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Abstract

The field of autonomous robotics, an emergent discipline within engineering, has at-
tracted substantial interest in recent years. One of the notable platforms that chal-
lenge and stimulate progress in this area is the Formula Student driverless competi-
tion. This international contest prompts students to engineer, design, and fabricate
a formula-style, single-seater race car capable of autonomous driving. The core of
these driverless systems relies heavily on Simultaneous Localization and Mapping al-
gorithms (SLAM), making them an essential focus of research and development for all
types of autonomous robots. Literature shows a variety of approaches to tackle the
SLAM problem. In light of this diversity, we selected the most promising algorithms
suitable for our specific use case, considering numerous requirements and restrictions
related to the entire driverless platform developed by our team at Zurich UAS Racing.
Besides the implementation of EKF SLAM and FastSLAM, specific metrics and test
cases were established that allow for their verification and comparative analysis. We
further developed supporting code, such as a car simulator and an algorithm evalua-
tor, as well as a software pipeline to automate the build and release processes of the
whole driverless system. Our implementation demonstrated that the chosen SLAM
algorithms produced satisfactory results by generating maps suitable for navigation.
Notably, our experimental results showed FastSLAM outperforming EKF SLAM, thus
it was selected as the algorithm of choice for the upcoming driverless competition. The
successful implementation highlights how these algorithms, particularly FastSLAM,
can play a key role in elevating the performance and reliability of the autonomous
driving system at Zurich UAS Racing.
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Chapter 1

Introduction

1.1 Motivation

Autonomous driving is a rapidly evolving technology that has the potential to revolu-
tionize the way we move and interact with our environment. Self-driving vehicles offer
numerous benefits, including increased safety, reduced traffic congestion and improved
mobility for those who cannot or should not drive [69], [35]. With the development
of advanced sensors, computer vision and machine learning algorithms, autonomous
vehicles can perceive and interpret their surroundings, make decisions and navigate
complex environments without human intervention [49], [12]. Companies in the field,
such as Waymo, Cruise, Mercedes and BMW, are developing autonomous driving
systems that utilize a combination of sensor technologies and advanced algorithms.
Despite the tremendous progress made in autonomous driving technology, significant
challenges remain in achieving fully autonomous driving capabilities. Some of these
challenges include ensuring the safety and reliability of self-driving vehicles, address-
ing ethical and legal issues and establishing appropriate regulations and standards
[69]. Competitions accelerate technological advances in various areas. For example,
technologies first introduced in Formula One, such as carbon fiber composite materi-
als and kinetic energy recovery systems, were later used in commercial vehicles [52],
[37]. A competitive environment enables clear parameters for success and offers the
possibility for scientific studies. Therefore, competitions in which autonomous racing
cars compete against each other add valuable contributions to current research in the
field of autonomous driving [6].

1.2 Zurich UAS Racing

A highly regarded challenge is the international Formula Student (FS) engineering
competition where teams of students design, build and race a formula-style race car.
Besides the Internal Combustion Engine Vehicles (CV) and Electric Vehicles (EV)
events with human drivers, the Driverless Cup (DC) is a competition that challenges
student teams to create an autonomous system that manoeuvres the race car. The
event provides a platform for students to improve and showcase their innovative ideas
and technical skills in the field of autonomous driving.

Launched in 2019, the Zurich University of Applied Sciences Racing (ZUR) Team from
Winterthur built a fully functional car in 2021 seen in Figure 1.1a and successfully
participated at the EV events in 2022 with the car illustrated in Figure 1.1b. The goal
of ZUR is to improve the performance of 2022 at the EV events in 2023 and achieve
solid results at the DC as well with a new and improved car. As part of the ZUR,
the authors of this thesis want to contribute to the current development in the field
of autonomous driving and help ZUR to achieve their goals.
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(a) ZUR Car 2021 (b) ZUR Car 2022

Figure 1.1: Past ZUR Cars (a) 2021 (b) 2022

1.2.1 Driverless Team

The development of autonomous racing vehicles is an exciting and challenging en-
deavour. The driverless team is organized in groups that develop object perception,
Simultaneous Localization and Mapping (SLAM), trajectory planning and car con-
trols. Object detection identifies the relative position and colour of the cones that
indicate the race track. With that information, a SLAM algorithm enables the vehi-
cle to create a map of its surroundings while simultaneously determining its position
within that map. Trajectory planning involves generating optimal paths in the map
for the vehicle to follow. Car controls involve the implementation of algorithms that
manage the vehicle’s throttle, braking, and steering systems to follow the path deter-
mined by the trajectory planning algorithm.

1.2.2 SLAM Group

The SLAM group at ZUR focuses on developing a robust SLAM algorithm for au-
tonomous racing. Two projects have been conducted by the group so far. These
projects are stepping stones towards developing a fully functional SLAM algorithm
that the team aims to have operational by the summer races. This bachelor thesis,
which is part of a collaborative effort with the ZHAW Institute of Applied Mathe-
matics and Physics (IAMP), aims to extend the existing body of work and contribute
to the SLAM development at ZUR. Achieving a reliable SLAM algorithm, capable of
creating accurate maps and determining the car’s position within these environments,
is a pivotal part of the driverless team. The results of this work will be critical for
future developments and adaptations in autonomous driving for the ZUR team.

1.3 Related Work

SLAM has its roots in the late 1980s, with early research focused on probabilistic
robot representation and mapping [56], [17], [55]. The term SLAM was introduced in
1995, and early approaches relied on Kalman Filters [18]. Another SLAM approach
uses smoothing instead of filtering [33]. Modern advancements in computational capa-
bilities have made smoothing-based approaches like GraphSLAM popular [22].

The optimal SLAM approach depends on context, including factors like available sen-
sors and environment size. Due to its racing application and constraints, FS Driverless
(DV) vehicles have specific requirements. Existing work in the FS DV context has
explored FastSLAM [28], ORB-SLAM2 [3], EKF SLAM [65], [9], and comparisons
between algorithms [31]. SLAM approaches have also been evaluated in other racing
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contexts like Roborace [45] and the DARPA challenge [15], but differ significantly
from the FS application.

1.4 Project Goals and Scope

As part of the SLAM group in the ZUR team, the aim is to deliver an appropriate
and fully functional SLAM algorithm that meets all requirements for the DV events.
Choosing the most suitable SLAM algorithm is challenging, given the diverse set of
available algorithms. This bachelor thesis aims to evaluate and implement multiple
SLAM algorithms. This results in the foundation to confidently choose the best
algorithm to use at the FS Spain 2023 DC for the ZUR team. With this goal in
mind, the following research questions were defined:

1. What SLAM algorithms are in use for autonomous driving?
2. What are good metrics to evaluate SLAM algorithms for the DC?
3. Which self-implemented SLAM algorithm performs best on the defined metrics

for relevant tracks?

Besides answering these research questions, the SLAM algorithms for ZUR will be
integrated in the driverless software including control signal handling for the car, cone
detection and trajectory planning.

The thesis starts with an overview of SLAM algorithms and their role, performance
and problems in autonomous vehicle navigation. With the gathered information, the
methodology to implement and evaluate SLAM algorithms is defined. In the imple-
mentation chapter, the SLAM algorithms implemented are documented. Next, the
evaluation results are provided. In the discussion section, the results are classified and
the best-fitting algorithm is presented afterwards in the conclusion chapter. Finally,
possible future improvements are presented.

Overall, this bachelor thesis contributes a comprehensive evaluation of multiple SLAM
algorithms for autonomous navigation in the context of FS racing. The findings will
be of practical significance to the driverless team of ZUR.
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Chapter 2

Background

2.1 Autonomous Systems

Autonomous systems are intelligent agents that operate with minimal human inter-
vention. They are designed to perceive their environment, reason about it and make
decisions to achieve specific goals. Agents interact with their environment through
sensors and actuators. The agent’s decision-making process is governed by its internal
architecture, which could be based on logic, probability theory, or machine learning
algorithms. The agent’s performance is measured against a predefined performance
measure, which allows for the evaluation and improvement of the system [51].

An essential aspect of autonomous systems is the ability to handle uncertainty in
their environment. Probabilistic reasoning allows agents to model uncertain informa-
tion and make decisions based on incomplete or noisy data. Probabilistic reasoning
techniques, such as Bayesian networks and Markov models, are widely used in vari-
ous applications, including robotics, computer vision and natural language processing
[51].

Planning and learning are two key components of autonomous systems. Planning
involves generating sequences of actions that allow the agent to achieve its goals,
while learning enables the agent to improve its performance over time by adapting to
new experiences. Examples of planning and learning algorithms are search algorithms,
reinforcement learning and decision tree induction [51].

Autonomous vehicles represent a prominent application of autonomous systems, em-
ploying complex sensor suites and advanced algorithms to navigate safely and effi-
ciently. Another example includes autonomous space robots, like Mars rovers, which
navigate harsh terrains and conduct scientific experiments with minimal human in-
tervention. Household helper robots and industrial automation robots also constitute
significant applications of autonomous systems. They undertake various tasks such
as vacuuming, lawn mowing or even assisting individuals with mobility challenges.
Across these applications, a central challenge is the autonomous system’s capacity
to perceive its environment and accurately locate itself within it. This presents the
SLAM problem as a pivotal hurdle to surmount. Solutions to the SLAM problem
form basis for robust autonomous navigation, thereby placing these technologies at
the forefront of autonomous system development [63].

2.1.1 Autonomous Cars

Autonomous cars, designed to navigate and operate without human intervention, uti-
lize advanced sensors and Artificial Intelligence (AI) algorithms to perceive their en-
vironment, make decisions and control their movements. The Society of Automo-
tive Engineers (SAE) has devised a classification system defining six levels of driv-
ing automation, ranging from no automation (Level 0) to full automation (Level 5)
[25].
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Levels of Driving Automation

The SAEs classification of driving automation, depicted in Figure 2.1, provides a
comprehensive framework to understand the progression from traditional, manually-
operated vehicles to fully autonomous cars.

Figure 2.1: SAE J3016 Levels of Driving Automation [25]

Level 0 (No Automation) refers to vehicles lacking autonomous capabilities, while
Level 1 (Driver Assistance) includes cars equipped with single-function systems, such
as adaptive cruise control, that assist drivers with specific tasks. At Level 2 (Partial
Automation), vehicles can control both steering and acceleration/deceleration, but
driver engagement and monitoring are still required. With Level 3 (Conditional Au-
tomation), vehicles can perform all driving tasks under certain conditions, but drivers
must be ready to take control when necessary. Advanced perception systems, includ-
ing Light Detection and Ranging (LiDAR), radar, cameras and ultrasonic sensors, are
vital at this level to provide a holistic understanding of the vehicle’s surroundings.
Level 4 (High Automation) vehicles can perform all driving tasks in specific circum-
stances without driver intervention. Finally, Level 5 (Full Automation) represents
fully autonomous vehicles capable of performing all driving tasks in any situation
without human intervention. This level calls for significant advancements in AI, com-
puter vision and sensor technology to enable a complete understanding of the vehicle’s
environment and make appropriate, reliable and safe decisions [25].

General Approach

The design and implementation of autonomous vehicles involve a complex interplay of
several subsystems responsible for perception, localization and mapping, path plan-
ning, decision-making and control tasks. An integral part of this architecture is the
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SLAM system. SLAM refers to the computational problem of constructing or updat-
ing a map of an unknown environment while simultaneously keeping track of an agent’s
location within it. The solution to this problem is a cornerstone for autonomous ve-
hicles as it enables robust navigation and situational awareness. Figure 2.2 presents
a general model of an autonomous car, encapsulating these key areas.

Figure 2.2: Overview of the autonomous navigation process [64]

The perception system acts as the autonomous vehicle’s senses, interpreting raw sen-
sor data from a range of sources, including LiDAR, cameras, radars and ultrasonic
sensors. This data is processed and fused to form a comprehensive, dynamic model
of the environment. Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) can
help generate more sensor redundancies and increase traffic flow by creating a network
of cars and infrastructure such as intersections and road or construction signs. The
localization and mapping system identifies landmarks or features in the environment,
tracking their positions over time to create a detailed map. Observing how these
features move relative to the vehicle, it also reduces the vehicle’s own movement and
location. The process of path planning involves determining safe and efficient routes
to the vehicle’s intended destination using the map generated by the localization and
mapping process, along with its knowledge of its current position. Decision-making
involves determining the vehicle’s actions based on its perceived environment and the
driving mission. This process can include decisions on manoeuvres and interactions
with other road users. Finally, the control system executes the decided actions, oper-
ating the vehicle’s throttle, brakes and steering to ensure safe and efficient navigation.
This system also maintains the stability and comfort of the vehicle during navigation
[64].
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Autonomous Cars in Use

The development of autonomous cars continues to evolve rapidly, driven by advance-
ments in technology, changing societal needs and ongoing research into AI. These
vehicles have the potential to revolutionize mobility, reducing the incidence of traffic
accidents, increasing efficiency and providing increased accessibility to those unable
to drive [69], [35].

Several commercial companies currently have autonomous systems in operation:

• Waymo, a subsidiary of Alphabet Inc., operates at Level 4 and has deployed
autonomous cabs in Phoenix, San Francisco and Los Angeles, operating without
safety drivers onboard [50].

• Cruise, a subsidiary of General Motors, is currently operating Level 4 autonomous
vehicles in San Francisco during daytime [23].

• Mercedes, in the US, has achieved the status of the first car company to reach
certified Level 3 autonomous capabilities [16].

• BMW has confirmed that a Level 3 self-driving system will be launched in 2023
[47].

Autonomous vehicles have the potential to greatly reduce the incidence of traffic acci-
dents. Human error is the cause of the vast majority of traffic accidents. Autonomous
vehicles, being governed by algorithms and AI, do not get tired, distracted, or impaired
and thus hold the promise of making our roads safer [41].

It is also anticipated that autonomous vehicles could improve traffic efficiency. With
their advanced sensors and connectivity capabilities, autonomous vehicles can poten-
tially communicate with each other and traffic management systems to optimize traffic
flow, reducing congestion and improving overall travel efficiency [39], [24].

Moreover, the rise of autonomous vehicles could lead to new business models in the
automotive industry, particularly in the form of Mobility-as-a-Service (MaaS). MaaS
refers to a shift away from personally-owned vehicles towards a service where trans-
portation is consumed as a service. This is already evident with the rise of ride-hailing
and ride-sharing services and the development of autonomous vehicles could further
accelerate this trend [26].

Despite the immense potential and progress made so far, significant challenges remain.
These include technical challenges such as improving the robustness of perception
systems, dealing with complex traffic situations and ensuring cybersecurity. There are
also non-technical challenges, including legal and regulatory issues, societal acceptance
and ethical considerations in the decision-making algorithms of autonomous vehicles
[35].

The ongoing research and development efforts by various stakeholders, including au-
tomotive manufacturers, technology companies, research institutions and regulatory
bodies, are crucial for overcoming these challenges and realizing the full potential of
autonomous vehicles. As such, this is an exciting and dynamic field that is poised to
reshape our transportation systems and societies in the years to come.
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SLAM in Autonomous Cars

SLAM processes have to address several key challenges, one of which relates to the
type of prior knowledge utilized for localization. Discussions suggest that High Ac-
curacy Digital (HAD) maps might provide strong enough prior knowledge for these
algorithms. However, the usefulness of these maps in localization processes remains to
be fully verified. Furthermore, the placement of sensors on autonomous vehicles can
significantly impact the performance of SLAM systems. For example, a laser sensor
placed on the roof of the car is less likely to be affected by mobile obstacles compared
to one placed in the undercarriage. The minimum necessary sensor set for localiza-
tion remains undefined, yet it appears that laser scanners and cameras are favoured
[8].

The trend of current SLAM systems is tending towards being lightweight and promot-
ing multi-agent cooperation [13]. This allows application on low-powered hardware like
embedded devices and considers multi-sensor fusion algorithms as the core of SLAM
application in autonomous vehicles. The combination of SLAM with autonomous driv-
ing requires further exploration, particularly in real-world urban road environments,
as current datasets often deviate from real-world performance [13].

Finally, safety in localization algorithms is paramount. Autonomous driving systems
must design strategies to safely switch between multiple sources and account for po-
tential failures and their impacts on the localization system. Despite these challenges,
advancements in SLAM technologies and the increasing public recognition towards au-
tonomous driving vehicles, coupled with high-performance mobile computing, point
towards the potential for more practical applications of visual SLAM in the near future
[13].

2.1.2 Autonomous Space Robots

Autonomous space robots are engineered to conduct scientific research, perform main-
tenance tasks and explore celestial bodies such as planets, moons and asteroids, par-
ticularly in environments where human intervention is challenging or infeasible [19],
[40]. This category of robots includes orbiters, landers, rovers and satellites.

The development of autonomous space robots originated in the 1960s and 1970s when
the first robotic probes were launched to explore the Moon, Mars and other celestial
bodies. Notable early examples of robotic spacecraft include the Soviet Union’s Luna
and Mars missions and the United States Surveyor and Viking missions, all designed
to gather information about extraterrestrial surfaces [53].

While early space robots primarily relied on remote control or preprogramming, the
necessity for autonomy grew as researchers acknowledged the challenges and communi-
cation delays inherent in operating robots in deep space. The 1980s and 1990s marked
a transition towards the development of increasingly autonomous space robots, capa-
ble of decision-making and navigating complex environments with minimal human
intervention. Since then, autonomous space robots have become an integral compo-
nent of planetary exploration, with progressively sophisticated systems deployed in
missions to Mars, the Moon and beyond [66].
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Modern autonomous space robots have significantly evolved over time. Advance-
ments include Reinforcement Learning (RL) to improve task performance in satellite
servicing or debris removal [67], enhancements in Guidance, Navigation, and Control
(GNC) for in-orbit robotic missions [38] and the optimization of dual-arm space robot
configurations to boost capture efficiency, stability and safety during on-orbit opera-
tions [68]. Collectively, these improvements demonstrate the ongoing progress in the
development of modern autonomous space robots.

In July 2020, Perseverance was launched by NASA and successfully landed on Mars
in February 2021 [42]. As part of the Mars 2020 mission, Perseverance’s primary ob-
jective is to search for signs of ancient microbial life, study the planet’s climate and
geology and collect samples for a future Mars Sample Return mission [43]. Equipped
with advanced instrumentation and technology, Perseverance showcases a high level
of autonomy in terms of navigation, scientific sampling and decision-making. One of
the rover’s features is the Mars Helicopter, Ingenuity, which is a technology demon-
stration aimed at testing powered flight on another planet for the first time [44]. The
Perseverance rover and Ingenuity helicopter exemplify the current state-of-the-art in
autonomous space robots, paving the way for more advanced and capable missions in
the years to come.

SLAM in Space Robots

One of the early implementations of a Rao-Blackwellized Particle Filter (RBPF)-
based SLAM algorithm used a vision-based sensor to facilitate maps incorporating
large numbers of visual landmarks, with the aim of extending this work to full 6-DOF
representations better suited for space vehicles and exploration over rough terrains.
Potential challenges were identified such as managing rarely observed Scale-Invariant
Feature Transform (SIFT) features that clutter the data structure and necessitate
costly rebalancing [54].

A more recent approach known as Globally Adapted (GA) SLAM, supports long-range
low-supervision autonomous navigation by providing accurate relative localization, a
local elevation map for navigation and a global pose correction method [20]. However,
this system was designed with the constraints of limited onboard processing power,
hence computational efficiency remained a significant challenge. Several improvements
were proposed, including modelling the space of the problem in a discretized way and
improving the quality of the local map by using a neighbourhood fusion method
[20].

The development of datasets represents another significant challenge in this field [21].
A dataset, recorded on Mount Etna, Sicily, a lunar and Martian environment ana-
logue, posed significant problems for SLAM due to visual aliasing and the absence of
outstanding structural details. The dataset provides a tool for exposing limitations
of traditional SLAM systems under these challenging conditions and motivates the
development of novel localization and mapping approaches [21].

Despite the challenges, the continuous advancement and adaptation of SLAM algo-
rithms for space robots demonstrate its potential for future applications in space ex-
ploration. The ongoing research in this area is focused on overcoming computational
limitations, improving robustness and enhancing the adaptability of SLAM algorithms
to extreme and complex environments.
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2.1.3 Various Robots

Robotic platforms have also gained significant popularity among other fields in the
private and also industrial sector. In 2022, the robotic market generated around 30
billion Swiss Francs in revenue, from which 25% comes from industrial robots, the
other 75% from service robots, mostly used in private households [59]. Some well-
known examples will be briefly described in this section.

(a) Dyson robot using vision system [2] (b) Buddy Mobility with KYBURZ technology
[29]

Figure 2.3: Autonomous Robots in action

Industrial robots

Robots in the industry can help humans and the economy in several aspects. Robots
can achieve precise results with much fewer errors while running 24 hours a day. Some
of the currently most used industrial robots are the following:

• Articulated Robots (Robotic arms): These robots have rotary joints that provide
a high degree of freedom and flexibility. They resemble a human arm with mul-
tiple connected links. Articulated robots are widely used in assembly factories,
material handling, welding and painting applications. Popular manufacturers of
robotic arms are ABB, KUKA and Funac.

• SCARA Robots: SCARA stands for Selective Compliance Assembly Robot Arm.
SCARA robots have a fixed vertical arm connected to a horizontal arm that can
move in a circular motion. They are commonly used for tasks that require
fast and precise horizontal movements, such as pick-and-place operations and
assembly tasks.

• Cartesian Robots: Also known as gantry or linear robots, Cartesian robots have
three linear axes (X, Y and Z) that move independently. They provide precise
and synchronized movements in a rectangular coordinate system. Cartesian
robots are often used in 3D printers or for tasks such as material handling,
packaging and CNC machining.

• Delta Robots: Delta robots have a unique design with three or more arms
connected to a common base. The arms are typically connected to parallelo-
grams and driven by actuators. Delta robots are known for their high speed
and precision, suitable for applications requiring fast and precise pick-and-place
operations, such as packaging and sorting.

• Mobile Robots: Mobile robots are autonomous or semi-autonomous robots capa-
ble of moving and navigating on their own. They can be equipped with various
features such as wheels, tracks, or even legs for mobility. Mobile robots are
used for tasks such as material transportation and order picking in warehouses.
Some commonly known manufacturers of mobile robots are Boston Dynamics,
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ABB and Clearpath Robotics. There are also Swiss competitors in the field of
mobile robotics like KYBURZ, manufacturing full-autonomous robots for postal
delivery, as seen in Figure 2.3b.

Household helpers

Already since the mid-nineties, robot manufacturers are developing and selling house-
hold helper robots to make life more comfortable for end users. On one hand, com-
panies like iRobot and Dyson manufacture vacuum cleaning robots, illustrated in
Figure 2.3a, which are able to clean flat surfaces of different kinds autonomously. For
around ten years, these robots are also running SLAM algorithms to create a digital
map of their environment, sensed through different sensors like laser scanners, cam-
eras or gyroscopes. Commonly, the robots hold an initially created map of the house
while always improving it in order to react to changes in the map caused by moved
objects.

On the other hand, companies like Husqvarna and Bosch produce robotic lawnmowers,
very similar to vacuum cleaners. The first versions of these robots used physical wires
limiting the space the robot should operate in. Further development led to improved
robots being able to perform SLAM algorithms supported by Global Navigation Satel-
lite System (GNSS) data to spatially localise itself. In order to further improve the
localisation, they use the RTK (Real-Time Kinematics) technology which uses a fixed
reference station close to the robot. The exact position of the station is known so the
station is able to calculate the error of the estimated position of the GNSS system.
This error will then be forwarded to the robot improving his own GNSS estimation
significantly.

Both mentioned systems are able to automatically return to their charging stations
and therefore require only minimal input from the owner.

2.2 Probabilistic Robotics

This section provides the main theoretical background for this thesis and is heavily
inspired by the book Probabilistic Robotics [63]. Probabilistic techniques have emerged
as a cornerstone for addressing the inherent uncertainty in robotic perception and
decision-making.

2.2.1 Uncertainty in Robotics

Collected data are often imperfect, leading to discrepancies between the robot’s per-
ception of its environment and the true state of the environment. Understanding
and addressing these uncertainties is crucial for developing robust systems that can
effectively navigate and interact with their environments. The primary sources of
uncertainty include:

• Sensor Noise: Sensors are subject to noise and measurement errors, which may
result from manufacturing imperfections, environmental conditions, or other ex-
ternal factors. This noise can cause discrepancies between the robot’s perception
of its environment and the true state of the environment.

• Actuator Noise: Similar to sensors, robot actuators can also introduce noise
and inaccuracies due to manufacturing imperfections or wear and tear. These
inaccuracies can lead to discrepancies between the robot’s intended and actual
actions, further contributing to the overall uncertainty in the robot’s state.
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• Environment Complexity: Real-world environments are often complex and dy-
namic, presenting challenges for robots to perceive and model their surroundings
accurately. Additionally, some aspects of the environment may be partially ob-
servable or hidden, further increasing the level of uncertainty.

• Modeling Errors: In robotics, mathematical models are often used to describe
motion and measurement processes. These models are simplifications of real-
world processes and can introduce errors and uncertainties due to the assump-
tions made during their development.

In light of these uncertainties, deterministic approaches often prove inadequate for
state estimation and decision-making in robotics. Probabilistic methods provide a
framework to cope with these uncertainties and allow robots to estimate their state
and make informed decisions in complex and uncertain environments.

2.2.2 Robot Environment Interaction

In robotics, the interaction between a robot and its environment is essential for its
ability to perceive and act effectively. An actor, which can be a human, thermostat,
software agent, or robot, perceives its environment and acts upon it. Robots acquire
information about their surroundings using sensors. However, a robot can only per-
ceive aspects of the environment for which it has equipped sensors. In cases where
a specific sensor is absent, the robot is unable to collect information regarding that
particular parameter.

The collection of data that can potentially impact future decisions can be categorized
into two types: environment measurement data, such as camera images or laser sensor
data and control data, which refers to information about changes in the environment’s
state, like the velocity or frequency of the robot’s wheel revolutions.

The state often includes variables such as the robot’s pose, which encompasses its
Cartesian coordinates and angular orientation. A robot cannot directly measure its
pose so it derives the pose from the collected data instead. This results in the for-
mation of a belief, which is a conditional probability distribution representing the
robot’s understanding of its current state. Control data, on the other hand, refers to
the commands sent to the robot’s actuators to execute specific actions, such as de-
sired velocities, steering or joint angles. Probabilistic techniques are employed to deal
with uncertainties in sensor data and actuation, allowing the robot to make informed
decisions and navigate complex environments.

2.2.3 Robot Motion

As described above, a robot aims to derive its pose from the data about its envi-
ronment and state. The state at a specific time t of a robot operating in a planar
environment is described by Equation 2.1 where (x, y) represents the location of the
robot (translational component) and θ the orientation of the robot (rotational com-
ponent).

xt =

x
y
θ

 (2.1)

A motion model describes the transition a robot faces when changing its own state by
actuators like the motor. Since actuators in practical applications are noisy, a direct
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kinematic approach to solve this task may not be suitable. In probabilistic robotics,
the motion model is a distribution defined by Equation 2.2.

p(xt|ut, xt−1) (2.2)

The distribution represents the likelihood of the new robot state xt, given a set of
actions ut by the controls at time t and xt−1, representing the previous state before
the controls influenced the robot.

Odometry Motion Model

In practice, robots commonly employ odometry data as the controls input for their
motion models. This preference stems from the availability of odometry data in many
commercial products and the inherent limitations in the accuracy of the robot’s actu-
ator actions, which cannot match the precision offered by odometry data.

The challenge with odometry data lies in the fact that the measured sensor data is
always relative to the previous state of the sensors, such as gyroscopes. In an ideal
scenario without any noise, the measured changes in sensor data would accurately
reflect the corresponding changes in the robot’s state in the physical world. However,
due to the presence of sensor noise, this correspondence is not practically achieved.
Nevertheless, by utilizing the difference in odometry data between time steps t−1 and
t to estimate xt, as illustrated in Equation 2.2, a reasonably accurate approximation
of the true state xt can be obtained.

A further challenge in the use of sensor data in odometry-based motion models is
the issue of sensor drift. Sensor drift, which may be caused by temperature changes,
ageing, or other factors, can introduce a slow, accumulative error in the sensor read-
ings over time. This drift can lead to significant discrepancies between the robot’s
estimated state x̄t and its true state xt, especially over extended periods of operation.
Thus, strategies for mitigating the impact of sensor drift are an important aspect of
effective robot motion modelling.

2.2.4 Bayes Filters

Bayes filters form the foundation for recursively estimating the state of dynamic sys-
tems subject to uncertainty. Employing the principles of Bayesian inference, these
filters update the probability distribution over the state space based on incoming sen-
sor measurements. They fuse prior knowledge with current observations to derive a
posterior belief about the system’s state. Central to the Bayes filter is the prediction-
update cycle, which encompasses two steps:

• Prediction: Predicts the system’s state based on its motion model, account-
ing for the uncertainty in the control input. The motion model, denoted by
p(xt|ut, xt−1), captures the relationship between consecutive states, given the
control data and generates a predicted belief about the next state, bel(xt), be-
fore incorporating sensor measurements.

• Update: Updates the belief by incorporating new sensor measurements through
the measurement model, denoted by p(zt|xt), which describes the likelihood of
obtaining specific measurements given the current state. The update fuses the
predicted belief with the latest measurements, producing an updated posterior
belief about the system’s state, bel(xt).



2.2. PROBABILISTIC ROBOTICS 15

By iteratively performing this cycle, Bayes filters enable the robot to maintain an
up-to-date belief about its state and the environment, facilitating informed decision-
making and navigation despite inherent uncertainties. The versatility of Bayes filters
allows for various implementations, such as Gaussian filters, particle filters and grid-
based filters, to accommodate different assumptions about the state and measurement
models. The prediction and update steps can be represented with Equation 2.3 where
η is a normalizing constant.

bel(xt) =

∫
p(xt|ut, xt−1) · bel(xt−1)dxt−1 (Prediction)

bel(xt) = η · p(zt|xt) · bel(xt) (Update)
(2.3)

A state can be predicted with the information of the state before and the current
controls. The state of the robot defines what a robot measures. Figure 2.4 illustrates
the dependencies between the state x, control u and measurement z. The state xt is
stochastically dependent on the state xt−1 and the control ut, while the measurement
zt depends stochastically on the state xt. These dependencies capture the evolution
of states and measurements, reflecting the underlying dynamics of the robot and its
environment.

Figure 2.4: The state is dependent on the state before and the control. The measure-
ment depends on the state. [63]

2.2.5 Gaussian Filters

Gaussian filters represent a specific class of Bayes filters that assume the underlying
state and measurement models follow Gaussian distributions. By exploiting the prop-
erties of Gaussian distributions, such as closure under linear transformations and the
convolution operation, these filters simplify the filtering process, resulting in compu-
tationally efficient algorithms. Closure under linear transformations means that the
result of a linear transformation applied to a Gaussian-distributed variable remains
Gaussian-distributed. The convolution operation refers to the process of combining
two functions to produce a third function that represents the overlap between the
original functions. In Gaussian filters, this property guarantees that the product of
two Gaussian-distributed variables remains Gaussian-distributed. Gaussian filters are
particularly well-suited for systems with linear dynamics and Gaussian noise, as they
provide a compact and analytically tractable representation of the state’s probability
distribution.
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Compared to generic Bayes filters, Gaussian filters make specific assumptions about
the state and measurement models to derive closed-form solutions for state estima-
tion. While Bayes filters can accommodate various representations of uncertainty,
Gaussian filters rely on the Gaussian distribution to model the uncertainties in both
the robot’s state and sensor measurements. They can be described by the mean µ
and the covariance Σ as illustrated in Equation 2.4.

µ =

∫
x · bel(x)dx (Mean)

Σ =

∫
(x− µ)(x− µ)T bel(x)dx (Covariance)

(2.4)

The two primary types of Gaussian filters employed in robotics are the Kalman filter
and the Extended Kalman Filter (EKF). The Kalman filter is designed for systems
with linear state transition and measurement models, while the EKF approximates
nonlinear models by linearization using the first-order Taylor series expansion. Al-
though both filters have limitations when dealing with highly nonlinear systems,
Gaussian filters remain prevalent in robotics due to their computational efficiency,
ease of implementation and ability to provide a closed-form solution for the state
estimation problem.

Kalman Filter

The Kalman filter is a widely-used Gaussian filter employed in robotics and other
applications involving state estimation of linear systems with Gaussian noise. It is
a recursive data processing algorithm that combines a system’s dynamic model with
incoming sensor measurements to estimate the state of a dynamic system in real-
time, mathematically represented in Equation 2.5. The Kalman filter operates by
predicting the system’s state based on the motion model and updating this prediction
with new measurements, leveraging the Gaussian distribution’s properties to maintain
a compact and tractable representation of the state’s probability distribution.

For the Kalman filter, the prediction and update steps are as follows:

• Prediction: Predicts the next state µt and its covariance Σt, using the linear mo-
tion model, considering the control input ut and associated noise. It propagates
the current state’s mean and covariance forward in time, accounting for the un-
certainty introduced by the system dynamics and control noise, represented by
Rt.

• Update: The filter computes the Kalman gain Kt, which weighs the importance
of the new measurement zt relative to the predicted state µt. The gain is used
to update the predicted state’s mean and covariance, incorporating the latest
sensor measurement zt and its associated noise Qt to produce a refined state
estimate µt and Σt.

The equations involved in these steps are as follows:

µt = Atµt−1 +Btut (Prediction of the mean)

Σt = AtΣt−1A
T
t +Rt (Prediction of the covariance)

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

−1 (Kalman gain computation)
µt = µt +Kt(zt − Ctµt) (Update of the mean)

Σt = (I −KtCt)Σt (Update of the covariance)

(2.5)
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In the equations, At and Bt represent matrices of the size n×n for A and n×m for B,
where n is the dimension of the state vector xt and m is the dimension of the control
vector ut. Using these matrices, the equation becomes linear in its arguments. Ct is a
matrix of the size k×n, where k is the dimension of the measurement zt representing
the Jacobian of the measurement [63].

Due to its computational efficiency and optimal performance under linear Gaussian
assumptions, the Kalman filter is widely employed in various robotic applications,
including sensor fusion, navigation and control.

Extended Kalman Filter

The EKF is an extension of the Kalman filter designed to handle mildly nonlinear
systems. It addresses the limitations of the Kalman filter in dealing with nonlinear
motion and measurement models by linearizing these models using first-order Taylor
expansions, which approximate the nonlinear functions with locally-linearized ver-
sions. The mathematical representation can be seen in Equation 2.6.

The EKF algorithm follows the same prediction-update cycle as the Kalman filter,
but with modifications to accommodate the nonlinearities:

• Prediction: Predicts the next state µt and its covariance Σt, using the nonlin-
ear motion model g(ut, µt−1) and its linearized version, known as the Jacobian
matrix Gt, considering the control input ut and associated noise Rt. It propa-
gates the current state’s mean and covariance forward in time, accounting for
the uncertainty introduced by the system dynamics and control noise.

• Update: Computes the Kalman gain Kt, similar to the Kalman filter, but with
the measurement model’s Jacobian matrix Ht to account for the nonlinearity.
The gain is used to update the predicted state’s mean and covariance, incorpo-
rating the latest sensor measurement zt and its associated noise Qt to produce
a refined state estimate µt and Σt.

The equations involved in these steps are as follows:

µt = g(ut, µt−1) (Prediction of the mean)

Σt = GtΣt−1G
T
t +Rt (Prediction of the covariance)

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1 (Kalman gain computation)
µt = µt +Kt(zt − h(µt)) (Update of the mean)

Σt = (I −KtHt)Σt (Update of the covariance)

(2.6)

2.2.6 Particle Filter

Besides the Gaussian filters there are particle filters, also known as Sequential Monte
Carlo methods, used in probabilistic robotics for tracking and prediction, in the pres-
ence of noise and uncertainty. The primary advantage of particle filters over other
types of filtering methods, such as Kalman filters, is their ability to handle non-linear
and non-Gaussian systems. Given a system’s model and some initial conditions, parti-
cle filters estimate the state of a system at a given point in time by using a set of parti-
cles to represent the Probability Density Function (PDF) of the system’s state.

A particle filter uses a set of particles, where each particle is represented as xi, wi.
Each particle is a hypothesis about the state and its weight represents the likelihood
of that hypothesis. xi represents the state of the system and wi denotes the weight of
the particle, which signifies the particle’s importance.
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The fundamental steps in the particle filter algorithm can be summarized as fol-
lows:

• Initialization: Initially, a set of particles are generated and these are usually
drawn from the prior distribution of the state.

• Importance Sampling: For every time step, each particle’s state is predicted
using the system model and the predicted state is then compared with the actual
observed data. The difference between the predicted state and the observed
data is used to compute the weight of each particle, which essentially denotes
the likelihood of the state.

• Resampling: Once the weights are calculated for all particles, a resampling step
is performed. In this step, particles with higher weights are more likely to be
selected, while those with lower weights may disappear. This forms the new
particle set for the next time step.

This process is expressed using Bayes’ theorem and concepts of probability distribu-
tions. For instance, the importance sampling step can be represented with Equation
2.7.

wi = p(zt|xti) (2.7)

Here, zt is the observed data at time t and xti is the state of particle i at time t.
Equation 2.7 states that the weight of a particle is proportional to the likelihood of
the observed data given the particle’s state.

2.3 Simultaneous Localization and Mapping

Simultaneously localizing a robot within a known environment and creating a map of
its surroundings are manageable tasks when the exact spatial position of the robot
is consistently known. However, placing a robot in an unknown environment and
requiring it to both generate a map and localize itself within this map solely based on
control inputs u and observations of landmarks z significantly increases the complexity.
This scenario introduces the SLAM problem.

There are two ways to approach the SLAM problem. Using an online SLAM approach,
the robot’s new state xt, as well as the updated map m, is described by the distribution
p(xt,m|z1:t, u1:t) which only uses all measured observations of landmarks z1:t as well
as all control data u1:t to estimate the latest state xt of the robot. Online SLAM does
not care about past state estimations.

The second way of solving the SLAM problem is full SLAM, which involves pro-
cessing the measured observations and stored controls in a batch after they have been
recorded. This leads to the only slightly different looking distribution p(x1:t,m|z1:t, u1:t.
Due to this fact, full SLAM approaches provide more accuracy, whereas online SLAM
approaches can perform better in real-time applications since they directly process
incoming sensors and control data.

2.3.1 EKF SLAM

The EKF SLAM emerged as one of the pioneering solutions to the SLAM problem.
Utilizing the EKF, this approach effectively linearizes the inherently nonlinear motion
and measurement models prevalent in robotics, thereby enabling more efficient map
building and localization. EKF SLAM functions based on a prediction-update cycle
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as explained in Section 2.2.5, aiming to resolve the online SLAM problem in real-time
scenarios.

The EKF SLAM algorithm unfolds in two sequential phases: the prediction phase and
the update phase.

• Prediction Phase: The algorithm starts by estimating the robot’s current po-
sition and orientation based on its motion model. Using the most recent control
inputs, it projects the robot’s state into the future, simultaneously updating the
covariance matrix E, a n×n representation of mutual uncertainties between all
n landmarks.

• Update Phase: Following prediction, the algorithm integrates new sensor data
into the model. It first formulates an expected measurement based on the cur-
rent state estimate. After computing the measurement residual, the difference
between the actual and expected measurements, it updates the state estimate
and the covariance matrix in accordance with the Kalman gain. The updated
state estimate and covariance matrix encapsulate the revised belief about the
robot’s state and associated uncertainty.

In environments with many landmarks, the iterative update of the covariance matrix
E at each step becomes a computationally challenging task. This computational
burden can exceed the often limited processing capabilities of a robot, particularly
during extended operations.

Given these constraints, EKF SLAM is generally favoured in environments with rel-
atively few landmarks. It is typically utilized in scenarios with fewer than 1’000
landmarks due to its scalability limitations, striking a balance between computational
efficiency and the fidelity of landmark tracking and estimation.

2.3.2 FastSLAM

FastSLAM is an efficient solution to the SLAM problem that utilizes a particle filter
approach. This allows it to manage a large number of landmarks effectively. Each
particle within the filter represents a hypothesis concerning the robot’s trajectory and
concurrently, each maintains an individual map of the environment. The individual
maps typically consist of various features or landmarks, with each having its associated
position and uncertainty.

The FastSLAM algorithm works as follows:

• Prediction: Similar to the particle filter, the first step is to predict the state
of each particle based on the motion model of the robot and the most recent
control inputs.

• Update: When a new observation arrives, the weights of the particles are
updated based on the likelihood of this observation given the predicted state
and map of each particle. Each particle also updates its map based on the new
observation.

• Resampling: Finally, the particles are resampled based on their weights.

In FastSLAM, each particle maintains an individual map. These maps are typically
represented as a set of features or landmarks, where each landmark j is modeled by a
Gaussian distribution with a mean µj and a covariance Σj .

When a new observation arrives, the map within each particle is updated based on
the observation. Specifically, if the observation corresponds to a known landmark, the
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position and covariance of the landmark are updated. If the observation corresponds
to a new landmark, a new landmark with its position and covariance is added to the
map.

The update of a landmark’s position µj and covariance Σj based on a new observation z
can be expressed with Equation 2.8 where K is the Kalman gain, h(µj) is the predicted
observation based on the landmark’s position, H is the Jacobian of h with respect to
µj and I is the identity matrix.

µj = µj +K · (z − h(µj))

Σj = (I −K ·H) · Σj
(2.8)

This performs a Kalman update on the landmark’s position and covariance.

2.3.3 Advantages and Limitations

EKF SLAM’s strength lies in its ability to effectively linearize typically nonlinear mo-
tion and measurement models, allowing efficient map-building and localization. It is
highly suitable for environments with relatively few landmarks due to its computa-
tional demands. However, its computational intensity increases exponentially with
the number of landmarks, limiting its scalability. It also assumes a Gaussian noise
model and linear system dynamics, which might not be accurate for all environments
and robots.

FastSLAM excels in computational efficiency and scalability, managing a large number
of landmarks effectively. Its particle filter approach allows for handling nonlinear sys-
tem dynamics and non-Gaussian noise. Despite its benefits, FastSLAM relies heavily
on known data associations, requiring accurate identification of corresponding ob-
servations and landmarks. It also assumes independence between robot motion and
landmark observations, which might not always hold in real-world scenarios.

In conclusion, EKF SLAM and FastSLAM are valuable tools in probabilistic robotics,
offering solutions to complex problems of tracking, prediction and mapping in uncer-
tain and dynamic environments. They find applications across various fields, including
autonomous vehicles, mobile robotics and navigation systems.

2.3.4 Landmark correspondence detection

All previously discussed SLAM algorithms predict where a detected cone is located
spatially. However, all algorithms need functionality to determine if a detected cone is
one which was already detected and therefore is already available in the stored map,
or alternatively is a new cone seen for the first time.

A possible approach to solve this problem uses the Mahalanobis distance, with which
it gets calculated, how many standard deviations away a point x⃗ is from the center µ⃗
of a distribution Q as described with Equation 2.9 where S is the covariance matrix
of the known points.

dM (x⃗, Q) =
√

(x⃗− µ⃗)TS−1(x⃗− µ⃗) (2.9)
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As can be seen, the Mahalanobis distance takes the covariance of the distribution
into account. This improves the decision of correspondence significantly compared
to simple distance thresholds. Put in other words, the Mahalanobis distance can be
understood as the distance of the point x⃗ to µ⃗, divided by the width of the ellip-
soid representing the covariance of the distribution. A visual representation of the
Mahalanobis distance can be seen in Figure 2.5.

Figure 2.5: Difference between Euclidean distance and Mahalanobis distance [10]

2.4 End-to-End Deep Learning Approaches

The field of AI is transitioning from addressing specialized, deterministic problems
to contending with broader, more complex problems. This shift from narrow AI to
artificial general intelligence has been largely enabled by the advent of deep learning
techniques [32]. End-to-end deep learning represents a paradigm where a complex
system is learned as a single unified function, mapping raw inputs to desired outputs
without explicitly designed intermediate steps or representations. This approach, pow-
ered by deep neural networks capacity to encapsulate relationships and dependencies
within their hidden layers, has found widespread adoption across various domains
such as natural language processing [1], image recognition [34] and autonomous driv-
ing [62].

Figure 2.6: In end-to-end systems a single unified function is used instead of splitting
the problem up into sub-tasks [62]

In autonomous driving, end-to-end learning is capable of directly comprehending the
mapping from raw sensor data to vehicle control commands, circumventing the need
for explicitly programmed intermediary steps, like object detection or path planning.
This concept is illustrated in Figure 2.6. It is possible with a convolutional neural
network to map raw pixel inputs from car sensors to steering commands. However,
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to apply the end-to-end approach with sufficient robustness to consumer products
further improvements have to be made [7].

2.4.1 Reinforcement Learning from Human Feedback

Supervised learning demands plenty of training data. While humans can be observed
to generate training data for autonomous systems there are shortcomings. Humans do
make minor and severe errors while driving. Besides supervised learning, it is possible
to use reinforced learning where the desired behaviour is rewarded and the agent can
learn by improving itself. Nevertheless, it is hard for complex environments to define
an effectively performing reward function. A system should therefore not learn to
imitate a human driver but rather learn the human values in driving behaviour and
build a reward function according to these values.

Reinforcement Learning from Human Feedback (RLHF) is a concept that solves this
problem by learning a reward model for a specific task based on human feedback.
It then trains a policy to optimize the reward received from this reward model. A
significant benefit of RLHF is the sample efficiency required to train the reward model.
This allows the system to strike a balance between learning from human feedback and
generalizing from the task data. The ultimate goal of RLHF is to create a reward
model that represents human preferences for how a task should be done, which is
also known as Inverse Reinforcement Learning. While these principles are currently
applied predominantly to Large Language Modelss (LLMs), their application could
also be promising in the field of autonomous driving [30], [14], [60].

2.4.2 Parsimony and Self Consistency

Autonomous intelligent agents ideally have capabilities to reflect their past experi-
ences and the current environment leading to an internal world model. Neuroscience
suggests that the world model of the human brain is highly structured anatomically
and functionally [46], [11], [5]. This structure is believed to be the key to efficient
decision-making [27]. On the other hand, the current brute-force end-to-end train-
ing of black-box models contradicts this structural concept. Resulting in enormous
model sizes and varied problems such as the lack of richness in final learned represen-
tations due to neural collapse [48], lack of stability in training due to mode collapse
[58], lack of adaptiveness and susceptibility to catastrophic forgetting [36] and lack of
robustness to deformations [4] or adversarial attacks [61]. To overcome these limita-
tions intelligence has to be understood in a more principled and unifying perspective
incorporating the functional and organizational structure of natural intelligent sys-
tems. This can be achieved with the two fundamental principles of parsimony and
self-consistency [34].

Parsimony answers the question of what to learn. The principle stresses the impor-
tance of learning the most critical and representative features from the data, pro-
moting the principle of Occam’s razor within the learning process. This results in
low-dimensional structures in a compressed, linear and independent form. But Parsi-
mony alone does not ensure a learned model with the mentioned characteristics will
capture all important information in the data sensed about the external world. To
ensure that the internal representation of the real-world data matches the actual data
the principle of self-consistency is used [34].

Self-consistency aims to create a model that best mirrors the external world by min-
imizing the discrepancy between observed and regenerated input. This is achieved
by generating input data for the system with the compressed representation. The
generated data is then encoded again to a compressed representation. The original
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representation and the new representation can be compared. These steps can be re-
peated while minimizing the rate reduction for the decoder and maximizing the rate
reduction for the encoder leading to a self-correcting closed-loop system with an in-
creasingly better-fitting representation of the input data. The system is illustrated
with the example of handwritten digits in Figure 2.7 [34].

Figure 2.7: Incremental learning via a compressive closed-loop transcription [34]

Although divide and conquer has long been a cherished tenet in scientific research,
when it comes to understanding a complex system such as Intelligence, this unite and
build approach could lead to new possibilities [34].

2.4.3 Specialized to General

In conclusion, the shift towards end-to-end deep learning still has to overcome prob-
lems. There are promising principles like RLHF, parsimony and self-consistency,
offering approaches towards more general problem-solving capabilities. These new
paradigms could help in developing more autonomous, reliable and effective AI sys-
tems.

2.5 Formula Student

Formula Student teams around the globe have been developing and implementing var-
ious SLAM algorithms for their driverless vehicles, with the ultimate aim to improve
performance in the competition’s autonomous racing tasks. In this section, we will
take a look at the race’s procedure and rules, the work done by selected teams, in-
cluding KA-RaceIng, Academic Motorsports Club Zurich (AMZ) and the work done
by our predecessor in the context of SLAM.
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2.5.1 Races

Each country participating in FS organizes one race in the summer after the spring
semester. The races usually last around one week and consist of static and dynamic
tests. During the static tests, the business plan, manufacturing and costs as well as
the engineering design itself will be assessed by external experts from the host country.
For each of the mentioned disciplines, points will be awarded and added to the overall
score of the team. Dynamic tests include different kinds of race courses designed to
test the physical and electrical capabilities of the car. The courses are limited by
cones shown in Figure 2.8. The autonomous software of the race cars is challenged to
navigate the course using camera vision detecting these cones with the help of various
sensors.

(a) Blue cone used to
limit courses on the
left

(b) Yellow cone used
to limit courses on the
right

(c) Small red cone
used to mark stop
area

(d) Large red cone
used to mark start
and finish line

Figure 2.8: Official cones used in FS races [57]

2.5.2 KA-RaceIng

The Karlsruhe Institute of Technology (KIT) Formula Student team has explored the
use of the two SLAM algorithms EKF SLAM and GraphSLAM in their autonomous
race car. Their research focused on comparing the performance of these two algo-
rithms, examining factors like accuracy, efficiency and computational load [31].

KIT’s performance analysis concluded that GraphSLAM outperformed EKF SLAM
in terms of accuracy, with their 2020 EKF SLAM version showing a considerable im-
provement over its 2019 version. However, it was noted that the accuracy of EKF
SLAM 2020 dropped significantly over the course of a lap and was only corrected
later. This suggests that while it could provide reasonably accurate maps, it may
struggle with localization during the run. On the other hand, GraphSLAM continu-
ously delivered highly accurate results [31].

The improved accuracy of GraphSLAM, however, came at a cost. It required more
computational resources, with increased CPU load noticeable across different racing
disciplines. To address this, the team suggested the use of a sliding window in the
Trackdrive discipline, which can reduce the overall CPU load. Despite the increased
load, initial tests on the vehicle showed sufficiently available processing power, pointing
to the feasibility of using GraphSLAM in their autonomous car [31].
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2.5.3 Academic Motorsports Club Zurich

The AMZ Driverless provided a very valuable paper describing their autonomous
system in 2019. The lack of distinguishable landmarks, apart from the cones described
by their position and colour, calls for an algorithm capable of handling uncertain
data association. The SLAM algorithm used by AMZ Driverless is FastSLAM 2.0.
The nature of this particle filter algorithm inherently provides multi-hypothesis data
associations and its performance can be conveniently traded-off against runtime by
adjusting the number of particles. Moreover, FastSLAM exhibits linear scalability
with the number of landmarks, outperforming the quadratic complexity of an EKF
SLAM algorithm in computational performance [28].

Figure 2.9: Detailed SLAM architecture used to fuse landmark observations from
camera and LiDAR with velocity estimates into a coherent map and pose within
the map. The dashed line visually demonstrates which parts of the algorithm are
computed on a particle basis. [28]

The architecture of their SLAM system, illustrated in Figure 2.9, is divided into two
parts: a localizer, which processes velocities at 200 Hz and a mapping algorithm that
combines landmark observations from both perception pipelines and the car’s velocity
estimate for a high-frequency map update. Additionally, the system implements a
two-stage sensor failure detection to utilize the redundant sensor setup. This process
aims to avoid irreversible map updates caused by malfunctioning sensors by penalizing
measurements that contradict previous observations [28].

When it comes to lap closure detection and post-processing, AMZ’s approach assumes
a static map after the completion of one lap, at which point the quality of the map
will not significantly improve with additional observations. The car actively detects
the completion of the first lap, based on a set of rules including the standard deviation
of the position, the car’s heading and proximity to the starting point. This detection
does not globally correct the map, as global consistency is already achieved through
FastSLAM’s resampling [28].

Upon the completion of the first lap, AMZ’s approach switches from SLAM to Local-
ization mode. The track boundaries are identified and the map ceases to update. The
map corresponding to the most likely particle (highest weight) is used for subsequent
laps. Localization in the created map is achieved using Monte Carlo localization,
computing the mean over all particles to ensure a smooth pose update [28].
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2.5.4 Zurich UAS Racing

The ZUR team is participating in a FS DC for the first time this year. Despite
this, the driverless automation team was established early on and has already carried
out substantial work that the team can leverage. For the localization and mapping
problem, two projects have been conducted: initially testing multiple methods for
localization and subsequently improving the localization system and investigating the
accuracy of pose tracking and the GPS sensor.

Several methods for localization were tested and implemented within the ROS2 frame-
work for the overall system. Pose tracking was examined with multiple setups and
tailored for this specific application. However, the GPS for the Kalman Filter and
EKF could only be tested with simulated data. The team recommended further test-
ing, involving the simultaneous recording of ZED2i data with GPS data in Rosbags.
This would help verify and optimize the functionality of the Kalman Filter algorithm
and GPS coordinate conversion using actual data. Ideally, a testing environment that
closely mimics the race conditions and whose ground truth is known, should be set up
for result analysis. The team also suggested incorporating additional sensors like an
external IMU, LiDAR and wheel encoders and potentially augmenting the localization
module with a mapping component, transforming it into a SLAM module.

Building on this information, a subsequent project was launched. The team focused
on identifying and rectifying weaknesses in the localization system and developed a
concept for implementing SLAM. The software architecture of the localization system
was optimized. Additionally, the team investigated the accuracy of pose tracking and
GPS. They discovered that the measurement error of the GPS can significantly impact
the result when fused with other sensors. Therefore, it would be ideal in the future to
correct GPS with other sensors and avoid heavily weighting the GPS sensor.
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Chapter 3

Methodology

3.1 Overview

The project methodology, as outlined in Figure 3.1, is designed with a network of
inter-dependencies and bidirectional relationships connecting the various stages of the
project. This systematic approach ensures that each component and decision is firmly
rooted in the essential research, planning and requirements.

Figure 3.1: Division of tasks for the successful implementation of a SLAM algorithm

3.1.1 Requirements and Constraints

The inception of this thesis involves defining the project’s Requirements and Con-
straints, which are influenced by the rules of the FS DV competition and the require-
ments of the autonomous system groups. These guidelines not only steer the direction
of the research but also lay the groundwork for the software design, development en-
vironment, test cases and evaluation design.

3.1.2 Research

With the framework established, the next phase is Research. This exploration both
informs and is informed by the project’s Requirements and Constraints. It also di-
rectly contributes to the development of the SLAM algorithms utilized in the project,
ensuring their alignment with best practices.



28 3.2. REQUIREMENTS AND CONSTRAINTS

3.1.3 Software

The Software Design serves as a blueprint for the Implementation stage, which is
further facilitated by the previously determined Development Environment. During
the implementation, the simulator, the interfaces for other teams and the SLAM
algorithms derived from the Research are realized.

3.1.4 Test Cases

The test cases involve assessments with simulated course data. The simulator is em-
ployed to generate the simulated course data, including simulated sensor data.

3.1.5 Evaluation

In the evaluation phase, the software system’s performance is assessed using both
course data and simulated course data. The evaluation metrics and criteria are defined
within the evaluation design. This phase offers insights into the system’s preparedness
for hardware integration.

3.1.6 Integration

This process encompasses integrating the SLAM algorithm into the main repository of
the autonomous system team. Successful Software Integration paves the way for the
Hardware Integration phase, wherein the software is deployed onto the autonomous
vehicle.

3.2 Requirements and Constraints

The successful execution and implementation of a project largely depend on its require-
ments and constraints, as they provide the foundation on which the project activities
and resources are planned and executed. In this section, the critical requirements and
constraints for the development and implementation of multiple SLAM algorithms in
the autonomous driving system are discussed.

3.2.1 Requirements

The project aims to develop a robust and effective solution for the SLAM problem in
autonomous driving. The requirements that guide the development and assessment
of the SLAM algorithms are:

• The development and implementation of multiple working SLAM algorithms
that suit the FS DC context.

• The definition of a suitable development environment to facilitate the imple-
mentation.

• The development of metrics to evaluate the performance and effectiveness of the
implemented SLAM algorithms.

• The design and definition of test cases to validate the SLAM algorithms.
• The integration of the developed software into the codebase of the autonomous

system team.
• The definition of interfaces with other autonomous system groups.
• The evaluation of the developed solution based on the defined metrics and test

cases.
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3.2.2 Constraints

The project also comes with several constraints that limit the scope and approach to
the implementation of the SLAM algorithms. These constraints include:

• The software needs to be compatible with the Jetson Xavier AGX utilizing an
ARM CPU architecture, the onboard computer of the autonomous vehicle.

• The software must run on Ubuntu 18.04, as this is the latest operating system
supported by the Jetson Xavier AGX.

• Due to the limitation of Ubuntu 18.04, the latest version of ROS2 that can be
used is Foxy Fitzroy.

• There have been issues with the accuracy and reliability of the LiDAR and
GPS data in previous work done by the SLAM group, which may affect the
performance of the SLAM algorithms.

• The Zed 2i camera is the only sensor available for collecting real-world data for
testing and validation.

• Given that this is the first year all autonomous system groups are integrating
their work, software integration will be a significant part of the project.

• As there is currently no one working on the perception group, additional work
may need to be done to fill in the gaps.

• The project timeline is a limiting factor as well, with the thesis needing to be
completed within 17 weeks.

In light of the defined requirements and constraints, a carefully planned and executed
project management strategy is essential. Prioritizing tasks, allocating resources ef-
ficiently and maintaining regular communication between different groups will help
mitigate risks and ensure the successful completion of the project.

3.3 Software

To implement multiple SLAM algorithms and also build, run, evaluate and test the
system, a suitable software framework has to be developed. The following section will
describe the different software artefacts which got identified as required in order to
fulfil the mentioned requirements.

3.3.1 Simultaneous Localization and Mapping

SLAM algorithms fundamentally operate on sensor and control data that correspond
to the same point in time. However, achieving such precision in synchronization
is inherently challenging due to the variable data production rates across different
types of sensors. To tackle this issue, a Signal Sync step is implemented. This phase
estimates the measurement of a sensor at a given point in time by utilizing all available
measurements from that sensor. This synchronized data is then utilized by the SLAM
algorithm, which continuously generates a map containing the locations of all observed
cones along with the current position of the race car.

Figure 3.2 provides an overview of the tasks that the system must fulfil, illustrating the
role of Signal Sync and the SLAM algorithm within the larger problem context.
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Figure 3.2: Division of the tasks that the system must fulfil

3.3.2 Software Pipeline

To achieve good results in the DC, it is important that all driverless sub-teams of ZUR
work closely together. Integration of different software systems can be challenging
and time-consuming. Besides the main goal of implementing a SLAM algorithm, the
authors want to take responsibility and implement a solution to ease the integration
process. To accomplish this, a software pipeline will be set up to automatically collect
the code of all sub-teams when new code is added by a team and build it. Afterwards,
tests should be run to verify the compatibility of the new code with the whole code
base. As a last step, the built and tested software should be automatically deployed to
the NVIDIA Jetson device. A conceptual approach for these requirements is presented
in Figure 3.3. With this approach, a Minimal Viable Product (MVP) for the whole
driverless software can be tested and easily iterated on. Therefore, the integration
process can take place earlier in the project.

Figure 3.3: Concept of a software pipeline to automatically create, test and deploy
new code of the team to the target hardware

3.4 Test Cases

Due to the fact that the new ZUR race car will only be finished towards the end of
the project, the usage of mock data is required. In order to provide a sophisticated
approximation of real-world data of the car, Gaussian noise should be added to all
measurements provided to the SLAM algorithms. Different test cases were defined
in Table 3.1, representing courses including the disciplines which will be conducted
during the races in summer. Track Acceleration and Skidpad are replications of the
original tracks at FS DC. Autocross is a self-designed track incorporating character-
istics of the autocross event at FS DC. The courses Wide and Simple 0 were designed
to provide concise and easily testable tracks.
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Name Description Track

Acceleration

The acceleration track is a
straight line with a length of
75 m from starting line to
finish line. The track is at
least 3 m wide. Cones are
placed along the track at
intervals of about 5 m.

Wide

The layout is the same as on
the acceleration track with
an increased track width of
15 meters.

Simple 0

Track with two curves and
two straight lines. The course
is 3 meters wide and the
curves have an inner
diameter of 15.25 meters

Skidpad

The skidpad track consists of
two pairs of concentric circles
in a figure-of-eight pattern.
The inner circles are 15.25
meters in diameter. 16 cones
are placed around the inside
and 13 cones are positioned
around the outside of each
outer circle. The driving
path is 3 meters wide.

Autocross

The autocross track layout is
a handling track including a
big turn with 48 meters inner
diameter, straights, hairpin
turns with a minimum of 9
meters outside diameter and
a track width ranging from 3
meters to 15 meters.

Table 3.1: Test cases

3.5 Evaluation

It is essential to evaluate the performance of the various SLAM implementations
adequately. The primary objective of the evaluation is to design and execute several
representative test scenarios to assess the performance of different SLAM algorithms
on different courses. This evaluation will involve gathering, quantifying and comparing
data from these test runs by employing a set of comprehensive metrics designed to
capture all potential sources of error.

Three major areas where discrepancies could emerge during SLAM operations were
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revealed. Firstly, the estimated position of the vehicle itself might deviate from its
actual position due to noise or inaccuracies in the sensor data or algorithmic errors.
This potential error is intrinsically connected to the second area of concern: the
estimated positions of the cones. As these positions are inferred based on the vehicle’s
perceived position and sensor readings, they are also prone to inaccuracies due to
sensor noise and computational errors. Lastly, the SLAM algorithms might either
falsely identify non-existent cones or fail to detect real ones, both of which need to be
considered in the evaluation.

In light of these potential error sources, three metrics were defined to evaluate the
performance of the SLAM implementations:

• Mean Squared Error (MSE) of car position
• MSE of cone positions
• Number of cones (not) detected
• Number of cones wrongly detected

The MSE of the car position gets calculated using the mean squared error between
the real and estimated car position of each time step.

To determine whether a cone got detected or not, a threshold is set to 1.5 meters
indicating the maximum distance the estimation can have to the correct position to
be considered correctly detected. Figure 3.4 shows possible use cases of the defined
metrics. The figure shows the estimated cone positions (slightly greyed-out cones) as
well as the correct cone positions. The green area around each real cone reflects the
1.5-meter threshold. Case A shows cones whose position got estimated too far away
from the correct position which increases the number of not detected cones. Case B
shows the standard case where a cone got estimated near the correct position. The
red line shows the error which incorporates the MSE. Case C shows multiple cones
detected in the 1.5 meters threshold. The nearest detected cone incorporates the MSE,
all other cones in the radius of the defined threshold will be added to the number of
wrongly detected cones.

Figure 3.4: Visualizations of different possible cone detections by SLAM algorithms

The use of the MSE, a respected and widely-used measurement of prediction error,
is particularly suitable for this evaluation. The MSE is sensitive to the magnitude of
errors, penalizing larger deviations more heavily than smaller ones. This characteristic
aligns well with our evaluation objectives, as more significant discrepancies in the
estimated positions, whether of the vehicle or cones, could have a negative impact on
the efficacy of trajectory planning.
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3.6 Risk Analysis

Analyzing risks is a crucial step in any project as it provides foresight and mitigation
strategies for potential problems that may arise. The risks can be broadly classified
into software integration, mechanical issues, sensor malfunctions and data discrepan-
cies.

3.6.1 Software Integration Risk

One of the primary risks pertains to the integration of the SLAM software with the
other autonomous system groups. In a situation where this integration fails before
the conclusion of this bachelor thesis, it may be challenging to rectify the issue before
the competition in August. However, it is important to note that even in such a
scenario, the defined research questions can still be answered. It is recommended to
adopt a proactive approach by scheduling regular integration checks and setting early
integration milestones to mitigate this risk.

3.6.2 Mechanical Issues

Mechanical issues with the car represent another significant risk. In the event of such
a failure, it would not be possible to perform tests with the physical car. Fortunately,
this risk would not significantly hamper the project as the main evaluation is based
on simulated data. To avoid last-minute surprises, the autonomous system should be
completely tested on the real car before the competition.

3.6.3 Sensor Malfunctions

Sensor malfunction is another risk factor that needs consideration. The inability of
the sensors to function correctly would hinder testing with the actual car. However,
similar to mechanical issues, the primary testing and evaluation for this project will be
based on simulated data, reducing the impact of this risk. Regular sensor functionality
tests should be performed to ensure they are working correctly and to identify and
rectify any issues at an early stage.

3.6.4 Data Discrepancy

A significant risk that can affect the project’s success in the competition is the discrep-
ancy between simulated and real-world data. If the simulated data used for testing
and evaluation does not accurately represent the real-world scenario, it could pose dif-
ficulties in parameterizing in the competition. Worse still, it could render the SLAM
implementation entirely ineffective. Unfortunately, this risk might only be discovered
after the thesis is completed when testing with the real car. To mitigate this risk,
the simulated data should be as representative as possible of real-world driving con-
ditions and, whenever possible, cross-verification with actual sensor data should be
performed.

3.6.5 Other Risks

Additional risks might include unexpected changes in team composition, such as key
members leaving or becoming unavailable. This can disrupt the progress and poten-
tially delay the project. To manage this risk, tasks and responsibilities should be
well-documented and distributed evenly among team members. Potential software
bugs or algorithmic issues can also pose a risk. This risk can be mitigated through
debugging, testing and code reviews.
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In conclusion, while several risks could potentially affect the success of this project,
proactive planning, regular testing and thorough review processes can help mitigate
risks. The reliance on simulated data for testing and evaluation also provides a de-
gree of flexibility and resilience against issues such as mechanical failures or sensor
malfunctions. It is important to keep a frequent exchange with the other autonomous
system groups to ease the integration for the competition.
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Chapter 4

Implementation

4.1 Overview

In order to implement an effective autonomous driving system, an environment en-
compassing both hardware and software components is necessary. This chapter aims
to delineate the core components and processes of our setup, starting from the selec-
tion of hardware elements to the establishment of a pipeline for streamlined software
development.

The hardware components deployed in our autonomous car include a Jetson Xavier
AGX and a ZED2i camera. We leverage the Robot Operating System (ROS) for
creating our software structure. The heart of our project is the implemented SLAM
algorithms. Lastly, we introduce our simulation environment, which plays an essential
role in the testing and validation of our SLAM algorithms, supporting the progressive
enhancement of our system.

4.2 Setup

In order to fulfil all the identified tasks, a proper development environment is needed.
The key components assisting to achieve the goals in this thesis will be listed in this
section.

4.2.1 Hardware

There are different hardware components plugged in the car which will be briefly
described below.
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Jetson Xavier AGX

NVIDIA provides a series of devices optimized for AI and Machine Learning (ML)
applications called NVIDIA Jetson. They run their own Tegra System on Chip (SoC)
platform using ARMv8.2 architecture. ZUR owns an NVIDIA Jetson Xavier AGX
(as can be seen in 4.1), having 32GB of memory, an NVIDIA Carmel CPU and an
NVIDIA Volta GPU containing 512 CUDA cores as well as 64 tensor cores. The
Xavier AGX is one of the most powerful devices in the Jetson family.

Figure 4.1: Jetson Xavier AGX

ZED2i

The stereo camera owned by ZUR is a ZED2i, manufactured by Stereloabs. The ZED
family is renowned in the robotics world and is used in many robotic applications.
The camera comes with many sensors such as a gyroscope, barometer, magnetometer
and temperature sensor as well as software features available using their SDK like
object detection, SLAM and positional tracking.

The camera is mounted on the rollover bar behind and above the driver’s head as
illustrated in Figure 4.2a. It is connected to the Jetson located in the driverless box
which is placed behind the driver seat. The setup can be seen in Figure 4.2.

(a) The ZED mounted on the race
car

(b) The ZED together with the Jetson in
the driverless box

Figure 4.2: The ZED2i stereo camera
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4.2.2 Docker

Deploying finished code from the different teams on the Jetson can be done in multiple
ways. Docker offers the possibility to create and test an image and as soon as its
functionality gets verified, it can be deployed to multiple machines ensuring to have the
same environment and the same libraries on every device. This functionality eliminates
most environmental problems which can possibly happen when many individuals with
different development environments want to run their code on different devices.

The Jetson was also equipped with the NVIDIA Container Runtime, enabling it to use
all CUDA and Tensor features the Jetson’s GPU offers from within containers.

4.2.3 Pipeline

As described in Section 3.3.2, a software pipeline should be set up in order to build,
test and deploy all new code. Many cloud providers offer CI/CD functionality like
software pipelines as well as standalone products to be self-hosted. Since for such a
small pipeline costs on cloud infrastructure are low and maintenance of other students
after this project will be easier, the pipeline was built on AWS with their own product
CodePipeline. Figure 4.3 shows the different stages of the pipeline.

Figure 4.3: Steps of the established AWS pipeline

The codebase of ZUR already lies on GitHub so the decision was taken to leave it
there and use GitHub in the course of the project. As soon as a branch from one of
the driverless teams gets merged into the develop branch of the ZUR repository, the
pipeline gets triggered.

In the first stage of the pipeline, the code from the GitHub repository gets cloned and
provided as an artefact for the next stage.

The Build stage runs an existing docker base image containing all libraries and software
components in order to run the code. In the container, the whole code gets built using
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the ROS2 build system colcon. In the Build stage, the pipeline builds the code on top
of a custom-created docker base image containing all necessary software and drivers
using a Dockerfile. Afterwards, the newly created docker image gets pushed to the
AWS Elastic Cloud Registry (ECR).

The test stage uses the before-created docker image to run the whole system and
runs checks whether everything works as expected. If all tests succeed, the image can
be used on the Jetson. Unfortunately, the Jetson device is not always connected to
the internet so as soon as new code is published and the tests were successful, the
Jetson has to be connected to the internet manually in order to pull the latest Docker
image.

4.2.4 Cloud Development Machine

For most people, undergraduate school is a time when financial resources are sparse.
It is therefore very understandable that individuals who want to acquire skills in the
field of computer vision cannot afford a computer running a CUDA-capable graphics
card. Therefore, the team set up a development machine on AWS using their G5g-
instances running on ARM processors which also have access to NVIDIA T4 graphics
cards. This allows the team to have reasonable resources to test the algorithms when
needed with an on-demand cost model saving costs compared to buying for example
an NVIDIA-based eGPU.

4.2.5 ROS2

As described in Section 3.2, ROS2 has to be used in the course of this project. ROS2
is an open-source framework for robotic systems. It uses publishers and subscribers
to enable communication between different components called nodes. Messages can
be customized and published to so-called topics which can afterwards be subscribed
to by other nodes. The various subteams of the ZUR driverless team all contribute to
the software stack by adding a ROS2 node.

Stereolabs provides a ROS2 node for their ZED2i camera which publishes all config-
ured data like the camera images, the depth map or the position of the camera.

4.3 Software Design

To be able to test different algorithms and change subparts we utilized abstraction in
the software implementation. The general structure is illustrated in Figure 4.4.

A central controller initializes the ROS2 node and loads the configuration file. Dur-
ing initialization, the controller creates ROS2 subscribers for all topics needed like
perception or the position of the car gathered from the ZED camera.

All gathered sensor data gets fed into the Sensor Model and with each perception
message (meaning that the perception node has processed one camera image and de-
tected all cones on it), the sensor data gets aligned to the timestamp of the perception
message using the Synced Sensor Model.

After syncing the sensor data, the controller calls the update function of the configured
SLAM algorithm which then performs its prediction and correction step as described
in Section 2.3. For the prediction step, the outsourced Motion Model is used which
predicts the position of the car based on the last known position and all available
sensor data.
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After the SLAM update step, the controller updates the Map Model holding the latest
state of the map and also publishing it after an update, which can then be used by
the trajectory node.

Figure 4.4: Architecture of the codebase

4.4 Simultaneous Localization and Mapping

The key software artefact of this project is the implemented SLAM algorithms. They
will be described in more detail in the following sections.

4.4.1 Evaluation

The determination to utilize two specific SLAM algorithms, EKF SLAM and Fast-
SLAM, resulted from an evaluation of current SLAM methodologies, as outlined in
section 2.5.

The choice of EKF SLAM was driven by several compelling reasons. Firstly, its prior
successful integration into multiple autonomous vehicles underscores its practical ef-
ficacy. Additionally, EKF SLAM’s popularity in the field of SLAM solutions has led
to a vast array of resources, textbooks and online material that expedite the imple-
mentation process. According to the literature, it is a robust and efficient algorithm,
performing well under different environments and noise levels, further justifying its
selection.

FastSLAM was the other chosen algorithm, inspired by its successful applications
in various autonomous vehicles. Like EKF SLAM, FastSLAM is a prevalent SLAM
algorithm, facilitating its implementation due to the abundance of supporting docu-
mentation. Furthermore, FastSLAM is recognized for its efficiency and scalability in
handling larger environments, making it an attractive choice.

Despite GraphSLAM’s initial consideration, the requirement for significantly higher
computational resources made it less viable. Existing research indicated that Graph-
SLAM’s computational demand is substantially greater than that of FastSLAM [31].
Based on these considerations, it was determined that our current hardware setup
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might struggle to process GraphSLAM effectively, leading to the decision to exclude
it from our implementation plans.

4.4.2 Sensor Input

As described in Section 2.3, SLAM algorithms use input from controls like steering
or pedals to predict the next position. Unfortunately, the ZUR race car from 2022
did not have any data of the controls which could have been consumed by the SLAM
algorithms during development. On the other hand, the ZED camera provides an
established positional tracking feature that returns the pose of the camera (position
and orientation) relative to the starting point. Given these circumstances, the deci-
sion was taken to use the ZED pose estimation as the prediction of the current real
pose.

Additionally, various sensors could be used in SLAM algorithms to improve the pre-
diction of the current pose. Apart from the ZED stereo camera, ZUR is in possession
of a GNSS as well as a LiDAR sensor. Based on feedback from team members and to
prioritize a working MVP, the focus was set on the ZED stereo camera, leaving the
GNSS and LiDAR sensor aside for future improvements of the system.

4.4.3 Sensor synchronization

Since sensor data gets published at different frequencies, sensor data needs to be
synchronized. The SLAM algorithm in use runs every time a new observation of
landmarks has been done, the trigger is a message sent by the perception node. Before
running the SLAM algorithms, the controller generates a datapoint containing an
estimation of all sensor values at the timestamp of the image used by the perception
node. In Figure 4.4 the connection between the two sensor models as part of the
SLAM node and the perception node can be seen.

The estimation of the sensor value at a given timestamp of the camera image tperception
is done by creating a linear function between the two sensor measurements of vsensor
before and after timestamp tperception and calculation the value of the function at
tperception, which can be seen in Figure 4.5a. If no sensor measurement newer than
tperception exists, the latest measurement of vsensor is used, as can be seen in Figure
4.5b.

(a) Estimation when more recent sensor measure-
ment is available

(b) Estimation when no more recent sensor mea-
surement is available

Figure 4.5: Estimation of sensor value based on tperception

This methodology is a very rudimentary abstraction of the problem but has shown so
far to be a good trade-off between computational effort and accuracy. A possibility to
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improve if no newer measurement is available (as shown in Figure 4.5b) would be to
use linear regression to create an estimation of the sensor value. Since this approach
would be more resource-consuming and the sensor synchronization is performed after
each perception update, the decision was made to keep the estimation as simple to
calculate for the processor as possible.

4.4.4 Cone correspondence

After each prediction step, each SLAM algorithm tries to correct its map estimation
based on the observed cones. During this process, a significant task is to determine
whether an observed cone is one already seen before or one seen for the first time.
Instead of calculating the Euclidian distance between two cones not considering the
distribution of cones, the Mahalanobis distance (further illuminated in Section 2.3.4)
was used.

The code calculates the Mahalanobis distance to all known cones. The observed cone
is matched with the already known cone with the smallest distance to it, given that
the distance is smaller than a configured threshold. If no distance is smaller than the
threshold, the observed cone is considered a new cone.

4.4.5 EKF SLAM

The EKF SLAM algorithm is implemented according to the mathematical founda-
tion depicted in section 2.2.5. The current implementation consists of the following
functions:

• Initialization: Sets up the required models for the map, sensor data and motion
as well as the logging functionality. Also initializes the state vector µ and the
covariance matrix E.

• Prediction: Gets triggered by a perception message providing a list of detected
cones zt including their relative position and colour. Approximates the state µt

of the car based on all available data points from the mocked ZED positional
data given the timestamp of the perception message.

• Correction: Gets the predicted state µt and checks all received cones zt if they
are new or already seen using the Mahalanobis distance. Based on the result of
this check and the predicted state µt, the state µt and the covariance matrix E
get updated.

• Publishing: Broadcasts messages for the trajectory node and visualization
tools using the map model.

The source code of the algorithm can be found in Appendix ??.

4.4.6 FastSLAM

The FastSLAM algorithm uses a particle filter to represent the car’s posterior belief
about its pose and a set of landmarks. In our case, the landmarks are the cones of
the tracks. Each particle in the filter is equipped with an individual map of cones.
Our implementation consists of several methods representing different aspects of the
FastSLAM algorithm:

• Initialization: Includes setting up the configuration parameters, sensor model,
motion model, map model and a logger for debugging. The method also ini-
tializes a set of particles, with each particle representing a possible state of the
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robot, which includes the car’s position and orientation (yaw) as well as the
position of all cones.

• Prediction: Each particle’s state is predicted based on the car’s motion model.
The motion model simulates the movement of each particle according to the
latest inputs and updates the particle’s state accordingly.

• Observation Update: Uses the latest sensor observations to update the state
of each particle. The method checks whether the observed cones have been seen
before and, if so, updates their states. If a landmark has not been seen before, it
is added as a new landmark. The weight of each particle is also updated based
on how well the particle’s predicted observations match the actual observations.

• Resampling: After updating all particles based on the observations, the re-
sampling method is invoked to resample the particles. During resampling, a
new set of particles is drawn from the current set. Each particle’s probability
of being chosen is proportional to its weight, which encourages diversity in the
particle set and allows the algorithm to focus on the most likely states of the
car.

• Final State Estimation: Estimates the final state of the car and the map by
computing a weighted average of the states of all particles. The weights of the
particles are normalized to ensure they sum up to one.

A number of helper methods are also included in the implementation to provide nec-
essary computations for operations like angle normalization, weight normalization,
coordinate transformations, landmark addition, landmark update, cone identification,
weight computation, computation of Jacobians and the application of the Kalman
Filter update.

The source code of the algorithm can be found in Appendix ??.
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4.4.7 Simulator

To thoroughly test and validate our SLAM algorithms, we utilized a simulation
environment. This environment is composed of two main classes: DrawMap and
DriveMap. The DrawMap class is responsible for generating different track config-
urations, providing control over the complexity and variability of the environments
where the autonomous car operates. Conversely, the DriveMap class simulates the
autonomous car’s movement and sensor readings on a given track. Using our custom
simulator, we established a comprehensive testing framework that allowed iterative
refinement and validation of our SLAM implementation in a safe, cost-effective and
time-efficient manner.

(a) In the process of creating a map (b) Ready to race the track

Figure 4.6: Both simulator tools in action

Draw Map

The DrawMap class is used for constructing various racing tracks as seen in Figure
4.6a. It enables defining the placement of cones and the car’s starting point interac-
tively.

DrawMap initializes with lists corresponding to the four types of cones and the car’s
starting position. The startDrawLoop method launches the drawing loop, allowing
the user to place cones and the car on the map by clicking. The user can change the
mode (which object to place) by pressing ’q’. An onclick event, defined in the class,
adds the clicked coordinates to the appropriate list based on the current mode. The
draw method updates the map on the screen by plotting the points in different colours
and shapes, depending on whether they represent a cone or a car and the type of cone
they represent. The map is then saved into a YAML file.

Drive Map

The DriveMap class simulates the driving of a vehicle within a predefined map and
incorporates the realistic physics of the car’s motion. The car in this script is modelled
using a simple bicycle model, a simplified representation of a car that effectively
describes its motion. It represents a basic simulation in a controlled environment
where the map and the car’s perception of cones in the environment are defined in a
YAML file. In Figure 4.6b the tool is illustrated.

The class reads a configuration file that includes parameters such as the perception
angle of the car, the radius of its wheels, the frame rate, the car’s wheelbase and the
distance of the camera from the car’s rear wheel. The car’s operation is primarily
controlled by the writeDataLoop() method. In this method, a keyboard listener is



44 4.4. SIMULTANEOUS LOCALIZATION AND MAPPING

set up to accept specific key commands to control the car’s acceleration and steering
angle. The car is continuously simulated in a while loop, which updates the car’s
state, plots the car’s state and the cones it perceives on a map and writes the state
of various aspects of the car, including its GNSS position, Inertial Measurement Unit
(IMU) data, perceived cone data, steering angle and Wheel Speed Sensor (WSS) data,
into various text files. The perceiveCones() method calculates the relative positions
of cones that the car can perceive based on its current position and orientation. This
method checks whether a cone lies within the car’s field of view.

4.4.8 Evaluator

The Evaluator script is designed to compare and visualize the results of a SLAM
algorithm by comparing the real position of cones on a map against the calculated
positions. The coneRadius attribute is set, defining the search radius for matching
cones. The class logs various statistics about the cone data, including the total number
of cones, the mean error and the number of offside cones. It also calculates the number
of correct and offside cones respectively. The final plot with the real and calculated
cones is saved as a PNG file in the specified output directory.

4.4.9 Interfaces

In order to communicate with the other driverless groups, communication interfaces
are necessary. ROS2 offers the possibility to define custom messages which can later be
published and consumed by nodes. Since the trajectory group requires specific update
messages for cones in order to adjust the optimal path calculation, the message had
to be designed accordingly. Therefore, a message was defined containing an id, the
x and y coordinates, the type of the cone (blue cone, yellow cone, small red cone,
large red cone) as well as an update flag indicating if a cone is new or already existing
but its position got corrected. To reduce resource consumption, a threshold can be
defined allowing only cones whose position change is greater than the threshold to be
published using an update message.
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Chapter 5

Results

5.1 Source Code

In the following sections, we will present the obtained results. All used code, as well as
the raw data output from the different test cases, can be found on the ZHAW GitHub
repository1. Since the repository is private, the file tree of the relevant parts of the
system can be found in Appendix ?? as well as the implementation of EKFSLAM
(Appendix ??) and FastSLAM (Appendix ??).

5.2 Test Cases

Both implementations were run on the defined test cases with the same path and
the same collected information. The following section shows the results of these test
runs.

The threshold for cones to be considered detected was set to 0.5 meters and is displayed
as a circle around the real cone position in the figures below. The real cone positions
are displayed with a dot and the estimates of the SLAM algorithms with a cross. The
standard deviation of the Gaussian noise for the cone detections was set to 10 cm for
the range and 0.1 rad for the bearing.

5.2.1 Acceleration

EKF

Figure 5.1 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.1 shows the metrics gathered during this test run.

Figure 5.1: Evaluation of test case "Acceleration" using EKFSLAM

1https://github.zhaw.ch/FSZHAW/AutonomousSystem_ROS

https://github.zhaw.ch/FSZHAW/AutonomousSystem_ROS
https://github.zhaw.ch/FSZHAW/AutonomousSystem_ROS
https://github.zhaw.ch/FSZHAW/AutonomousSystem_ROS
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 14 14
Right cones (yellow) 14 14
Large red cones 4 4
Small red cones 14 16

Cone in radius

Left cones (blue) 14 14 0.0311
Right cones (yellow) 14 14 0.0476
Large red cones 4 4 0.0188
Small red cones 14 16 0.0552
Mean MSE (weighted) 0.0424

Off Side Calculated

Off side cones

Left cones (blue) 0 14
Right cones (yellow) 0 14
Large red cones 0 4
Small red cones 0 14

Table 5.1: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers. On the other
hand, in the last column of small red cones located close to each other, only two of
the four existing cones got detected which causes corresponding entries in Table 5.1
in the row "Cones detected".

FastSLAM

Figure 5.2 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.2 shows the metrics gathered during this test run.

Figure 5.2: Evaluation of test case "Acceleration" using EKFSLAM

Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 14 14
Right cones (yellow) 14 14
Large red cones 4 4
Small red cones 14 16

Cone in radius

Left cones (blue) 14 14 0.0056
Right cones (yellow) 14 14 0.0233
Large red cones 4 4 0.0099
Small red cones 14 16 0.0729
Mean MSE (weighted) 0.0318

Off Side Calculated

Off side cones

Left cones (blue) 0 14
Right cones (yellow) 0 14
Large red cones 0 4
Small red cones 0 14

Table 5.2: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers. On the other
hand, in the last column of small red cones located close to each other, only two of
the four existing cones got detected which causes corresponding entries in Table 5.2
in the row "Cones detected".
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5.2.2 Wide

EKF

Figure 5.3 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.3 shows the metrics gathered during this test run.

Figure 5.3: Evaluation of test case "Wide" using EKFSLAM

Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 14 14
Right cones (yellow) 14 14
Large red cones 4 4
Small red cones 14 14

Cone in radius

Left cones (blue) 14 14 0.0243
Right cones (yellow) 14 14 0.0186
Large red cones 4 4 0.0201
Small red cones 14 14 0.0294
Mean MSE (weighted) 0.0237

Off Side Calculated

Off side cones

Left cones (blue) 0 14
Right cones (yellow) 0 14
Large red cones 0 4
Small red cones 0 14

Table 5.3: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers and all cones
got detected within the defined threshold.

FastSLAM

Figure 5.4 shows the output graph of the evaluator displaying the estimated and real
cone positions as well as the radius in which a cone would get considered detected.
Table 5.4 shows the metrics gathered during this test run.

Figure 5.4: Evaluation of test case "Wide" using FastSLAM
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 14 14
Right cones (yellow) 14 14
Large red cones 4 4
Small red cones 14 14

Cone in radius

Left cones (blue) 14 14 0.0478
Right cones (yellow) 14 14 0.0266
Large red cones 4 4 0.0039
Small red cones 14 14 0.0239
Mean MSE (weighted) 0.0302

Off Side Calculated

Off side cones

Left cones (blue) 0 14
Right cones (yellow) 0 14
Large red cones 0 4
Small red cones 0 14

Table 5.4: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers and all cones
got detected within the defined threshold.

5.2.3 Simple 0

EKF

Figure 5.5 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.5 shows the metrics gathered during this test run.

Figure 5.5: Evaluation of test case "Simple 0" using EKFSLAM
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 26 25
Right cones (yellow) 29 29
Large red cones 4 4
Small red cones 0 0

Cone in radius

Left cones (blue) 25 25 0.0333
Right cones (yellow) 27 29 0.1032
Large red cones 4 4 0.0217
Small red cones 0 0 0.0000
Mean MSE (weighted) 0.0675

Off Side Calculated

Off side cones

Left cones (blue) 1 26
Right cones (yellow) 2 29
Large red cones 0 4
Small red cones 0 0

Table 5.5: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers, apart from
three cones (one blue, two yellow ones) in the lower-left and upper-right corner of
the track. The cones are slightly outside of the defined threshold which causes corre-
sponding entries in Table 5.5 in the row "Off side cones".

FastSLAM

Figure 5.6 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.6 shows the metrics gathered during this test run.

Figure 5.6: Evaluation of test case "Simple 0" using FastSLAM
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 25 25
Right cones (yellow) 29 29
Large red cones 4 4
Small red cones 0 0

Cone in radius

Left cones (blue) 25 25 0.0101
Right cones (yellow) 29 29 0.0096
Large red cones 4 4 0.0055
Small red cones 0 0 0.0000
Mean MSE (weighted) 0.0096

Off Side Calculated

Off side cones

Left cones (blue) 0 25
Right cones (yellow) 0 29
Large red cones 0 4
Small red cones 0 0

Table 5.6: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers and all cones
got detected within the defined threshold.

5.2.4 Skidpad

EKF

Figure 5.7 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.7 shows the metrics gathered during this test run.

Figure 5.7: Evaluation of test case "Skidpad" using EKFSLAM
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 30 29
Right cones (yellow) 29 29
Large red cones 4 4
Small red cones 14 14

Cone in radius

Left cones (blue) 29 29 0.0511
Right cones (yellow) 29 29 0.0536
Large red cones 4 4 0.0113
Small red cones 14 14 0.0162
Mean MSE (weighted) 0.0435

Off Side Calculated

Off side cones

Left cones (blue) 1 30
Right cones (yellow) 0 29
Large red cones 0 4
Small red cones 0 14

Table 5.7: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers. One blue
cone got detected twice in the center of the track between the two large red cones,
which causes corresponding entries in Table 5.7 in the row "Cones detected" and "Off
side cones".

FastSLAM

Figure 5.8 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.8 shows the metrics gathered during this test run.

Figure 5.8: Evaluation of test case "Skidpad" using FastSLAM
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 29 29
Right cones (yellow) 29 29
Large red cones 4 4
Small red cones 13 14

Cone in radius

Left cones (blue) 29 29 0.0033
Right cones (yellow) 29 29 0.0026
Large red cones 4 4 0.0004
Small red cones 13 14 0.0331
Mean MSE (weighted) 0.0084

Off Side Calculated

Off side cones

Left cones (blue) 0 29
Right cones (yellow) 0 29
Large red cones 0 4
Small red cones 0 13

Table 5.8: Summary of test case metrics

It can be seen, that the test run did not produce any significant outliers. On the other
hand, in the last column of small red cones located close to each other, only three of
the four existing cones got detected which causes corresponding entries in Table 5.8
in the row "Cones detected".

5.2.5 Autocross

EKF

Figure 5.9 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.9 shows the metrics gathered during this test run.
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Figure 5.9: Evaluation of test case "Autocross" using EKFSLAM

Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 105 105
Right cones (yellow) 118 114
Large red cones 4 4
Small red cones 0 0

Cone in radius

Left cones (blue) 103 105 0.0353
Right cones (yellow) 111 114 0.0648
Large red cones 4 4 0.0027
Small red cones 0 0 0.0000
Mean MSE (weighted) 0.0497

Off Side Calculated

Off side cones

Left cones (blue) 3 105
Right cones (yellow) 14 118
Large red cones 0 4
Small red cones 0 0

Table 5.9: Summary of test case metrics

It can be seen, that the test run did produce a reasonable amount of outliers, from
which three are blue and 14 yellow. The blue outliers are located in the curvy section
in the lower-left of the track and one in the middle region. The yellow outliers are
spread over the course, five in the first section (large curve), two in the upper-left area
and the remaining seven in the curvy section in the lower-left of the track.

Multiple cones got detected twice in the curvy section in the lower-left of the track,
which causes corresponding entries in Table 5.9 in the row "Cones detected" and "Off
side cones".
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FastSLAM

Figure 5.10 shows the output graph of the evaluator displaying the estimated (cross)
and real (dot) cone positions as well as the radius in which a cone would get considered
detected. Table 5.10 shows the metrics gathered during this test run.

Figure 5.10: Evaluation of test case "Autocross" using FastSLAM
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Metric Type Calculated Correct MSE

Cones detected

Left cones (blue) 107 105
Right cones (yellow) 115 114
Large red cones 4 4
Small red cones 0 0

Cone in radius

Left cones (blue) 103 105 0.0056
Right cones (yellow) 114 114 0.0030
Large red cones 4 4 0.0011
Small red cones 0 0 0.0000
Mean MSE (weighted) 0.0042

Off Side Calculated

Off side cones

Left cones (blue) 4 107
Right cones (yellow) 1 115
Large red cones 0 4
Small red cones 0 0

Table 5.10: Summary of test case metrics

It can be seen, that the test run did produce a small number of outliers, from which
four are blue and one is yellow. All outliers are located in the curvy section in the
lower left of the track. The outliers cause corresponding entries in Table 5.10 in the
row "Cones detected" and "Off side cones".

5.2.6 Summary

Table 5.11 shows a summary of all metrics collected during the test cases.

Test Case Algorithm Detected In radius Off Side Mean MSE

Acceleration EKFSLAM 36 / 38 36 / 38 0 0.0424
FastSLAM 36 / 38 36 / 38 0 0.0318

Wide EKFSLAM 36 / 36 36 / 36 0 0.0237
FastSLAM 36 / 36 36 / 36 0 0.0302

Simple 0 EKFSLAM 59 / 58 56 / 58 3 0.0675
FastSLAM 58 / 58 58 / 38 0 0.0096

Skidpad EKFSLAM 77 / 76 76 / 76 1 0.0435
FastSLAM 75 / 76 75 / 76 0 0.0084

Autocross EKFSLAM 227 / 223 218 / 223 17 0.0497
FastSLAM 226 / 223 221 / 223 5 0.0042

Table 5.11: Summary of metrics of all test cases

Both algorithms showed similar results in the straight tracks "Acceleration" and
"Wide". Both algorithms seem to struggle with cones standing close to each other,
as can be seen in the test cases having a line of small red cones at the end of the
track.

The Mean MSE metric shows, that FastSLAM detects cones with a significantly higher
accuracy while having fewer Off Side detections on longer tracks consisting of a large
number of cones, namely "Simple 0", "Skidpad" and "Autocross".

5.3 Time Efficiency Analysis

The computational duration required for executing the update step of each algorithm
was measured on two distinct tracks: simple0 and autocross.
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(a) Computation time for update steps on simple0(b) Computation time for update steps on au-
tocross

Figure 5.11: Execution duration comparison between EKF SLAM and FastSLAM
during update step

In Figure 5.11, the computational duration for each update step is depicted graphi-
cally. In both cases, the occurrence of each perception triggers an algorithm update
step. For the simple0 track in Figure 5.11a, a total of 98 perceptions were processed
by both algorithms, while for the autocross track seen in Figure 5.11b, the algorithms
processed 486 perceptions. At perception 319 four cones were sent by the perception
node and EKF SLAM processed the information in 0.19 seconds while in percep-
tion 335 the perception node send 25 cones and EKF SLAM needed 1.55 seconds.
FastSLAM needed 0.03 seconds in perception 319 and 0.06 in perception 335.
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Chapter 6

Discussion

6.1 Overview

In this chapter, an opinion about the reached results is provided. A lot has been
achieved in this 17-week project, but there are various imperfections we would like to
address. Because of the limited time available, we focused on the key components to
achieve a solid MVP to compete in this year’s FS DC.

6.2 SLAM algorithms

6.2.1 Control and Sensor Input

As described in section 2.3, SLAM algorithms primarily use input from the car con-
trols to estimate the position of the car which can be improved by additionally using
measurements from other sensors like IMU, GNSS or WSS. As described in section
4.4.2, the current implementation only uses the ZED positional tracking feature to
estimate the current position. Using the controls of the car and fusing multiple avail-
able sensor measurements may improve the estimation and therefore the whole SLAM
implementation.

6.2.2 EKF SLAM

EKF SLAM has shown to be a simple and easy-to-implement SLAM algorithm. On
short tracks the performance was sufficient. Whereas on Autocross the performance
was inadequate. Due to computational inefficiencies as illustrated in Section 5.3, the
algorithm did not manage to calculate the course in a time that would be applicable
in a real race. As described in the background in Section 2.2.5, this is due to its
mathematical principle updating the covariance matrix of all landmarks against each
other during each update run and clearly showing EKF SLAMs limits.

6.2.3 FastSLAM

FastSLAM performed on all tracks satisfactorily and in an efficiency that is viable in
a race setting as computational effort stays constant over time. Illustrated in Section
5.3 the time needed for each update step does not rise with larger tracks. The whole
autonomous system with its various demanding software systems needs a high amount
of computational resources. Therefore a time-efficient implementation of SLAM is
desirable. Regarding accuracy the calculated MSE were on three of five tracks lower
than the introduced sensor noise. This represents the capabilities of particle filters in
this use case.
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6.2.4 Narrow Cones

Both algorithms struggled to discern cones standing close to each. For example in the
acceleration or Skidpad track at the end of the course, the four cones are one meter
apart. As seen in Section 5.2 these cones are fused together and detected as one cone.
However, setting the SLAM parameters to values allowing the detection of all narrow
cones can cause situations where one cone gets detected twice because of sensor noise.
This would cause problems in other situations. Detecting two of the four cones at the
end of the track is not critical, given that there is no specific need to detect all these
cones since the car has to stop in these sections.

6.2.5 Uncertainty Parameters

The results presented results on the test courses with Gaussian error. The SLAM
parameters for uncertainty were adjusted accordingly to fit this type of data best.
However, we are aware that using real sensor data from the race car, the parameters
certainly have to be tuned to fit the uncertainty of the used sensors best which will
cause additional effort before we can compete in FS DC.

6.3 Sensor synchronization

The current implementation of the sensor synchronization, as described in section
4.4.3, estimates the sensor value of a given point in time, especially for cases where only
older measurements are available, legitimating it by saving computational resources.
The system may be improved by slightly optimizing the estimation function for this
case while continuously observing the impact on resource consumption. Particularly
when using rarely updating sensors such as GNSS, usually updating once per second,
the current estimation function will most probably affect the system negatively in a
manner which enforces an improvement of the estimation function.

6.4 Simulator

An efficient and straightforward simulator was implemented using a 2D bicycle model,
which has been valuable for generating data. However, despite the success and utility
of the current simulator, the potential benefits of utilizing a more advanced tool
were recognized. The IAMP has developed a sophisticated simulator, offering an
appealing alternative due to its 3D capabilities and realistic physics. The integration
of such features could provide a more comprehensive, realistic, and nuanced testing
environment for our algorithms, thereby contributing to the optimization of the whole
autonomous driving system.

6.5 Metrics

To discuss the second research question of the thesis, defined in section 1.4, the defined
metrics have to be evaluated. This is conducted visually by determining whether the
resulting metric values of a test case also match the visual quality of the result.

Reporting the number of cones estimated within a defined radius around the correct
position has proved to be helpful in quickly seeing the general performance of a test
run.

Using the MSE as a metric to quantify the quality of estimated cone positions per-
forms satisfactorily. However, during the test iterations, it became clear that cones
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estimated too far from the course will negatively impact trajectory planning more
than estimations too far away from the course. This is due to the fact that cones
in the course narrow down the available space for the car to pass possibly leading
to enforced evasion maneuvers, whereas cones away from the course do not require
adjustments in the trajectory. Therefore, a metric considering this fact by punishing
cone error in the direction of the course more than error away from the course is
worthwhile.

The last metric numbering the off-side cones compared to all detected cones are gen-
erally feasible. However, testing showed that cones not detected affect trajectory
planning less than cones detected twice for similar reasons as mentioned above. The
trajectory can be left unchanged missing one cone, whereas additional cones can af-
fect trajectory planning. This leads to the conclusion, that the metric is also to be
improved to meet this restriction.

While on all test cases including Autocross, the resulting metrics were sufficient re-
gardless of the time needed for the update steps of each Algorithm. It is crucial for
a race to have live information on the cones ahead while driving. This is not repre-
sented in the current metrics. An additional metric that represents the live aspect of
the algorithms is therefore required.
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Chapter 7

Conclusion and Outlook

During this project, a reliable framework able to automatically evaluate the SLAM
algorithm used with self-designed test cases has been created. The high level of modu-
larity allows easy integration of new SLAM algorithms as well as automated evaluation
using test cases custom created by the developed simulator. Two promising SLAM
algorithms were identified to be suitable and implemented for the given use case.
Multiple metrics were defined and showed reliable results correlating with visual as-
sessments. The constructed test cases showed, that the algorithms deliver solid results
with incorrect detections only appearing rarely on long courses. FastSLAM showed
reliable results with constant consumption of computational resources, whereas EKF
SLAM required an increasing amount of processor time during the course, negatively
impacting the performance on long courses. Given these insights, we decided to focus
on improving FastSLAM in order to verify its performance on the real car with real
sensor data to finally use it later this year during the FS DC. All in all, it can be said
that a considerable amount of value was added to the driverless system of ZUR, pro-
viding together with the scientific results of this thesis a solid foundation for further
projects in this highly interesting field.

We are deeply grateful for the opportunity to engage in such an interesting project
and feel blissful for all the lessons learned.

After all, we identified plenty of possibilities to improve in the context of the im-
plementation as well as the thesis itself during the course of this project. The most
significant topics are set out in the following list:

• Conduct a questionnaire with other FS teams about their implementations

• Use controls and additional sensor data from the car

• Implement GraphSLAM to evaluate its performance against FastSLAM

• Integrate the simulation software developed by IAMP

• Keep an eye on end-to-end deep learning approaches

• Introduce additional metrics and evaluate the current solutions
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Appendix A

Project Management

Table A.1 gives a rough overview of the defined milestones and their due dates.

Milestone Due date Description

MS 1 02.03.23 Software pipeline takes code from team repository
and creates running image for target hardware

MS 2 13.04.23
Minimal viable product is able to process sensor
data and produce a map that can be used by the
trajectory team

MS 3 20.04.23 MVP can be automatically evaluated on defined
test cases and defined metrics

MS 4 11.05.23 Initial solution is improved and alternatives are
implemented

MS 5 18.05.23 All implementations are evaluated in defined test
cases and defined metrics

MS 5 01.06.23 The report is finished

Table A.1: Defined milestones and due dates of the project

It was also agreed that over the course of the project, regular meetings would be held
weekly to update the supervisors about the status and discuss problems and possible
remedial actions.
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