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ABSTRACT

The creation of circular economies calls for automated processes

of handling goods and natural resources, including waste. Accu-

rate knowledge about disposed waste types facilitates their smart

processing and maximises the reuse potential. This requires com-

ponents such as precise sensing, an appropriate architecture to

gather sensed data and gain insights with low latency, and broker-

ing tools to connect waste collectors with processors and collection

points. This paper describes a smart waste detection prototype

that has been designed and assembled to investigate the automated

processes with those components. Its design is centered around a

continuum computing architecture to align energy-e�cient edge

sensing with the shared aim of circular economies to reduce the

ecological footprint.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting systems and tools; • Computer systems organization

→ Cloud computing; • Computing methodologies → Machine

learning.
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1 INTRODUCTION

Smart waste is a term encompassing technology-supported improve-

ment of waste handling, implying a higher degree of awareness,

automation and digitalisation. Examples include smart bins that

sense and transmit their �ll level and detect anomalies such as

�res in the vicinity [1], waste collection route optimisation [3], and

waste type detection through pictures taken by a smartphone [5].

In essence, smart waste systems are cyber-physical systems that
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are combining hardware with software, often also with cloudware

to become practical at larger scale. Smart waste handling is an im-

portant contribution to the establishment of circular economies,

preserving precious natural resources and lowering the ecological

footprint of human civilisation. The fallacy is in o�setting the im-

proved footprint by non-smart heavy-weight computation. Instead,

green and sustainable computing models need to be applied to the

digital transformation of waste handling systems.

Recent progress in greener cloud computing models has already

led to visions and proposals such as sustainable serverless comput-

ing that favours certain combinations of edge and cloud computing,

in particular for smart or intelligent computations that require ma-

chine inference of knowledge based on sensed data [7]. Serverless

computing is often realised through a function-based architecture,

with functions running at the edge, in the cloud or within message

brokers. Emphasising the location of code, Continuum architectures

provide a higher abstraction level, hiding the physical location of

where code (e.g. functions) is running and instead placing code

wherever appropriate, close to data and constrained by resource

capacities and non-functional application requirements such as

energy e�ciency and latency. Hence, continuum architectures un-

derpinning smart waste handling systems should be investigated

and evaluated in practice.

In this paper, we propose an archetypical continuum architec-

ture for the application domain of smart solid waste treatment, in

particular the disposal step that initiates the treatment. The archi-

tecture is demonstrated as part of a cyber-physical system assembly

consisting of several sensors in addition to edge devices and cloud

resources. We argue that deploying such systems at larger scale

and networking them is feasible and will contribute to a digitalised

circular economy.

2 APPLICATION SCENARIOS

Solid waste handling �ows depend on the type of product and

material. For instance, PET bottles might be collected in central

collection points for shredding into �akes and subsequent recycling.

PET packaging for food not in bottle form, as well as non-PET

bottles, traverse other collection and processing �ows. Through

sensing the product packaging and material types in conjunction

with rules and context information, such as which recycler would

buy which quantities of which materials, �ows can be automated.

Fig. 1 shows exemplary disposal �ows and outlines at which points

the �ows could be augmented with smart waste disposal based on

sensing, type detection and subsequent software-de�ned steps.

The proposed architecture can be used in three distinct scenarios

in early stages of the �ows for distinguishable solid waste, either at
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Figure 1: Smartly augmented solid waste �ows

disposal time or in processing plants that typically accomplish the

requirement through mechanical object separation means ahead of

the object detection. We assign the following �ve functionalities to

the scenarios that should be supported by the architecture: Training

a smart waste packaging and materials database, inference of waste

classi�cations from fused sensor data, reporting of disposal activities

and status, recommendation to disposers for whom the rules are

often too complex to understand, and brokering of post-processing

activities (recycling, recovery, incarceration) to bring the waste

back into the economical cycle.

The three distinct scenarios covering the functionalities are:

Interactive smart bin. Smart bins take individual items of solid

waste. Their interactive augmentation would allow disposers to

scan items and receive recommendations, for instance on whether

the bin is correct for the selected waste item or whether the bin is

already full and another bin should be used instead. Interactive bins

combine the inference and recommendation functionalities ahead of

the actual disposal step, and can optionally support non-interactive

training and reporting as well. Moreover, brokering within sustain-

able and circular economies �ts in to advise the disposing person

of alternative options, such as upcycling for an object detected as

valuable.

Non-interactive smart bin. In these bins, waste items are detected

as they are disposed. Hence, incorrect disposal is not prevented but

could still be noti�ed, for instance acoustically or visually. In non-

intrusive mode, they would however not interact with the disposer

and instead would provide information only to the operator. Non-

interactive bins use embedded sensing to accomplish the training

and reporting functionalities.

Sorting centre. Sorting and recycling centres use conveyor belts

that require fast detection of waste through the inference func-

tionality, but can also be used for controlled training. Moreover,

sorting centres critically depend on brokering to permit further

waste treatment �ows.

Owing to the emerging use of robotic sorting facilities, recent

research on cloud robotics suggests that the continuum can be

extended to robotic arms that autonomously detect objects and

their poses and subsequently grab and sort them [2].

3 SYSTEM DESIGN AND ARCHITECTURE

A continuum computing architecture is able to shift computation be-

tween edges and clouds as needed, depending on requirements such

as resource capacities, resource allocation cost, energy e�ciency

and non-functional application requirements, primarily related to

deadlines and results quality. For the smart waste scenarios, this

shifting applies primarily to the compute-intensive machine learn-

ing tasks of training and inference, but also to the fusion of sensor

data.

To optimise the non-functional properties, we divide the edge

into a permanently running p-Edge and an on-demand activated

o-Edge, all capable of executing containers that are portable and

can be placed and activated where needed. Fig. 2 summarises the

architecture in the interactive smart bin �avour. Apart from the in-

volvement of screen and motion sensor, the architecture is reusable

for the other scenarios, including for high-throughput detection of

objects on a conveyor belt.

Figure 2: Smart waste treatment continuum architecture

The two key research challenges are:

(1) How can the accuracy of object detection be maximised?

This challenge suggests a weighted fusion of multiple sen-

sors, taking their internal accuracies and false positive rates

into account. There are practical hurdles, including the size

of some sensors such as thermographic surface and coating

detection, but also advantages, such as overcoming the in-

su�cient depth of 2D images with physical characteristics

sensing [4]. Our prototype allows for investigating the issues

concerning real-time fusion, correlation of objects in data

streams, weighting and other known problems.

(2) How can the processing time and energy consumption be

minimised? Researchers have recently proposed adaptive

placement of computation across continuums that take re-

source capacities into account and learn from past executions

or follow stochastic models [6] but practical scenarios to val-

idate them are still needed. Our prototype �lls this gap for

the narrow domain of object sensing and the wider domain

of smart waste treatment.

Further challenges emerge from the engineering of such systems

and the incentivisation and integration into sustainable and circular

economies, for instance by appropriate bidder interfaces that might

require governance for large-scale deployments.
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4 SYSTEM IMPLEMENTATION

4.1 Prototype

The prototype focuses on the interactive smart bin scenario and

hence implements all four functionalities of training, inference, re-

porting and recommendation. Additionally, it implements brokering

at a small scale.

Hardware. Motion is detected with the Phidget motion sensor

MOT2002 connected to a VINT hub that provides network access.

For the object detection, three sensor data streams are fused and

correlated – Lego EV3 colour sensor, Pixy2 hue tracking colour

sensor, and a videocamera. Due to the size of material sensors

working on thermal pulses, that sensor is not included in the setup

itself although the heatmaps and spectrums generated by it can also

be processed within the same system. The p-Edge is implemented

with a Raspberry Pi 4 device, whereas a Wake-on-LAN (WoL)-

capable notebook serves as o-Edge as well as edge screen to allow

for interactive demonstrations. An OpenStack cluster serves as

cloud platform, o�ering the programmatic on-demand allocation

of VMs that in turn facilitate containerised function execution and

data persistence for both the brokering and the model training.

Software. The edge-hosted software for the interactive bin con-

sists of an on-screen web frontend, a Python backend application

with embedded web server and an SQlite-based transactional mes-

sage queue. Moreover, software agents �ll the message queue with

discrete sensor measurements or, in the case of the video camera,

with information about detected objects via ImageAI and MNetv2.

These agents are implemented in the form of event-driven func-

tions. Another software agent manages the connection information

and credentials to OpenStack and provides elasticity. Fig. 3 conveys

the web frontend view, including the economic e�ects of waste

processors bidding for quantities of materials. To augment the qual-

ity of sensor information especially in embedded mode, arti�cial

�ash lighting is generated through either the notebook screen or

power-controlled USB lights. The p-Edge device runs Etherwake to

wake up the o-Edge, a functionality that could in principle also be

integrated into the VINT hub itself to reduce the hardware base.

Figure 3: Information screen for disposal system operators

Assembled system. The assembled prototype for a smart waste

bin connects the hardware components to an actual multi-material

recycling station consisting of several bins, while providing an

interactive set-top functionality as well as embedded sensors. Fig.

4 gives a visual impression of the recycling station (p-/o-Edge).

Figure 4: Recycling station setup of the ’interactive smart

bin’ scenario

The system can also be used in parts for education, with focus

on both the circular economy aspects and the computer science

aspects. Fig. 5 shows a simpli�ed ’smart bin’ scenario implemented

on the basis of an EV3 robotic platform with continuum-connected

colour sensor and Pixy2 camera for use in classrooms.

Figure 5: Exemplary teaching setup of the ’interactive smart

bin’ scenario with only the two colour sensors in operation

4.2 Evaluation

Current hardware and software technology is su�cient for adap-

tively and energy-e�ciently placing the machine learning functions

across the continuum and for realising the smart waste bin scenario.

This �nding results from the system evaluation conducted on the

continuum spanning the p-Edge (ARMv8 Cortex-A72 CPU @ 1.5
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Table 1: Time metrics (in s) related to determination of waste

types at edge and cloud, based on 200 images MNetv2 model

Process step p-Edge time o-Edge time Cloud time

Motion sensing – 0.10 -”-

Edge activation – 0.95 -”-

Waste sensing 1.14 -”- -”-

Transmission – 0.17 0.36

Inference 7.12 4.05 4.97

Total 8.26 6.41 (best) 7.52

GHz), o-Edge (4x i7-5600 CPU @ 2.6 GHz) and cloud (8x Broad-

well vCPU @ 2.5 GHz), without GPU acceleration enabled. The

dominant contributor to the compute time is the inference based

on two image classes with 100 trained images each, including a

90/10 split for �ve rounds of training and subsequent testing, based

on the ImageAI image classi�cation and Tensor�ow 2.4. The aver-

aged durations are broken down in Table 1. In contrast, the metrics

also suggest that a real-time implementation in hardware for the

vision and inference part is required for high-volume detection, for

instance in sorting centres.

An additional experiment, conducted synthetically on a lab note-

book (i7-8850H CPU @ 2.6 GHz), supports the hypothesis that a

smart distribution between continuum resources needs to be con-

ducted, in particular due to the highly diverging compute intensities

of training and inference. As indicated by Fig. 6, the duration of the

inference steps do not depend on the complexity of the underlying

knowledge base derived from training, whereas the training itself

is highly depending on both the number of image classes (i.e. types

of waste to be recognised) and the number of images per class (i.e.

accuracy of visual waste detection). Thus, in a practical setting, a

self-trained system for instance based on inputs in the interactive

or non-interactive smart bins would have to consider centralised or

federated learning instead of learning directly at the edge in order

to maintain responsiveness.
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Figure 6: In�uence of dataset complexity (1–4 image classes)

on training and inference

5 APPLICATION ADOPTION PROSPECTS

Assuming the successful tackling of the two mentioned computer

science challenges on generalised sensor data fusion and continuum

placement, questions remain on the applicability of the results on

industrial scale. Recent market developments suggest that automa-

tion and digitalisation levels are increasing throughout the industry.

Due to the emergence of specialised hardware in cloud and edge

systems, including GPUs and programmable FPGAs, a conceptual

re�nement of continuum computing concepts to cover transparent

acceleration of functionality is highly desired, and even crucial

for high-volume waste processing that also leads to higher data

volumes. Solid waste sorting systems such as the startup Nommas1

address the necessary input data quality problem. They combine

multiple sensors and vision approaches (HDR camera, ToF lidar,

hyperspectral camera and raytracing-supported lens [8]) with deep

neural networks and a �eet of robotic delta arms to identify, pick

and sort waste objects of relevance. The discretisation and fusion

of sensor information leads to the requirement of real-time contin-

uums, including real-time scheduling of edge and cloud services.

While large-scale waste processing plants are already available

in production and achieve 90–95% purity with purely mechanical

means, processing 140kt/year2, the proliferation of software-driven

continuums will allow for lowering cost while increasing purity.

More countries adopt the notion of automated sorting of house-

hold waste, including Switzerland3, increasing the target market for

technology transfer. The long-term goal of achieving nation-scale

circular economies also in countries with currently less developed

recycling systems becomes thus viable.
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