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ABSTRACT Quantum computing promises to solve difficult optimization problems in chemistry, physics
and mathematics more efficiently than classical computers. However, it requires fault-tolerant quantum
computers with millions of qubits; a technological challenge still not mastered by engineers. To lower the
barrier, hybrid algorithms combining classical and quantum computers are used, where quantum computing
is only used for those parts of computation that cannot be solved efficiently otherwise. In this paper, we tackle
the multiple query optimization problem (MQO), an important NP-hard problem in database research.
We present an implementation based on a scheme called quantum approximate optimization algorithm
to solve the MQO on a gate-based quantum computer. We perform a detailed experimental evaluation of
our implementation and compare its performance against a competing approach that employs a quantum
annealer – another type of quantum computer. Our implementation shows a qubit efficiency of close to 99%,
which is almost a factor of 2 higher than the state-of-the-art implementation.We emphasize that the problems
we can solve with current gate-based quantum technology are fairly small and might not seem practical
yet compared to state-of-the-art classical query optimizers. However, our experiments on using a hybrid
approach of classical and quantum computing show that our implementation scales favourably with larger
problem sizes. Hence, we conclude that our approach shows promising results for near-term quantum
computers and thus sets the stage for a challenging avenue of novel database research.

INDEX TERMS Optimization, databases, multiple query optimization, quantum approximate optimization
algorithm, experimental evaluation.

I. INTRODUCTION
In database research, various optimization problems have
been formulated since the seventies [22], [35], [37], with the
query optimization problem being a typical NP-hard repre-
sentative. These problems, although extensively examined,
become even more difficult as data processing becomes more
complex [41]. Recent approaches to the query optimization
problem have also become increasingly sophisticated, now
employing deep learning methods [22], [28]. Simultane-
ously, progress in the construction of quantum computers
has sparked new interest in applied quantum computing
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[4], [7], [13], [32], [38], whereas previously, the quantum
computing community was mainly concerned with more
theoretical studies due to the lack of practical quantum
devices [30]. It is hoped that quantum computers can one
day solve complex problems more efficiently than classical
computers [30]. Recently, quantum computing has been
applied for various problems such as optimizing transaction
schedules [18] or financial portfolios [43]. Multiple query
optimization appears to be an ideal ‘‘toy problem’’ in various
respects: First, already small instances of the problem exhibit
the structural features of more complex settings. Second,
the problem is of actual practical relevance (which may
even be growing). Third, the problem has also been studied
extensively from a theoretical point of view.
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Present quantum computing architectures can be divided
into two large classes: gate-based approaches and adiabatic
quantum computation (AQO, see [15]). AQO is based on
the adiabatic theorem of quantum mechanics, which states
that a quantum system remains in its ground state under
(i.e. the state with the lowest energy) suitable conditions,
even if the system is changed over time (more about this
later). At first glance, AQO looks very promising: As we
will discuss, quantum systems can be set up such that their
ground state is equivalent to the solution of a combinatorial
optimization problem [26]. All we have to do is to set up a
quantum system with a known and easy-to-prepare ground
state. Then, we gradually modify the system such that at the
end of the modification process, the system’s ground state
can be identified with the solution to the problem under
consideration.

Quantum computers by D-Wave use such an approach [9].
Presently, there is a debate on whether such systems lead
to a quantum advantage. One reason for these concerns
is that ‘‘suitable conditions’’ include a sufficiently slow
change of the quantum system, which may grow expo-
nentially with problem size. There is a method, quantum
approximate optimization algorithms (QAOA), which is
structurally similar to AQO, but is designed to be run on
a gate-based architecture. There is considerable hope ([27])
that one can realize a quantum advantage for some large
classes of problems. Whereas [27] focuses on the well-
researched MaxCut-problem, this work analyzes a more
practical question, namely multiple query optimization.

We point out that gate-based quantum computers
differ fundamentally from adiabatic quantum compu-
tations. Many algorithms for gate-based architectures
(Grover, Shor, QAOA) are interference-based. From a
physical perspective, they exploit the fact that quantum
states can interfere. Appropriate algorithms enforce the target
state to interfere positively, whereas all other states interfere
destructively [40]). Adiabatic computation exploits the
adiabatic theorem of quantum mechanics by implementing
a sufficiently slowly varied energy landscape. Besides
direct comparisons for different algorithms, the evaluation
of performance boundaries (which means the prediction
of which problems can be reliably solved on a given
architecture) may turn out to be simpler for gate-based
architectures.

A. MULTIPLE QUERY OPTIMIZATION
The Multiple Query Optimization problem (MQO) is a
generalization of the query optimization problem [37]. MQO
is known to be an NP-hard problem [36]. The goal is to
minimize the total cost of executing a series of queries against
a database by exploiting shared intermediate results [37].
MQO has been approached by classical methods such as
the shortest-path algorithms [37]. Since then, integer linear
programming [12] and genetic algorithms [5] have been
proposed, improving prior methods. More recent approaches

employ dynamic programming while considering multiple
cost metrics [42]. In the case of the more general class
of query optimization problems, learning algorithms have
successfully been applied [39]. Modern approaches extend
this approach with the usage of deep learning methods
[22], [28].

We illustrate the problem with an example. Assume three
tables T1,T2,T3 containing information about books and
their authors. Table T1 contains pairs of entries of the form
(ai, ri). The variable ai gives an author’s name, ri a rating
of the author’s style. Table T2 contains triplets of values
(ti, ai, si). Thereby, ti is the title of a book written by ai, and
si is again a rating but related to the content of the book
with title ti. Finally, T3 contains entries of the form ti, ni
with ni the book ID of title ti. We are looking for the book
IDs of all books with a combined rating ri + si > v for
some constant v, and we formulate this condition with a query
σr+s>v. We assume the table T1 to be small, and tables T2 and
T3 to be large. The table T1 ▷◁ T2 contains entries of the
form (ai, ri, ti, si) and is, after the application of the query
σr+s>c probably rather small. It is reasonable to expect the
time needed for (σr+s>v(T1 ▷◁ T2)) ▷◁ T3 to be shorter than
for (σr+s>v(T1 ▷◁ (T2 ▷◁ T3)), because (T2 ▷◁ T3) requires
joining two large ltables.

The model studied here considers a series of queries
q1, . . . , qQ, where each query has a fixed number P of plans,
uniquely identified as pi1, . . . , piP for query i. Each plan pij
has associated a cost cij. Finally, we denote savings between
pairwise plans pik and pjl as sikjl . These savings occur due to
sharing of intermediate results between query plans.

In an MQP, for every query qi, exactly one plan piπ (i) has
to be selected. Formally, the problem consists in finding a
function π (i) such that Y , given by

Y =
Q∑
i=1

ciπ (i) −
Q∑

i,j=1

siπ (i)jπ(j), (1)

is minimized. The search space of this problem is significant
as there are P possibilities to choose from for every query,
resulting in PQ possibilities.

B. CONTRIBUTIONS OF THE PAPER
The MQO scales exponentially with the number of query
plans (as shown above). Recently, a quantum approach was
suggested for the MQO by Trummer and Koch [41], utilizing
a D-Wave quantum annealer [9], a particular type of quantum
computer designed to run special optimization problems.

The work presented in this article builds on Trummer
and Koch’s approach, but utilizes a gate-based quantum
computer, a more general type of quantum computer. Gate-
based quantum computers can, in principle, run every
quantum algorithm [2], [23], while quantum annealers in [41]
are restricted to specific problems. The generality of gate-
based quantum computers come with the cost of featuring
significantly fewer qubits and are more error-prone than
quantum annealers.
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In summary, our contributions are the following:
1) We study algorithms to tackle MQO on a gate-based

quantum computer. To the best of our knowledge,
besides [34] this is among the first papers in the
literature to address MQO with a gate-based quantum
computer.

2) We run experiments on a quantum simulator and real
quantum hardware, and analyze how the algorithms
scale with the problem size.

3) We compare our work with a competing quantum
query optimization approach and demonstrate that our
gate-based implementation has a qubit efficiency1 of
close to 99%. This is almost a factor of 2 higher
compared to the state-of-the-art quantum annealing-
based implementation.

4) Even though our approach only solves small MQO
problems, which might not seem practical yet due to
the limitations of current quantum technology, it is
a promising step for novel database research at the
intersection of classical and quantum computing.

II. QUANTUM COMPUTING FOUNDATIONS
A. QUANTUM MECHANICS
Quantum algorithms are known for speeding up certain
computations, such as integer factorization [31]. In prin-
ciple, these algorithms achieve significant speedup - first,
by not having to examine every branch in the search
space sequentially, as by a classical brute force approach.2

Instead, a quantum computer holds many branches during
computation, which is possible because a quantum register
can be understood as a superposition of basis states. Secondly,
quantum algorithms exploit so-called entanglement.
In what follows, we present an overview over facts which

are important for quantum computing. Although we motivate
them, we mostly present results. A thorough study with
proofs and detailed expositions must be taken from one of
the multiple well-written textbooks.

Certain types of quantum systems, e.g. electrons or
polarized photons, are represented in quantum mechanics as
a normalized vector in a two-dimensional complex vector
space, i.e. a two-dimensional complex Hilbert space. Such
vectors, denoted by a so-called ket |q⟩, are the superposition
of two basis vectors |0⟩ and |1⟩:

|q⟩ = α |0⟩ + β |1⟩ (2)

whereby α, β ∈ C and

|α|2 + |β|2 = 1 (3)

The vector |q⟩ is called a qubit. Without delving into
mathematical and physical details: qubits can be combined to

1We define qubit efficiency as a measure of capacity utilization as a ratio
between the number of qubits used for variable encoding and the number of
qubits available. In the literature, this measure is qualitatively referred to as
hardware efficiency as, e.g. in [6].

2The conception of a quantum computer evaluating the entire
search space in parallel and selecting the best solution is an incorrect
oversimplification [1].

form a so-called quantum register. Note: To keep the wording
efficient, we do not distinguish between registers and their
states, in the same sense as we do not distinguish between
a qubit and its state. This convention enhances efficiency,
but one could argue that it shadows the difference between
hardware and the range of states this hardware can represent.

If one has n coupled qubits, the resulting quantum register
is again a normalized element of a complex Hilbert space V ,
whereby this space has dimension 2n. A basis state of this
Hilbert space can be understood as a bit sequence |x1x2 . . . xn⟩
with xj ∈ {0, 1}. Mathematically, this coupling of single
qubits is simply a tensor product |x1⟩ ⊗ |x2⟩ ⊗ . . . ⊗ |xn⟩.
For national convenience, the rather clumsy tensor product
is also written as |x1x2 . . . xn⟩. The bit sequence of the basis
state encodes a natural number j. Therefore, the basis states
are often just written as |j⟩ with j ∈ 0, . . . , 2n − 1. Note
that in this notation, x1 is the most significant bit; however,
sometimes, in a part of the literature, the order of bits is
reversed.

From a mathematical point of view, there are many
different choices of a basis for the vector space V . The basis
|j⟩ with j understood as a bit sequence is called the basis
of the quantum register or the computational basis in the
literature. In this work, basis vectors are always an element
of the computational basis. We further note that in quantum
mechanics, the terms basis vector and basis state are used
interchangeably, whereby the latter is more commonly used.

A quantum register |Q⟩ needs not to be in a basis state but
can consist of a superposition of basis states:

|Q⟩ =
2n−1∑
j=0

cj |j⟩ (4)

with cj ∈ C

2n−1∑
j=0

|cj|2 = 1. (5)

A Hilbert space is (by definition) always equipped with an
inner product. For an orthonormal basis, we have for the basis
vectors |j⟩ , |k⟩:

⟨j|k⟩ = δjk =

{
1, if j = k,
0, if j ̸= k.

(6)

For two general vectors

|X⟩ =
2n−1∑
j=0

xj |j⟩ , |Y ⟩ =
2n−1∑
j=0

yj |j⟩ , (7)

the inner product is given by:

⟨X |Y ⟩ =
2n−1∑
j=0

x jyj. (8)

Note the complex conjugation denoted by the overlining.
Furthermore, with eq. 5 and eq. 8 we get ⟨X |X⟩ = | |X⟩ |2.

VOLUME 11, 2023 114033



T. Fankhauser et al.: Multiple Query Optimization Using a Gate-Based Quantum Computer

One aspect of superposition is so-called quantum par-
allelism: One can understand an operation on a quantum
register as the simultaneous operation on many basis states.
This interpretation is sensible because quantum operations
are (in a mathematical sense) linear operations in a vector
space that is built up from basis states. Note here that there is
no fundamental difference between a superposition of (basis)
states and pure basis states: Whether a state is ‘‘simple’’ or
a superposition is not an intrinsic property of the system but
depends on the (external) choice of the basis.

Another aspect is that quantum registers can represent
entangled states. An entangled state is characterized by the
property that it cannot be understood as the tensor product
of individual qubits. We exemplify this with two qubits
|qj⟩ = αj |0⟩ + βj |1⟩ for j ∈ 1, 2. Two qubits can be
coupled by taking the tensor product (by multiplying out and
observing that |x⟩ ⊗ |y⟩ ̸= |y⟩ ⊗ |x⟩ for x ̸= y):

|q1⟩ ⊗ |q2⟩ = (α1 |0⟩ + β1 |1⟩)⊗ (α2 |0⟩ + β2 |1⟩)

= α1α2 |0⟩ ⊗ |0⟩ + α1β2 |0⟩ ⊗ |1⟩

β1α2 |1⟩ ⊗ |0⟩ + β1β2 |1⟩ ⊗ |1⟩

= α1α2 |00⟩ + α1β2 |01⟩

+ β1α2 |10⟩ + β1β2 |11⟩ . (9)

For a register such as |Q⟩ = 1
√
2
(|00⟩ + |11⟩ there is no

possible choice for α1, α2, β1, β2 such that a |Q⟩ could be
written as a tensor product of two individual qubits. Such
a state is called an entangled state. Note: Whereas one
can always understand a classical register as a sequence of
independent bits, a quantum register can be in a state that one
cannot understand as a sequence of individual qubits.

Another way to understand this is to consider that eq. 3
implies that a single qubit is determined by three real
numbers (remember that α, β ∈ C, therefore defined by
two reals). Consequently, the tensor product of n qubits is
defined by 3n real numbers. In contrast, (the content of) a
general quantum register is given by 2n − 1 real numbers, s.
eq. 5. For a two-qubit register, those states representing a
combination (a ‘‘product’’) of individual qubits are spanned
by six parameters, whereas general states are defined by seven
reals. The exploitation of the existence of these ‘‘additional’’
states (besides the sequences of qubits) is another reason for
the power of quantum computing.

Quantum computation, by gate-based computation or
quantum annealers, is based on the dynamics of quantum
states. Quantum dynamics (to be precise: its non-relativistic
formulation) is given by the Schrödinger equation:

ih̄
∂

∂t
|9(t)⟩ = H |9(t)⟩ (10)

Thereby, H is a linear operator (with respect to some
basis, a 2n-dimensional matrix). The matrix H is called the
Hamiltonian of the system and is related to the system’s
energy which results from the interaction of qubits with
external fields or from couplings between qubits.

The matrix H has to satisfy two requirements for a
physically sensible interpretation. First, H has a set of
orthogonal eigenvectors, which form a (complete) basis
of the Hilbert space V , and second, all eigenvalues are
real numbers. If these two requirements are satisfied, H is
called a Hermitian matrix. Note: because the matrix is of
finite size 2n, there are also 2n eigenvalues (To simplify
some arguments, we assume in what follows that these
eigenvalues are mutually different. The treatment of systems
with multiple identical eigenvalues can be done but requires
some care.)

The eigenvalues of H are interpreted as the energies of the
respective eigenstates: If |φj⟩ is an eigenstate of H and λj the
eigenvalue of |φj⟩, then the system carries energy λj if it is in
state |φj⟩. The state with the lowest energy (the φj with the
smallest λj) is called the ground state of the system.

The property of the eigenstates of H to form a complete
orthogonal basis (the so-called eigenbasis) has two conse-
quences. The first one is: Each initial state |9(0)⟩ can be
written as a superposition of eigenstates:

|9(0)⟩ =
2n−1∑
j=0

cj |φj⟩ . (11)

The second consequence is that in the eigenbasis,H takes the
form of a diagonal matrix with the λj on the diagonal. This
means that in the eigenbasis, the Schrödinger equation 10 can
be solved very easily:

|9(t)⟩ = e−
i
h̄Ht |9(0)⟩ =

2n−1∑
j=0

cje
−

i
h̄λjt |φj⟩ . (12)

Note that the exponential of the matrix H , e−iHt/h̄ can be
taken literally. For unitary Hermitian matrices, exponentia-
tion is well-defined (this by using the diagonalization used
above).

Formally, if a (finite dimensional) matrix A is Hermitian,
it satisfies the property thatA is equal to its complex conjugate
transpose: A = A† (if ajk is a matrix element of A, it holds for
elements a†jk of A†: a†jk = akj). If A is a Hermitian matrix,
it holds: ajk = akj.

We define another, in quantum mechanics, important
class of matrices: A matrix U is called unitary, if it holds
UU†

= U†U = 1 (thereby, 1 represents the identity matrix).
The property of unitarity has a geometric interpretation. From
the definition of the inner product by eq. 8, it follows for
a general matrix A and two vectors |X⟩ , |Y ⟩ that the inner
product of their respective images |X ′⟩ = A |X⟩ , |Y ′⟩ =
A |Y ⟩ is given by

⟨X ′|Y ′⟩ = (⟨X |A†)(A |Y ⟩) = ⟨X |A†A |Y ⟩ . (13)

For a unitary matrix U , this implies

⟨X |U†U |X⟩ = ⟨X |X⟩ = | |X⟩ |2. (14)

This means that the mapping resulting from the application
of U does not change the length of vectors. Geometrically
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understood, a unitary mapping U is a rotation in the Hilbert
space V .

Importantly, the matrix exponential of a Hermitian matrix
is a unitary matrix. If one analyzes the solution of the
Schrödinger equation, eq. 12, we see that

|9(t)⟩ = e−
i
h̄Ht |9(0)⟩ = U (t) |9(0)⟩ (15)

with

U (t) = e−
i
h̄Ht (16)

implies that the time development of a quantum mechanical
system is a time-dependent linear and unitary operation in V .
Up to now, we assumed that H is stationary, which means

independent of time. This assumption must be modified in
studying quantum computing. From a mathematical perspec-
tive, solving the Schrödinger equation in the case of a time-
dependent Hamiltonian requires, if done in full generality,
sophisticated mathematics. However, we emphasize that
in quantum computing, we, first, always work in finite-
dimensional settings, and, second, the time-dependence of
H (t) can always be assumed to be ‘‘benign’’.

The time evolution described by Equation eq. 10 is not the
only process of relevance in quantum computing. There are
also so-calledmeasurements. For our purposes, it is sufficient
to define a measurement as a stochastic, non-linear operation
that transforms a general quantum register |Q⟩ into one,
randomly chosen basis state. Formally, a measurement M is
defined by (we use the notation of eq. 4):

M |Q⟩ = |j⟩ with probability |cj|2 (17)

The probability of ending up after a measurement in a specific
basis state depends on its respective coefficient in the register
state on which one applies a measurement.

B. GATE-BASED QUANTUM COMPUTATION
Gate-based quantum computation can be interpreted as
a series Uj of unitary transformations applied on some
specifically prepared input state |90⟩.
The quantum computation is finished with a measure-

ment M . This means: a quantum computation is a process
that can be written in the form:

|j⟩ = MUm . . .U1 |90⟩ with probability |cj|2 (18)

assuming that

Um . . .U1 |90⟩ =

2n−1∑
j=0

cj |j⟩ . (19)

The sequence of m unitary operations is often visualized by
a quantum circuit, see Figure 1, whereby the individual Uj
are termed quantum gates. Note that in eq. 19, U1 is the
first operator applied on |90⟩; the temporal sequence of the
operators Uj have to be read from right to left.
In Figure 1, the operations Uj are generic n−qubit oper-

ations. From a technological perspective it is very fortunate

that a general quantum computation can be implemented by
1- and 2-qubit gates, see [11] and Figure 2.
Gate-based quantum computation can be understood in

terms of eq. 10 by temporarily switching on and off different
Hamiltonians (e.g. by varying external magnetic or electric
fields). If these Hamiltonians act over a properly chosen time
interval, they lead to desired unitary operations Uj according
to eq. 16.
Note that Figure 2 does not represent a real circuit in the

sense that components are connected by wires. A ‘‘quantum
circuit’’ represents the temporal order of unitary operations.
The ‘‘wires’’ relate outputs with inputs; no qubits are
transported. Consequently, quantum computing is always a
sequential process without loops.
In general, linear operators change the state of several

qubits simultaneously. For further purposes, we define three
important operators or gates that act only on a single qubit.
Using the standard basis |0⟩ , |1⟩, the accordingmatrices read:

Xj =
(
0 1
1 0

)
, Zj =

(
1 0
0 −1

)
, Hj =

1
√
2

(
1 1
1 −1

)
.

(20)

The index j defines the qubit on which the operator Oj acts
by Oj(|x0⟩ ⊗ . . .⊗ |xj⟩ ⊗ . . .⊗ |xn⟩) = |x0⟩ ⊗ . . .⊗Oj |xj⟩ ⊗
. . . ⊗ |xn⟩. The matrices Xj and Zj are the so-called Pauli-
matrices, Hj is termed the Hadamard-matrix.
There is an unfortunate ‘‘overuse’’ of the letter ‘‘H’’ in

quantum mechanics: Hadamard gates, Hamiltonian, Hermi-
tian, . . . . In this paper, anH with no or a capitalized subscript
denotes a Hamiltonian. Hadamard-gates and -matrices are
equipped with a small-cap subscript or a number, indicating
the qubit the Hadamard-gate acts on.
In this work, the two-qubit gates we use can be understood

as the product of two single-qubit gates:

AjBk (|x0⟩ ⊗ . . .⊗ |xj⟩ ⊗ . . .⊗ |xk ⟩ ⊗ . . .⊗ |xn⟩)

= |x0⟩ ⊗ . . .⊗ Aj |xj⟩ ⊗ . . .⊗ Bk |xk ⟩ ⊗ . . .⊗ |xn⟩ . (21)

We point out that, first, more general two-qubit gates are
possible. Second, if j = k , the order of operators may become
relevant.

FIGURE 1. Representation of gate-based quantum computation as a
sequence of unitary operations, ended by a measurement. Such a diagram
is called a quantum circuit and is read from left to right. Note well that
the ‘‘wires’’ between the ‘‘quantum gates’’ Ui do not mean that qubits are
transported from left to right; they define the connections between out-
and inputs. The quantum circuit represents the temporal order of
operations but not the spatial arrangement of quantum components.
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FIGURE 2. Gate-based quantum computation can be realized by a
sequence of 2-qubit gates. For clarity, the big dots represent the qubits
that are used for inputs of the gates Ua,...,h. In the usual depiction of
quantum circuits, these ‘‘input’’ dots are omitted.

C. QUANTUM ANNEALING
Quantum annealing (QA) can be understood as a form
of quantum analogue computation. Adiabatic quantum
optimization (AQO) can be used to solve a number
of NP-complete or NP-hard problems [14], [26]. Quan-
tum annealing is a generalization of AQO at finite
temperature [10].
AQO combines two ideas: First, the adiabatic theorem

[8], [14] and second, the possibility of restating many
NP-hard problems as questions for the ground state of some
specific Hamiltonian.

We start with the adiabatic theorem. Assume, one has a
time-dependent Hamiltonian H (t) with a unique ground state
|φ0(t)⟩ and an energy eigenvalue λ0(t) for all t ≥ 0. Further,
assume that one can prepare the initial state of the system
such that it is equal to the ground state:9(0) = |φ0(0)⟩. If the
time development of the Hamiltonian is sufficiently slow, the
systemwill remain in its ground state |φ0(t)⟩ at all times, even
if |φ0(0)⟩ ̸= |φ0(t)⟩.
AQO is based on the fact that it is possible to encode

many important, even NP-complete problems in terms of
coupled qubits, see [26]. We show a simple example, the
subset-sum problem: Assume a set of integer numbers
M = {n1, . . . , nM }, nj ∈ Z. Is there a subset X ⊆M such
that the sum over the elements of X equals zero?
We assume some binary variables qj ∈ {0, 1}. We analyze

the expression

W =

∑
j

njqj

2

=

∑
j,k

njnkqjqk . (22)

One then searches for those settings of the qj that mini-
mize W . If the qj can be chosen such that W = 0, we have
a solution for the subset sum problem: X consists of that
nj for which qj = 1. Otherwise, we get the best possible
approximation to a subset that sums up to zero.

For later reference, we note the generalization

W =
∑
j,k

Qjkqjqk (23)

=

∑
j̸=k

Qjkqjqk +
∑
j

Qjjqj. (24)

Thereby, we exploited that q2j = qj for qj ∈ {0, 1}. Avoiding
q2j -terms is important, because, from a technological point

of view, it is possible to couple different qubits, but not a
qubit with itself. Optimizing a generalW in eq. 23 is called a
quadratic unbounded binary optimization (QUBO).

Quantum annealing exploits the fact that it is possible
to realize ‘‘programmable’’ Hamiltonians. Transforming the
QUBO polynomial in eq. 22 into a Hamiltonian requires
replacing the qj by operators. Taking into account that the
Pauli-matrix Z is diagonal and observing that Z |0⟩ = |0⟩
and Z |1⟩ = − |1⟩ we get

q = ⟨q|
1
2
(1− Z ) |q⟩ . (25)

We want to construct a Hamiltonian HP such that
⟨qn . . . q1|HP |q1 . . . qn⟩ = W which we can achieve with

HP =
∑
j̸=k

Qjk (1− Zj)(1− Zk )+
∑
j

Qjj(1− Zj).

(26)

The programmability of the system results from the fact
that we can choose the Qjk . Choosing Qjk = 1

4njnk for j ̸= k
and Qjj = 1

2n
2
j realizes an HP, which has a ground state that

solves the subset sum problem. One invokes the following
procedure:

1) We assume an initial Hamiltonian HS with a ground
state |φ0⟩ that is easy to prepare.

2) The quantum annealer uses a time-dependent Hamilto-
nian of the form:

H (t) = (1− s(t))HS + s(t)HP. (27)

Thereby, s(t) is a sufficiently smooth function
with s(0) = 0 and s(τ ) = 1. This implies
H (0) = HS ,H (τ ) = HP. If s(t) varies sufficiently slow
(which implies a slow changing s(t) with a sufficiently
large τ ), |φ0⟩ will evolve into the ground state of HP,
according to the adiabatic theorem.

After measuring the states of the qubits qj, one gets the
minimum of W . Imperfections in the annealing process may
make it necessary to repeat this procedure a number of times.

QA may look like a silver bullet for attacking hard
optimization problems. But, see [26], the time τ grows expo-
nentially with the size Nof the problem: τ = O(exp

(
αNβ

)
.

However, QA may be competitive, because the coefficients
α, β can be smaller than those of the according classical
algorithm.

III. QUANTUM OPTIMIZATION ALGORITHMS
A. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM - OVERVIEW
QA offers a mechanism for solving optimization problems
that can be implemented in present quantum hardware. But
besides this practical advantage, the ‘‘programming’’ of the
Hamiltonian HP turns out to be rather simple. The question
arose, whether QA really needed dedicated hardware or
whether some QA-like procedure can be realized with a
gate-based quantum computer. Farhi et al. presented the
Quantum Approximate Optimization Algorithm (QAOA)

114036 VOLUME 11, 2023



T. Fankhauser et al.: Multiple Query Optimization Using a Gate-Based Quantum Computer

which achieves this, at least in the sense of an approximation
([13], [16], [17], for a very clear webinar, see [3]).

Assume two lists containing p parameters each:
β = (β1, . . . , βp) and γ = (γ1, . . . , γp). The goal of QAOA
is to construct a parameterized state |ψ(β, γ )⟩ such that a
function F (ψ(β, γ )) is minimal for an HP that is assumed
to encode a given optimization problem. For a general |9⟩,
we define:

F (|9⟩) = ⟨9|HP |9⟩ (28)

With an HS as in eq. 27 and to be specified in what follows,
QAOA uses for ψ(β, γ ) the ansatz:

|ψ(β, γ )⟩ = e−iβpHS e−iγpHP . . . e−iβ1HS e−iγ1HP |ψ0⟩ .

(29)

QAOA is based on a number of observations:
1) The solution of the optimization problem we analyze is

a binary bit string, which is encoded by one single basis
state |ksol⟩.

2) It is hard to find the right |ksol⟩ with classical means.
It is also not feasible to compute |ψ(β, γ )⟩ from eq. 29
with a classical computer in an efficient manner.

3) However, for an arbitrary single basis state |k⟩, it may
be easy to compute F (|k⟩) with a classical computer.

4) As we will show, for optimally chosen β, γ , the state
|ψ(β, γ )⟩ is expected to be a superposition of basis
states which is dominated by the basis state |ksol⟩ that
solves the optimization problem encoded by HP.

Assuming all this, QAOA can be described by the procedure:
1) Initialize β, γ .
2) Prepare |ψ(β, γ )⟩ using a quantum computer.
3) Measure |ψ(β, γ )⟩ in the basis of the quantum register.

This delivers a state |kguess⟩.
4) Compute F (|kguess⟩) with a classical computer and

determine new parameters βnew, γnew until some stop
criterion is met.

QAOA is a heuristic and hybrid approach that combines clas-
sical and quantum computation. In this heuristics, we assume
that the dominating basis state of |ψ(β, γ )⟩ after having
reached the stop criterion is equal to |ksol⟩, i.e. the solution.
This is not guaranteed, or only so, if p→∞ in eq. 29 and an
analogy to QA is achieved, see next section.

We emphasize that steps 2 and 3 in the above procedure
maybe performed repeatedly in order to enhance the quality
of step 4.

B. MOTIVATION FOR QAOA
QAOA is motivated because it can be understood as an
approximative solution of the Schrödinger equation eq. 10
with a time-dependent Hamiltonian H (t) as in eq. 27.

To understand this, we first note that for a constant
Hamiltonian, the solution of the Schrödinger equation is
given by |ψ(t)⟩ = exp(−iHt) |9(0)⟩. We then assume a
discretization of time tk = k1t . For small 1t , we get

|ψ(1t)⟩ ≈ exp(−iH (0)t) |9(0)⟩ and with iteration

|ψ(k1t)⟩ ≈ e−iH (tk−1)1t |ψ((k − 1)1t)⟩ (30)

If t = p1t , this motivates

|ψ(t)⟩ ≈ e−iH (tp−1)1t . . . e−iH (0)1t
|ψ(0)⟩ . (31)

Sometimes, eq. 31 is written as

|ψ(t)⟩ = e−i
∫ t
0 H (t ′)dt ′

|ψ(0)⟩ . (32)

Note, however, that eq. 32 has to be interpreted with some
care if the commutator of the Hamiltonian at different times
does not vanish; for more details, consult the literature. The
question of commutators is also relevant for eq. 31.
Second, we analyze eq. 31 for H (t) as in eq. 27, i.e. the

situation of quantum annealing. Again, we observe that
we may have the situation, in which HS and HP do not
commute: [HS ,HP] ̸= 0. Even in the case of a non-vanishing
commutator, for Hermitian operators A,B and real-valued
time t , the Lie-Trotter-Suzuki decomposition holds:

ei(A+B)t = eiAteiBt + O(t2). (33)

We get

e−i((1−s(t))HS+s(t)HP)1t ≈ e−i(1−s(t))HS1te−is(t)HP1t . (34)

We point out that usually, one works with a constant1t . This
is no necessity, we can allow for varying 1tk . If we consider
this and combine eq. 34 with eq. 31, and set

βk = (1− s(tk ))1tk ,

γk = s(tk )1tk , (35)

we see that an approximation to quantum annealing eq. 31
is equivalent to eq. 29 (we remark that there are different
sign conventions in the literature, partially caused be the fact
that, historically, authors looked for the maximal eigenvalue
of some problem encoding HP). This implies that if we
can find an encoding of an optimization in terms of a
QUBO (eq. 23), we can always find a Hamiltonian HP that
enables an approach as in eq. 29, see [20] and [26].

The question remains how to choose |ψ0⟩. A usual choice is

|ψ0⟩ = H1 ⊗ . . .⊗ Hn |q1 = 0⟩ ⊗ . . .⊗ |qn = 0⟩ ,

= H1 |q1 = 0⟩ ⊗ . . .⊗ Hn |qn = 0⟩ ,

= H⊗n |0⟩,

=

n⊗
j=1

1
√
2
(|0⟩ + |1⟩), (36)

=
1
√
2n

2n−1∑
j=0

|j⟩ . (37)

The third line establishes the notation for a single qubit
operation that is applied to every qubit. The last line shows
why the application of the Hadamard-gate on each qubit
is sensible: We construct a state in which each basis state
appears with the same weight.

VOLUME 11, 2023 114037



T. Fankhauser et al.: Multiple Query Optimization Using a Gate-Based Quantum Computer

We further note that the states (|0⟩± |1⟩) are eigenstates of
the Pauli-matrix X . It is then easy to see that |ψ0⟩ = H⊗n |0⟩
is the ground state of

HS = −
n∑
j=1

Xj, (38)

in accordance with the adiabatic theorem uses in QA.
The class of hybrid classical-quantum algorithms are

considered promising since they can better handle erroneous,
small-scale quantum devices [30] than ‘‘pure’’ quantum
algorithms. QAOA has been suggested as one of the major
hybrid classical-quantum algorithms [13] for solving generic
optimization problems.

IV. MULTIPLE QUERY OPTIMIZATION WITH QAOA
We refer to the MQO as described in Sec. I.

A. MQO IN THE QUBO - FORMALISM
We define binary variables qij ∈ {0, 1} with i ∈ {1, ..,Q} and
j ∈ {1, ..,P}. A QUBO - formulation of the MQO (see [41]
and eq. 23) is given by

W =
Q∑
i=1

P∑
k=1

cikqik −
Q∑
i̸=j

P∑
k,l=1

sikjlqikqjl + EL + EM .

(39)

The first two terms in eq. 39 are similar to those in eq. 1.
In an MQO, there is an important restriction: For each

query, one must choose exactly one plan, which is achieved
by a proper choice of EL and EM .

We start with the observation that if we set

EL = −wL

Q∑
i=1

P∑
j=1

qij

wL = max(cij)+ ϵ (40)

for some small positive ϵ, we enforce the system to set all
qij = 1. At a first glance, this looks silly, but it guarantees
that we choose at least one plan per query. The weight wL
is chosen such that the ‘‘minimization gain’’ by setting a
qij = 1 is not overcompensated by the according costs cij.

To enforce that not more than one plan is chosen, we set

EM = wM

Q∑
i=1

P∑
k ̸=l

qikqil,

wM = wL +
Q∑
i̸=j

P∑
k,l=1

sikjl . (41)

The sum of qikqil over query plans for a specific query is
equal to zero if maximally one plan per query is chosen (and
equal or bigger than one, if more than one plan is activated).
The weight wM guarantees that selecting two plans for the
same query is more costly than the activation benefit by
EL and even compensates potential gains by savings sikjl .

The sum over all savings is necessary, because, for example,
if in query i one selects plan k1 and k2 and in query j plan
l1 and l2, four savings would be realized.

B. TRANSLATION INTO A PROBLEM ENCODING
HAMILTONIAN
The QUBO - term given by eq. 39 can be translated into a
Hamiltonian HP by invoking the translation of eq. 25. Taking
into account that constant terms in Hamiltonians have no
(relevant) physical effect (see any text book on quantum
mechanics), HP takes the form:

HP =
n∑
j=1

ajZj +
n∑

k,l=1

bklZkZl (42)

for parameters aj, bkl that result from collecting terms
together. Very relevantly, all the Zj and the ZkZl commute:
[Zj,Zk ] = [ZjZk ,Zl] = [ZjZk ,ZlZm] = 0. This implies that

e−iγHP = e−iγ
∑n

j=1 ajZj+
∑n

j,k=1 bjkZjZk

=

n∏
j=1

e−iγ ajZj
n∏

k,l=1

e−iγ bklZkZl (43)

Thereby (because of the vanishing commutator), the order of
the individual factors does not matter. We further note that
each factor is a unitary operator (they are exponentials of
Hermitian matrices, see the section on quantum mechanics):

UZj (θ ) = e−iθZj ,

UZkZl (θ ) = e−iθZkZl . (44)

These unitary operators can be realized by standard quantum
gates. We do not elaborate on this, but give notice to the
fact that UZkZl (θ ) can be expressed in terms of two so-called
CNOT-gates, which sandwich a simpleUZj (θ ) gate. A similar
argumentation can be invoked with respect to HS . Also the
Xj-operators commute with each other, and in consequence,
we get:

e−iβHS = e−iβ
∑n

j=1(−Xj),

=

n∏
j=1

eiβXj . (45)

Note well: Xj and Zj do not commute; that means that in the
translation of eq. 29 one must maintain the temporal order of
the β− and γ−terms, see Figure 3.

FIGURE 3. Implementation of a QAOA with four qubits and p = 2. We use
the notation of the MQO discussed in the text. Eq. 29 is translated into
gates. Note that the order of terms has to be reversed in the circuit:
Whereas the order of terms in the circuit has to be read from left to right,
the operators in eq. 29 have to be read from right to left. The
computation ends with a measurement M.
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C. RUNNING THE ALGORITHM
The hybrid classical-quantum algorithm has several degrees
of freedom. First, the number p of steps for the approximation
in the functional F (β, γ ) in eq. 28 which one wants to
minimize. (F(β, γ ) is based on the ansatz given by eq. 29).
Second, the number I of times the circuit is run and, third, the
parameter lists β and γ that one wants to optimize [30], [44].

We subsequently refer to p as the depth of the quantum
circuit. Currently, QAOA is, in general, not well understood
for depths p > 1 [44]. An exception to this is the recent
contribution by Arute, Frank et al., examining circuits with
p = 3 on Google’s private Sycamore quantum device [21].
Although a higher depth theoretically leads to better results,
as the quantum annealing evolves ‘‘smoother’’, more gates
contribute to more error [13]. Hence, the depth p should be
chosen carefully depending on factors such as problem size
or error rate of the quantum device. As each additional layer
of F contributes another pair of parameters β and γ , the
parameter space to be classically optimized quickly increases,
as already noted by the original authors [13]. To mitigate this
problem, Zhou et al. provide helpful heuristics and strategies,
which they prove by extensive experimentation on graph
problems [44].
To summarize, the algorithm proceeds as follows

(see Algorithm 1):

Algorithm 1 Quantum Query Optimization
Algorithm
Input : Costs cij, savings sikjl , queries Q, depth p
Output: Least-cost solution k∗

Formulate the MQO in QUBO form using C , S and Q;
Formulate a Hamiltonian HP that encodes this QUBO;
Define initial parameters β, γ ;
Based on eq. 29, implement a quantum circuit for
ψ(β, γ );
while r > threshold do

Put quantum register into initial state Hn⊗
|0⟩;

for i← 1 to p do
Compute ψ(β, γ ) on quantum register with
the quantum circuit produced before;

end
kguess←Measure quantum register;
Optimize β, γ , e.g. with gradient descent;

end
return Least-cost solution k∗;

As the algorithm is approximate, the optimization loop
is typically executed until a threshold is reached instead of
finding the exact solution. Often, an approximation ratio r is
used as figure of merit for F ’s performance [13]. r is defined
as follows:

r =
F (|k∗⟩)
Fmin

(46)

where Fmin denotes a lower bound for the cost of the MQO
problem.

V. EXPERIMENTS AND RESULTS
The primary objective of our experiments is to determine
how our implementation of QAOA for solving an MQO
scales on current quantum computers. Note that due to the
limitations of current quantum technology, a comparisonwith
a classical query optimizer such as the one from Postgres is
out of scope for this paper. However, we will compare our
solution against the only currently existing quantum query
optimization implementation by Trummer and Koch [41].
In particular, we address the following research questions:
• Q1: How can we determine the optimal parameters γ
and β for the quantum circuit?

• Q2:What is the optimal number of repetitions for the
computation of |ψ(β, γ )⟩ to find the best solution?

• Q3: For which combination of queries and query plans
can we find the optimal solution?

• Q4: What is the run time of our gate-based algorithm?
• Q5: How do our gate-based implementations compare to
a quantum annealing-based implementation?

• Q6: What is the complexity of our gate-based
algorithms?

In order to address the above-mentioned questions,
we need to analyze different parts of our end-to-end algorithm
separately. In short, the algorithm’s ‘‘division of labour’’ can
be summarized as follows. (1) The parameterized quantum
part explores the search space. By exploiting quantum
properties such as superposition/quantum parallelism and
entanglement, the exploration is expected to be much faster
than with classical approaches. (2) The classical part is
concerned with finding parameters γ and β that, fed to the
quantum part, direct the exploration into promising regions
of the search space. With a growing problem search space,
the parameter search space grows as well [13], [44], making
the classical optimization challenging.

We first analyze the classical part of the QAOA on the
Qiskit quantum simulator [2]. In particular, we determine the
parameters γ and β. Afterwards, we evaluate the quantum
part of the hybrid classical-quantum algorithm where we
run experiments on the publicly available quantum computer
ibmq Melbourne [24] with 15 qubits. This device is also
used in recent research, including [33]. We also provide an
anonymized version of our code.3

A. BOOTSTRAPPING THE CLASSICAL OPTIMIZATION PART
WITH A FOURIER STRATEGY
In this section, we address research question Q1, i.e. ‘‘How
can we determine the optimal parameters γ and β for the
quantum circuit’’?

When the quantum circuit is constructed in Algorithm 1,
initial values for parameters γ and β need to be set to start the
classical optimization. Usually those values are set randomly.
Initializing γ and β at random has multiple disadvantages.
First, the randomly generated values often lead the optimizer

3The anonymized version of our source code is available at:
https://drive.google.com/file/d/1MiZTBzbrm8_SVnruGcPa9hX1PC_
W8wO3/view?usp=sharing
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to converge toward local optima and therefore the circuit
returns sub-optimal solutions. Second, the deeper the circuit
(the higher p in eq. 29), the more parameters need to be
initialized. Hence finding good initial parameters through
random initialization gets exponentially more difficult.

We base our experiments on the FOURIER heuristic
strategy introduced in [44] which seems to perform very well
in finding good initial parameters for γ and β. Following
the FOURIER strategy, one calculates new values for γi and
βi through the following transformation based on previously
optimized values:

γi =

p∑
k=1

uk sin
[(
k −

1
2

) (
i−

1
2

)
π

p

]
,

βi =

p∑
k=1

vk cos
[(
k −

1
2

) (
i−

1
2

)
π

p

]
where the parameters (u, v) ∈ R2p correspond to the
parameters (γ, β) ∈ R2p. With this strategy only the initial
parameters γ1 and β1 are determined randomly. Because of
the rotational symmetry of qubit states, the initial parameter
guess can be restricted to β1, γ1 ∈ [−π2 ,

π
2 ).

To verify the results presented in [44], we compare the
performance of QAOA with parameters found through the
FOURIER strategy against randomly initialized parameters.
For the experiment we first generate a random multiple
query optimization problem of four qubits, i.e. two queries
with two plans each - similar to our running example.
On that problem we apply the QAOA with different numbers
of repetitions of generating |ψ(β, γ )⟩ and evaluation of
F(|kguess⟩. We perform 30 runs of the QAOA with FOURIER
as well as with randomly initialized parameters for each
number of repetitions on the simulator. The result can be seen
in Figure 4. The average FOURIER strategy performs as well
as the best randomly found parameters and is therefore our
algorithm of choice for determining the parameters of the
further experiments.

FIGURE 4. Comparison between the FOURIER strategy and randomly
initialized parameter sets for γ and β. As can be seen, the FOURIER
performs equally as the best of the randomly initialized parameters. The
y-axis shows the approximation ratio r .

As a classical optimizer we use the POWELL optimizer
provided by Qiskit [2], as it showed the best results in our
experiments. We used all optimizers with the default settings
provided by Qiskit and 1000 iterations at most.

B. HYBRID CLASSICAL-QUANTUM OPTIMIZATION
Next, we address research questions Q2, i.e. ‘‘What is
the optimal number of repetitions for the computation of
|ψ(β, γ )⟩ to find the best solution?’’ and Q3, i.e. ‘‘For which
combination of queries and query plans can we find the
optimal solution?’’

In particular, we vary the number of queries as well as the
number of query plans and study the probabilities of finding
the optimal solution, i.e. the optimal query plan, for various
problem sizes.

The QAOA algorithm is currently not well understood
beyond p = 1. To investigate the behaviour and necessity
of more than one layer for larger problem sizes, we apply
the QAOA on various randomly generated MQO problem
sizes of up to 14 plans. In theory, and empirically proven
on the simulator in our experiments, a deeper circuit (higher
p in eq. 31) should lead to a better approximation of the
minimum cost. However, deeper circuits also increase gate-
induced errors [21], [44]. We perform this experiment on the
ibmq Melbourne quantum computer where we evaluate the
accuracy of the QAOA on 50 synthetic problems that are
obtained by choosing P plan costs at random for Q queries,
while PQ equals the number of qubits on the system and
Q and P are varied. Savings are chosen at random and are
defined between all pairs of plans except those for the same
query.

FIGURE 5. The accuracy of measuring the correct solution for problems of
size four to 14 qubits with one up to ten layers in the circuit. The accuracy
peaks at 59% on problem instances with four qubits i.e. two queries with
two plans each. On problems of size six qubits the accuracy ceils at 16%
with p = 6. Problem instances of size larger than eight qubits have a 0%
accuracy on the ibmq Melbourne in our experiment.

Figure 5 shows the probability of finding the optimal
solution as a function of the number of qubits, i.e. problem
size, and the number of layers p. For problem sizes of eight
qubits and above, the probability of finding the optimal
solution converges to zero. In other words, deeper circuits can
currently not be processed by the ibmq Melbourne device.

C. RUN TIME OF THE GATE-BASED ALGORITHMS
In this section, we address research question Q4, i.e. What is
the run time of our gate-based algorithms?
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Each run is concluded by measuring the state of the
qubits, which is a stochastic procedure. For statistics, the
quantum circuit is executed and then measured multiple
times, where each cycle is called a shot. Typically, a thousand
to ten thousand shots are conducted [19]. Table 1 shows
the minimum, median and maximum run times for four
differently sized problems. For all experiments, a depth of
p = 5 was used on the ibmq Melbourne quantum computer.

TABLE 1. Run times of quantum circuits (shots) for different problems
with the number of queries Q and the number of plans per query P in
milliseconds.

The run times mainly depend on the number of qubits
used, which are determined by the number of plans times the
number of queries. If there are many alternative plans for each
query (i.e. P is large), the execution time increases slightly.
Although the doubling of qubits used leads to a doubling in
run times, this correlation might be coincidental. The time
complexity is analyzed in more detail at the end of this
section. Generally, the execution time is not only determined
by the amount of gates, but as follows: (time to prepare the
qubit’s state) + (time per gate) times (amount of gates) +
(time to measure) [19].

D. COMPARISON WITH EXISTING APPROACHES
In this section, we address research question Q5, i.e. How
does our gate-based implementation compare to a quantum
annealing-based implementation?

To the best of our knowledge, there is only one quantum-
based solution to address the MQO suggested by Trummer
and Koch [41]. In the following paragraph, we compare this
approach to ours.

In their paper, Trummer and Koch utilize a D-Wave
quantum annealer with more than 1000 qubits [41], while we
employ a gate-based quantum computer with 15 qubits [24].
The qubit disparity between quantum annealers and gate-
based quantum computers persists to this day, with quantum
annealers featuring almost two orders of magnitude more
qubits than gate-based quantum computers [9], [23]. Clearly,
the D-Wave device’s superiority in qubits allows it to solve
larger problems with as many as 1074 queries with two plans
each, or 540 queries with 5 plans each, as shown in Table 2.
Similarly to our approach, Trummer and Koch assign plans

to qubits to form the solution to the MQO. For this, they
map plans as variables to the physical qubits, called physical
mapping [41]. The physical layout of the qubits on the D-
Wave quantum annealer is represented as a so called Chimera
graph [29].
From a technological point of view, a general implementa-

tion of eq. 23 is not possible; one cannot implement a design

TABLE 2. Comparison of the approaches by Trummer and Koch [42] and
ours. Although the D-Wave quantum device can tackle significantly larger
problems, there are situations it can only use a fraction of its qubits.

in which (at least potentially) all possible pairs of qubits can
be coupled (note that a coupling requires some means for
physical interaction). The D-wave quantum annealer offers a
technically feasible connection scheme, the Chimera graph,
that is optimized such that a sufficiently large subset of all
possible couplings can be realized.

To model cost savings, which become active when certain
pairs of qubits have been selected for the solution, qubits have
to interact with each other. For this interaction, plan-encoding
qubits have to be connected to each other. As the Chimera
graph is not fully connected, it is necessary to encode a plan
inmultiple qubits to ensure that the necessary interactions can
be facilitated.

This mapping introduces two restrictions. First, the
physical mapping introduces an overhead, in particular with
problems that require strong interaction. An example of such
a problem is the MQO with many plans per query. With
the requirement to only choose one plan per query, all plans
within that query must be connected, augmenting the degree
of interaction. As a consequence, with a higher number of
plans per query, around half of the quantum annealer’s qubits
are required for the physical mapping, as shown in Table 2.
The second restriction is that the physical mapping with the
minimal number of qubits is itself an NP-hard problem [25].
Although our approach is heavily limited by the number

of qubits of gate-based quantum devices, it does not suffer
both of these restrictions, as all of the available qubits can be
used to encode plans and the physical mapping is a one-to-one
mapping from a variable to a qubit.

E. COMPLEXITY OF OUR ALGORITHM
In this section, we address research question Q6, i.e. ‘‘What
is the complexity of our algorithms?’’

We provide a sketch of an evaluation of the computational
complexity of our algorithm and compare it with the classical
brute-force approach. Recall that for the MQO, we denote
the number of queries by Q, the number of plans per
query by P and the total number of plans by PQ. For each
of the Q queries, one of the P plans must be selected.
With this requirement, only admissible solutions remain.

q1 q2 . . . qQ
p1, p2, p3︸ ︷︷ ︸ p4, p5, p6︸ ︷︷ ︸ . . . pPQ−2, pPQ−1, pPQ

P poss. P poss. . . . PQ possibilities

By brute force, PQ possibilities must be evaluated.4

Considering a constant time to evaluate the cost of each

4If we included non-admissible solutions with no or more than one plan
per query, 2PQ evaluations would be required.
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solution, the complexity of the brute force approach is as
follows:

O(BruteForce) = O(PQ) (47)

For the quantum approach, we focus on the quantum part
and assume the complexity of the classic optimization as
constant O(1). Furthermore, we assume the complexity of
translating the MQO into a classical cost function, and into
a quantum circuit to be constant.

The space complexity of the quantum circuit can trivially
be answered asO(PQ) because our approach requires exactly
one qubit for every plan of the MQO. The time complexity
for quantum computations is typically determined by the
depth of the quantum circuit [19]. This is because the
depth indicates the longest succession of gates that must be
executed sequentially. The time required for a computation to
complete is obtained bymultiplying the number of operations
with the average time a quantum gate requires [19].

For the complexity sketch, we analyze eq. 43. The
dominant term is the couplings between two qbuits ZiZj.
Since there are PQ(PQ − 1)/2 possible couplings, the depth
of one layer is of the order O((PQ)2).
In consequence, if time complexity is defined by total

circuit depth, we get for QAOA applied on MQO:

O(QAOA(MQO)) = O(p(PQ)2) (48)

Compared to the brute force complexity of O(PQ), this is
a significant speedup. For comparison, Grover’s algorithm
for searching an unstructured list achieves a speedup from
O(n) to O(

√
n). This suggests that the quantum part of the

algorithm does not only work for very small problems but
also for real-world-sized problems, as the number of gates
grows moderately.

VI. CONCLUSION
In this paper, we have studied gate-based quantum algorithms
to find quasi-optimal solutions for the multiple query
optimization problem – a classical problem in database
optimization. Our algorithms are designed for near-term gate-
based quantum computers, consisting of a parameterized
quantum part for exploring the search space, and a classical
part for optimizing the parameters. Our approach is the
first contribution using gate-based quantum computers for
tackling query optimization.While the classical part of hybrid
classical-quantum algorithms is typically difficult due to
the high-dimensional parameter space, we implemented a
recently suggested strategy as a remedy, thus improving the
solution quality.

As current-day gate-based quantum computers are
restricted in the number of qubits and fault tolerance, our
gate-based algorithm can currently not directly compete
against implementations on a quantum annealing architec-
ture, for which quantum devices with more capacity exist.
However, when comparing our hybrid approach with a
competing pure quantum-annealing approach, we found that
our approach has two advantages. First, it can utilize the

quantum device’s qubits more efficiently, as we have a direct
mapping from the mathematical formulation to the quantum
implementation. In contrast, an ideal mapping with quantum
annealers is an NP-complete problem. Second, our algorithm
is based on an approach that was previously shown to solve
‘‘hard’’ problems that quantum annealers may not be able to
solve and that may be found within the MQO context.

Finally, we analytically sketched the scaling of our
algorithm and found that with larger problem sizes, the circuit
depth grows polynomially while the solution space grows
exponentially. Further, the space requirements only grow
linearly with the problem size.

We believe that our paper lays a solid groundwork for using
hybrid classical-quantum algorithms to tackle the special
problem of multiple query optimization. Even though we
can currently only solve relatively small problems due to
the limitations of current quantum technology, our results
are promising given the rapid development of quantum
computing. We thus set the stage for a novel database
research agenda at the intersection of classical and quantum
computing.
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