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ABSTRACT

IoT systems rely on collected data to operate autonomously and

generate insights. Such systems commonly produce redundant mea-

surements, which can be insu�cient to mitigate complex data dis-

agreements. We believe a well-de�ned process to achieve inter-

nal ground truth through fusion is needed. Leveraging two case

studies, we show how sensor data fusion with variants of history-

aware voting can help to reconcile observations. We contribute

a speci�cation scheme with uni�ed format to de�ne the parame-

ters and characteristics of a particular voting scenario, supporting

reliable decision-making. Finally, we deploy and evaluate a novel

method of bootstrapping historical records of sensor modules using

a clustering algorithm. This method boosts the convergence of the

measurements by 4×.

CCS CONCEPTS

• Information systems → Data cleaning; • Software and its

engineering→ Software reliability; Distributed systems organizing

principles.
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1 INTRODUCTION

Emerging digitalised systems in smart cities, industrial production

and other cyber-physical domains involve large amounts of data

aggregated from a multitude of sources. Sensor-based measure-

ments are common especially in the Internet of Things (IoT) for
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triggering data-driven decisions. Quality issues in such measure-

ments [31] have profound adverse e�ects on systems leverage, and

by extension, on humans and society, as shown in irresponsible AI

community discussions [21]. Consequently, steps to improve input

data quality are necessary to achieve better decisions and overall

more reliable applications. Data fusion is a technique of merging

di�erent inputs [23] in an application-independent middleware to

obtain a holistic view of physical objects. Voting is an approach

to fuse sensor data for the purposes of reliability and error mit-

igation [15, 18] in safety-critical environments. For instance, in

avionics, three redundant physical sensors are mandated for each

logical sensor [15]. In smart shopping scenarios with networked

shelf labels, the degree of redundancy rises signi�cantly to dozens

of proximity sensors. Thus, in the absence of external ground truth

(i.e., a fully trusted and accurate data source, often too expensive

in practice), voting is a pragmatic substitute as it leads to internal

ground truth upon which critical decision-making can be based.

In this work, we study and observe state-of-the-art voting ap-

proaches for sensor data fusion, applying them to two IoT scenarios

relying of redundant sensor measurements: light sensors in a smart

building setting, and Bluetooth Low Energy (BLE) beacons to track

vehicle position in a (simulated) tunnel. We focus on voting algo-

rithms used to reach data-centric consensus on numerical values,

as these are relevant when merging sensor readings and leverage

historical records to factor in the reliability of individual sensors.

In §7 we conduct two experiments on such IoT setups for real-time

validation and pre-recorded data for the purpose of reproducibility.

We exploit our �ndings to contribute a generic speci�cation format

that can be used to de�ne voting schemes for several applications,

particularly optimized for IoT and cyber-physical applications. We

argue that such a format aids the development of distributed analyt-

ics applications by making them more needs-focused and reliable,

while shielding software engineers from the voting implementa-

tion. Moreover, the increased robustness of the data, induced by

the multi-perspective voting, facilitates the input data quality in

data-centric arti�cial intelligence, a recent research direction aimed

at overcomingmisprediction due to lack of input data assurance [28].

Leveraging the outcomes of the practical experiments, we present

a novel clustering-based approach to augment the performance of

the state-of-the-art history-based voting algorithms.

Our contributions are twofold: (1) AVOC (Accurate Voting with

Clustering), a novel bootstrapping method for initializing history-

based voting systems, which we fully implement and evaluate with
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Figure 1: Light sensor use-case: the sensors are wired via
ethernet to a hub, streaming data via WiFi to the voting
sink-node.

two practical IoT scenarios; (2) VDX, a new voting de�nition speci-

�cation that precisely de�nes application requirements and allows

users to select appropriate parameters for software voters.

The rest of the paper is structured as follows. §2 surveys state-

of-the-art voting algorithms, data fusion and data quality issues

relevant to IoT. In §3 we detail our use-case scenarios and how we

built our hardware prototypes. §4 investigates voting algorithms

used to reconcile redundant data values. §5 presents AVOC, our

approach. We describe the proposed format VDX for de�ning the

voting process in §6. §7 presents our experimental evaluation us-

ing both a reference scenario dataset and our experimental setup.

We conclude in §8 by discussing our �ndings and prospect future

research directions in redundancy-based data quality in IoT.

2 RELATED WORK

Data-driven decisions [13] are key elements of cyber-physical sys-

tems and digitalised applications of all scales and domains (e.g.,

smart cities, mobility, industrial production, home automation, etc.).

In many such systems, incoming data are subject to real-time anal-

ysis and subsequent decision-making. However, while systems re-

search has allowed dealing with the volume, velocity and variety

of multi-source data involved in the processing chain [27], data

quality, value and veracity issues still emerge. In this work, we focus

on the accuracy (i.e., quality) for sensor measurements [25]. Data

fusion across multiple homogeneous or heterogeneous sensors has

been utilised to tackle the challenge, �xing problematic data and

improving analytics reliability with a variety of techniques, such

as data association, state estimation, decision fusion, classi�cation,

prediction, machine learning and analytics [19]. Initial e�orts ex-

ist to create standards and frameworks for data management and

interoperability, for instance in the smart city space [14, 16]. How-

ever, they currently lack a common framework and standardized

format. Our work proposes a new interoperable format to de�ne

voting-related data fusion alone.

Voting algorithms increase the reliability of measurements [18]

in safety-critical domains, e.g., aviation [15] or self-driving cars [9].

We focus on reconciling numeric data using software voters, with

either result selection or amalgamation techniques [18]. Speci�cally,

we consider history-based voting algorithms [17] that weigh values

based on the historical performance record of the candidate sensor.

History-Based Weighted Average [17] weights the historical data to

compute an output value. To improve the granularity of historical

records, [11] uses a soft dynamic threshold. In [7], authors apply an

hybrid approach using module elimination and dynamic threshold.

We further detail these approaches in §4.

Figure 2: Portable ’shoe-box’ testbed for our light sensor
setup (Fig.1). A Raspberry Pi 4 runs the fusion script. An
LCD display shows the voting results and weight values.

Some voting-based data fusion frameworks with description

languages to de�ne algorithmic details exist [8], but they ignore

history-based measurements. We also observe that modern vot-

ing algorithms are too complex to be represented in such terms.

Where [8] de�nes voting as three-step process (reaching quorum,

excluding outliers and calculating results), modern algorithms often

include further steps like weighing and updating historical records,

or optimising reliability metrics [20]. We argue that a customisable

voting framework serves as encapsulation for sensor-fusion appli-

cations if built atop state-of-the-art approaches, as shown next.

3 MULTI-SENSOR APPLICATION SCENARIOS

We devise two use-case scenarios to validate our approach. Both

scenarios represent sensor-reliant deployments where redundancy

proves valuable. Speci�cally, we draw on the smart building and self-

driving vehicle domains, both showcasing cyber-physical systems

relying on sensor measurements to control other critical systems.

Fig. 1 depicts our �rst use-case, a sunlight detection system in a

hypothetical smart building. The hub is connected to a sink node to

record 10’000 rounds of concurrent measurements from 5 sensors,

polling at 8 samples/s, to create a reference dataset representing

1250 seconds of data collection. Each round produces 5 �oat values

per sensor. The reference dataset consists of the raw readings from

all sensors and is used to compare all voting algorithms on the

same set of values. We built a portable demonstrator that executes

them and our proposed voting algorithm, AVOC (detailed in §5),

leveraging a Raspberry Pi 4B unit (see Fig. 2). It uses a Phidget

Wi� hub [6] (VINT) connected to a set of 5 LUX1000 Light Phid-

get sensors [5]. Input, weights and results are shown on an LCD

screen [3] connected to the hub. The portable version let us con�rm

the feasibility to execute on constrained hardware, combining both

redundant measurements and voting.

In the second use-case, wemimic a typical smart-city/self-driving

vehicle application that relies on indoor-positioning to track the

position of a moving unit (e.g., a robot). We simulate the operations

to track a cargo vehicle traversing a tunnel, as shown in Fig. 3.

Such vehicles use Bluetooth (BLE [1]) beacons as milestones to
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15 m

Figure 3: BLE beacon use-case. 2 stacks of beacons 15 me-
ters apart with a robot driving between them, taking signal
strength measurements along the way.

Figure 4: Robot driving to the circled beacon stack destina-
tion. The laptop acts as bluetooth receiver and edge voter.

locate the position of the truck, as done in emerging country-wide

systems (i.e., CST – Cargo Sous Terrain [2, 22]). We deploy two

stacks of nine redundant beacons and a cargo vehicle using a Lego

Mindstorms EV3 [4] robot. As the Bluetooth receiver on the robot

was incompatible with the beacons due to lack of BLE support,

we installed a laptop on top of it acting as pragmatic substitute

receiver with edge processing capabilities, and without a�ecting

the generality of the �ndings other than a�ecting the speed of the

robot (which has no e�ect on what we are measuring). Fig. 4 shows

the prototype.

The robot drives slowly in a straight line with no line-of-sight

obstacles from one beacon stack to the other, across a distance of

15 meters. The speed of the robot was set to 7% of its speci�ed

top speed (0.09 m/s). We collected as many data points as possible

along the route, resulting in 297 measurements per beacon, noting

that autonomous cargo systems like CST proceed at around 8.3 m/s,

thus having 99% less measurement samples available for voting.

4 HISTORY-AWARE VOTING ALGORITHMS

To combine values from uncalibrated redundant sensors, the

history-based averaging algorithm (i.e., henceforth referred to as

Standard algorithm [17]) either chooses a sensor output value or

creates an amalgamation of these values. This approach can be be

optimized by temporarily ignoring values produced by modules

with below average historical records. This variant, i.e., Module

Elimination Weighted Average (Me), assigns zero-weights to the

discarded values in the voting until their historical records improve

by submitting better values, even if discarded in the voting itself.

The Soft Dynamic Threshold History-Based Weighted Average

(Sdt) introduces a �ner grain de�nition of agreement, beyond the

binary-only de�nition [11]. Values between 1 and 0 can be assigned

if values are not in agreement based on the accepted error threshold,

but are in agreement based on a multiple of it. The magnitude of

the multiple is de�ned by a parameter of the algorithm that can be

tuned according to the needs of the speci�c use case.

We further consider Hybrid History-Based Weighted Average

(henceforth Hybrid [7]). It combinesMe and Sdt, while utilising

agreement-based and not history-based weights. The Hybrid algo-

rithm allows to choose a winning value rather than assigning the

resulting average, using the mean nearest neighbour approach. We

discuss our �ndings on the output quality of all algorithms in §7.

5 AVOC: ACCURATE VOTING WITH
CLUSTERING

History-based algorithms typically fall back to standard average

(or a similar unweighted approach) on the �rst round until a his-

torical record is established or when the weights become 0 due to

severe issues with the data. Weights can drop to 0 after a series of

disagreements, which results in notorious disagreers being rated as

untrustworthy by the system applying the algorithm. Our approach,

named AVOC, builds atop the Hybrid algorithm by applying a sim-

pli�ed clustering algorithm during the �rst round when the weights

are all 0. The clustering step eliminates obvious outliers, improving

the accuracy of that round compared to mean average, with little

performance overhead and faster convergence speed.

Algorithmic approach. For the clustering step, we leverage

a similar logic to the agreement calculation in voting algorithms:

we check for values within a given scaling threshold of each other

(which is selected to mirror the parameters of the given algorithm),

and group the values in agreement. Then, we select as output value

the average (or its closest real value) of the largest group (if we are

using the mean nearest-neighbour approach to output selection).

This grouping logic is similar to DBSCAN [12]; AVOC opts for self-

calibration, rather than requiring costly parameters tuning. This is

achieved through a majority vote with a soft-dynamic error margin

(as the margin depends on a reference value). The clustering step

is used for bootstrapping a new set of modules, or as a fallback

in cases of issues. To reach this goal, we use the historical record

value for each module, and declare that the clustering approach

should be used when all records are 1 (indicating a new set) or 0

(indicating a failure of the system or an extreme data spike).

Generalisation. Generalising this approach for multi-

dimensional data, an unsupervised clustering algorithm can

be used such as Meanshift [10] or X-Means [24]. The logic of

choosing an output value would be similar. However, in such

scenarios, choosing a single output vector for multiple dimensions

is non-trivial as the complexity of data and correlation of errors

considerably increases. To mitigate, the voting approach can be

applied for each dimension separately, leaving other data fusion

techniques to process the multi-dimensional results. In AVOC,

we follow the approach of voting on each dimension separately,

without incorporating the clustering itself.

6 VDX: VOTING DEFINITION SPECIFICATION

To enable reliable implementations and improve the usability of

software voters, we contribute a new voting speci�cation scheme

and parsing logic. The scheme can de�ne any of the algorithms

described above, as well as simpler ones without history.

Software-de�ned voting schemes exist, e.g., Voting De�nition

Language (VDL) [8]. Those predate more complex history-based

voting approaches, and extending VDL for �ner-grain algorithmic
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Listing 1: Vote de�nition sample in VDX JSON format.

1 {
2 " a lgor i thm_name " : " AVOC " ,
3 " quorum " : " UNTIL " ,
4 " quorum_percentage " : 1 00 ,
5 " e x c l u s i o n " : " NONE " ,
6 " e x c l u s i o n _ t h r e s h o l d " : 0 ,
7 " h i s t o r y " : " HYBRID " ,
8 " params " : {
9 " error " : 0 . 0 5 ,

10 " soft_threshold " : 2
11 } ,
12 " c o l l a t i o n " : " MEAN_NEAREST_NEIGHBOR " ,
13 " b o o t s t r a p p i n g " : true ,
14 }

de�nitions is challenging. However, our speci�cation VDX supports

the relevant parameters of VDL, enabling our de�nition to describe

a superset of VDL-scoped algorithms. The full schema, as well

as a sample implementation and usage examples can be found at:

https://github.com/EcePanos/vdx. The repository also includes an

interactive application that allows users to compare the algorithms

presented with the state of the art (Fig. 5).

Capabilities. Listing 1 shows our AVOC algorithm using this

scheme as example. VDX allows the speci�cation of several param-

eters, including quorum (i.e., how many candidates need to submit

values for a vote to be triggered), exclusions (to automatically prune

outliers) collation techniques similar to VDL, e.g., "mean nearest

neighbour" (Listing 1, line 12). It extends VDL by allowing the selec-

tion of a history algorithm (Listing 1, line 7), additional parameters

(Listing 1, lines 8-11), and whether to enable clustering algorithm

as a bootstrap/fallback mechanism (Listing 1, line 13). Another ex-

tension VDX adds over VDL is the ability to vote on categorical

i.e., non-numeric values, such as character strings and JSON blobs.

In such cases however, several features are disabled. Value-based

exclusion cannot be applied, as there can be no mean or standard

deviation calculation. The ’standard’ and ’module-elimination’ al-

gorithms for deriving module history are available, however the

’hybrid’ algorithm is not, as the �ne-grained agreement de�nition

cannot be applied to non-numeric values. Finally, clustering-based

bootstrapping cannot be applied to categorical values and the only

collation method is the weighted majority vote. Software voting im-

plementers may re-introduce some of these features by supplying

a custom distance metric for categorical values.

Limitations and assumptions. VDX currently cannot de-

�ne algorithms that use parameters for the candidate values, e.g.,

MLV [20], or genetic voting algorithms [26], but assists already

by introducing voting into further IoT software for reliable input

data and analytics. It should also be noted that VDX itself has no

security features that protect against malicious actors, so this is left

up to the client code to implement as needed.

7 EVALUATION

This section presents the experimental evaluation of AVOC. With

VDX, we fully implemented the two use-case scenarios from §3, and

compare the error-correction performance of the various voting

schemes. Our evaluation answers the following questions: (Q1) Can

AVOC improve the output quality of our use-case scenarios? (Q2)

Can it mitigate injected errors and reach the same output? (Q3)

Figure 5: Algorithm comparison application.

Which algorithm �ts which scenario better, and (Q4) How can we

leverage VDX to customise the voting behavior for each scenario?

Implementation details.We implemented AVOC and the ap-

proaches from §4 in Python 3.9, for a total of 490 LOC. We note

that though the evaluation was done with pre-recorded data for

reproducibility purposes, the system can execute a history-aware

voting round in 1 millisecond and a stateless vote in 50 microsec-

onds (datastore reads and writes being the bottleneck). Thus, the

system can operate under soft real-time constraints, as in the case

of our ’shoe-box’ demonstrator in Fig.2 as well as many critical

cyber-physical applications in practice.

UC-1: Light sensors.We used the 10’000 value dataset recorded

using our light sensor setup (§3) to gather the raw data and reference

values for the baseline algorithms (Fig.6-a). Then, we injected an

arti�cial outlier sensor, by adding +6 lumen to one of the sensors.

We compare the performance of the di�erent algorithms according

to the following metrics: (a) voting rounds required to converge

back to the baseline, and by extension how quickly outliers are

eliminated; and (b) how far the new stable value is from the original.

We make a �rst comparison using the raw reference data. In this

scenario (Fig. 6-b), all 6 variants performed equally well, with out-

puts matching almost completely. The error injection case (shown

in Fig. 6-c) exhibits some interesting facts. First, the Standard al-

gorithm exhibits high initial skew, which is then slowly mitigated

as the faulty sensor (E4) is de-emphasised. However, even after

10000 voting rounds of voting (20 minutes in our experiments), the

skew is not eliminated completely. This is where the module elimi-

nation feature of Me is bene�cial, as the faulty sensor is quickly

eliminated in round 2, as performing below average compared to

the rest. However, as seen in Fig. 6-c, the gap created by skewing

E4 indicates how E3 is also now tagged as outlier, and its result is

skewed upwards by 0.2lm.

The Hybrid algorithm also uses a granular de�nition of agree-

ment score, but combines it with the aggressive elimination of

modules fromMe. For our experiment, this is the best of both worlds

https://github.com/EcePanos/vdx
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Figure 6: Comparison between our voting approach AVOC and the state-of-the-art approaches. (a) reference data, captured
by our light sensor setup for 20min. (b) voting output using AVOC on the reference data. (c) Reference data with injected
errors (1 faulty sensor). (d) Output of Hybrid, Clustering and AVOC under these errors. (e) Output di�erence between voting
on the raw values and voting on the error-injected values. (f) Zoom on the �rst 10 rounds.

result (also shown by the di�erentials in Fig. 6-e) where, minus few

spikes, the value is identical to the pre-error output.

For completeness, we show clustering-based voting on its own

without combining it with Hybrid (which remains ideal for this

scenario). This can be seen in Fig.6-e. We observe similar behavior

toMe, with E4 being excluded from the output immediately. Di�er-

ently fromMe, E4 was also excluded from the �rst round. In con-

trast, E3 was not always excluded, due to the lack of history-based

elimination, indicating higher variations in the output. Regarding

clustering-only voting (COV), it signi�cantly outperforms other

stateless approach, i.e., weighted average without history. This re-

sult indicates that the COV approach �ts well scenarios where

maintaining historical result records is impractical: short-lived sen-

sor measurements, one-time comparisons of datasets, etc.

One consistent observation in the error injection experiment

is that history-based algorithms experience a spike on startup, as

the arti�cially modi�ed value is skewing the output but is not

yet mitigated by the history. This is the phase where in principle

the clustering step detailed above has higher chances to a�ect the

results. Indeed, although the clustering algorithm alone is not as

accurate asMe orHybrid, it overcomes the initial data spikes. Thus,

a system capable of fallback to it when history is not available or

suspected unreliable, can bene�t from its inclusion.

Next, we run AVOC, which concretely combines the clustering

step with Hybrid. We observe how the initial spike is quickly

pruned (Fig. 6-f) within the initial rounds. The bootstrap boost can

also be noticed: due to the better history adjustment in round 1, the

voter already learns to exclude E3 from round 2, returning to its

pre-error output almost instantly, despite the clustering is only used

once. As AVOC converges within 200ms, the experiment con�rms

its utility for fast accurate voting and provides a positive response

to our questions (Q1) and (Q2), as we improve the reliability of the

output even in the presence of the injected errors.

UC-2: BLE beacons.We leverage this second use-case with BLE

beacons and a Lego Mindstorms EV3 robot to study a scenario with

more anomalies and faults. We set up two stacks of 9 beacons each

15 meters apart in an indoor corridor with no obstacles. The robot

drives at 7% of its full speed in a straight line, from one stack to the

other. The robot takes continuous RSSI (Received Signal Strength

Indicator) measurements for each beacon along the way. This ex-

periment examines if the high redundancy and voting actually are

bene�cial. The scenario simulates the operations to locate a ve-

hicle traversing a tunnel using beacon stacks as milestones along

the way, determining the closest stack to the vehicle. The state of

the art in leveraging RSSI for positioning relies on �ltering [30]

or collaborative positioning [29] to improve stability and output

quality. However, since the scope of our experiment is to evaluate

the e�ects of voting on sensor measurements, we kept the raw RSSI

values from the sensors, to keep the values as close to the origi-

nal measurement as possible for the voting, before applying other

techniques to improve positioning performance. The resulting data,

which we plan to publicly release, lacks several values as well as

mismatched readings in each stack, providing a more challenging

fusion scenario. Such missing values allowed us to identify several

fault scenarios, which we describe next.

Fault scenario: missing values. Due to some beacons not being

reachable from the BLE receiver (i.e., the laptop in our experiment).

Missing values can reduce the reliability of the output measurement,

since fewer candidate values are being considered, and potentially

prevent from reaching a consensus value if most or all values are

missing. A small amount of missing values, i.e., less than the ma-

jority, does not prevent the system from converging to a common

result, though it reduces the redundancy as well as the number of

candidates considered, and as consequence the trustworthiness of

the outcome. If the majority or all values are missing, the result

would no longer be trustworthy, and the system should either re-

vert to the last accepted result, or raise an error. Obviously, these

failure scenarios should be accounted for when the voting behavior

is de�ned. Due to the complexity possible and the variability by

scenario, these behaviors are currently not modelled by VDX itself,

and are instead left up to the client code to de�ne. In our test-bed

implementation, the error handling procedure was programmed
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Figure 7: Results of the BLE beacon experiment. (a) shows the RSSI output when only one beacon from each stack is used. (b)
shows the average RSSI value of all 9 beacons in the stack for each round. (c) shows the AVOC voting output for all 9 beacons
in the stack. Averaging provides visibly less ambiguity in determining which stack is closest to the robot, when compared
with the mean nearest neighbour selection used for Hybrid.

into the implementation of each algorithm. It is possible to make

this behavior customisable, including the custom error-handling in

the voting parameters of the schema de�nition.

Fault scenario: con�icting results. In case of con�icts, a majority

agreement on outputs using automated voting is less likely to be

reached. It is possible that a relative majority agrees on an output,

but they are an overall minority, and no absolute majority exists.

Especially in systems with small number of votes, ties might occur

more easily and tie-breaking mechanisms kick in, such as proximity

to the previous output. These fault scenarios clearly show that set-

ting the constraints of a voting system is non-trivial, and that

voting algorithm implementations in a generic data fusion

platform should be parametric. In addition, there should be a

voting speci�cation declared for the target application, to take the

desired error-handling behavior into account. Accounting for such

fault scenarios allows to implement more robust versions of the

algorithms. It is also possible to extend VDX in a future revision to

support high-level descriptions of the desired fault handling policy.

Examples of such policies include rejecting a round of measure-

ments if there is no majority quorum or majority agreement.

We then tested our voting algorithms on the BLE experiment

data. We used the same recorded values for each algorithm. We

run voting between the 9 sensors of each stack to create 2 output

values per round (i.e., 1 per stack). We observed that the method for

computing the history of each sensor has no e�ect. The output of

all history-based algorithms overlaps completely. (They are not all

plotted due to space constraints.) This is because the chaotic nature

of the measurements meant the history values were all very low,

as there were few agreements between the sensors. We observe

however that the value collation method has impact, e.g., averaging

the weighted values, a mean-nearest-neighbour selection, etc. This

created 2 algorithm groups, those averaging and those choosing the

mean-nearest neighbour value, with every algorithm in each group

performing identically to each other. In order to determine the best

results, we study the number of rounds while it is ambiguous which

stack of sensors is closest to the robot at any given time. Figure 7

presents these results.

Fig. 7-a is the reference: if each stack only had one sensor, it is

not possible to identify the closest stack to the robot for most of

the duration of the experiment. Simply averaging the values of the

9 sensors (Fig. 7-b) produces a less ambiguous result. We present

the results using AVOC in Fig. 7-c. In spite of the method used to

create a historical record for each sensor, what had the most impact

on the output was whether or not the last step was to average the

values or to select a value (with averaging being the better option in

our experiment). In scenarios with high degree of noisy data, such

as the BLE one, relying on historical record has no practical value.

This con�rms our initial assumption that there is no optimal

voting method for all applications, despite common elements

shared by our scenarios (e.g., having to reconcile numerical values

from a group of sensors). Thus we conclude that the answer to (Q3)

depends of the speci�cs of the use case, and that the customisation

o�ered by our speci�cation allows us to address (Q4).

8 CONCLUSION AND FUTUREWORK

We have conducted an experimental study of history-aware voting

in IoT and smart city/smart building applications. We demonstrated

the performance of di�erent algorithms on two di�erent scenar-

ios with di�erent needs in terms of sensor fusion and presented

out �ndings in terms of selecting an optimal algorithm for each

scenario. Our �ndings show that inherently reliable systems can

bene�t more from history-aware voting as it can more easily root

out more nuanced quality issues. On the other end of the spec-

trum, inherently unstable setups bene�t more from smoothing and

averaging techniques due to the unpredictability of the values ren-

dering historical records ine�ective. We also presented AVOC, our

clustering-based voting approach, and demonstrated its e�ective-

ness in bootstrapping a new group of sensors in a voting system.

We showed how it can improve the accuracy of the voting result

in the early rounds by eliminating outliers in-place, rather than

discovering them based on past performance. We then proposed

voting de�nition format VDX that can be used to describe a vot-

ing procedure to a compatible voter service running on an edge

node. We plan to explore deeper and more realistic scenarios and

the applicability of our voting methodology to providing improved

data quality, as well as further develop the voting speci�cation

in order to �eld test a voter service prototype with a variety of

compute-power-restricted setups.



AVOC: History-Aware Data Fusion for Reliable IoT Analytics Middleware ’22 Industrial Track, November 7–11, 2022, �ebec, QC, Canada

REFERENCES
[1] 2022. Bluetooth Technology Overview. Retrieved June 27, 2022 from https:

//www.bluetooth.com/learn-about-bluetooth/tech-overview/
[2] 2022. Cargo Sous Terrain. Retrieved June 27, 2022 from https://www.cst.ch/
[3] 2022. Graphic LCD Phidget. Retrieved June 27, 2022 from https://www.phidgets.

com/?tier=3&catid=48&pcid=41&prodid=963
[4] 2022. Lego Mindstorms EV3. Retrieved June 27, 2022 from https://education.lego.

com/en-us/products/lego-mindstorms-education-ev3-intelligent-brick/45500
[5] 2022. Light Phidget. Retrieved June 27, 2022 from https://www.phidgets.com/

?tier=3&catid=8&pcid=6&prodid=707
[6] 2022. Wireless VINT Hub. Retrieved June 27, 2022 from https://www.phidgets.

com/?tier=3&catid=64&pcid=57&prodid=1143
[7] Ahmed Alahmadi and Ben Soh. 2012. A hybrid history based weighted voting

algorithm for ultra-critical systems. In 2012 International Symposium on Com-
munications and Information Technologies (ISCIT). 1122–1127. https://doi.org/10.
1109/ISCIT.2012.6380861

[8] D.E. Bakken, Z. Zhan, C.C. Jones, and D.A. Karr. 2001. Middleware support for
voting and data fusion. In 2001 International Conference on Dependable Systems
and Networks. 453–462. https://doi.org/10.1109/DSN.2001.941429

[9] Mohamed Ryad Boukhari, Ahmed Chaibet, Moussa Boukhnifer, and Sébastien
Glaser. 2018. Voting algorithm approach for autonomous vehicle safe driving.
In 2018 IEEE International Conference on Industrial Technology (ICIT). 327–332.
https://doi.org/10.1109/ICIT.2018.8352198

[10] D. Comaniciu and P. Meer. 2002. Mean shift: a robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24,
5 (2002), 603–619. https://doi.org/10.1109/34.1000236

[11] Manasi Das and Samar Bhattacharya. 2010. A Modi�ed History Based Weighted
Average Voting with Soft-Dynamic Threshold. In 2010 International Conference on
Advances in Computer Engineering. 217–222. https://doi.org/10.1109/ACE.2010.45

[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (Portland, Oregon) (KDD’96). AAAI Press, 226–231.

[13] Yufei Fang, Zhiguang Shan, andWeiWang. 2021. Modeling and Key Technologies
of a Data-Driven Smart City System. IEEE Access 9 (2021), 91244–91258. https:
//doi.org/10.1109/ACCESS.2021.3091716

[14] Seungmyeong Jeong, Seongyun Kim, and Jaeho Kim. 2020. City Data Hub:
Implementation of Standard-Based Smart City Data Platform for Interoperability.
Sensors 20, 23 (2020). https://doi.org/10.3390/s20237000

[15] M. A. Kassab, H. S. Taha, S. A. Shedied, and A. Maher. 2014. A novel voting
algorithm for redundant aircraft sensors. In Proceeding of the 11th World Congress
on Intelligent Control and Automation. 3741–3746. https://doi.org/10.1109/WCICA.
2014.7053339

[16] Sefki Kolozali, Maria Bermudez-Edo, Nazli Farajidavar, Payam Barnaghi, Feng
Gao, Muhammad Intizar Ali, Alessandra Mileo, Marten Fischer, Thorben Iggena,
Daniel Kuemper, and Ralf Tonjes. 2019. Observing the Pulse of a City: A Smart
City Framework for Real-Time Discovery, Federation, and Aggregation of Data
Streams. IEEE Internet of Things Journal 6, 2 (2019), 2651–2668. https://doi.org/
10.1109/JIOT.2018.2872606

[17] G. Latif-Shabgahi, J.M. Bass, and S. Bennett. 2001. History-based weighted
average voter: a novel software voting algorithm for fault-tolerant computer
systems. In Proceedings Ninth Euromicro Workshop on Parallel and Distributed
Processing. 402–409. https://doi.org/10.1109/EMPDP.2001.905068

[18] G. Latif-Shabgahi, J.M. Bass, and S. Bennett. 2004. A taxonomy for software
voting algorithms used in safety-critical systems. IEEE Transactions on Reliability
53, 3 (2004), 319–328. https://doi.org/10.1109/TR.2004.832819

[19] Billy Pik Lik Lau, Sumudu Hasala Marakkalage, Yuren Zhou, Naveed Ul Hassan,
Chau Yuen, Meng Zhang, and U-Xuan Tan. 2019. A survey of data fusion in
smart city applications. Information Fusion 52 (2019), 357–374. https://doi.org/
10.1016/j.in�us.2019.05.004

[20] Yiu-Wing Leung. 1995. Maximum likelihood voting for fault-tolerant software
with �nite output-space. IEEE Transactions on Reliability 44, 3 (1995), 419–427.
https://doi.org/10.1109/24.406576

[21] Deborah Lupton. 2021. ’Flawed’, ’Cruel’ and ’Irresponsible’: The Framing of
Automated Decision-Making Technologies in the Australian Press. https:
//doi.org/10.2139/ssrn.3828952

[22] Negin Minaei. 2022. Future Transport and Logistics in Smart Cities: Safety and
Privacy. In Smart Cities. CRC Press, 113–142.

[23] Nwamaka U. Okafor, Yahia Alghorani, and Declan T. Delaney. 2020. Improving
Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks
Using Data Fusion and Machine Learning Approach. ICT Express 6, 3 (2020),
220–228. https://doi.org/10.1016/j.icte.2020.06.004

[24] Dau Pelleg and AndrewMoore. 2000. X-means: Extending K-means with E�cient
Estimation of the Number of Clusters. In In Proceedings of the 17th International
Conf. on Machine Learning. Morgan Kaufmann, 727–734.

[25] Oumaima El Rhazal and Mazri Tomader. 2019. Study of Smart City Data: Cat-
egories and Quality Challenges. In Proceedings of the 4th International Con-
ference on Smart City Applications (Casablanca, Morocco) (SCA ’19). Associa-
tion for Computing Machinery, New York, NY, USA, Article 4, 7 pages. https:
//doi.org/10.1145/3368756.3368965

[26] A.C. Torres-Echeverría, S. Martorell, and H.A. Thompson. 2012. Multi-objective
optimization of design and testing of safety instrumented systems with MooN
voting architectures using a genetic algorithm. Reliability Engineering & System
Safety 106 (2012), 45–60. https://doi.org/10.1016/j.ress.2012.03.010

[27] Junliang Wang, Chuqiao Xu, Jie Zhang, and Ray Zhong. 2022. Big data analytics
for intelligent manufacturing systems: A review. Journal of Manufacturing
Systems 62 (2022), 738–752. https://doi.org/10.1016/j.jmsy.2021.03.005

[28] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. 2021. Data Col-
lection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective.
CoRR abs/2112.06409 (2021). arXiv:2112.06409 https://arxiv.org/abs/2112.06409

[29] Juthatip Wisanmongkol, Ladawan Klinkusoom, Taweesak Sanpechuda, La-or
Kovavisaruch, and Kamol Kaemarungsi. 2019. Multipath Mitigation for RSSI-
Based Bluetooth Low Energy Localization. In 2019 19th International Symposium
on Communications and Information Technologies (ISCIT). 47–51. https://doi.org/
10.1109/ISCIT.2019.8905164

[30] Yadi Wu, Senlin Cheng, and Xiaohao Yan. 2020. Study on Improved Algorithm
of RSSI Correction and Location in Mine-Well Based on Bluetooth Position-
ing Information. In Proceedings of the 4th International Conference on Com-
puter Science and Application Engineering (Sanya, China) (CSAE 2020). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 146, 6 pages.
https://doi.org/10.1145/3424978.3425131

[31] Nashez Zubair, Niranjan A, Kiran Hebbar, and Yogesh Simmhan. 2019. Char-
acterizing IoT Data and its Quality for Use. CoRR abs/1906.10497 (2019).
arXiv:1906.10497 http://arxiv.org/abs/1906.10497

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.cst.ch/
https://www.phidgets.com/?tier=3&catid=48&pcid=41&prodid=963
https://www.phidgets.com/?tier=3&catid=48&pcid=41&prodid=963
https://education.lego.com/en-us/products/lego-mindstorms-education-ev3-intelligent-brick/45500
https://education.lego.com/en-us/products/lego-mindstorms-education-ev3-intelligent-brick/45500
https://www.phidgets.com/?tier=3&catid=8&pcid=6&prodid=707
https://www.phidgets.com/?tier=3&catid=8&pcid=6&prodid=707
https://www.phidgets.com/?tier=3&catid=64&pcid=57&prodid=1143
https://www.phidgets.com/?tier=3&catid=64&pcid=57&prodid=1143
https://doi.org/10.1109/ISCIT.2012.6380861
https://doi.org/10.1109/ISCIT.2012.6380861
https://doi.org/10.1109/DSN.2001.941429
https://doi.org/10.1109/ICIT.2018.8352198
https://doi.org/10.1109/34.1000236
https://doi.org/10.1109/ACE.2010.45
https://doi.org/10.1109/ACCESS.2021.3091716
https://doi.org/10.1109/ACCESS.2021.3091716
https://doi.org/10.3390/s20237000
https://doi.org/10.1109/WCICA.2014.7053339
https://doi.org/10.1109/WCICA.2014.7053339
https://doi.org/10.1109/JIOT.2018.2872606
https://doi.org/10.1109/JIOT.2018.2872606
https://doi.org/10.1109/EMPDP.2001.905068
https://doi.org/10.1109/TR.2004.832819
https://doi.org/10.1016/j.inffus.2019.05.004
https://doi.org/10.1016/j.inffus.2019.05.004
https://doi.org/10.1109/24.406576
https://doi.org/10.2139/ssrn.3828952
https://doi.org/10.2139/ssrn.3828952
https://doi.org/10.1016/j.icte.2020.06.004
https://doi.org/10.1145/3368756.3368965
https://doi.org/10.1145/3368756.3368965
https://doi.org/10.1016/j.ress.2012.03.010
https://doi.org/10.1016/j.jmsy.2021.03.005
https://arxiv.org/abs/2112.06409
https://arxiv.org/abs/2112.06409
https://doi.org/10.1109/ISCIT.2019.8905164
https://doi.org/10.1109/ISCIT.2019.8905164
https://doi.org/10.1145/3424978.3425131
https://arxiv.org/abs/1906.10497
http://arxiv.org/abs/1906.10497

