer vision benchmark datasets with the standard
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Figure 3.3: Hyperparameter search results from CIFAR-10 (top) and CIFAR-100 (bot-
tom). The top five performing sets of hyperparameters for each dataset are highlighted
in yellow (figures adapted from [14]).

Loss Learning Embeddings Batch Number of Weight
Dataset constant rate dimensions size centers decay

CIFAR-10 0.1141 2.355e-5 64 32 20 1.090e-7
CIFAR-100 0.8557 1.873e-4 32 64 50 5.369e-7
Oxford-IIIT Pets 1.067 7.487e-5 64 16 50 1.150e-7
Oxford Flowers 1.562 1.076e-4 16 64 100 3.843e-6
FGVC Aircraft 0.5471 1.103e-4 8 8 50 1.222e-6
Caltech Birds 0.5156 2.603e-4 32 32 50 1.416e-8

Table 3.2: List of the final hyperparameters used for each computer vision bench-
mark dataset to achieve the performance of CNN-RBF architectures (table adapted
from [14]).

train and test splits are presented in Table 3.3. CNN-RBFs show the capacity to
learn the entire training dataset in all of the cases. There is, however, a small gap
between the best-reported performances in computer vision literature and CNN-
RBF architectures. Using dropout with CNN-RBFs for regularization does not
lead to desirable results. Reducing the number of parameters of the RBFs while
limiting their input size is the best empirically proven regularization strategy for
RBFs besides data augmentation. Developing regularization methods for RBFs
to improve generalization is an open research topic for reducing the gap between
current performances and state-of-the-art computer vision models.
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Dataset
CNN-RBFs Best

Backbone EfficientNet-B0 InceptionV2 ResNet50 result

CIFAR-10
No-Augment 0.966 0.963 0.969 0.993

Auto-Augment 0.975 0.977 0.942

CIFAR-100
No-Augment 0.797 0.752 0.693 0.936

Auto-Augment 0.822 0.805 0.778

Oxford-IIIT Pets
No-Augment 0.840 0.804 0.622 0.967

Auto-Augment 0.887 0.820 0.829

Oxford Flowers
No-Augment 0.609 0.659 0.595 0.997

Auto-Augment 0.828 0.757 0.667

FGVC Aircraft
No-Augment 0.723 0.717 0.665 0.945

Auto-Augment 0.842 0.843 0.828

Caltech Birds
No-Augment 0.613 0.428 0.281 0.904

Auto-Augment 0.618 0.587 0.503

Table 3.3: Comparing the performance of various CNN-RBF architectures with pre-
training and augmentation on benchmark computer vision datasets. The best results
column is the top performance of the current state-of-the-art architecture on the bench-
mark dataset (table adapted from [14]).

3.6 Visualization of the RBF Classifiers

This section attempts to visually explain the training and test processes of vision
models using RBF classifiers. First, it demonstrates the training process for the
simple task of classifying hand-written digits. Then, the distribution and training
samples of active clusters for a test sample are depicted for more complicated
object detection tasks described in the previous section.

3.6.1 Visualization of the Training Process

This section visualizes the performance of the RBFs classifiers for CNNs on a
simple dataset. The experiments are conducted on the modified national institute
of standards and technology (MNIST) dataset [148], a dataset of hand-written
digits including ten classes. Learning the dataset is considered a simple task
in computer vision. The simplicity of the dataset and learning task allows for
the visualization of the training process at a fine level of detail. CNN-RBF
architecture has the same number of cluster centers as classes (ten) in the dataset
to depict the training process in this experiment. The network architecture in this
section consists of a four-layer CNN, and the output of these layers is connected
to the RBF after a global average pooling layer and a fully connected layer.

Figure 3.4 demonstrates the evolution of the representations around the cluster
center during the training process. The data samples in Figure 3.4 are placed
according to their distance from the center and at a random angle. The samples
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Before training 50% of first epoch First epoch Third epoch Fifth epoch
Test accuracy: 8.9% Test accuracy: 20.3% Test accuracy: 77.1% Test accuracy: 97.5% Test accuracy: 98.8%

Figure 3.4: This figure presents the location of data samples compared to the cluster
centers during the training process. The centers of the clusters are in the middle of the
figures. The training samples are located at a random angle based on their distance
from the center of the clusters. The vertical and horizontal axes show the normalized
distances (figure adopted from [14]).

Before training 50% of first epoch First epoch Third epoch Fifth epoch

Figure 3.5: Two-dimensional representation of the training process: the figure
presents the embeddings of the convolutional backbone (top row), and the activations
of the RBFs (bottom row) mapped to a two-dimensional space using t-SNE [277]. The
vertical and horizontal axes depict the normalized values; however, all sub-figures use
the same normalization factors (figure adopted from [14]).

are shown with a number corresponding to their class, and the color is similar
for samples of the same class in Figure 3.4. To reduce the overlap between close
samples, a random uniform noise of amplitude 0.1 is added to the distance of the
samples from the cluster centers.

Minimizing the unsupervised loss in Equation 3.10 reduces the distance of the
data samples from the cluster centers. Furthermore, the supervised loss enforces
the samples of the same class to maintain the same distance from cluster centers,
as the activations are the only information for the network’s final decision. The
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circles with samples of the same class around the cluster centers demonstrate the
effect of supervised loss in training. Notably, the clusters presented in Figure 3.4
are selected to illustrate the concepts underlying training CNN-RBFs optimally.

Figure 3.5 illustrates the two-dimensional mapping of the CNN embeddings (top
row) and RBF activations (bottom row) using t-SNE [277]. The effect of both
supervised and unsupervised loss from Equation 3.14 is evident in this figure. The
data samples split into clusters regardless of their class labels in the embedding
space of CNN due to the unsupervised loss (top row in Figure 3.5). The activation
values divide into clusters corresponding to the class labels, a process encouraged
by the supervised loss.

3.6.2 Similarity Metric Learning and Interpretability

Using a different approximation strategy compared with fully connected layers
provides CNN-RBFs with the chance to probe the decision-making process based
on the following visual clues:

• Similar images as measured by the similarity distance metric of RBFs
trained on CNN embeddings

• Clusters visualization with a higher contribution to the network’s decision
and distance of the samples from the centers of these clusters

The embeddings of the CNN are compared with the position of the cluster centers
using the learned distance metric from the RBFs. The learned distance metric
of the RBFs can measure the similarity between a test image and similar images
from the training data. Figure 3.6 shows the similar images found in the training
dataset for a given test sample as determined by the similarity distance metric
in Equation 3.1. The most similar and dissimilar images are computed using the
following criteria:

xsimilar = arg min
xtrain

‖ xµtrain − xtest ‖2
R (3.16)

xdissimilar = arg max
xtrain

‖ xµtrain − xtest ‖2
R (3.17)

where xtest presents the input of RBFs for a given test image, xµtrain shows the
input vector for training samples, and µ enumerates the training samples from 1 to
N . xsimliar and xdissimliar represent the most similar and dissimilar images to the
given test image (xtest) respectively, andR denotes the positive definite covariance
matrix similar to Equation 3.1. The same similarity metrics in Equation 3.16 and
Equation 3.17 allow computing a ranked list of similar and dissimilar images for
a given test sample.
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Test image Similar and dissimilar images

Figure 3.6: This figure depicts similar and dissimilar training images for given test
images based on the similarity metric computed in Equation 3.1. The figure depicts the
top 7 most similar and dissimilar training images for a given test image in every two
rows. The images shown in every two consecutive rows belong to one of the datasets
in Table 3.1 in the same order (figure adopted from [14]).
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Figure 3.7 compares the performance of the similar sample selection for given
test images. The figure suggests that the learned metric and Euclidean distances
outperform the cosine distance for similar sample selection. Furthermore, the
learned metric slightly outperforms the Euclidean distance in these specific cases.

Test image Similar images from training set in the embedding space

Learned metric

Euclidean distance

Cosine distance

Figure 3.7: The presented figure visualizes the top 14 images selected using differ-
ent distance metrics in the embedding space for a given test image (figure adopted
from [14]).

The active clusters for every sample provide the reasoning behind the final de-
cision of CNN-RBFs. The clusters can be depicted using the distance of images
from their centers. Figure 3.8 shows training samples and their distances from
the cluster centers against a test sample. The product of activations and output
weights determines the final decision of the RBFs. Thus, the importance of a
cluster for a decision can be determined by sorting the product of activations and
class weights. Figure 3.8 depicts the clusters with the highest contributions to
the correct class (ground truth) and the wrong class based on this product. The
wrong class here refers to the class with the second-highest confidence level.
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Figure 3.8: The Figure illustrates the clusters contributing to a CNN-RBF network’s
correct class (top row) and the wrong class (bottom row). The larger image with
red borders in each cluster representation is the test sample. Red circles show the
distance of the samples to the cluster center, and the background is proportional to the
activation values of the cluster. The brighter the activation value, the larger it is, and
the maximum activation at the cluster center is equal to one (figure adopted from [14]).

3.7 Discussions and Conclusions

This chapter presents fundamental architectural modifications to RBFs for in-
tegrating them into CNN architectures for computer vision. The experimental
results indicate that integrating RBFs classifiers into CNN architectures achieves
competitive performances in benchmark computer vision datasets by combining
supervised and unsupervised learning. The proposed activation and training pro-
cess is compatible with any arbitrary state-of-the-art CNN architecture, including
inception blocks and residual connections. The small gap between the CNN-RBFs
performance and the best CNN models is a subject for future research to find op-
timal regularization methods for RBF networks. Using RBF architectures with
CNNs introduces two unique and network-specific opportunities for learning a
similarity distance metric and interpreting the decision-making process in more
detail. The classification of similar and dissimilar images found using a simi-
larity distance metric trained by RBFs is interpretable by humans. The cluster
representations are currently only used to trace the decision-making process. In
the current research, the distribution of images around clusters is not visually
conclusive because they are optimized in an unsupervised manner.



4 Using Interpretability to
Detect Adversarial Attacks for

Robust CNNs

The existence of adversarial attacks on convolutional neural networks (CNN)
questions the fitness of such models for sensitive and serious practical applica-
tions. The adversarial attacks are minimal changes computed for a given input
image, provoking a misclassification even though both images appear identical
to a human observer; they are, therefore, difficult to detect. In a different con-
text, backpropagated activations of CNNs’ hidden layers for a given input image,
so-called feature responses, have been helpful for humans to visualize and under-
stand what the CNN looks at while computing its output class. This chapter
presents a novel method to detect adversarial examples and identify manipulated
images by tracking adversarial perturbations in feature responses. This method is
fully human-explainable and allows the automatic detection of adversarial attacks
using the average local spatial entropy of feature maps for a given input image
without altering the original network architecture. Experiments confirm the va-
lidity and functionality of our approach for detecting state-of-the-art attacks on
large-scale models trained on ImageNet.

Alongside the contribution of this chapter to the robustness of computer vision
models through the detection of adversarial attacks, this chapter presents one
of the few applications of explainable artificial intelligence (XAI) for debugging
models. Although feature response (maps) were initially intended to open the
black box of vision models, they can also be used in practice for debugging, as
presented in this chapter. This chapter demonstrates a successful application of
vision model interpretability and XAI, which will hopefully inspire future work
in the direction of debugging and designing models based on human-explainable
methods. This chapter is adopted from the research published in [15], licensed
under CC BY 4.0 1.

1© 2018 Springer Nature Switzerland AG: https://creativecommons.org/licenses/by/4.0
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4.1 Introduction

The success of deep neural nets for pattern recognition [230] has been one of the
primary drivers behind the recent surge of interest in AI. A substantial part of this
success is due to the application of convolutional neural networks (CNNs) [148,
43] and their descendants on image recognition tasks. Moreover, the respective
methods have reached a level of sophistication where they are now being used
in business and industry [251] and lead to a wide variety of deployed models for
critical applications like automated driving [27] or biometrics [325].

However, concerns regarding the reliability of deep neural networks have been
raised after the discovery of so-called adversarial examples or attacks [262]. These
examples are specifically generated to fool a CNN into misclassifying visually very
similar images or images that appear identical to the human eye with high confi-
dence through the addition of barely visible perturbations [188] (see Figure 4.1).
The perturbations are computed using an optimization process on the input: the
network weights are fixed, and the input pixels are optimized for the dual tar-
get of (a) classifying the input differently than the ground truth class and (b)
minimizing the changes to the input. A growing body of literature confirms the
importance of this discovery on practical applications of neural networks [3]. The
existence of adversarial attacks provokes questions on how CNNs achieve their
performance and in what respect their decision-making differs from humans. In
addition, adversarial attacks can threaten serious deployments of CNNs in the
applications with the possibility of tailor-made attacks.

For instance, Su et al. [255] report on successfully attacking neural networks by
modifying a single pixel. This attack works without having access to the internal
structure or the gradients in the network under attack. Moosavi-Dezfooli et
al. [187] further show the existence of universal adversarial perturbations that
can be added to any image to fool a specific model. Furthermore, the impact
of similar attacks extends beyond classification [184], attacks are transferable to
other modalities [44], and also work on models distinct from neural networks [198].
Finally, adversarial attacks have been shown to work reliably even after perturbed
images have been printed and captured again via a mobile phone camera [144].
Apparently, this research area touches on a weak spot concerning the robustness
of CNNs in critical applications involving human privacy or security.

On the other hand, there is a recent interest in the explainability of AI agents,
particularly using machine and deep learning models [280, 195]. It goes hand
in hand with societal developments, like the new European legislation on data
protection that affects any organization using algorithms on personal data [90].
While neural networks are publicly perceived as “black boxes” concerning how
they arrive at their conclusions [1], several methods have been developed recently
to deliver insight into the representation and decision surface of trained models,
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improving interpretability. Prime candidates amongst these methods are feature
response visualization approaches that provide information regarding operations
in hidden layers of a CNN visible [316, 247, 194]. They can thus serve a human
engineer as a diagnostic tool in support of reasoning over the success and failure
of a model on the task at hand.

This chapter presents a method for using a specific form of CNN feature vi-
sualization, namely feature response maps, using guided backpropagation tech-
nique [247], to not only trace the effect of adversarial attacks but also to detect
them. This method traces the attacks on algorithmic decisions throughout CNNs.
Moreover, it uses feature response maps as input to a novel automated detection
approach based on a statistical analysis of feature maps’ average local spatial
entropy. The goal is to decide if a model is currently under attack by the given
input. The proposed approach has the advantage over existing methods because
it does not change the network architecture, i.e., it does not affect the classifica-
tion accuracy but is explainable to humans. Experiments on the validation set
of ImageNet [223] with VGG19 networks [243] show the validity of our approach
for detecting various state-of-the-art attacks.

The remainder of this chapter is organized as follows: Section 4.2 reviews re-
lated work in contrast to our approach. Section 4.3 presents the background on
adversarial attacks and feature response estimation before introducing the pro-
posed approach in detail in Section 4.4. Section 4.5 reports on the experimental
evaluations, and Section 4.6 concludes the chapter with an outlook on future
work.

4.2 Related Work

Work on adversarial examples for neural networks is a very active research field.
Potential attacks and defenses are published at a high rate and have been surveyed
by Akhtar and Mian [3]. Amongst potential defenses directly comparable to our
approach are those that focus solely on detecting a possible attack and not on
additionally recovering correct classification.

On the one hand, several detection approaches exist that exploit specific abnormal
behavioral traces that adversarial examples leave while passing through a neural
network. Liang et al. [153] consider the artificial perturbations as noise in the
input and attempt to detect it by quantizing and smoothing image filters. This
method used a similar concept, which is the basis of SqueezeNet introduced by
Xu et al. [307], which compares the network’s output on the raw and filtered
input, and raises a flag if it detects a large difference between both. Feinman
et al. [74] observe the network’s output confidence as estimated by dropout in
the forward pass [81], and Lu et al.’s SafetyNet [165] looks for abnormal patterns
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in the ReLU activations of higher layers. In contrast, the method presented
in this chapter performs detection based on statistics of activation patterns in
the complete representation learning part of the network as observed in feature
response maps, whereas Li [151] directly observes convolutional filter statistics
there.

On the other hand, the second class of detection approaches trains sophisti-
cated classifiers for directly sorting out adversarially optimized inputs: Meng
and Chen’s MagNet [181] learns the manifold of friendly images, rejects far away
ones as hostile and modifies close outliers to be attracted to the friendly images’
manifold before feeding them back to the network under attack. Grosse et al. [93]
enhance the output of an attacked classifier by an additional class and retrain the
model to classify adversarial examples as such directly. Metzen et al. [183] have a
similar goal but target it via an additional subnetwork. In contrast, this chapter
presents a method that uses a simple threshold-based detector and pushes all de-
cision power to the human-explainable feature extraction via the feature response
maps.

Finally, as shown in [3], different and mutually exclusive explanations for the ex-
istence of adversarial examples and the nature of neural network decision bound-
aries exist in the literature. Because our method enables a human investigator to
trace attacks visually, it will be instrumental in taking this debate further.

4.3 Background

This section briefly presents adversarial attacks and the theory of feature response
estimation before assembling both parts into the proposed detection approach in
the next section.

4.3.1 Adversarial Attacks

The principal idea behind adversarial attacks is to find a small perturbation for a
given image that changes the prediction of a CNN. Pioneering work demonstrated
that negligible and visually insignificant perturbations could lead to considerable
deviations in the networks’ output [262]. The optimization problem of finding
a perturbation η for a normalized clean image I ∈ Rm, where m is the size
(width×height) of the image, is stated as follows [262]:

min
η
‖ η ‖2 s.t. C(I + η) 6= ` ; I + η ∈ [0, 1]m (4.1)

where C(.) presents the classifier, and ` is the ground truth label. Szegedy et
al. [262] proposed a solution for the optimization problem of finding the perturba-
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Original Difference Adversarial

Gyromitra Difference Trafic light

Norwich terrier Difference Lampshade

Hornbill Difference Spotlight

Handkerchief Difference Lampshade

Indigo bunting Difference Spotlight

Figure 4.1: Examples of different state-of-the-art adversarial attacks on a VGG19
model: original images and labels (left), perturbations (middle), and mislabeled adver-
sarial examples (right). In the middle column, zero difference is encoded white, and the
maximum difference is black because of visual enhancement (figure adopted from [15]).

tions in Equation 4.1 for arbitrary labels `′ that differ from the ground truth. How-
ever, they used box-constrained limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) [78] to find perturbations satisfying Equation 4.1. Optimization based
on the L-BFGS algorithm for finding adversarial attacks is computationally in-
efficient compared to gradient-based methods. Therefore, in this chapter, a few
different gradient-based attacks, a one-pixel attack, and a boundary attack are
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used to compute adversarial examples, as explained in the following paragraphs
(see Figure 4.1).

Fast gradient sign method (FGSM) [89] is a method suggested for computing
adversarial perturbations based on the gradient ∇IJ(θ, I, `) of the cost function
with respect to the original image pixel values:

η = ε sign(∇IJ(θ, I, `)) (4.2)

where θ represents the network parameters and ε is a constant factor that con-
strains the max-norm (l∞) of the additive perturbation (η). The ground truth
label is presented by ` in Equation 4.2. The sign function is Equation 4.2 which
computes the elementwise sign of the gradient of the loss function with respect to
the input image. Optimizing the perturbation in Equation 4.2 in a single step is
called the fast gradient sign method (FGSM) in the literature. This method is a
white box attack, i.e. the algorithm for finding the adversarial example requires
information on weights, gradients, and the network’s architecture.

Gradient attack is a straightforward realization of finding adversarial pertur-
bations in the FoolBox toolbox [211]. It optimizes pixel values of an original
image to minimize the ground truth label confidence in a single step based on the
gradient values instead of their sign proposed in the FGSM method.

One pixel attack [255] is a semi-black box approach to compute adversarial
examples using an evolutionary algorithm [252]. The algorithm is not a white
box since it does not need the gradient information of the classifier. However, it
is not a full black box as it needs the class probabilities. The iterative algorithm
starts with randomly initialized parent perturbations. The generated offspring
compete with their parents at each iteration, and the winners advance to the
next step. The algorithm stops when the ground truth label probability is lower
than 5%.

DeepFool [188] is a white box iterative approach in which the closest direction
to the decision boundary is computed in every step. It is equivalent to finding the
corresponding path to the orthogonal projection of the data point onto the affine
hyperplane, which separates the binary classes. The initial method for binary
classifiers can be extended to a multi-class task by considering the task multiple
one-versus-all binary classifications. After finding the optimal updates toward the
decision boundary, the perturbation is added to the given image. The iterations
continue estimating the optimal perturbation and apply it to the perturbed image
from the last step until the network fails to predict the ground truth label.

Boundary attack is a black-box attack proposed by Brendel et al. in [30]. The
algorithm starts with an adversarial image from another class compared with the
target image and iteratively optimizes the distance between this image and the
target image. It searches for an adversarial example with a minimum distance
from the target image that keeps its original class throughoutd the optimization.
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4.3.2 Feature Response Estimation

The technique of visualizing CNNs through feature responses is used to figure
out which images’ region leads to the final prediction of a network. Therefore,
computing feature responses enhances the explainability of the classifiers. This
chapter demonstrates how to use this visualization tool to trace the effect of
adversarial attacks on CNNs’ predictions and detect perturbed examples auto-
matically.

One pixel attack [255]:
Predictions: Eskimo dog Feature response Thimble Feature response

FGSM [89]:
Predictions: Submarine Feature response Traffic light Feature response

DeepFool [188]:
Predictions: Disc brake Feature response Dome Feature response

Table 4.1: Effect of adversarial attacks on feature responses: (left) original images,
and their feature responses, (right) perturbed versions, and their feature responses
(figure adopted from [15]).

Erhan et al. [72] used backpropagation for visualizing feature responses of CNNs.
They evaluate an arbitrary image in the forward pass and retain the activation
values; then backpropagate from the last convolutional layer to the original image.
As a result, the feature response maps have higher intensities in the regions that
cause larger network activation values (see Figure 4.1). Moreover, the information
on max-pooling layers in the forward pass can further improve the quality of these
visualizations. Zeiler et al. [316] proposed computing “switches”, to consider the
position of maximum values in all pooling layers, and then construct the feature
response maps using transposed convolutional [68] layers.

Ultimately, Springenberg et al. [247] proposed a combination of both methods
called “guided backpropagation”. In this approach, the information of “switches”
(max-pooling spatial information) is kept, and the activations are propagated
backward with the guidance of the “switch” information. This method leads to
the best performance in the visualization of the inner workings of the network.
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Therefore, guided backpropagation is used for computing feature response maps
in this chapter.

4.4 Explainable Adversarial Attacks Detection

After reviewing the necessary background in the last section, this section presents
this thesis’s contribution to tracing adversarial examples in feature response maps,
which inspired the novel approach to the automatic detection of adversarial per-
turbations in images. In this manner, visual representations of neural networks’
inner workings also provide expert human guidance in developing CNNs that have
increased reliability and explainability.

4.4.1 Tracing Adversarial Attacks

The research question followed in this chapter is whether explainability methods
can provide insight into the reasons behind the misclassification of adversarial
examples. The effect of adversarial attacks in the feature response maps of CNNs
is traced in Figure 4.1. The general phenomenon observed in all images is that the
feature response maps’ active region for adversarial examples is widely spread.
In contrast, Figure 4.1 demonstrates that the network looks at a smaller region
of the image, i.e. is more focused, in the case of not manipulated samples.

The adversarial images are visually very similar to the original ones. However,
they are not recognizable by deep CNNs. The original idea behind this study
is that the focus of CNNs changes when facing an adversarial attack, leading to
incorrect predictions. Conversely, the network makes the correct prediction once
it focuses on the right region of the image. Visualizing the feature responses pro-
vides this and other exciting information regarding decision-making in computer
vision models. For instance, the image of the submarine in Figure 4.1 can be
considered a good candidate for an adversarial attack since the CNN is making
the decision based on an object in the background (see the feature response maps
of the original submarine in Figure 4.1).

4.4.2 Detecting Adversarial Attacks

Experiments tracing the effect of adversarial attacks on feature response maps
thus suggest that a CNN classifier focuses on a broader region of the input if
it is deliberately perturbed. Figure 4.1 demonstrates this connection for models’
decision-making in the case of clean inputs compared with manipulated ones. The
effect of adversarial manipulation is even more visible in the local spatial entropy
of the grayscale feature response maps (see Figure 4.2). The feature response
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Original Adversarial Original Adversarial

Image:

Feature response:

Local spatial entropy:

Table 4.2: Input, feature response maps, and local spatial entropy for clean and
perturbed images, respectively (table adopted from [15]).

maps are initially converted to grayscale images, and local spatial entropies are
computed based on the grayscale feature response maps as follows [37]:

Sk = −
∑
i

∑
j

hk(i, j) log2(hk(i, j)) (4.3)

where Sk is the local spatial entropy of a small part (patch) of the input image and
hk represents the normalized 2D histogram value of the kth patch. The indices
i and j scan through the height and width of the image patches. The patch
size is 3 × 3, the same as the filter size of the first layer of the VGG19 model
used. The local spatial entropies of corresponding feature responses are presented
in Figure 4.2, and their difference for clean and adversarial examples suggests a
likely chance of detecting perturbed images based on these maps.

Accordingly, the proposed method in this chapter uses the average local spatial
entropy of an image as the final single measure to decide whether an attack has
occurred or not. The average local spatial entropy S̄ is defined as:

S̄ =
1

K

∑
k

Sk (4.4)

where K is the number of patches on the complete feature response maps and Sk
shows the local spatial entropy as defined in Equation 4.3 and depicted in the last
row of Figure 4.2. The proposed detector makes the final decision by comparing
the average local spatial entropy from Equation 4.4 with a selected threshold to
measure the spatial complexity of the feature response maps.
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4.5 Experimental Results

The first experiments visually compare the approximated distribution of the av-
eraged local spatial entropy of feature response maps in clean and perturbed
images to evaluate the value of the explained metric in Equation 4.4. The vali-
dation set of ImageNet [223] with more than 50, 000 images from 1, 000 classes is
the subject of this study, and feature response maps are computed for the VGG19
model [243]. Perturbations for this experiment are computed using several differ-
ent methods, and the distribution of average local spatial entropies is depicted for
the fast gradient sign attack (FGSM). Figure 4.2 shows that the clean images are
distinguishable from perturbed examples, although there is some overlap between
the distributions.

(a) Histogram (b) ROC curves

Figure 4.2: a) Distribution of average local spatial entropy in clean images (green)
versus adversarial examples (red) as computed on the ImageNet validation set [223].
b) Receiver operating characteristic (ROC) curve of the performance of the detection
algorithm on different attacks (figure adopted from [15]).

Computing adversarial perturbations using evolutionary and iterative algorithms
is demanding in terms of time and computational resources. To apply the pro-
posed detector to a wide range of adversarial attacks, many images are randomly
drawn from the validation set of ImageNet for each attack to evaluate the de-
tection performance of the presented method. The selection of images for each
attack is made sequentially by class and filename and comprises only the num-
ber of images per method that can be computed within a reasonable amount of
time, using a reasonable number of resources (see Table 4.3). The experiments
are based on the FoolBox benchmarking implementation2, and the attacks are
computed using TitanX graphics processing unit (GPUs).

Figure 4.2b presents the receiver operating characteristics (ROC) of the proposed
detector; numerical evaluations are provided in Table 4.3. Our detection method
performs better for gradient-based perturbations compared to the single-pixel
attack. Furthermore, Table 4.3 suggests that the best adversarial attack detection

2https://github.com/bethgelab/foolbox

https://github.com/bethgelab/foolbox
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performance is achieved for FGSM and boundary attack perturbations, where
the network confidences on the ground truth labels are changed the most after
manipulating the images. This observation suggests that the proposed detector is
more sensitive to stronger attacks in fooling the network with a more drastic effect
on target class confidence. Using feature response maps, the proposed method
detects more than 91% of the perturbed images with a low false positive rate
(1%).

Adversarial attack
#Images

Success rate
Ground truth Target class False positive rate

(run time [days]) confidence confidence 1% 5% 10%

FGSM [89] 50, 014 (3) 0.925 0.022 0.588 0.954 0.974 0.983
Gradient attack [211] 50, 014 (15) 0.499 0.052 0.371 0.922 0.954 0.969
One pixel attack [255] 50, 014 (32) 0.620 0.037 0.463 0.917 0.951 0.966
DeepFool [188] 47, 858 (42) 0.606 0.041 0.446 0.936 0.963 0.976
Boundary attack [30] 4, 013 (17) 0.940 0.023 0.583 0.934 0.960 0.972

Table 4.3: The table describes the numerical evaluation of detection performance
on different adversarial attacks. Column two gives the number of tested images and
approximate elapsed run time. The success of an adversarial attack is defined if a
perturbation changes the prediction. Columns four and five show average confidence
values of the true (ground truth) and wrong (target) classes after a successful attack.
Finally, the last columns show detection rates for different false positive rates (table
adopted from [15]).

Method Dataset Network Attack
Performance

Recall Precision AUC

Uncertainty density estimation [74] SVHN [139] LeNet [147] FGSM - - 0.890
Adaptive noise reduction [153] ImageNet (4 classes) CaffeNet DeepFool 0.956 0.911 -
Feature squeezing [307] ImageNet-1000 VGG19 Several attacks 0.859 0.917 0.942
Statistical analysis [93] MNIST Self-designed FGSM (ε = 0.3) 0.999 0.940 -
Feature response (our approach) ImageNet validation VGG19 Several attacks 0.979 0.920 0.990

Table 4.4: This table describes the performance of similar state-of-the-art adversarial
attack detection methods. The Area Under Curve (AUC) is the average value of all
attacks in the third and last row (table adopted from [15]).

In general, it is difficult to directly compare different studies on attack detection
since they use a wide variety of neural network models, datasets, attacks, and
experimental setups. Table 4.4 presents a short overview of the performances of
current detection approaches. The approach presented in this chapter is most
similar to the methods of Liang et al. ([153]) and Xu et al. [307]. The detector
proposed in this chapter outperforms both of the aforementioned methods based
on the presented results in their work. However, it is not fully known if they used
identical implementations and parameterizations of the attacks (e.g., a subset of
images and learning rates for optimizing the perturbations). Similarly, adaptive
noise reduction in the original publication [153] is only applied to four classes of
the ImageNet dataset, and the method presented to detect adversarial attacks is
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implemented based on CaffeNet deep learning framework, which differs from our
experimental setup.

4.6 Discussion and Conclusion

The results presented in this chapter demonstrate the relevance and importance of
adversarial attacks and the necessity to improve the robustness of CNNs against
such perturbations. However, preliminary experiments on binary (cat versus
dog [200]) and ternary (among three classes of cars [137]) classification tasks
suggest that it is more challenging to find adversarial examples where marginal
changes in the images are invisible to humans in such a setting. These tasks
are proxies for the kind of few-class classification settings frequently arising in
practice. Figure 4.3 illustrates these experimental results.

Original Adversarial Original Adversarial

Figure 4.3: Successful adversarial examples created by DeepFool [188] for binary
and ternary classification tasks are only possible with noticeably visible perturbations
(figure adopted from [15]).

This chapter offers an approach to detect adversarial attacks based on human-
explainable feature response maps. The proposed method traces the effect of
adversarial perturbations on the networks’ focus region in original images, which
inspired a simple yet robust approach for detecting adversarial attacks automat-
ically. The proposed method is based on thresholding the averaged local spatial
entropy of the feature response maps and detecting at least 91% of state-of-the-art
adversarial attacks with a low false positive rate on the validation set of ImageNet.
However, the results are not directly comparable with state-of-the-art methods
because of the diversity in the experimental setups and attack implementations.

Experimental results verify that feature response maps are informative in detect-
ing specific failure cases in deep CNNs. Furthermore, the proposed detector uses
the explainability of neural network decisions, an increasingly important topic for
developing robust and reliable vision models. Future work, therefore, will con-
centrate on developing reliable and explainable image classification methods for
practical use cases based on these preliminary results.



5 Motion Compensation in
Computed Tomography Using

CNNs

This chapter presents this thesis’s main applied contribution, motion artifact re-
duction, which enhances the quality of cone-beam computed tomography (CBCT)
scans using 3D convolutional neural networks (3D-CNNs). This application is rel-
evant and exciting for two main reasons: 1) There is no analytical solution to the
problem of motion compensation since reconstruction algorithms are developed
based on the assumption of measurements from a constant volume. 2) Motion
artifacts are relevant in CBCT scans because of their long acquisition time, and
using CBCTs demonstrates improving cancer therapy via adaptive dose calcula-
tion and patient positing.

This chapter offers a novel deep-learning (DL) based approach that significantly
reduces motion artifacts and improves scan quality.

Because motion artifact reduction has no analytical solution, 3D deep convolu-
tional neural networks (3D-CNNs) are employed as pre-and/or post-processing
steps during CBCT reconstruction to target motion artifacts using a data-driven
approach. The method described in the following paragraphs is performed either
using the analytical Feldkamp-Davis-Kress (FDK) with filtered backprojection
(FBP) reconstruction method or using the iterative algebraic reconstruction tech-
nique (iCBCT/ART). Based on refined UNet architectures, the neural networks
are trained end-to-end via supervised learning. The dataset used in this chapter
is generated from 4D computed tomography (CT) scans of lungs containing ten
motion phases between inhalation and exhalation and patients’ breathing curves
with negligible motion artifacts. The training ground truth volumes are the aver-
aged volume over all phases in 4D-CT or the volume at the average amplitude of
the breathing curve. The trained networks are validated using real-world CBCT
scans and quantitative image quality metrics. In addition, a qualitative evaluation
from clinical experts is performed.

The novel approach in this chapter can generalize to unseen data and yield notice-
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able reductions in motion-induced artifacts and improvements in image quality
compared with state-of-the-art CBCT reconstruction algorithms (up to 6.3dB and
0.19 improvements in PSNR and SSIM, respectively). The experimental findings
from the simulation are confirmed by a clinical evaluation of real-world patients’
scans (clinical experts reported at least a noticeable change in motion reduction
over standard reconstruction in 74% of cases). To the best of our knowledge, this
is the first time that inserting deep neural networks as pre- and post-processing
plugins in the existing CBCT reconstruction pipeline and end-to-end training
demonstrates significant improvement in imaging quality and reducing motion
artifacts in CBCT scans. This chapter is mainly adopted from the research pub-
lished in [12], licensed under CC BY-NC-ND 4.0 1.

5.1 Introduction

Computed tomography (CT) has become a versatile radiology and radiation ther-
apy imaging technique. It obtains detailed 3D scans of the human body for diag-
nostics and planning therapies. Cone-beam CT (CBCT), in particular, is used for
reconstructing scans from measurements of radiation therapy treatment devices
(linear accelerators). CBCT reconstruction techniques in image-guided radiation
therapy (IGRT) [113] and interventional radiology provide high spatial resolution
in a cost-efficient manner [70]. IGRT treatment is performed in up to 40 frac-
tions. For each fraction, it is necessary to obtain the image of the day in order to
position the patient accurately. Novel applications of CBCT imaging in IGRT,
such as online adaptive replanning [313] or daily treatment planning and dose
calculation [114], are very well-known in the scientific community.

There are two leading families of reconstruction algorithms used in modern CT
scanners: (i) analytical techniques and (ii) algebraic reconstruction. The first
group is based on filtered backprojection (FBP), most prominently represented
by the Feldkamp-Davis-Kress (FDK) method [75]. The second group consists of
the algebraic reconstruction techniques (ART) family, which is based on reformu-
lating and solving the reconstruction problem through an iterative optimization
technique. Although the development of algebraic methods started in the late
1960s [103], they have only been deployed on CT scanners in the last 15 years[91]
mainly because of their high computational cost. In recent years, this problem
has disappeared due to the high availability and relatively low cost of GPUs.

Iterative CBCT (iCBCT) reconstruction algorithms based on the ART family
introduced in [202] for Varian’s Halcyon and TrueBeam addressed the need for
superior image quality in terms of better noise suppression and improved contrast
as compared with FDK and demonstrated in [82, 133, 174, 294]. However, there

1© 2023 The Authors: https://creativecommons.org/licenses/by-nc-nd/4.0

https://creativecommons.org/licenses/by-nc-nd/4.0


5.1. Introduction 67

is still room for improvement in these methods, if they are to tackle real-world
artifacts which are not a part of theoretical and analytical solutions.

Imaging artifacts [232] are still a prevalent feature in CBCT reconstruction. The
main sources of artifacts are (i) electrical and photon count noise, (ii) photons
from scattered X-rays, (iii) extinction and beam hardening effects (e.g., due to
metal implants), (iv) approximations in the reconstruction (due to finite beam
width and detector pixel size), (v) aliasing (due to finite pixel size and cone beam
divergence), (vi) ring artifacts (due to defect or miscalibrated detector elements),
and (vii) patient motion.

Motion artifacts arise since the reconstruction methods assume that the scanned
patient is stationary. However, periodic respiratory and cardiac motions and non-
periodic motions, such as gas bubbles in the abdomen caused by the digestive
system, lead to acquiring projections from different states of motion in the body.
Patients’ motion leads to the appearance of evident and undesirable, typically
streak-shaped artifacts in reconstructed scans.

The following motion compensation strategies are used so far in IGRT clinical
routine: (i) 4D or gated CBCT based on an external breathing signal [61], (ii)
breath hold CBCT based on an external breathing signal and potential patient
feedback, (iii) assisted breathing based on a ventilator system [205], (iv) abdom-
inal compression devices applied to the patient [51], (v) internal breathing signal
extraction [7].

This chapter presents a novel approach to mitigate motion artifacts in CBCT
reconstruction using deep learning (DL). The CBCT reconstruction is integrated
within a DL pipeline, where convolutional neural networks are employed as pre
-and/or post-processing steps. These networks act on either the 2D X-ray pro-
jections (preprocessing), the reconstructed 3D volume (post-processing), or both.
Next, the models are trained end-to-end in a supervised fashion using CBCT
scans containing simulated motion artifacts and motion-free scans as ground
truth. Finally, the trained models are validated quantitatively using various
scan quality-related numerical metrics, and on an independent real-world patient
CBCT dataset developed through qualitative clinical feedback.
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5.2 Related Work

Much work has been done [232, 25, 86] regarding the characterization and mitiga-
tion of the various kinds of artifacts that negatively impact image quality in CT
and CBCT scans. In recent years, DL-based approaches have shown promising
results, including applications for IGRT and adaptive radiation therapy [203].

Würfl et al. [303] mapped the components of the FBP algorithm into a neural
network by introducing a novel DL-enabled cone-beam back-projection layer. A
forward projection operation efficiently computes the backward pass of the back-
projection layer. This approach thus permits joint optimization and correction
in the projection and volume domain. Moreover, Maier et al. [171] argued that
implementing prior knowledge (such as the back-projection operation) in the form
of (differentiable) known operators into DL algorithms reduces training error
bounds while reducing the number of free parameters.

Limited-angle CT is employed to reduce acquisition time and decrease the radia-
tion dose, which leads to a degradation of image quality and introduces sparseness
artifacts. To overcome these issues, Wang et al. recently presented an encoder-
decoder architecture based on the UNet model [219] to reconstruct high-quality
scans with fewer projections. A UNet processes scans reconstructed by the si-
multaneous algebraic reconstruction technique (SART) to improve the imaging
quality [18]. Experiments on chest and abdomen CT scans demonstrated the
superiority of the proposed methods over existing approaches. Similarly, Schnurr
et al. proposed UNet-based networks to correct limited-angle artifacts in circular
tomosynthesis scans [231].

DL-based approaches demonstrate success in metal artifact reduction (MAR) [199,
319]. Lin et al. introduced a dual-domain architecture (DuDoNet) to jointly com-
pensate for metal-induced artifacts in both projection and volume domains [157].
Experimental results on the DeepLesion CT dataset [309] showed that the pro-
posed method outperformed both traditional and other DL-based approaches. An
improved model, DuDoNet++, was proposed to compensate for over-smoothed
and distorted image reconstruction and led to improved artifact correction, espe-
cially for large metallic objects [168]. Furthermore, there have been recent efforts
in MAR using unsupervised approaches, as explained in [154]. The U-DuDoNet
model [167] directly models the artifact generation and compensation process in
both the projection and volume domains. More recently, the interactive [286]
and interpretable [292] versions of DuDoNet have been introduced to improve
the interpretability and enhance the interaction between projection and volume
domains.

DL-based approaches have been employed to improve sparseness artifacts gener-
ated by low-dose CT reconstruction [95, 115, 321, 136]. Chen et al. present the
AirNet model to fuse analytical and iterative CT reconstruction and integrate
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them into DL to improve sparse-data 3D and 4D CBCT reconstruction [38, 39].
In the projection domain, DL-based models can also correct signal degradation
caused by X-ray photons scattering within the patients’ body [172, 71].

Finally, motion artifact compensation using DL has received comparatively less
interest. Paysan et al. present an initial study of a UNet-based artifact reduction
method, but only in the volume domain [204]. Su et al. used UNet architectures
to reduce simulated motion artifacts in head CT scans based on simple simulated
rigid (translations, rotations, oscillations) transformations. Finally, Lyu et al.
used recurrent neural networks for cardiac motion artifact reduction in magnetic
resonance imaging (MRI) [166].

5.3 Materials and Methods

This section presents the preliminary knowledge and the related theory which
lays the foundation of this chapter’s main contributions and findings. First, this
section starts with a more detailed explanation of the CBCT reconstruction tech-
niques used in this chapter. Secondly, the motion simulation framework is ex-
plained, followed by a discussion on the simulated and real-world datasets and
the clarification of their differences.

5.3.1 CBCT Reconstruction

Both analytical and iterative methods are considered for the reconstruction of 3D
CBCT volumes from 2D cone-beam projections in this research work. Feldkamp-
Davis-Kress [75] (FDK) is an analytical reconstruction method based on filtered
back-projection (FBP). Although the Tuy data-sufficiency conditions [273] are
not met for circular trajectories of a cone-beam source, FDK provides a fast
and reliable analytical approximation of the inverse Radon transform, and it has
become a golden standard for 3D CBCT reconstruction [34]. Ram-Lak filter com-
pensates for the radial non-uniformity of the sampling density in FDK. Moreover,
half-fan weighing is necessary to avoid data duplication for the datasets acquired
with half-fan geometry. The projections are acquired from the full 360◦ trajectory.
However, the detector is shifted against the gantry to one direction to increase the
field of view in half-fan geometry. Half-fan weighing is followed by cosine weight-
ing to decrease the longitudinal full-off effect due to the cone-beam geometry.
Finally, the projections are down-sampled so that their resolution matches the
cut-off frequency requirement given by the target resolution of the reconstructed
volume.

Besides FDK, in this chapter, the iterative algebraic reconstruction technique
(ART) originally based on Kaczmarz algorithm [119] is used for iterative CBCT
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(iCBCT) reconstruction. This method approximates the volume f by an itera-
tive optimization of the data-fidelity cost function: ‖ Af − p ‖2, where A and
p represent the forward-projection operator and projections in the attenuation
space, respectively. In each iteration k, an update of the actual volume esti-
mation is computed through back-projecting the gradient of the cost function,
i.e.
∑

α A>([Afk]α − pα) where pα and [Afk]α denote the projection under angle
α and corresponding forward-projection of actual estimated volume fk, respec-
tively, and A> represents the back-projection operator. One of the advantages of
the iterative methods is allowing a straightforward integration of prior knowledge
into the reconstruction process through a regularization term to augment the cost
function during optimization. The implementation used in this chapter employs
the edge-preserving total variation regularization, which helps to reduce the noise
and cone-beam artifacts in the areas far from the iso-center.

In order to significantly reduce the computational cost, the GPU implementation
of ART is further accelerated through the following approaches: First, the version
of ART known as simultaneous ART (SART) is used where the volume is up-
dated in parallel for each input projection. Next, ordered subsets (OS) [132] and
Nesterov momentum method [190] are employed. Finally, a destination-driven ap-
proach [125] is employed in the forward projection of ART and backward projec-
tion of both ART and FDK. Further details about the TV-regularized OS-SART
with momentum can be found in [207], where the method is presented as a part
of the iCBCT algorithm deployed clinically in Varian products.

5.3.2 Motion Simulation

It is necessary to simulate motion for volumes with available ground truth to
train the models using supervised learning; hence, the motion simulation method
aims to generate synthetic datasets of CBCT volumes with motion artifacts. The
motion simulation method starts from the phase-gated 4D CT scans described in
Section 5.3.3 and a set of recorded breathing curves. The method profits from the
Deeds [97] algorithm to perform a deformable registration between CT volumes of
the end-inhale and end-exhale phases and to create a patient-specific deformation
vector field (DVF).

A reconstructed CT scan, its DVF, and the patients’ breathing curve are suf-
ficient requirements to simulate the motion during the CBCT acquisition. The
simulation method deforms the CT volumes by interpolating the DVFs according
to the breathing amplitude. It creates a forward projection at each angular step
by matching its timestamp with the relevant amplitude in the breathing curve.
Each projection acquired through the described motion simulation method corre-
sponds to a different respiratory state. Then, the CBCT volume is reconstructed
using either the FDK or iCBCT reconstruction algorithms. Motion artifacts are
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evident in the volumes reconstructed from the explained motion-simulated CBCT
projection acquisition technique. Figure 5.1 shows an example of typical motion
artifacts created by patient motion in real-world (clinical) CBCT dataset (test
dataset, see Section 5.3.3) side-by-side with the emulated motion artifacts from
our motion simulation.

The supervised learning approach presented in this chapter requires ground truth
volumes without motion artifacts. The ground-truth volumes correspond either
to a fixed motion state (average amplitude) or the average of all deformed vol-
umes (average volume). Moreover, data augmentation is a crucial component of
supervised learning pipelines to enhance optimization performance. Augmenta-
tion is realized by using different breathing curves to simulate motion with the
same dataset of CT scan and DVF in this research work.

Figure 5.1: Motion Artifacts. Left: CBCT scans with motion artifacts from the test
dataset. Right: Scan with artificially produced motion artifacts from the motion sim-
ulation. The scans are presented in HU with W/L=1000/0 (figure adopted from [12]).

5.3.3 Datasets

For the training and validation of the different methods, a dataset of thoracic
4D CT scans from 80 patients is split into fractions of 60%, 20%, and 20% for
training, validation, and testing, respectively. They were provided as input to
the motion simulation described in Section 5.3.2. The patient-specific anatomical
correct deformations were extracted from the end inhale and exhale out of the ten
breathing phases. To simulate plausible motion patterns during a virtual CBCT
acquisition and to augment the training dataset, 400 recorded breathing curves
were obtained via Varian’s real-time position management (RPM) system.

For testing the developed methods on real-world (clinical) patient CBCT scans,
a dataset of 77 Halcyon scans was employed. All pre-processed projection data
and reconstructed volumes were given at the same size, resolution, and geometry
to ensure consistency: The projection size is 320x80 pixels (with a resolution of
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1.344× 4.032 mm), and the volume size is 256× 256× 48 voxels (2× 2× 3 mm).
The source-to-imager distance is 154 cm with a detector offset of 17.5 cm.

5.4 Supervised Learning for Motion Artifact

Reduction

This section presents the necessary underlying basics to start with supervised
learning. First, the DL-enabled framework for reconstruction and refinement
models, including UNets in the projection- and volume domains, is explained.
Second, evaluation metrics for numerical analysis of simulated data are presented,
and the section concludes by describing the experimental setup, including the
hardware.

5.4.1 DL-Enabled CBCT Reconstruction

Motion leads to inconsistencies in the acquired projections, which appear as ar-
tifacts in the volume domain after reconstruction. Therefore, motion corrections
can be, in principle, applied before and/or after reconstruction. The models,
estimating these correction steps, are implemented as trainable neural network
architectures derived from 3D refined UNet architectures.

The reconstruction algorithm used is either FDK or iterative CBCT (iCBCT)
reconstruction, as discussed in Section 5.3.1. These algorithms are implemented
based on forward- and back-projection layers implemented with custom compute
unified device architecture (CUDA) code and interfaced as PyTorch modules.
The analytical solution using filtered back-projection, inspired by FDK, is dif-
ferentiable. Therefore, it is possible to back-propagate the gradient through this
module and simultaneously optimize in both projection and volume domains,
called dual-domain optimization. Dual-domain optimization requires a differ-
entiable reconstruction method such as FDK and is not practical for iterative
techniques.

The supervised learning approach uses the simulated motion dataset (Section 5.3.2)
for training the motion compensation networks, where the loss is calculated in the
volume domain. The ground truth is either calculated as the motion-averaged
volume (“average volume”) or given as the volume corresponding to the fixed
motion state matching the average breathing signal amplitude (“average ampli-
tude”). The networks are validated on the validation and test portions of the
simulated motion dataset and an independent real-world test dataset containing
real-world clinical patient CBCT scans (see Section 5.3.3). In detail, the recon-
struction pipeline consists of the following components:
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Figure 5.2: The architecture of the proposed dual-domain model for end-to-end opti-
mization consists of the following components: (i) a projection enhancement network
(PE-Net), (ii) a projection-to-volume reconstruction layer, and (iii) a volume enhance-
ment network (VE-Net) (figure adopted from [12]).

Projection Enhancement Network (PE-Net): A convolutional neural net-
work based on UNet architectures, explained in more detail in the next section,
is deployed to mitigate motion-induced artifacts in the projection space. PE-Net
receives as input the acquired projections {Xproj ∈ RHp×Wp×Cp}, and enhances

these projections {X̂proj}, i.e. X̂proj ≈ fpe net(Xproj) to remove motion artifacts in
the projection space. Here, Hp ×Wp × Cp denotes the projection dimensions in
terms of height, width, and number of projections.

Projection-to-Volume Reconstruction Layer: The projection-to-volume re-
construction layer frec(·) receives as input the (enhanced) projections {X̂proj} and

outputs a reconstructed volume {Xvol ∈ RHv×Wv×Cv}, i.e. frec(X̂proj) → Xvol :
RHp×Wp×Cp → RHv×Wv×Cv , where Hv ×Wv × Cv represents the volume’s height,
width, and number of slices. This layer corresponds to the regular FDK or iCBCT
reconstruction (Section 5.3.1).

Volume Enhancement Network (VE-Net): The VE-Net fve net(·) is respon-
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sible for enhancing the reconstructed volume and compensating motion artifacts
in the volume domain. As output, the VE-Net produces an enhanced volume
{X̂vol ∈ RHv×Wv×Cv}, i.e. X̂vol ≈ fve net(Xvol).
Our proposed dual-domain (end-to-end) model, shown in Figure 5.2, combines
the above components for motion correction in both projection- and volume
domains. It consists of three different modules: (i) a projection enhancement
network (PE-Net), a (ii) projection-to-volume reconstruction layer, and a (iii)
volume enhancement network (VE-Net).

The following paragraphs describe the different model blocks of the proposed
architecture. Note that these blocks are used in both the projection enhancement
(PE-Net) and volume enhancement (VE-Net) networks.

Encoder Blocks: The encoder blocks of the presented architecture in Figure 5.2
consist of four similar submodules including 3D a convolutional layer with filters
of size 3×3×3, followed by an instance normalization [274], the Swish activation
function [210] and a 3D max-pooling layer of size 2 × 2 × 2. The number of
convolutional filters in the first block is doubled for every next layer. Hence, the
latent representations of the input volume have a larger number of channels but
a smaller spatial size with a higher receptive field after the first layer.

Decoder Blocks: The decoder block aims at computing the motion corrections
from latent representations and has four submodules starting with a trilinear
upsampling followed by 3D convolutions of size 3× 3× 3, instance normalization,
and the Swish activation function. The number of convolutional filters is halved
after each layer to make the entire model’s architecture symmetric.

Attention mechanisms: To further compensate for motion artifacts, the mod-
els rely optionally on attention mechanisms. More precisely, as part of the bot-
tleneck and decoder blocks of both PE-Net VE-Net, there are channel-wise and
spatial-wise attention layers [302] in 3D. The corresponding input feature maps
are multiplied at each decoder layer with the generated attention maps to refine
the original features. The model can focus on more relevant features using these
attention layers. Models including attention layers, are denoted by “Attn.” in
Table 5.1.

Residual Learning and ResUNet: Using residual learning is crucial to sim-
plifying the learning task and improving the convergence speed. The architecture
depicted in Figure 5.2 uses two components to enhance the gradient flow and
simplify the learning task. First, the proposed architecture profits from a direct
residual connection from input to output (“residual learning”) to optimize the
required correction instead of reconstructing the ground truth. The proposed
architecture optionally includes internal residual connections between the input
and output of the convolutional layers to improve the gradient flow as described
in [320]. Networks including “ResUNet” layers are labeled as such in Table 5.1.
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5.4.2 Evaluation Metrics

The experimental results of motion compensation on the simulated dataset are
reported based on numerical performances using several quantitative metrics [293]
sensitive to the similarity of pairs of volumes (x, x′). The evaluation metrics are
computed by summing up the differences over all components, voxels in volumes,
as follows:

• root mean squared error: RMSE =
√

MSE
where MSE(x, x′) = 1

N

∑
i ‖ xi − x′i ‖2

• peak signal-to-noise ratio: PSNR = 10 log10

(
MAX2

MSE

)
• structural similarity index (SSIM )[293]

In addition, Table 5.1 reports the mean and standard deviation of the difference
image x − x′ used for reducing (correcting) the motion artifacts. All metrics
are calculated in Hounsfield units (HU) from pairs of uncorrected or corrected
body-masked volumes and their corresponding ground truth counterparts.

5.4.3 Experimental Details

This section describes the experimental setup, architectural variants, optimiza-
tion settings, and implementation details used for training based on a motion-
simulated dataset.

Experimental Setup: The volume size is 256 × 256 × 48 voxels based on the
neural network architectures to optimize computational and memory allocation
costs. Based on the training dataset discussed in Section 5.3.3, 720 projections
are used per scan for training, and motion artifacts in CBCT scans are computed
using motion simulation introduced in Section 5.3.2. The reconstruction and
forward-projection geometry are selected to match the real-world test dataset,
which is used for clinical evaluation in Section 5.5.

Data Augmentation: Five different patient breathing curves per CT scan are
added for motion simulation from each original CT scan in the training dataset.
Data augmentation through various breathing curves led to a considerable boost
in the final performance of our motion correction models.

Model Architecture: The baseline model, initially considered for motion cor-
rection, is a UNet with residual learning from input to output as depicted in
Figure 5.2. A plain UNet [219] architecture without residual connections is al-
ready sufficient for correcting the artifacts in volume space; however, residual
learning is necessary for the more complicated tasks, including correcting the
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projections and dual-domain optimization. Therefore, all of our models include
residual learning. The baseline UNet model has a depth of 4 and has 32 filters in
the first layer. The number of filters doubles after every layer up to the middle
(model’s bottleneck), and the architecture is reverted afterward. The same archi-
tecture is used for both PE-Net and VE-Net. For dual-domain optimization, two
such models form the architecture together. For PE-Net, the models process the
projections in chunks of 192 due to memory limitations. PE-Net and VE-Net are
extended with internal residual connections (“ResUnet”) and/or channel-spatial
attention (“Attn.”) for different experiments presented in the next section.

Implementation and Optimization Settings: The models used for motion
compensation are implemented using the PyTorch [201] framework. The ex-
periments were performed on NVIDIA V100 (A100) GPUs with 32 (40) GB of
VRAM. Both projections and volumes are normalized using constant coefficients
per dataset to the approximate range of zero and one before optimization. The
loss function for optimizing the models is the difference between the predicted
and reconstructed volume as computed by the `1 − norm =

∑
i ‖ xi − x′i ‖. The

AdamW [162] optimizer is used with a learning rate of 1.41 · 10−6 and weight
decay of 1.87 · 10−8 in the projection domain, and a learning rate of 1.11 · 10−4

and weight decay of 1.39 · 10−8 in the volume domain. These parameters are the
results of a joint hyperparameter sweep with other parameters, such as a number
of convolutional filters, kernel size, and convolutional dilation. This experiment’s
batch size is 1 (due to GPU memory limitations), and training continues for a
total number of 300 epochs. The model that reduces the validation loss the most
during the training is selected for testing.

5.5 Experimental Results

This section presents the experimental quantitative and qualitative results ob-
tained by applying DL-based motion reduction techniques using 3D convolutional
neural networks. First, the quantitative results obtained with the test portion of
the simulated dataset are presented. Second, the qualitative results based on a
clinical evaluation of the real-world test dataset are discussed.

5.5.1 Quantitative Results

In order to train the model architectures (see Figure 5.2) in a supervised scenario,
only the simulated motion dataset (Section 5.3.3) is relevant. The training set is
used for training the models, while the validation set results guide the optimiza-
tion to select the best models and hyperparameters. Experimental results in this
section consist of the final performance on the left-out test set during the training
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Model Architecture RMSE ↓ PSNR (dB) ↑ SSIM ↑ Mean±stdev
Baseline Performance of Average Volume

FDK 77.8875 28.3802 0.8086 -
iCBCT 76.2560 28.6741 0.8701 -

Baseline Performance of Average Amplitude
FDK 86.9695 27.5059 0.7992 -
iCBCT 106.5914 25.6087 0.7304 -

Volume Domain (Average Volume)
3D-UNet (FDK) 38.27(-39.62±9.06) 34.72(6.34±1.45) 0.9585(0.1499±0.0412) 0.0154±38.2148
3D-ResUNet (FDK) 39.86(-38.03±10.53) 34.32(5.94±1.63) 0.9495(0.1410±0.0457) -8.2486±38.8685
3D-ResUNet+Attn.(FDK) 39.65(-38.24±8.58) 34.35(5.97±1.17) 0.9559(0.1473±0.0406) -1.9394±39.5164
3D-UNet (iCBCT)† 44.20(-32.05±14.65) 33.32(4.65±1.79) 0.9481(0.0780±0.0400) -3.7927±43.9936
3D-ResUNet (iCBCT) 44.80(-31.46±14.67) 33.22(4.54±1.80) 0.9464(0.0763±0.0385) -1.9903±44.7111
3D-ResUNet+Attn.(iCBCT) 45.75(-30.50±15.01) 33.05(4.37±1.89) 0.9377(0.0676±0.0406) -6.0158±45.2901

Volume Domain (Average Amplitude)
3D-UNet (FDK) 51.67(-35.30±11.08) 32.10(4.59±1.10) 0.9410(0.1418±0.0431) -3.5407±51.4552
3D-ResUNet (FDK) 51.28(-35.69±11.87) 32.14(4.63±1.16) 0.9417(0.1425±0.0432) -2.9049±51.1370
3D-ResUNet+Attn.(FDK) 51.87(-35.10±11.78) 32.03(4.52±1.15) 0.9326(0.1335±0.0456) -6.9976±51.2475
3D-UNet (iCBCT)† 55.42(-51.17±11.50) 31.42(5.81±1.33) 0.9300(0.1996±0.0656) 0.7139±55.2177
3D-ResUNet (iCBCT) 55.76(-50.83±12.06) 31.35(5.75±1.39) 0.9282(0.1979±0.0634) -4.0567±55.4900
3D-ResUNet+Attn.(iCBCT) 58.78(-47.81±11.28) 30.88(5.27±1.28) 0.9131(0.1828±0.0598) -11.9311±57.1327

Projection Domain (Average Volume)
3D-UNet (FDK) 73.88(-4.01±1.88) 28.89(0.51±0.33) 0.8654(0.0569±0.0165) 3.8085±73.5703
3D-ResUNet (FDK) 67.91(-9.98±4.86) 29.68(1.30±0.78) 0.8931(0.0845±0.0224) -1.2820±67.7729
3D-ResUNet+Attn.(FDK) 67.68(-10.21±7.28) 29.71(1.33±0.98) 0.8940(0.0855±0.0232) -1.5657±67.5189

Dual-Domain (Average Volume)
3D-UNet (FDK) 49.19(-28.70±6.19) 32.43(4.05±0.62) 0.9377(0.1292±0.0349) -0.2131±48.9999
3D-ResUNet (FDK) 45.51(-32.38±8.13) 33.07(4.69±0.73) 0.9425(0.1339±0.0406) -8.9502±44.4396
3D-ResUNet+Attn.(FDK) 45.65(-32.24±9.07) 33.00(4.62±0.82) 0.9396(0.1311±0.0425) -9.7962±44.3982

Table 5.1: Presented are the quantitative results of DL-based motion correction for
CBCT data with simulated motion. The table presents the performance of the pro-
posed motion reduction framework based on the RMSE, PSNR, and SSIM metrics and
reports the mean and standard deviation of the body-masked difference (correction)
volumes. The metrics are calculated between the reconstructed and ground truth vol-
umes, converted to HU with slope and intercept of 48200 and −1106, respectively. All
numerical values are averaged over the test set. The table shows the average metric to-
gether with the average gain (or loss) and the latter’s standard deviation to clarify the
contribution of the motion correction. For example, in the last row, the average PSNR
is reported as 33.00 dB, corresponding to an average improvement of 4.62 dB, with a
standard deviation of 0.82 dB. The models noted by † are used for clinical evaluation
(Section 5.5.2) (figure adopted from [12]).
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and parameter optimization.

Table 5.1 presents the numerical performance of the various architectures dis-
cussed in Section 5.3 for two reconstruction methods FDK and iCBCT, with
two different sets of ground truth volumes (“average volume” or “average ampli-
tude”). Three different neural network architectures are investigated: “3D-UNet”
(base architecture), “3D-ResUNet” (UNet-based enhanced with ResUNet), and
“3D-ResUNet+Attn.” (enhanced using both ResUNet and attention blocks). The
ground truth volumes with average amplitude differ more from their correspond-
ing uncorrected volume with motion artifacts than the ones with averaged volume.
Therefore, the baseline RMSE is larger for average amplitude, and lower baseline
performances in terms of PSNR and SSIM are reported in Table 5.1. Since com-
puting the gradients in the backward pass of the reconstruction algorithm, which
is required for training models in the projection domain, is only practical for the
FDK reconstruction, Table 5.1 does not present results based on iCBCT for op-
timizing in the projection domain and dual-domain. The numerical results are
reported based on computing the metrics as introduced in Section 5.4.2 between
the body-masked ground truth and reconstructed volumes, converted to HU.

Uncorrected Volume Ground Truth

Corrected Volume

Figure 5.3: Example results for FDK reconstruction (volume domain optimization).
Presented is the uncorrected volume using default reconstruction (left), the ground
truth volume, both as difference and absolute image (“average volume”, top right),
as well as the corrected volume (bottom right). Images are presented in HU with
W/L=1000/0 (figure adopted from [12]).

The numerical evaluation demonstrates that training 3D-CNNs is consistently
successful in compensating motion for both projection and volume domains, with
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the best performance being achieved in the volume domain. Numerically, it corre-
sponds to a rise of 6.34 dB in PSNR and 0.1499 for SSIM for FDK with “average
volume” ground truth. The highest improvement reported for iCBCT is 5.81 dB
of PSNR and 0.1996 in SSIM with “average amplitude” ground truth. Table 5.1
reports a very competitive performance in dual-domain optimization. However,
most of the motion correction performance in the dual-domain setting is based on
the volume domain corrections. The maximum average gained PSNR in the case
of pure projection domain optimization turned out to be 1.33 dB. These results
represent the first successful attempt at reducing motion artifacts in CBCT scans
using deep neural networks.

The method proposed reduces motion artifacts for two reconstruction techniques
(FDK and iCBCT) with several different architectures, including variants with
added internal residual connections and/or channel-spatial attention. The motion
compensation performance shows a small but consistent variance with the details
of the neural network architecture. Reducing the motion artifacts in the projec-
tion domain is a subject for further research and optimization due to the more
challenging optimization settings. Optimization in the projection domain relies
on gradients propagated all the way through the CBCT reconstruction layer and
suffers from the large volume of data in the projection space and current GPU
memory limitations.

Comparing the two CBCT reconstruction algorithms, iCBCT shows more robust-
ness against motion during acquisition time, and a slightly lower drop in baseline
performances is reported. In addition, artifact reduction using 3D-CNNs in the
volume domain for iCBCT reconstruction is successful and shows the same re-
sults as FDK. Figures 5.3 and 5.4 present example visualizations of the observed
motion artifact improvements seen in volume domain learning on top of the FDK
and iCBCT reconstructions, respectively.

5.5.2 Clinical Evaluation

To validate the quantitative results of the previous section in a clinical setting,
the trained motion compensation CNN models are applied to a real-world test
dataset (see Section 5.3.3 and Figure 5.5). Finally, the performance of the motion
correction models is evaluated based on the feedback obtained from clinicians.

The real-world CBCT scans used in this study are sufficiently different from the
simulated training datasets, e.g., the projection count and HU calibration, to
objectively judge the models’ generalization capabilities. The attenuation values
of the real-world test dataset are rescaled to match the scale of the training
dataset to compensate for the different calibrations.

The expert feedback was collected from a study where clinicians visually inspected
30 pairs of iCBCT reconstructed and motion-corrected volumes, 15 each for ei-



80 Chapter 5. Motion Compensation in CBCT Using CNNs

Uncorrected Volume Ground Truth

Corrected Volume

Figure 5.4: Example results for FDK reconstruction (volume domain optimization).
The uncorrected volume using default reconstruction (left), the ground truth volume,
both as difference and absolute image (“average volume”, top right), as well as the
corrected volume (bottom right) are depicted in the table. Images are presented in HU
with W/L=1000/0 (figure adopted from [12]).

ther a model trained using average amplitude or average volume ground truth.
The best performing CNN architectures from Table 5.1, UNet in volume do-
main without residual connections or attention, were used for clinical valida-
tion. Subsequently, 20 clinicians, including radiation oncologists, medical physi-
cists, radiation technologists, and physicians, answered several questions about
their preferences for using CNN models to reduce motion artifacts compared
with the standard reconstruction. Each of the clinicians identified themselves as
one of three general categories: physician (26%), medical physicist (37%), and
dosimetrist/radiation technician (37%).

Initial feedback on the iCBCT datasets indicated the presence of severe and mild
unavoidable real-world artifacts besides motion in 34% and 20% of the scans,
respectively. The study participants specified their level of agreement or pref-
erence concerning (a) a reduction of the observed motion artifacts and (b) the
use for various applications, including dose calculation, patient positioning, and
segmentation.

This clinical evaluation, the first of its kind to the best of our knowledge, faced
the challenge of subjective assessments from experts with different clinical back-
grounds. For example, physicians reported a noticeable or strong improvement
in CNN-based motion artifact reduction using average volume ground truth in
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Ground Truth: Average Volume

Uncorrected Volume Residual Corrections Corrected Volume

Ground Truth: Average Amplitude

Uncorrected Volume Residual Corrections Corrected Volume

Figure 5.5: The table shows example results for iCBCT reconstruction for real-world
test dataset, using the two options for the choice of ground truth. The uncorrected
volumes using default reconstruction (left), the residual corrections (middle), as well as
the corrected volumes (right) are presented (figure adopted from [12]).

80.00% of scans, while medical physicists only reported this in 65.83% of the scans.
Nonetheless, medical physicists preferred CNN-corrected volumes in 63.33% of the
cases for dose calculation, while the physicians reported this in only 30.67% of
the cases.

Table 5.2 presents the average overall votes and the final clinical evaluation re-
sults. Despite the differences in the improvements reported by the different ex-
perts, there is a clear positive trend showing that the proposed CNN models
are indeed able to reduce motion artifacts successfully. In addition, clinicians
reported a tendency toward using CNN-corrected images (using average volumes
ground truth) for plan adaptation and dose calculation. One area where clinical
experts preferred to use images without CNN-based reconstruction is for soft-
tissue-based patient positioning and manual or automatic tissue segmentation, as
these images are typically sharper compared with the CNN-corrected ones.

Nevertheless, quantitative evaluation to compute the level of agreement when
applying an automatic segmentation algorithm using CBCT images with and
without motion artifact correction leads to overwhelmingly positive results. The
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Ground Truth → Average Volume Average Amplitude
↓ Application / Preference → CNN (%) Equal (%) Standard (%) CNN(%) Equal(%) Standard(%)

Motion artifact reduction 74.00 26.00 - 58.33 41.67 -
Plan adaptation and dose calculation 49.33 22.00 28.67 26.33 17.33 56.33
Soft-tissue-based patient positioning 23.00 12.67 64.33 13.00 7.00 80.00
Manual and automatic tissue segmentation 24.33 14.67 61.00 13.00 10.33 76.67

Table 5.2: Results of the clinical evaluation. This table shows the preferences for
CNN-based or default iCBCT reconstruction when using CNN models trained using
either average volume or average amplitude ground truth concerning motion artifact
reduction and potential applications such as plan adaptation and dose calculation,
patient positioning and segmentation (table adopted from [12]).

average dice score measures the automatic segmentation contours in original and
motion-corrected volumes. This score is averaged over 18 organs or tissues, visible
in most CBCT scans, including pulmonary arteries, breast, chest wall, lung, ribs,
and spinal canal. The high dice score of 0.89 (0.88) when using average volume
(average amplitude) ground truth demonstrates a very high level of consistency
between the obtained segmentation contours despite the low preference reported
by clinical experts for using the motion-corrected images for segmentation.

5.6 Discussions and Conclusions

This chapter presents the first DL-based method for globally reducing motion
artifacts in reconstructed 3D CBCT images, built on top of the two reconstruction
algorithms FDK and iCBCT. Neural network architectures which act either on the
reconstructed CBCT volumes, the input X-ray projections or both were trained
in a supervised way using a motion simulation framework to provide motion-free
ground truth. The experimental results demonstrate that DL-based architectures
can correct motion artifacts. So far, the best results have been obtained in the
volume domain through the implementation of a refined U-net architecture.

The quantitative evaluations demonstrate that using DL through deep neural
network architectures yields significant improvements in image quality and re-
duces motion-induced artifacts in CBCT scans. In addition, a clinical evaluation
was performed, in which clinical experts confirmed the principal quantitative re-
sults for motion artifact reduction using a real-world test dataset. Clinicians
confirmed that artifacts are reduced and expressed a preference for using CNN-
corrected CBCT images for dose calculation. However, for patient positioning or
segmentation, this could not yet be demonstrated.

There are several related avenues that could be explored in future research:

First, the presented results show promising improvements, mainly in the volume
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domain, independent of the acquisition parameters and reconstruction technique.
However, there is room for improvement in the projection and dual-domain set-
ting. One potential reason is the processing of the projections in batches due to
GPU memory limitations, which leads to a loss of correlation between different
projection batches separately processed by the neural network. In addition, great
care is necessary to ensure the backpropagation of gradients through the CBCT
reconstruction layer to provide a meaningful and noise-free learning signal in the
projection domain.

Second, models trained using supervised learning typically suffer from general-
ization to data acquired in entirely different settings. Although the calibration
technique used in this study successfully reduced the performance gap between
the performance of the models on simulation and real-world datasets, general-
ization to highly different acquisition setups and other anatomies is not certain.
This provides motivation for further investigation of unsupervised learning and/or
domain adaptation techniques.

Third, the current motion simulation only simulates respiratory motion and does
not include other effects, such as cardiac motion. Therefore, tackling cardiac
motion in chest CBCT scans combined with respiratory motion remains an open
problem. This method could also be extended to handle abdominal CBCT scans,
including different motion effects.

In conclusion, while the initial results are very promising, future research will aim
to improve adaptive treatment capabilities in IGRT, including patient position-
ing and tumor targeting, auto-segmentation, and dose calculation applications
directly on the radiotherapy device.





6 Applications in Affective
Computing, Medical Imaging

and Beyond

This thesis presents several contributions to diverse and interdisciplinary research
niches among many applications of machine learning (ML) and deep learning
(DL). Although the original papers in this section have much more extensive
content, this chapter summarizes the most scientifically thrilling findings and
lessons learned from applying ML and DL in the real world. This chapter is
broader in terms of the various applications discussed, more diverse than previous
chapters, more straightforward, and more interesting because of its diversity.

Despite the brief overviews, this chapter presents many interesting practical find-
ings and insights that are beneficial in applied research and tuning ML and DL
methods to their best performances. Furthermore, this chapter describes several
practical problems in ML and DL, such as affective computing, pain estima-
tion, and data homogenization, and identifies initial solutions to this particular
research area. Finally, similar to the previous chapters, the remainder of this
chapter discusses some exciting directions for future research.

The chapter is organized as follows: discussing solutions for facial expression esti-
mation, emotion recognition, and findings on automated ML and DL focusing on
bringing neural networks to their best performances. The chapter then presents
two medical applications targeting signal processing for pain estimation and im-
age processing for data homogenization for DL pipelines. The last two sections of
this chapter introduce and elaborate on two well-known challenges of DL: fairness
and robustness.

85
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6.1 Affective Computing

This section presents two applications of machine learning in affective computing.
It begins with explaining the application of support vector machines in facial ex-
pression estimation, followed by emotion recognition using audio-visual features.

6.1.1 Facial Expression Estimation

Human facial expressions can reveal information about their affective states [311]
or cognitive load[134], which are crucial in human-computer interaction (HCI).
There is extensive literature, and several surveys have been developed around
facial expression estimation due to its importance. Researchers have divided
the human face into several regions called action units (AUs) to quantify facial
expressions. Figure 6.1 shows a few such action units defined in the literature to
measure facial expressions. The activity of AUs can be measured based on binary
occurrence labels (active/deactive) or quantified in terms of intensity in discrete
activation levels from zero to six. The predictions of AU intensities per frame can
be considered a time series. One can compare measures such as root mean square
error (RMSE) and Pearson correlation coefficient (PCC) between predictions and
ground-truth labels. Since the labels are discrete, it is also possible to compute
the mean intraclass correlation coefficient (ICC) as a performance measure [240].

(a) AU1 (b) AU4 (c) AU6 (d) AU10 (e) AU12 (f) AU14 (g) AU17

Figure 6.1: Several action units (AUs) used for facial expression estimation (figure is
adopted from [8]).

According to the usage of the ground-truth labels, AU activities can be predicted
in binary occurrence or by estimating the intensity of a specific AU. Different
types of neural networks can be used based on the goal of the facial expression
task. For instance, a binary classifier can predict the occurrence of activation in
an AU, or its level can be predicted using a multi-class classifier or a regression
model.

The presented method in this section for AU intensity estimation consists of mul-
tiple steps, starting with preprocessing for face alignment followed by training
facial expression templates from data using K-SVD dictionary learning (see Fig-
ure 6.2). Then, each input image’s features are computed based on their projec-
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tion onto dictionary elements to compute the facial features. Support vector ma-
chine (SVM) based classifiers and regression models are trained for AU occurrence
and intensity estimation based on the computed features. Dictionary-learned fea-
tures improved the baseline results using conditional random fields [276] by 35%.
However, the DL-based method achieved superior performance on an unseen test
dataset reported in the 3D facial expression recognition and analysis challenge
(FERA 2017) [324].

Figure 6.2: Several dictionary-learned facial templates used for facial feature extrac-
tion (figure is adopted from [8]).

The main practical insights of this section can be summarized as follows: 1) Pre-
processing steps such as face alignment (especially when images are from differ-
ent head poses) are vital for ML and DL-based approaches. 2) The performance
of deep learning models has exceeded the ML-based methods for a long time;
however, training regression models instead of classifiers imposes much more op-
timization effort and hyperparameter tuning overhead in DL than in ML. 3) Not
all classes are located at an equal distance in the embedding space. Hence, using
a hierarchical classifier to identify the occurrence and then predict the intensity
of an AU improves the performance.

More details on implementing dictionary-learned feature extraction techniques
used with a support vector regression model for facial expression recognition are
presented in [8].

6.1.2 Emotion Recognition

Affective computing and, more specifically, human emotion recognition is an inter-
disciplinary field linking cognitive sciences, psychology, and computer science. It
has recently attracted more attention in the context of human-computer interac-
tion (HCI) to interpret and understand human behavior and emotions. The idea
of automatic emotion recognition is useful for making various sensory measure-
ments, including facial video, audio, and physiological signals to predict human
affective status and emotions according to the changes in the sensory information.

Besides discrete emotional categories such as happiness, surprise, fear, anger,
and disgust, there are two continuous dimensions of arousal and valance which
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can express human emotions. Arousal shows a human’s level of activeness and
engagement in a specific situation, while valance indicates the positiveness of a
human’s feelings. Arousal and valance levels can define different human feelings
and affective statuses. For instance, happiness and excitement share a positive
valance level with low and high arousal levels, respectively. Similarly, sadness
and anger are positioned on the negative side of the valance scale with low and
high arousal levels [209]. Furthermore, researchers have also figured out that the
affective status of humans in social interaction has another dimension described
as dominance [126].

Based on the briefly explained theory, Ringeval et al. designed an experiment
and created the RECOLA multimodal corpus for emotion recognition [215]. The
human subjects participating in this experiment were divided into two groups for
interactive sessions. Then, they were presented with a task, such as surviving an
air airplane crash in the middle of a jungle. The participants were given a list
of tools and asked to rank the list of tools according to their preference indepen-
dently. Then, the participants of each group were connected via video call to dis-
cuss their solutions and the organizers recorded the audio-visual information and
physiological signals during this interactive session. According to the progress
of the discussions, participants experienced different types of natural emotions
with various intensities. After the interactive session, six psychologists rated the
participants’ emotions based on two dimensions: arousal and valance. Then, a
gold standard label was computed based on the inter-rater agreements of the psy-
chologist’s ratings at every time step. Next, audio-visual and bio-physiological
information processing occurred to quantify the participants’ emotions automat-
ically through the reproduction of the gold standard labels.

Valstar et al. processed the raw audio-visual and bio-physiological data of the
RECOLA dataset into features that are ready for ML-based pipelines for pre-
diction [275]. They extracted local Gabor binary patterns from three orthogonal
planes (LGBP-TOP) [4] for appearance features and extracted facial landmarks
to evaluate the face geometry [305]. Moreover, they used the COVERED toolbox
to extract voice quality and spectral features from audio [56]. Bio-physiological
recordings include electrocardiogram (ECG) and electrodermal activity (EDA)
signals. All bio-physiological signals pass through band-pass filtering in the pre-
processing step. The ECG signals are processed to extract heart rate (HR) and
its measures of variability (HRV) as features for emotion recognition [214]. EDA
signals are also decomposed to their rapid and transient component called skin
conductance response (SCR) as well as a slower basal drift denoted as skin con-
ductance level (SCL) [52]. Valstar et al. computed four statistical features from
both EDA components and their first derivative to use in the emotion recognition
pipeline [275].

This thesis offers an ML-based pipeline for processing the features’ information
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and creating predictions from multiple data modalities. Figure 6.3 demonstrates
this pipeline, including random forests (RF [29]) for training regression models,
which predict the continuous labels in two dimensions of arousal and valance
based on extracted features for the four data modalities of audio, video, ECG
and EDA. Furthermore, since the psychologists evaluated the emotional status of
the participants based on their audio-visual signals, these modalities contain more
information, and RF models have created more precise and less noisy predictions
using audio-visual features.

SCL

ECG

RF

pinv

b-ESN

RF

RF

RF

ESN

Figure 6.3: Presented is the proposed sequence of blocks for the automatic fusion of
audiovisual and biophysiological information to predict arousal levels (figure is adopted
from [10]).

Due to the precise prediction from audio-visual features, it was possible to train a
recurrent model based on echo state networks (ESNs [112]) to refine the prediction
and consider temporal information. The idea of reservoir computing inspires
ESNs. They are models with time series as input (here, the sequence of arousal
or valance predictions) with internal states connected by random weights. The
models’ output weights are trained to minimize the loss function between the
internal state of the reservoir and ground-truth labels (see Figure 6.4). The
emotion recognition pipeline described in this section uses a bi-directional ESN
for audio and a standard ESN for video modalities which were selected based
on their performance on each data modality. The internal state of the reservoir
in bi-directional ESNs depends not only on previous samples in the time series
but also on the samples that follow. An alternative to ESNs are long short-term
memory (LSTM [100]) models as well as their bi-directional version [233].

Multimodal information fusion is the final and essential component of the emotion
recognition pipelines. Different modalities contain various levels of information
for arousal and valance tasks. For instance, the arousal predictions from au-
dio are more accurate, and video modalities include more information for the
valance. Hence, averaging the predictions of all modalities does not lead to opti-
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Figure 6.4: Presented are the echo state networks (ESNs) based architectures for
modeling temporal information dependencies and fusing multimodal information. One
ESN is trained for each modality, and the predictions of all modalities are combined
using precomputed weights according to the importance of modalities per task.

mal predictions. The pipeline presented in Figure 6.4 uses Moore pseudo-inverse
to minimize the mean square error of multimodal information fusion predictions
and gold standard labels. Thus, the final information fusion block is a linear
combination of the predictions from each modality. More details about numerical
results and methodology are presented in a paper published in conjunction with
the audio-visual emotion recognition challenge (AVEC) [275].

The most intriguing path for future research in emotion recognition is multi-
modal and temporal information fusion, in addition to multi-task learning. The
information fusion technique presented in this section used universal weights to
combine the modalities. However, the importance of different modalities can dif-
fer from time to time based on events in the audio-visual and bio-physiological
signals. Thus, developing adaptive fusion techniques with attention mechanisms
can significantly improve the fusion’s performance. Furthermore, arousal and
valance are predicted separately in this work. These tasks can be combined into
a multi-task learning problem to train models that fine-tune the predictions of
one emotion dimension by being aware of the other. The ratings from psycholo-
gists and gold standard labels are not necessarily temporally synchronized with
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physiological and audio-visual information. Tracing such temporal mismatches
between features and labels is still cumbersome, which we tackle by finding the
optimal shifts as a hyperparameter (see Figure 6.5). Developing more sophisti-
cated methods to model such temporal dependencies in high-dimensional features
or video is another thrilling venue for research.

Figure 6.5: The figure depicts the temporal mismatch between audio features and gold
standard labels. The average performance of predicting the arousal level of participants
from audio increases considerably when features are aligned with gold-standard labels
(figure is adopted from [10]).
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6.2 Automated Data Analysis

The breakthroughs in ML and DL provide the opportunity to leverage an immense
amount of data to approximate almost any function and draw arbitrary decision
boundaries for classification and regression. However, the main consequence of
such a large degree of freedom was the very challenging task of selecting suitable
models with optimal generalization capabilities and a set of hyperparameters for a
given dataset. Researchers used to tune the parameters empirically and put their
inductive biases into models. With the rise of computing resources, searching
architectures and hyperparameter spaces became feasible and popular. The body
of literature focusing on automated ML (AutoML) and automated DL (AutoDL)
is massive, and this section offers several insights found whilst researching these
two subjects.

6.2.1 Automated Machine Learning

The goal of automated machine learning is defined as solving the combined model
section and hyperparameter (CASH) optimization problem. The main goal is to
develop search algorithms that can adapt to the tasks based on new trials or even
further leverage previous experience from other datasets (referred to as meta-
learning in literature [278]). The AutoML challenge series provided a framework
to compare methods targeting the CASH problem [94]. The idea of this challenge
is to provide two independent sets of benchmark datasets for training and testing
with different tasks such as regression and various types of classification. The
performance of methods developed for AutoML has been evaluated with strict
limitations on time and resources. Several strategies have been adapted and used
in the literature to solve the CASH problem automatically. The most straight-
forward strategy to target the CASH problem is the random search method.
Although it is a naive search strategy, random search can achieve competitive
results for a new task when no similar dataset or problem is available (see Ta-
ble 6.1). Furthermore, it is possible to use evolutionary selection for tuning the
choices of models and hyperparameters for the target datasets. The idea is to
choose the subsequent models and hyperparameters based on the previous best-
performing ones. Olson et al. proposed an evolutionary algorithm for the CASH
problem called the tree-based pipeline optimization tool (TPOT [196]).

Several strategies have been adapted and used in the literature to solve the CASH
problem automatically. The most straightforward strategy to target the CASH
problem is the random search. Although it is a naive search strategy, the random
search can achieve competitive results for the new task when no similar dataset or
problem is available (see Table 6.1). Furthermore, it is possible to use evolutionary
selection for tuning the choices of models and hyperparameters to the target
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datasets. The idea is to choose the subsequent models and hyperparameters based
on the previous best-performing ones. Olson et al. proposed an evolutionary
algorithm for the CASH problem called the tree-based pipeline optimization tool
(TPOT [196]).

One method used to incorporate the previous experiences from other datasets is
Bayesian optimization [77]. The idea is simple, hence practical. The idea is to
consider functions of choice (commonly Gaussian processes) with free parame-
ters defining the space drawn by hyperparameters and objective functions. Free
parameters of the Gaussian processes are updated after every trial of a set of
HPs, and the performance on a given dataset is computed. The parameters of
Gaussian processes, in this way, learn the connections between hyperparameters
and performance on the task. Models trained based on meta-learning can trans-
fer knowledge from training datasets to new target datasets. Auto-Sklearn is an
example of such a method that not only selects the best model and hyperparam-
eters based on the target dataset but also learns from previous runs on different
datasets [76].

Random-Search Auto-Sklearn TPOT
Dataset Task Metric Test Time Test Time Test Time

Cadata Regression R2 (coefficient of determination) 0.7119 55.0 0.7327 54.9 0.7989 54.6
Christine Binary classification Balanced accuracy score 0.7146 99.4 0.7392 99.3 0.7442 105.1
Digits Multiclass classification Balanced accuracy score 0.8751 201.2 0.9542 201.2 0.9476 207.2
Fabert Multiclass classification Accuracy score 0.8665 77.5 0.8908 77.4 0.8835 78.5
Helena Multiclass classification Balanced accuracy score 0.2103 190.2 0.3235 216.4 0.3470 197.5
Jasmine Binary classification Balanced accuracy score 0.8371 24.1 0.8214 24.0 0.8326 25.9
Madeline Binary classification Balanced accuracy score 0.7686 48.3 0.8896 48.2 0.8684 53.0
Philippine Binary classification Balanced accuracy score 0.7406 56.3 0.7634 56.2 0.7703 56.4
Sylvine Binary classification Balanced accuracy score 0.9233 28.9 0.9350 28.9 0.9415 29.0
Volkert Multiclass classification Accuracy score 0.8154 122.3 0.8880 122.2 0.8720 125.5

Average Performance 0.7463 90.31 0.7938 92.85 0.8006 93.26

Table 6.1: Performance of three automated machine learning algorithms with different
paradigms on AutoML challenge datasets and their convergence time [94] (table adopted
from [272]).

6.2.2 Automated Deep Learning

The mainstream research in AutoDL presented in Section 2.1.7 focuses on devel-
oping novel vision architectures mainly based on the ImageNet dataset. However,
the other open research question with more relevance to practical problems is find-
ing the optimal architecture and set of hyperparameters for a given dataset that
is not necessarily large in terms of the number of images and classes. Searching
for solutions to the AutoDL problem inspired the series of AutoDL challenges
to find lightweight models with hyperparameters that can quickly adapt to new
but small datasets [160]. The target of these challenges was the area under the
learning curve (ALC) instead of the final or best performance. Hence, models
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converging faster outperform those with slow learning and better final perfor-
mance based on the final evaluation metric. This evaluation metric highly favors
lightweight models, which can be fine-tuned for new datasets very quickly.

Deep convolutional neural networks (CNNs) outperformed the classical methods
on AutoDL for vision. Due to their design, which is optimized to learn represen-
tations from a large dataset, pretraining on ImageNet is still an undeniable part
of the model preparation. The performance of small models such as ResNet18 [96]
and MobileNet-V2 [225] which have been trained on a small dataset, show consis-
tency by changing their learning rate for a fixed pipeline; hence, a fixed learning
rate can be used for different datasets (see Figure 6.6). However, regulariza-
tion shows a more critical role in optimally fine-tuning the models to small new
datasets. It is no wonder that the winning solutions of AutoDL contained the
fast auto-augment method to learn augmentation strategies tailored for a given
dataset.

Research in developing models for audio processing falls behind vision systems
with respect to lightweight architecture searched models on large audio datasets.
For example, a commonly used pretrained network for audio processing is VG-
Gish [159] trained on Youtube-8m dataset [189], which is far from light-weight.
Hence, searching for appropriate architectures is pivotal when searching for op-
timal models for small datasets. Similarly, augmentation strategies are not as
well explored in audio processing, and a significant boost is expected with the
development of more suitable or automated augmentation techniques.

Despite the differences between audio and video processing pipelines for research
in AutoDL for audio-visual data, the block diagram used for pattern classifi-
cation can be summarized with similar components as depicted in Figure 6.6.
Preprocessing the data is the first step which computes the spectrogram for au-
dio data, augmentation for images, or selects key frames from videos. Then, the
raw information can be processed into latent representations using convolutional
backbones. Information fusion in the following steps combines the information
along the axis of time via convolutions or spatially using global pooling. The last
layer is a fully connected classifier to predict the patterns from the models’ final
embeddings. The main advantage of such a similar architecture is the possibility
of mid-level information fusion between audio-visual modalities in applications
such as emotion recognition, explained in Section 6.1.2.
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Figure 6.6: Performance of four different vision datasets in terms of ALC of Mo-
bileNetV2 as a function of weight decay and learning rate (top two rows) and averaged
performance over all datasets (bottom row). The green dot indicates the best perfor-
mance (figures are adopted from [271]).



96 Chapter 6. Applications of Machine and Deep Learning

6.3 Medical Diagnosis and Imaging

This section presents two medical applications for machine and deep learning
methods. First, the application of machine learning in pain detection in medicine
through bio-physiological signal processing is explained. Second, data homog-
enization for medical images with future applications in merging datasets and
image preprocessing in federated scenarios is discussed.

6.3.1 Pain Estimation

ML and DL methods have been widely used in medical applications such as pain
estimation. Pain is an evolutionary mechanism developed in human bodies to stop
and prevent external damaging stimuli or harmful behaviors. However, pain also
appears as a consequence of operations in clinical settings. Not all patients, such
as neonates, unconscious patients, or patients with cognitive or communicative
impairments, are capable of communicating the location and level of pain when
seeking treatment. Hence, automatic pain detection and intensity estimation have
become more popular among researchers.

Werner et al. introduced the Biovid heat pain database for automatic pain es-
timation from bio-physiological signals [282]. The idea of the experiment was
to estimate stimulated pain using heat induced by a thermode. The experiment
started with a calibration phase when the organizers measured the participants’
pain perception and tolerance thresholds. Then, the experiment began with a
cold thermode, which became increasingly hotter until the participant noticed
the pain (perception threshold), and stopped when the heat became unbearable
for a participant (tolerance threshold). Then, the temperature between these two
thresholds was linearly divided into four levels, and the participants were stimu-
lated with four pain levels during two parts of the experiment. Each part contains
twenty episodes of pain stimulation with a duration of four seconds with a break
of approximately eight seconds. The bio-physiological signals were recorded dur-
ing the experiment for signal processing and automated pain estimation. The
signals recorded in this experiment include several data modalities such as elec-
tromyography (EMG), electrocardiography (ECG), and electrodermal activities
(EDA).

After data collection, bio-physiological signals are preprocessed for feature ex-
traction. Multiple time and frequency domain statistical features are available
and computed for pain detection and pain level estimation [118]. The key compo-
nent improving the pain estimation accuracy in this stage is the extraction of the
modality-dependent features, especially in electrodermal activity (EDA) signals
which contain the most relevant information for pain estimation [9]. There needs
for more research on bio-physiological pain estimation in order to be able to use
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supervised DL methods to optimize features (embeddings) automatically instead
of computing hand-crafted features. However, this shortcoming is to some extent
addressed using the unsupervised representation learning for bio-physiological sig-
nals [266].

Pain estimation based on the Biovid heat database can be considered a classifica-
tion or regression task. Feature preprocessing considerably affects the accuracy of
pain level quantification, and normalization of the features based on their mean
and variance improves the performance of classifiers and regression models. Fur-
ther improvements are achieved by normalizing the features per participant based
on their baseline level of bio-physiological signals (feature personalization [118]).
Moreover, personalization extends to another level by clustering people into sev-
eral groups using Kullback-Leibler (KL) divergence and finding the closest sub-
jects to train the model based on their data [116]. This improvement in estimat-
ing health-related measures using personalization hints at the fruitful direction
of personalized information processing and treatment for research in health care.
Different classifiers and regression models such as random forests (RF [29]) and
radial basis function networks (RBFs [31]) showed a similar performance after
tuning, and it is possible to predict the confidence of the estimated level of pain
by combining the predictions from several individual models [116].

6.3.2 Data Homogenization

Deep CNNs achieved great success in a wide range of computer vision tasks
and improved state-of-the-art performances by a large margin; however, early
on, they showed a weakness in generalization in the presence of a change in
data distribution or concept drifts. This thesis offers an idea to deal with the
changes in data distribution through data homogenization and merging multiple
datasets. Deep learning and computer vision literature is full of attempts at
domain adaptation [49, 288, 299] and style transfer research [83, 326]. However,
merging a few datasets into a unified style using a preprocessing network is the
novelty of the idea presented in this thesis.

The research presented in this section is conducted in the context of COVID-19
detection from 2D chest computed tomography (CT) scans. This thesis presents
a preprocessing network (PrepNet [11]) aiming at data homogenization with min-
imum changes in the original images. Accordingly, the proposed techniques have
two main components: an autoencoder and a dataset/technology classifier. (see
Figure 6.7). The autoencoder-based CNN aims to find common ground for all
the datasets and preprocesses them with minimal changes to fool the dataset
classifier. The autoencoder and dataset classifier models are trained one after the
other at each step of the training process. The preprocessing network aims at
fooling the dataset classifier by erasing the differences between dataset samples,
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Figure 6.7: The proposed architecture for PrepNet model with three modules: (i) an
auto-encoder aims at CT dataset homogenizer; (ii) a multiclass classifier to recognized
CT-datasets; and (iii) a binary classifier for diagnosis (COVID-19). The loss functions
of the dataset classifier and auto-encoder were trained adversarially against each other.
The binary classifier for diagnosis (COVID-19) was trained independently using the
preprocessed scans by auto-encoder (figure adopted from [11]).

while the dataset classifier learns the differences between the new preprocessed
scans. Two networks compete against each other to improve their performance
in a similar optimization as generative adversarial networks (GANs). After suf-
ficient training with the correct set of hyperparameters, the auto-encoder learns
to bring the datasets into a joint distribution that looks similar to the human eye
as well as CNNs. During the optimization, we minimize the reconstruction loss
of the auto-encoder to keep the scan as unchanged as possible and only focus on
erasing the dataset differences and reducing probable generative artifacts.

Test dataset → SARS-COV-2 UCSD COVID-CT Within Test Cross-Dataset Pre-trained
Dataset portion BA Sens Spec AUC Test Sens Spec AUC Average Average encoder

COVID classifier

SARS-COV-2 0.8924 0.9292 0.7876 0.8584 0.4433 0.7835 0.1262 0.4548 0.8587 0.4159
Yes

UCSD COVID-CT 0.3295 0.3476 0.2743 0.3110 0.8250 0.7113 0.9320 0.8216 (baseline) (baseline)

AutoEncoder

SARS-COV-2 0.8956 0.9907 0.6460 0.8183 0.4983 0.9175 0.0970 0.5073 0.8555 0.4836
Yes

UCSD COVID-CT 0.49405 0.6030 0.3008 0.4519 0.8154 0.7216 0.8846 0.8031 (−0.32%) (+6.77%)

PrepNet

SARS-COV-2 0.9007 0.9353 0.7982 0.8668 0.5157 0.9175 0.1067 0.5121 0.8404 0.5343
Yes

UCSD COVID-CT 0.5545 0.6446 0.1858 0.4852 0.7800 0.8556 0.7087 0.7822 (−1.83%) (+11.84%)

Table 6.2: Test and cross-dataset performance of different methods. Using an adver-
sarial loss to train a PrepNet improves the cross-dataset average performance (table
adopted from [11]).

The evaluation method proposed for PrepNet not only measures the intra-dataset
test performance, but also focuses on cross-dataset performance. The ultimate
goal of PrepNet is to homogenize datasets so that the model trained on one can
be used for diagnosis on the other datasets. Two public datasets for COVID
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diagnosis from CT scans called SARS-COV-2[245] and UCSD COVID-CT[312]
are the subjects of this study. Figure 6.8 depicts the performance of our pro-
posed PrepNet and visually compares its results with classical auto-encoders and
other preprocessing techniques for chest CT scans. Table 6.2 shows the perfor-
mance of the models trained on the original dataset, solely preprocessed using an
auto-encoder learned in a self-supervised manner on reconstruction loss and pre-
processed using PrepNet. PrepNet achieved the best cross-dataset generalization
amongst all the presented methods with a minor drop in intra-dataset test perfor-
mance. However, the gap between cross-dataset performance and intra-dataset
performance is still significant, and there is considerable room for improvement
in future research.

Dataset COVID Original Histogram equalization Normalization Auto-encoder PrepNet

SARS-COV-2 Negative

SARS-COV-2 Positive

UCSD COVID-CT Negative

UCSD COVID-CT Positive

Figure 6.8: Original images from the datasets with different prepossessing methods
applied (figure adopted from [11]).
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6.4 Face Recognition

Face recognition (FR) and face matching technologies, especially in surveillance
applications, were probably the most controversial models developed with (CNNs)
for computer vision. The idea of identity matching and verification using im-
ages was so appealing for many applications such as online banking or intelligent
surveillance that the research literature around developing models and collecting
datasets for FR expanded rapidly [178].

Researchers collected clean datasets for FR in academic research developments
and datasets from real-world images [284]. Developing loss functions to compute
generic embedding was a key component of extending FR to face matching on the
face, which has not been seen in the training set. Triplet loss [257, 258, 259] and
more modern loss functions such as large margin cosine loss [285] and arccos loss
with angular margin [59] are amongst such developments. Despite the scientific
successes in this research area, social activists raised issues concerning fairness
because of biases in FR systems. This section describes the issue of fairness and
presents scientific findings in the context of FR systems.

6.4.1 Algorithmic Bias in FR Systems

The research progress in FR technology was quick, and the models rapidly made
their way into practical applications; however, multiple reports show some biases
and inaccuracies against races that have fewer images in the training datasets[99,
169, 161]. These incidences attracted much negative feedback from society, which
was reflected in the news12. Another reaction followed this wave with companies
starting to ban the FR technology3 [138]. As a result, using the FR technology
started to be abandoned, and measuring algorithmic biases became more critical
after these events [23].

6.4.2 Measuring Bias and Awareness

The main findings of our research are about methods of measuring and removing
biases. After all the controversies regarding biases in FR technology, researchers
quickly started to seek strategies for measuring the sources of such biases in
FR. The pioneering research on collecting datasets with racial diversity rapidly
exposed the gap in FR models’ accuracy for different races, which causes limita-
tions in service accessibility where FR technologies are involved and raises ethical

1https://www.washingtonpost.com/technology/2021/02/17/

facial-recognition-biden/
2https://www.bbc.com/news/technology-48276660
3https://www.banfacialrecognition.com/

https://www.washingtonpost.com/technology/2021/02/17/facial-recognition-biden/
https://www.washingtonpost.com/technology/2021/02/17/facial-recognition-biden/
https://www.bbc.com/news/technology-48276660
https://www.banfacialrecognition.com/
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issues regarding fairness.

Researchers introduced racial awareness as a proxy for measuring biases in FR
models and research showed that the FR models distribute the faces based on
their ethnicity in the embedding space [289]. Accordingly, several research works
suggested adversarially removing the racial information as a solution to the prob-
lem of biases in FR systems [306, 131, 314]. However, our research in measuring
the biases demonstrated that the intuitive idea that racial clustering in embed-
ding space is correlated with biases is not always true [87]. Instead, the reason
behind racial biases comes from how the faces of different races are distributed
in the embedding space (see Figure 6.9). Similarly, blinding the FR technologies
from racial information in the embedding space does not necessarily lead to de-
creasing the racial bias [295]. Hence, awareness and bias are two distinct though
related issues in FR, and methods dealing with ethnicities individually, such as
the research presented in [217] does, are more appealing based on these findings.

VGGFace2 (128) VGGFace2 (256) VGGFace2 (2048)

Euclidean
distance

Cosine
distance

Figure 6.9: Probability density distribution of pairwise (Euclidean and Cosine) dis-
tances between test images’ embeddings of different races. The embeddings are com-
puted using the VGG model fine-tuned for face recognition (VGGFace2 [35]) with dif-
ferent embedding dimensionalities (128, 256 and 2048). The figure shows that the faces
from the Caucasian race, which have the largest share of data samples, have a larger
average distance than those of Africans, Asians, and Indians (figure adopted from [87]).
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6.5 Rotation-Invariant Vision Transformers

Inductive biases such as translation invariance undeniably accelerated the rapid
advances of modern vision models based on convolutions through parameter shar-
ing and improving sample efficiency. However, state-of-the-art models can only
partially incorporate rotation invariance. Recent attempts to develop rotation-
invariant techniques mainly face the challenge of high memory requirements or
limiting the original model capacity. This section proposes an embedding layer
method for vision transformers to leverage the invariance of self-attention layers
to the order of tokens and train robust models against local and global rotation.
The proposed image embedding technique requires negligible memory overhead
to train rotation invariance models on large datasets such as ImageNet[223]. Fur-
thermore, the proposed method improves the robustness of vision transformers
against rotation on the classification task.

6.5.1 Introduction and Problem Statement

The performance of vision models, more specifically vision transforms (ViTs),
drops when the input images are not presented to the models in the original
pose. Rotation and scaling are two transformations that researchers found to be a
reason for the decline in the performance of vision models from early works4. This
section presents a solution to rotation invariance in ViTs for object classification.
Figure 6.10 shows the decline in the performance of a ViT-based classifier and
segmentation model after different degrees of rotation. Besides compensating
for the drop in accuracy to improve the robustness of vision models, developing
rotation equivariant methods was very appealing to add another inductive bias
to enhance the vision models’ sample efficiency and convergence speed.

Several different techniques aim to improve the vision model’s robustness against
rotation. These methods can be divided into two categories: 1) Preprocessing
data for training or evaluation. 2) Using equivariance or invariance inductive
biases in vision models. The first group uses data augmentation, a conventional
technique widely used in deep learning, to increase the size of the datasets artifi-
cially, improve the generalization, and train robust models [242, 228]. The second
group of the research can be summarized for CNNs and vision transforms (ViT)
as follows:

CNNs: Cohen et al. introduced group equivariant convolutional neural networks
(G-CNNs) to learn equivariant representation for discrete symmetry groups of
rotations [45]. Marcos et al. proposed the rotation of the convolutional filters
instead of lifting the representation to the group and using the pooling and vec-
tor field representations of the input to achieve rotation invariant, covariant, and

4http://yann.lecun.com/exdb/lenet

http://yann.lecun.com/exdb/lenet


6.5. Rotation-Invariant Vision Transformers 103

(a) Classification (b) Segmentation (c) Augmentation

Figure 6.10: Classification and segmentation performance of vision transformers un-
der different degrees of rotation. Augmentation improves the robustness of vision trans-
formers against rotation; however, rotation invariance encoded in the method as induc-
tive bias can improve the sample efficiency of the models.

equivariant features [176]. Lifting the representations or filters to the discrete Lie
groups increases the memory consumption linearly with the group size. Alterna-
tively, the convolutional filter can be designed to be equivariant to specific trans-
formations. Esteves et al. train isotropic filters for rotation equivariant CNNs [73]
and Weiler et al. proposed learning the models’ weights which are expansion coef-
ficients for the steerable function space [296]. Wiersma et al. presented a surface
harmonic network with both invariant and equivariant features [298]. The main
disadvantage of optimizing equivariant filters is limiting the capacity of models
for learning the data.

ViTs: Romero and Cordonnier used the group lifting concept to train equivariant
vision transformers on a discrete group of image rotations [218]. Hutchinson et al.
adapted a similar idea, generalized it to the continuous rotation and translation
equivariant models, and applied their method to pattern recognition in point-
could graphs, molecular property prediction, and chasing particle dynamics [111].
Finally, Su et al. demonstrated that rotary positional encoding enhances the
performance of natural language processing models [254].

Next, this section reviews the main blocks and concepts used in ViTs. The
explanation of rotation invariant and equivariant features is followed by self-
attention and formulation under input rotation.

Rotation: LetX be a vectorized patch of an image with a given size, for example,
16 × 16. Then, we define a rotation matrix called R such that the transformed
version of the original image xθ can be computed as follows:

Xθ = RX (6.1)

where θ shows the angle of rotation. The rotation transformation is defined using
a rotation matrix, and it can be computed as follows:

R = XθX
† (6.2)
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The goal of the roto-translation equivariant models with a self-attention layer is
computing a representation (L(x)) in which the representations rotates with the
same degree as the input image:

L(Xθ) ≈ L(X) (6.3)

Alternatively, we can consider the images as a spatial function in 2D space having
three values (RGB vector) at every position and define the rotation on every pixel
coordinate ((x, y)) as follows:

rθ =

[
cos θ − sin θ
sin θ cos θ

]
(6.4)

Given the definition of the rotation matrix (rθ) based on pixel coordinates, the
inverse of the rotation operator is equal to its transpose (rθr

T = I), and the
following properties hold accordingly:[

xθ
yθ

]
= rθ

[
x
y

]
(6.5)

[
x
y

]
= rTθ

[
xθ
yθ

]
(6.6)

Rotation invariance, covariance, and equivariance: A representation (L(.))
of an input pattern (X) is invariant to rotation (R) if it does not change with
the rotation of the input. The equivariance representations rotate similarly with
the input’s rotation; However, covariant representations change according to the
original representations based on a constant function (f(.)). These definitions
can be shown in the following equations:

Invariant : L(Xθ) ≈ L(X)

Equivariant : L(Xθ) ≈ Lθ(X)

Covariant : L(Xθ) ≈ f(L(X))

(6.7)

Self-Attention: The output of the self-attention layer for an image ((X) ∈
IRN×T) converted to N tokenized patches of length (T ) can be written as follows:

Q := XW q

K := XW k

V := XW v

A := QKT

Y := SA(X)

:= softmax(A)V

(6.8)
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where K, Q and V shot the key, query and value. The linear weights used to
compute the representations are denoted by W k, W q and W v for keys, queries
and values, respectively. A shows the attention matrix and Y denotes the self-
attention (SA) layer. The softmax function, denoted by softmax, is defined as
follows:

softmax(xi) =
exp(xi)∑
j exp(xj)

(6.9)

Self-Attention with Rotation: Then, we can write the rotation invariant self-
attention objective as follows:

L(Xθ) = softmax(XθW q(XθW k)
T )XθW v

= softmax(XθW qW
T
kX

T
θ )XθW v

= softmax((RX)W qW
T
k (RX)T )(RX)W v

= softmax(RXW qW
T
kX

TRT )RXW v

≈ softmax(XW qW
T
kX

T )XW v

= softmax(XW q(XW k)
T )XW v

= L(X)

(6.10)

6.5.2 Method and Experimental Results

The mathematical formulation of self-attention with rotation suggests that it is
possible to constrain the key, query and value matrices to make self-attention
equivariant. The necessary condition is that both rotation matrices (R and RT )
can commute5 through XW qW

T
kX

T and its softmax. This is the necessary
condition to make self-attention equivariant (L(Xθ) = RθL(X)) which is more
complicated than invariance, and it is also more appealing since equivariant fea-
tures are useable in building invariant models. However, invariant models do not
necessarily provide equivariant features.

The problem of equivariant self-attention is an open problem for future research.
However, this thesis offers a solution to rotation-invariant ViTs based on a fun-
damental property of self-attention. The self-attention mechanism is invariant
to the order of the tokens, meaning the representations do not change when the
order of the tokens is different. Therefore, if we transform the image so that ro-
tation only changes the order of the tokens, then the ViT based on self-attention
will be invariant and robust against rotation.

The idea of rotation invariant ViTs can be realized using a radial tokenization
technique presented in Figure 6.11. The idea is to take the tokens based on the
polar coordinate and extract every token from the original image. The proposed

5Two matrices X and W called to commute if XW = WX
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method uses pixel values on a circle’s radius placed at the center of the image
instead of turning patches of size 16 × 16 into tokens. Using this embedding
method, only the order of the tokens changes with the input rotations, and the
whole ViT stays invariant to rotation. This idea works for global rotation; how-
ever, it can also be implemented at the patch level to tackle the local rotation of
images’ elements, which is more critical for medical applications [143].

Steerable Convolutions and isotropic filters inspire this section’s other patch em-
bedding techniques. Figure 6.11 shows how isotropic patch embeddings turn the
original image into patches. The idea here is to divide the original models into
patches of size 16× 16 and then sample them via circles around the center of the
patch and project them into tokens afterward. Implementing the radial patch
embedding technique at the patch level can train robust models against local
rotations.

(a) Isotropical

(b) Local radial

(c) Radial

Figure 6.11: The proposed patch embedding methods for vision transformers: a)
Isotropic path embedding for the entire image. Every patch is sampled based on the
circles around the center of the patch. b) Radial patch embedding in the patch level
technique samples every patch based on the pixels on a circle radius positioned at the
patch’s center. c) Radial patch embedding for the entire image.

A ViT architecture based on Deit’s baseline model[269] is optimized on the Im-
ageNet dataset for pertaining, and initial evaluation shows the functionalities of
the proposed methods. Figure 6.12 depicts the performance of the different patch
embedding methods used to improve the robustness of the ViTs against rota-
tion. Radial and isotropic patch embeddings demonstrate considerably higher
robustness against rotation compared with the original transformer. However, it
is notable that training a transformer using data augmentation is a very compet-
itive solution to the presented problem. Table 6.3 shows that rotation invariant
patch embedding models pretrained on ImageNet generalize to the other related
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Dataset
Base Vision Transormer Best

Accuracy Original Isotropic Radial Local Radial (SOTA)

Oxford-IIIT Pets [200]
top1 0.9305 0.6890 0.8575 0.8133 0.9710
top5 0.9926 0.9302 0.9839 0.9725 -

Oxford Flowers [193]
top1 0.9167 0.8000 0.8510 0.8402 0.9976
top5 0.9696 0.9186 0.9461 0.9461 -

FGVC Aircraft [173]
top1 0.7570 0.3378 0.5794 0.5425 0.9490
top5 0.9355 0.6439 0.8599 0.8428 -

Caltech Birds [297]
top1 0.7960 0.5221 0.6933 0.6262 0.9548
top5 0.9462 0.7886 0.8952 0.8714 -

ImageNet [223]
top1 0.7884 0.5698 0.7091 0.6276 0.9088
top5 0.9370 0.7813 0.8919 0.8364 -

Table 6.3: The performance of rotation invariant vision transformers on several vision
benchmark vision datasets. Rotation invariant patch embedding increases the robust-
ness of ViTs at the expense of a decrease in performance.

object detection tasks with a drop in the performance compared to the original
transformer method.

(a) Classification (top1) (b) Classification (top5)

Figure 6.12: Robust training against rotation using rotation invariant patch embed-
ding techniques.

This preliminary study shows that transformers can run in the rotation invariant
mode without memory and compute overhead by adjusting the patch embed-
ding techniques. Compared to similar methods such as group equivariant self-
attention [218], the proposed method profits from higher memory efficiency and
angular resolution. The research questions regarding evaluating rotation invari-
ance to ViT based on the initial motivations and goal, namely sample efficiency
and training speed, are still open for further investigation.





7 Conclusions

DL breakthroughs and computer vision models developed based on DL revolu-
tionized the research areas of image, video, and information processing in the last
decade. Deep CNNs have become so popular that it is incredibly cumbersome
and rare to find cases in which classical approaches can still outperform CNNs
on academic datasets. Despite the undeniable breakthroughs, DL methods have
faced arduous challenges for deployment in practical applications. This thesis
discussed many such challenges and presented scientific developments to tackle
these challenges. Nonetheless, there is still considerable room for further research
to accelerate the entrance of DL-based techniques into practical applications.
This chapter briefly summarizes the thesis, revisits the research challenges such
as trustworthiness, explainability, robustness, optimization, and fairness, points
out this thesis’s contribution, and draws an outline for future work.

7.1 Summary of Thesis

This thesis has been motivated by the hindrances of using DL, specifically vision
models, in practical applications. After describing the challenges and laying the
theoretical foundation in the first two chapters, the thesis presented an alternative
to classical multilayer perceptrons (MLPs) and instead uses radial basis function
networks (RBFs) as classifiers for convolutional neural networks (CNNs). RBFs
have been in the scientific literature for a long time. However, they have not been
optimized for CNNs before because of the complications in the optimization. This
thesis offered theoretical breakthroughs to adapt RBFs for CNNs to improve the
robustness and interpretability of the classification.

The interpretability of CNNs has been at the center of attention in many research
works recently. However, methods such as guided-backpropagation [247] devel-
oped in this context have mostly been used to monitor the models’ behavior [212].
The fourth chapter of this thesis extended the idea of understanding vision mod-
els and putting them into action for debugging CNNs and detecting adversarial
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attacks with the hope of inspiring more such research in the future. This thesis’s
fifth and sixth chapters focused on ML and DL applications. Chapter 5 described
how a problem without analytical solutions can be addressed using data-driven
methods and simulation. It presented motion compensation in cone-beam com-
puted tomography (CBCT) scans using 3D-CNNs. Chapter 6 reviewed several
different applications of ML and DL in affective computing and health care, and
pointed at the findings of this thesis targeting fairness in facial recognition sys-
tems and robustness of vision transformers (ViTs). The optimization process
is crucial in bringing vision models to performance and affects their behavior in
terms of robustness, generalization, and data requirements. Chapter 6 also offered
findings in hyperparameter and model optimization gained by employing ML and
DL in several applications and formulating the best practices and patterns in the
automated search for best ML and DL models.

7.2 Future Research Work

Researchers’ long-term vision of applying ML and DL in medical applications and
autonomous driving systems is only feasible by establishing human trust in reli-
able and robust artificial intelligence (AI). Thus, trustworthiness and reliability
are the overarching themes in the research community for practical AI appli-
cations with maximum performance and minimum negative impact [123]. It is
intuitively clear that a model or algorithm used in applications involving human
privacy or service access has to be reliable and trustworthy. Furthermore, trust-
worthiness is in demand in medical applications and autonomous driving systems
involving human life and security.

Despite the demand for trustworthiness being intellectually evident, best practices
for engineering trustworthy models for a specific application is an open problem
and requires further investigation [237]. The importance of trustworthiness is also
highly dependent on the application. For instance, robustness against spoofing or
adversarial attacks is more relevant to person identification problems, while adap-
tation to the new vendors and image acquisition parameters emerge in medical
image processing. Since the term trustworthiness is generic and includes many
aspects, researchers break it down into several categories with more specific defi-
nitions where it is also possible to evaluate the performance based on acceptable
common-sense explanations or mathematical metrics.

The long-term vision of AI research (reliability and trustworthiness) can be di-
vided into smaller actionable blocks that current research addresses. Explainabil-
ity, robustness, and fairness are the requirements of the trustworthy AI concepts
investigated in this thesis. The remainder of this section explains this thesis’s con-
tributions to the components of trustworthy AI and opportunities for mid-term
research in these areas.
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Explanability : Answering the following three questions is the target of the re-
search around explainable AI in computer vision: 1) How do models learn? 2)
What do models learn? 3) How do models predict? The first question is the
most complicated to answer. The research literature addressing this area is mea-
ger, but includes studies that use information theory to explain the behavior of
models during optimization [229, 241]. The second and third questions are more
pragmatic, relevant for practical applications, well-studied, and more connected
to each other [247, 85, 212]. The features learned in vision models for decision-
making are mainly evaluated using feature visualization techniques. These tech-
niques compute the region of input images that the models look at to make a
decision based on reverting the forward path or treating the models as a black
box using iterative optimization. Moreover, researchers investigated the behavior
of models as black boxes via post-hoc analysis to identify why the models predict
a specific class. An alternative to black-box analysis is using methods such as
Bayesian inference, which are more transparent by design. The contribution of
this thesis to explainable AI research is revisiting radial basis function networks
(RBFs) and adapting them as classifiers for CNNs by solving a few architectural
hindrances. The proposed models compute a similarity metric between test and
training images and derive visual clues about the decision-making process of the
vision models. This research is the first to use RBFs on top of the traditional
computer vision backbones. Evaluating the robustness of models using RBF clas-
sifiers against anomalies and adversarial attacks is an open question for future
research.

Robustness : Researchers very quickly discovered robustness issues in computer
vision models. CNN performance shows a decline in the presence of different
lighting conditions and variability in the pose of the input images. The robust-
ness problem had even more impact in the medical domain because of manual
changes in image acquisition parameters, different image acquisition vendors, and
frequent imaging software and hardware updates. Domain adaptation and life-
long learning in the presence of concept drift are the offsprings of the robustness
and generalization issues and have tremendous exciting research potential. This
thesis presented a method for data homogenization that enhances merging data
from different datasets and it is practical for domain adaptation. One of the hot
topics threatening the validity of CNN’s for vision problems is adversarial at-
tacks. Researchers have found that images which appear identical to the human
eye can be optimized to fool vision models into making an incorrect decision.
This thesis offered a method based on reverting the CNNs to visualize the mod-
els’ feature response and detect adversarial attacks with very high accuracy. This
research can be extended to use black-box feature visualization to detect attacks
on any model and optimize the input to reduce the adversarial effects in future
work. Moreover, this thesis presented a novel embedding technique for rotation
invariant vision transformers to improve model robustness against input rotation.
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Applying rotation invariant transformers to small datasets, especially aerial im-
ages and histology datasets, to leverage the rotation invariance as inductive bias
is another promising research offspring of this thesis.

Fairness : Neural networks became very popular because of their strength in ap-
proximating arbitrary functions for classification or regression solely from data
without any knowledge of the task. Although neural networks provide the oppor-
tunity to learn with minimal inductive biases, the optimization process instead
follows the most efficient direction in parameters space to minimize the opti-
mization objective (loss function) based on the existing biases in the datasets.
Using these biases helped to solve the problems that researchers had not found
any analytical solution to before, such as motion artifact reduction presented in
Chapter 5. However, social activists rapidly discovered the drawbacks of learn-
ing from data in the social fairness aspect of face recognition (FR) systems for
surveillance. The collected datasets were biased, in that the majority of the
images were of white male celebrities, which was reflected in the trained models
when they returned a higher accuracy for the majority race in the datasets. Stud-
ies showed that the models produce a lower accuracy for racial minorities, and
that this inequality was even visible when comparing the models’ accuracy for
recognizing females and children with males. This thesis offered relevant research
and findings about a standard method of measuring biases in FR systems and
showed that racial awareness and bias are not necessarily correlated. The research
concerning fairness is also quite an exciting and simultaneously challenging area.
Data-driven techniques are an option for reducing biases by collecting datasets
with equal populations from all sensitive features, such as race and gender. A
balanced dataset is a solution to the problem faced by FR systems. However,
problems such as recruitment and job application processing confront more chal-
lenges due to biases in ground truth labels based on previous hiring decisions,
which opens a lot of fascinating topics for future research.

7.3 Practical Discussions

Alongside all the debates about the trustworthiness of AI models for applications
where human safety and privacy are involved [123, 2, 107], AI-based models have
also found their way into less critical applications [250]. However, AI projects
still suffer from a very high failure rate in development and post-deployment due
to problems such as concept drift. This section briefly discusses the content of
this thesis related to applications and optimization.

Applications : Despite the early challenges in deploying ML and DL techniques,
this thesis has shown several successful examples of ML and DL in real-world
applications. Data preprocessing and cleaning before training a model is one of
the most critical components of any ML pipeline. Face alignment for FR systems
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or facial expression estimation is an example of data preparation before training.
Although DL-based models are unrivaled for vision problems, their performance
is highly dependent on the quality of the data. Determining the mutual infor-
mation of the data samples and target pattern requires further research; a visual
review of the datasets before model development is the key to success in ap-
plied projects [122]. Neural networks are applicable and highly recommended to
approximate classical methods that are computationally expensive (such as the
iterative reconstruction of computed tomography scans) or enhance their perfor-
mance where analytical solutions do not exist (for example, in motion artifact
reduction). This thesis offered an application of three-dimensional CNNs in re-
ducing motion artifacts in volumetric cone-beam computed tomography (CBCT)
scans with great success. This research path was extraordinarily successful and
gained positive feedback and attention from clinical experts. The particular area
of research is novel and ripe for further research in similar applications, such
as sparseness artifact reduction, auto-segmentation, and dose calculation from
CBCT scans for cancer therapy.

Optimization: ML and DL present the opportunity to explore and search among
a family of neural networks to model all possible problems in computer vision.
However, this large degree of freedom appears at the expense of the vast search
space of parameters and potential models. Optimization concentrates on tech-
niques that are key to neural architecture search, hyper-parameter (HP) tun-
ing, and finding the shortest path to a stable minimum for a given dataset and
model. This thesis presented the observed patterns for model and HP optimiza-
tion based on ML and DL algorithms for small datasets and proposed combining
supervised and unsupervised learning to enable the optimization of RBFs as clas-
sifiers for conventional CNN architectures. So far, neural architecture search has
been aimed at minimizing the number of flops and latency in inference regardless
of sample efficiency. Sample efficiency is another challenge in practical appli-
cations where data or labels are scarce. Hence, architectures searched for the
highest sample efficiency are critical for practical applications. Other directions
for future research include limiting search space and constraining optimization
techniques to more explainable and robust methods that serve the purposes of
trustworthy AI. The current top-performing computer vision models are derived
from automatically searched architectures that target latency optimization and
disregard models’ explainability. There is a belief in a trade-off between accuracy
and explainability in the scientific community [310]. The drop in accuracy occurs
when predictive complexities are removed to make the models more explainable.
However, another critical research piece refers to this trade-off as a myth [222] and
encourages researchers to optimize intrinsically interpretable models to the same
level of performance as black box models. Neural architecture search in the space
of intrinsically interpretable and explainable models clarifies this controversial
research area to show the correctness of these contradicting opinions.
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