
Information and Organization 33 (2023) 100474

Available online 14 July 2023
1471-7727/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Integrating development and operations teams: A control
approach for DevOps

Anna Wiedemann a,*, Manuel Wiesche b, Heiko Gewald c, Helmut Krcmar d

a Zurich University of Applied Sciences, Theaterstrasse 17, 8401 Winterthur, Switzerland
b Technical University of Dortmund, August-Schmidt-Straße 1, 44227 Dortmund, Germany
c Neu-Ulm University of Applied Sciences, Wileystr. 1, 89231 Neu-Ulm, Germany
d Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany

A R T I C L E I N F O

Keywords:
DevOps
Control theory
Internal IT teams
Case study
Product management
Tensions

A B S T R A C T

Information systems (IS) literature has predominantly studied IS project control with a focus on
software development projects. However, by virtue of digital transformation, an increasing
number of organizations are implementing cross-functional teams, combining software devel-
opment with software operations tasks. The goal is to react quickly to the ever-changing market
requirements.

The DevOps concept aims to effectively orchestrate development and operations activities and
smoothly manage tensions within teams, resulting from the heterogeneous composition of skills,
responsibilities, and working styles.

In contrast to the predominant project management view of control of prior research, which
focuses on software development, this study investigates a different perspective: focusing on
exerting control in DevOps teams and simultaneously navigating tensions between software
development and operations. Utilizing an inductive theory-building approach, we first identify
the four tensions discussed in prior literature—namely, goal conflict, method discomfort, decision
rights, and time rhythm—and then empirically derive corresponding resolutions.

Integrating our findings, we present an empirically derived model that can serve as a DevOps
control approach for navigating the tensions between development and operations teams. This
model extends our theoretical knowledge about control in DevOps teams and serves to inform IT
practitioners, helping them successfully implement and manage DevOps teams.

1. Introduction

Governance in software development project management remains a key concern of information technology (IT) executives and
CIOs (Cram et al., 2016a; Gkeredakis & Constantinides, 2019) and has also motivated research on approaches to managing control and
collaboration for governing organizational transformation (Agarwal et al., 2022). An increasing number of organizations are imple-
menting agile software delivery teams to manage the software development process and improve their ability to quickly respond to
changing customer demands (Dönmez et al., 2016). Although agile methods are commonly applied to software development projects,
the operational aspects of software delivery (such as deploying new software features and continuously delivering stable software in

* Corresponding author.
E-mail addresses: anna.wiedemann@zhaw.ch (A. Wiedemann), manuel.wiesche@tu-dortmund.de (M. Wiesche), heiko.gewald@hs-neu-ulm.de

(H. Gewald), helmut.krcmar@tum.de (H. Krcmar).

Contents lists available at ScienceDirect

Information and Organization

journal homepage: www.elsevier.com/locate/infoandorg

https://doi.org/10.1016/j.infoandorg.2023.100474
Received 2 January 2019; Received in revised form 24 May 2023; Accepted 1 July 2023

mailto:anna.wiedemann@zhaw.ch
mailto:manuel.wiesche@tu-dortmund.de
mailto:heiko.gewald@hs-neu-ulm.de
mailto:helmut.krcmar@tum.de
www.sciencedirect.com/science/journal/14717727
https://www.elsevier.com/locate/infoandorg
https://doi.org/10.1016/j.infoandorg.2023.100474
https://doi.org/10.1016/j.infoandorg.2023.100474
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infoandorg.2023.100474&domain=pdf
https://doi.org/10.1016/j.infoandorg.2023.100474
http://creativecommons.org/licenses/by/4.0/

Information and Organization 33 (2023) 100474

2

production environments) are often incompatible with agile working methods (Hemon-Hildgen et al., 2020). To overcome this
deficiency, organizations are beginning to implement cross-functional, “DevOps” (i.e., development and operations) teams. The aim is
to achieve the best of both worlds: agile response to constantly changing requirements and stability in software production. Achieving
this challenging goal could reduce response times for software delivery (Fitzgerald and Stol, 2017; Rodríguez et al., 2017) and improve
customer satisfaction (Wiedemann et al., 2019).

Previous studies have investigated the performance of teams by measuring project success based on how well they achieve time-
and budget-related objectives (Choudhury & Sabherwal, 2003; Cram & Newell, 2016). However, this approach is less appropriate in
the software delivery lifecycle, where a significant portion of the budget and work effort is spent on post-implementation processes
such as operations (Banker et al., 1998; Edberg et al., 2012; Stachour & Collier-Brown, 2009). The IT function within an organization
typically strives to achieve customer satisfaction through rapid code deployments and stable software operations. Supporting these
high-level goals involves both development and operations functions in terms of functional goals, priorities, and practices. Whereas the
key contribution of software development is to quickly provide new functionalities, software operations teams deliver the highest
value by ensuring stable software operations for key systems. Attempting to achieve these opposing functional goals (speed vs. sta-
bility) in an internal cross-functional team is likely to create tensions (Onita & Dhaliwal, 2011; Shaft & Vessey, 2006). Research and
practice do not yet fully understand how and why exactly these tensions occur and lack guidance on how to effectively navigate them.

Many scholars have applied control theory to explain the process of managing project teams (Kirsch, 1997; Maruping et al., 2009).
In addition to demonstrating a strong focus on control in the project context, extant research has shown that combining different
project control styles can resolve tensions—e.g., balancing bureaucratic and collaborative management styles (Gregory & Keil, 2014)
supports ambidexterity between exploration and exploitation (Wiener et al., 2016). While the focus on control in the general project
context and in software development project management has led to valuable contributions to research and practice, few studies have
applied control theory in other IS-related contexts (Wiener et al., 2016). As a step toward filling this research gap, we identify and
develop control mechanisms that can help cross-functional teams navigate and manage the complex interrelationships between
development and operations. In this study, first, we describe the tensions identified in the existing research on control theory, software
development projects, and software operations. Second, by conducting a qualitative study of DevOps team implementation as an
empirical phenomenon (Fitzgerald & Stol, 2017; Sebastian et al., 2017), we identify and further develop control mechanisms that can
help IT managers and DevOps teams to navigate these tensions. These efforts are guided by two research questions:

RQ1. What are the major tensions that emerge when development and operations teams are combined?

RQ2. What control mechanisms can successfully navigate the tensions in DevOps teams?

To answer our first research question, we introduce the concept of DevOps and explain the insights derived from prior research on
development and operations control. To answer our second research question, we take a grounded theory approach (Gioia et al., 2013;
Glaser & Strauss, 1967) to derive control mechanisms as aggregated dimensions of cross-functional DevOps teams that can be applied
to resolve tensions between development and operations work. We conclude the paper by discussing the practical implications of our
DevOps control model for IT managers and DevOps teams and by identifying the limitations of our study and suggesting avenues for
further research.

2. Background literature

In this section, we introduce the DevOps concept and present its theoretical underpinnings. We then discuss IS project control, with
a particular focus on software development projects (Wiener et al., 2016) and review IS operations literature e.g., Cram et al. (2016a).
Based on our review, we identify tensions that may result when development and operational goals, priorities, and practices are
combined.

2.1. The DevOps concept

The term DevOps dates back to 2009 (Debois, 2011) and signifies the integration of development and operations tasks into one
team. Traditionally, organizations integrate DevOps teams in an attempt to achieve the continuous delivery of software (Fitzgerald &
Stol, 2017). The market research firm Gartner estimates that around 90% of organizations optimize their customer value through
implementing DevOps (Haight & Spafford, 2022).

DevOps is defined as a cultural and technological approach to integrating the tasks, knowledge, and skills involved in planning,
building, and running activities within a single cross-functional team responsible for one or more digital products (Wiedemann et al.,
2019). The goal of DevOps is to facilitate collaboration between development and operations, in part by automating tasks for building
and deploying code and testing in order to reduce software development time, enable continuous software delivery, and increase
software stability and thus customer satisfaction (Fitzgerald & Stol, 2017).

Prior to the 1990s, large firms organized their IT functions around IS development and operations units (Berente & Yoo, 2012;
Hemon-Hildgen et al., 2020) based on the separation of knowledge of these units and activities oriented around different goals and
values e.g., the speed of software deployments and the stability of running systems (Cross et al., 1997; Luftman et al., 1993). However,
customer satisfaction increasingly became a key goal for firms and the continuously changing environments necessitated new re-
quirements and rapid change. Thus, in the 1990s, agile software development became popular for managing projects focusing on
customer satisfaction and business/IS development relationships (Cross et al., 1997; Hemon-Hildgen et al., 2020). However, typical

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

3

operations activities such as software delivery and deployments were often neglected in agile project management frameworks
(Hemon-Hildgen et al., 2020). DevOps goes beyond agile software delivery methods, combining development and operations in an
agile way of working (Debois, 2008).

According to Kim et al. (2016), DevOps consists of three main principles. First, the principle of flow refers to close cooperation
between development and operations to achieve high quality and end-to-end responsibility for software products (Kim et al., 2016).
Second, the principle of feedback refers to the use of agile values and automation to achieve the continuous delivery of software (Kim
et al., 2016). Third, the principle of continuous learning and an environment of trust supports a culture of organizational learning from
success and failure (Kim et al., 2016).

In traditional software development, such as using the waterfall method for software development, there is a clear separation
between activities such as planning, analysis, design, and coding that are necessary precursors to production deployments (Fitzgerald
& Stol, 2017). After the development work is done, the operations team is responsible for managing support and maintenance (Edberg
et al., 2012). This works very well in stable environments, especially when few changes need to be made to the running software (Cross
et al., 1997). In contrast, in rapidly changing environments, IT functions have to coordinate and align changes within their de-
partments (Gkeredakis & Constantinides, 2019) because developers act in increasingly complex and dynamic environments and are
expected to continuously deliver new solutions and innovations (Dönmez et al., 2016). Hence, DevOps combines development and
operations activities to provide flexibility in rapidly changing environments in order to produce complex business- and safety-critical
software (Fitzgerald & Stol, 2017).

Scholars generally agree that close collaboration between the development and operations components of the IT function is
necessary to improve software delivery, quality, reliability, and resilience and ensure that errors can be fixed quickly (Hemon et al.,
2019). Cross-functional DevOps teams require collaboration among diverse experts to achieve these goals (Young-Hyman, 2017). To
maximize these benefits, an increasing number of companies are now implementing specialized DevOps teams rather than supporting
siloed IT departments (Fitzgerald & Stol, 2017).

2.2. Information systems control literature

There is an ample body of research on the challenges of managing effective teamwork (Maruping et al., 2009), which has primarily
employed the lens of control theory (Kirsch, 2004). In software development in particular, control is defined as management's “at-
tempts to ensure that individuals working on organizational projects act according to an agreed-upon strategy to achieve desired objectives”
(Kirsch, 1996, p. 1). However, further research is needed to understand how control is enacted in cross-functional teams with com-
bined development and operations control.

2.3. Differences in control themes

In this study, we build on the theoretical framework presented by Wiener et al. (2016), which is based on the work of Jaworski
(1988) and Kirsch (2004), to structure control performance (control effects), antecedents (control choices), and changes (control
dynamics). Wiener et al. (2016) view control context as a subtheme in control choices. However, we argue that control context differs
significantly between development and operations; hence, we consider control context to be a separate theme. Below, we describe the
control themes and the differences between development and operations in detail.

IS research on control effects focuses on IS project performance as a consequence of control-mode choices measured in terms of
quality and efficiency (Barki et al., 2001; Wiener et al., 2016). Quality refers to product performance (Henderson & Lee, 1992) and the
extent to which a project/product fulfills its requirements (Kirsch, 1996). Project quality is commonly measured by software defects
per line of code (Ethiraj et al., 2005), change request fulfillments (Herbsleb & Mockus, 2003) response times, and software reliability
and maintainability (Wallace et al., 2004; Wiener et al., 2016), whereas project performance efficiency refers to how well a project
meets time and budget targets (Keil et al., 2013).

Control choices refer to the antecedents of the specific projects' control portfolio configuration with control modes and control
amounts (Wiener et al., 2016). Contextual and organizational factors can influence the choice of IS control (Cram et al., 2016b). Early
research on control modes concentrated on hierarchical control relationships of internal projects with four different control mode
choices (Kirsch, 1996; Kirsch, 1997): “behavior observability, outcome measurability, controller's IS knowledge, and controllee's IS
knowledge” (Wiener et al., 2016, p. 746). Control antecedents include the controllers' level of trust in controllees and the complexity of
project duties (Remus & Wiener, 2012).

Wiener et al. (2016) define two control contexts, namely project and stakeholder contexts. The project context refers to the project
size, project tasks, etc. (Kirsch, 1996; Kirsch, 1997), whereas the stakeholder context refers to the characteristics of the controller and
controllee and their relationships (Kirsch, 2004). The factors affecting the amount of control and appropriate behavior in the project
context include task complexity, task uncertainty, and strategic importance (Remus & Wiener, 2012), and the factors affecting the
amount of control and appropriate behavior in the stakeholder context include trust, knowledge, priority, and cultural differences
(Kirsch, 2004; Remus & Wiener, 2012).

The literature on control dynamics specifically concentrates on the style according to which control modes and amounts are
exercised in practice (Choudhury & Sabherwal, 2003; Kirsch, 2004; Remus & Wiener, 2012). Project lifecycle changes lead to control
dynamics, reflecting the fact that specific project phases need distinct control portfolio configurations (Kirsch, 2004). Furthermore,
adaptive learning processes during projects force control dynamics (Mähring, 2002). Control dynamics of portfolio configurations can
be encounter-triggered (Choudhury & Sabherwal, 2003; Wiener et al., 2016). IS projects go through phases of equilibrium states

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

4

punctuated by decisive events between these phases, which are called encounters (Gregory et al., 2013; Wiener et al., 2016).
The body of research on operations control is smaller; however, Edberg et al. (2012) show that a large share of software delivery

expenditure is dedicated to maintenance and operations. They examine strategies for choosing software maintenance methodologies
and controlling software maintenance—for instance, by avoiding separation in the structure of IT functions. In practice, control is
especially relevant in terms of the monitoring and control processes for version management of software infrastructure and operations
(April et al., 2005). Maturity models and frameworks, such as the control objectives for information and related technologies (COBIT)
model, serve as governance and control mechanisms for software operations (ISACA, 2012). Service-level agreements (SLAs) are often
implemented when software developers transfer the software to operations for routine issues and services (April et al., 2005).

Table 1 below summarizes the findings of our review of the extant literature on IS control themes focusing on development or
operations.

2.4. Tensions resulting from differences in control themes

A tension is defined as “stress, anxiety, discomfort, or tightness in making choices, responding to, and moving forward in organizational
situations” (Putnam et al., 2016, p. 67). Extant research has shown that organizations and their employees encounter tensions resulting
from incompatibilities and dilemmas, which typically arise due to differences in individual and/or organizational levels (Ajer et al.,
2021).

To confirm that tensions arise due to differences between operations and software, we examined prior literature and identified
concrete tensions between development and operations along the control topics that we present in Table 1. Our literature review shows
that differences in the control themes, as outlined above, tend to lead to tensions in the DevOps environment. For DevOps teams to
operate effectively, such tensions need to be carefully managed. Table 2 summarizes the tensions derived from the extant literature
concerning development and operations.

Based on the extant literature on the different approaches of software development and operations, we derived four control ten-
sions: method discomfort, goal conflict, decision rights, and time rhythm. These tensions naturally have implications for managing the
collaboration between these functions in traditionally organized companies. However, when a company decides to combine both
functions into one DevOps function, the tensions need to be very carefully assessed and managed—otherwise, the new structure will
not be successful.

Some companies have successfully managed the transition toward a combined DevOps model and have had great success in
managing the tensions arising within these departments. To learn from such companies and to derive generalizable strategies for
successfully managing tensions in DevOps teams, we conducted a qualitative research study, as described in the following section.

Table 1
Differences between development and operations by IS control themes.

Theme Development Operations

Control effects - High efficiency and quality project outcome (Barki et al., 2001;
Wiener et al., 2016) measured by project completeness in terms of
time, budget (Keil et al., 2013), and meeting user requirements
(Kirsch, 1996)

- Provision of rapid software features (Fitzgerald & Stol, 2017)

- Measurement of SLAs via ticket management tools (e.g., ticket
resolution time) (Trusson et al., 2014).

- Aiming at the stability of running software due to the reduction
of production releases (Kim & Westin, 1988)

Control choices - Combination of control modes (formal: input, behavior, and output
control; and informal: clan and self-control) for project control
portfolios (Kirsch, 1997).

- Control degree and influence on control style choices (Heumann
et al., 2015; Kirsch, 1996).

- Choice of project management methods such as agile or waterfall
(Cram et al., 2016b)

- Application and measurement of standardized operations
processes (ITIL) (Pollard & Cater-Steel, 2009; Trusson et al.,
2014) and corresponding governance frameworks (COBIT)
(April et al., 2005)

- Software availability and end-user control (Banker et al., 1994;
Nelson et al., 2000).

- Avoidance of software outages due to monitoring (Nelson et al.,
2000; Shaft & Vessey, 2006).

Control contexts - Project and stakeholder context (Kirsch, 1996; Kirsch, 1997;
Wiener et al., 2016).

- Collaboration in teams using agile project management or
waterfall methods (Cram et al., 2016b).

- Rapid requirement and priority changes (Maruping et al., 2009).

- End-user and stakeholder-oriented
- Organization of work in classic hierarchical department

structures/
support centers (Nelson et al., 2000).

- Usage of IT service management approaches as a management
tool (Trusson et al., 2014).

Control dynamics - Various rapid changes across project lifecycle phases (Wiener
et al., 2016).

- Changes in control modes, control amounts (Choudhury &
Sabherwal, 2003; Kirsch, 2004), and control styles (Choudhury &
Sabherwal, 2003; Gregory et al., 2013; Kirsch, 2004)

- Adoption of new or modified demands in terms of technology
and platform changes (Edberg et al., 2012; Nelson et al., 2000).

- Seeking quality and stability of software (Hemon-Hildgen et al.,
2020)

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

5

3. Research design

In this section, we describe our research design, which comprises an inductive theory-building approach (Gioia et al., 2013) based
on qualitative research. We investigate how IT managers successfully navigated and overcome tensions between the development and
operations components of combined DevOps teams. Qualitative research methods are well-suited to analyzing novel phenomena and
deriving compelling explanations. In particular, case studies are recommended for conducting research to answer “how” or “why”
questions about contemporary issues such as DevOps teams and are well-suited for studying real-life events (Yin, 2018). To investigate
our research question, we conducted case studies in six organizations to identify successful mechanisms for managing tensions in
DevOps teams. Our underlying research philosophy is interpretive epistemology. Interpretive research observes phenomena in social
settings and takes a nondeterministic approach attempting to explore them in their natural setting rather than imposing an a priori
understanding (Orlikowski & Baroudi, 1991). While the presented background literature guided our study approach, we focused on the
data interpretation to build a new model for DevOps control. Accordingly, we collected primary and secondary qualitative data in an

Table 2
Tensions in software development and operations teams.

Source of Tension How Tensions Manifest Literature

Tension 1: Goal conflict
Speed vs. Stability

Although development and operations serve the same
overarching goal (to provide the highest customer
satisfaction), they experience competing subgoals when
working to achieve them. Development is praised for
producing new software functionalities quickly, whereas
operations values ensuring that software systems and
stable and downtimes are infrequent.

High numbers of software changes inherently
jeopardize stable production, as every change carries
the risk of a system failure. Therefore, operations
favor few updates and additions, whereas
development seeks exactly the opposite. This obvious
goal conflict leads to tensions between both units, as
one unit's gain is the other's loss. This tension
typically manifests when software deployment
schedules are defined in budget/resource meetings.

Edberg et al. (2012); Fitzgerald and
Stol (2017); Keil et al. (2013);
Maruping et al. (2009); Trusson et al.
(2014)

Tensions 2: Method discomfort
Agility vs. Structure

Both functions traditionally have different
methodological foundations. Software development
follows a project approach—predominantly agile
methods, as of late. Operations, in contrast, uses well-
tested process methods like ITIL and COBIT to achieve the
required stable environment.

The different methodological approaches are a
breeding ground for tension. While development
heralds a “learn from mistakes” and “fail fast, fail
often” culture, operations maintain a “failure is not
an option” mindset.

Tarafdar and Tanriverdi (2018);
Fitzgerald and Stol (2017); Hemon-
Hildgen et al. (2020); Krancher et al.
(2018); Väätäjä et al. (2016)

Tension 3: Decision rights
Project vs. Service

Resulting from the different methodologies used (as
described above), there are different decision rights and
corresponding metrics used in both functions.
Development is typically organized in project structures
that are actively managed by project managers or agile
product owners (PO) who have (comparatively) high
degrees of autonomous decision rights and are measured
by traditional project management metrics (time, quality,
budget). Operations typically works with traditional
hierarchical structures led by service managers with
comparatively few decision rights. They are typically
measured by externally induced metrics like service level
agreements, which have long durations.

Whenever two management styles differ and the
responsible managers are measured by metrics that
are not aligned with each other (or even
incompatible), tensions arise quickly, as both parties
aim to achieve their aims for their work stream.
Apart from this obvious potential for conflict, there is
also quite often an underlying misunderstanding, if
one party is not available (or ignores) the boundaries
in decision-making the other party faces. This can
lead to a “we against them” attitude, a fertile
breeding ground for tensions.

Fitzgerald and Stol (2017); Kirsch et al.
(2002); Shaft and Vessey (2006);
Wiener et al. (2016) Edberg et al.
(2012)

Tension 4: Time rhythm

Short Term vs. Long Term
Software development is project based and typically
short-term oriented. Projects are executed and completed,
and then the next project begins. Operations, on the other
hand, is an ongoing business with a strong long-term
orientation. Unless a fundamental change happens,
operations are usually not engaged in projects.

Different approaches to the time dimension lead to
tensions, as the respective functions are inherently
oriented on different time schedules. Development is
used to deliver projects quickly, whereas operations
seeks to provide long-term stability—leading to
distinct tensions. Development might describe
operations as “too slow,” whereas operation's reply
would be “too hectic, not well thought through.”
These different approaches lead to tensions,
especially if one function asserts pressure on the
other function without acknowledging the different
approach.

Edberg et al. (2012); Kirsch (2004);
Trusson et al. (2014)

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

6

in-depth field investigation and coded and analyzed the data following the Gioia method (Gioia et al., 2013).

3.1. Data collection

The primary data consisted of a case study comprising 21 semi-structured qualitative interviews (Myers & Newman, 2007) with
DevOps team members and managers. The unit of analysis was DevOps teams, which were responsible for the development and
operations of one or more software products. Our secondary data was comprised of data published by the firms online, including
websites, blogs, and annual reports.

The six firms in our study were selected via theoretical sampling and differed in terms of the number of employees—ranging from
1,000 to more than 100,000 employees. The firms operated in the Retail Food, Retail Store, Retail Non-Food, Banking, Insurance, and
Service sectors. All the companies had a significant application of the DevOps concept in their IT organization. Table 3 provides a brief
overview of the case study participants. Further information about the cases can be found in Appendix A.

We conducted semi-structured interviews with managerial and technical employees of one DevOps team per firm to identify details
relating to the control of development and operations. The interviewees were performed iteratively to gather the most insightful
information possible. Questions about software delivery lifecycle details were directed toward team members, while questions about
organization, management, and governance were directed toward managers. We asked each informant to explain their respective IT
function and their perception of how the DevOps concept was integrated.

The interviews typically lasted around one hour each; most interviews were face-to-face but some were conducted via telephone.
We took extensive notes during the interviews; after each interview, we wrote a summary (Urquhart, 2012). All interviews were
recorded and transcribed, producing a total of 442 pages of transcripts for use in further analysis.

3.2. Data analysis

From an analytical perspective, we generated theoretical foundations to generalize our research results following the approach
presented by Gioia et al. (2013). We sought to identify first- and second-order concepts and develop aggregate dimensions with the
corresponding relationships (Gioia et al., 2013; Miles & Huberman, 1994). Appendix B offers coding details and quotes to support our
findings. The analysis of the transcripts was guided by the Glaserian grounded theory approach (Glaser & Strauss, 1967) and the
inductive analytical approach presented by Gioia et al. (2013). We started the coding process using open coding to derive initial
insights using NVIVO software. To derive first-order concepts, we explored the nature of the tensions derived in our review of relevant
extant research. We coded statements in line with how control was used in cross-functional teams to manage tensions. In our second-
order coding, we iterated between first-order codes, data interpretation, and existing literature to gather insights through different
lenses. Our second-level codes served as control mechanisms to address the tensions. Prior research on DevOps and cross-functional
teams (Aime et al., 2014), theoretical approaches from control theory (Kirsch, 2004; Wiener et al., 2019), and IS development and
project management theory (Lee & Xia, 2010; Matook et al., 2016) were the key theoretical concepts guiding our data analysis. With
the help of grounded theory articulation, we formulated dynamic relationships and made several refinement passes guided by the
extant literature to define the final aggregated control dimensions (Gioia et al., 2013).

Several preconditions guided our investigation of control in the DevOps teams. As presented above, prior literature has revealed
tensions between software development and software operations control perspectives. We argue that these tensions can be managed
using control mechanisms. We derived three dimensions of DevOps control that represent forms of control practices relevant to DevOps

Table 3
Investigated teams.

Case Company Description DevOps Team Roles (No. of
Interviews)

Retail Food Company with a focus on groceries and stores in Germany and across
Europe with over 100,000 employees.

PO, agile coach, five team members Team members (4)
PO (1)
Agile coach (1)

Banking One of the largest German private financial services organizations with
over 25,000 employees.

Group manager, fifteen team members Former group
manager (1)
Current group
manager (1)
Team members (2)

Insurance One of the largest Germany-based insurance companies with over
100,000 employees.

Head of architecture, PO, team lead,
eight team members

Head of Architecture
(1)
Group lead (1)
Team lead (1)

Service A German internet company with over 1,000 employees that offers
services to end users.

Eight team members, team lead Director IT (1)
Team leads (2)

Retail Store A German store specializing in food and non-food products with over
50,000 employees.

Team lead, PO, seven team members Team lead (1)
Team member (1)

Retail Non-
Food

One of the largest German department store chains with over 20,000
employees.

Team lead/PO, six team members Team lead (1)
Team members (2)

Total number of interviews 21

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

7

teams. Fig. 1 presents our data structure and visualizes the first-order concepts, second-order concepts, and aggregate dimensions. The
tables in Appendix B provide further details of how we derived the aggregate dimensions.

4. Mitigating tensions in DevOps teams

In this section, we describe our findings and how tensions can be mitigated by implementing DevOps control mechanisms and
dimensions. Table 4 presents and overview of the key mechanisms (aggregate dimensions) and offers insights into the second-order
concepts. Deeper elaboration on the dimensions is provided in the sections following the table.

4.1. Participation in shared vision

The dimension participation in shared vision describes how leadership can drive the performance of DevOps teams, which can help to
resolve the tension of goal conflict through consensus and automation and the tension of method discomfort through restructuring.
Below, we explain the dimension and second-order mechanisms and provide illustrative examples from our case study. Table 6 in
Appendix B provides an overview of detailed coding examples for participation in shared vision with the respective first-order concepts
and second-order concepts as well as quotations from interviewees.

Consensus: One way that working toward a shared vision can help to resolve tensions within DevOps teams is by using team
consensus to mitigate the tension of goal conflict, which is a tension between speed and stability in DevOps teams. Whereas devel-
opment typically prioritizes speed, operations values stability. To resolve this conflict, DevOps can seek consensus regarding the timing
and execution of deployments and how impacts on stability will be managed. In our Retail Food case, the product owner and agile
coach worked together to enable and motivate the team to take over responsibility and for making common software decisions. Thus,
the team is jointly responsible for product-relevant decisions. For example, if a problem arises after the team conducted a software
deployment, the team also solves it together:

Fig. 1. Data structure.

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

8

Technology decisions can be made autonomously by the team. […] The responsibilities for the topics are specified in such a way that a
team is enabled to make decisions completely independently (Retail Food, Product Owner). We would like to work together on a product
in a goal-oriented way (Retail Food, Agile Coach).

In the Retail Food case, the tension of goal conflict was mitigated through consensus building; the DevOps team is aiming speed and
stability for the software and find consensus for their product-relevant decisions. The case improved its culture of responsibility and
worked toward a common goal. DevOps team members assumed responsibility for both development and operations goals.

Automation: The automation of tasks, e.g., test automation and code deployment, facilitates the work in DevOps teams and can
help to resolve the tension of goal conflict by allowing teams to save time and money or facilitate better effect control (as in the In-
surance case), thereby also ameliorating the conflict between speed and stability. For example, DevOps teams can implement different
continuous processes to automate software deployments or, as in the Insurance case, push new software code into the production
environment with the help of automatic control acceptance steps. The head of architecture of the Insurance firm explained the ad-
vantages of automation:

We want to reduce the manual activities that people do when operating the platform […]. Our results show how automation can reduce
the time between recovery. It helps to prevent incidents and improves the quality of the deployment because we no longer operate any kind
of deployment manually.

Through automation, the Insurance firm measurably improved both efficiency and software quality. In the Retail Food case,
automation helped the DevOps team because they received automated alerts if the planned code deployment was not working during
the test phase so that developers could fix the issue before pushing the code to the production environment.

It [the software update] is built, is tested, and goes to the test environment. Then it's also tested again with other services and auto-
matically goes into production. If it wasn't good […] the developer gets a message during testing, this is broken. What you built was not
functional. (Retail Food, Team member).

Automation can mitigate the tension of goal conflict, for example, by reducing the need for developers to manually push their new
code into production or by automating the detection of software bugs, thereby reducing the effort needed from operations experts to
ensure the security of production deployments. These efficiencies can help to resolve the tension of goal conflict by allowing DevOps
teams to develop new software functionalities more quickly in a secure operational environment.

Restructuring: The tension of method discomfort is a tension between agility and structure. Whereas development generally relies on
a project approach, typically using agile methods, operations use well-tested methods such as ITIL and COBIT to ensure a stable
structure. Our findings suggest that restructuring within DevOps teams can ameliorate the tension of method discomfort. In the words of
the Retail Store DevOps team lead:

We're going to dissolve this organizational silo […] then establish product teams that are no longer assigned to an organizational unit.

Since DevOps is working as a team instead of in separated IT units, the members can decide which best-practice and agile ap-
proaches to combine to achieve the best of both worlds. However, this transforms the classic job roles of operations and development.
For example, operations must learn to work with agile methods and development must learn to deal with end-user problems such as
tickets. DevOps team members can thus learn from other team members to devise new ways of working. For example, as explained by
the head of architecture in the Insurance firm, the DevOps team combines operations control choices such as ticket resolution with
agile development methods:

Table 4
Key dimensions and mechanisms that mitigate tensions in DevOps teams.

Dimensions Description Associated
Tensions

Key mechanisms and explanations

Participation in
shared vision

DevOps teams develop and enact a common view
for a collaborative-working style.

Goal conflict

Method
discomfort

Consensus: DevOps teams assume responsibility for the product
and work toward a common goal through coaching.
Automation: Resolving manual activities and automating DevOps
processes such as testing and deploying updates.
Restructuring: DevOps teams are set up and integrated with
established IT functions.

Right of co-
determination

DevOps teams determine how to assume
responsibility and navigate joint decision rights
for the software delivery lifecycle.

Method
discomfort

Decision
rights

Social capital: Depending on the product, DevOps teams are
responsible for the necessary development and operations skills
that must be learned within the team.
Mentality change: DevOps team members work in teams with
end-to-end responsibility for the software delivery lifecycle.
Accepting responsibility: DevOps team members with different
backgrounds are responsible for software quality and for
managing all software-relevant problems.

Common sense of
duty

DevOps teams achieve ownership through the
adaption of the leadership style and transparency
for all activities.

Time rhythm
stress

Democratization: A DevOps leadership style that moves from
command-and-control to a more collaborative control approach.
Traceability: The DevOps team's understanding and assimilation
of activities from both development and operations.

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

9

We basically try to structure our work so there is also capacity for tickets say 20 h a week. […] We are also contributing to propose new
ways to adapt our agile performance management processes in order to fully embrace the DevOps principles. So, ensure that regardless of
the fact that people are belonging in two different pillars they can have still the same targets aligned to a product.

Thus, DevOps team restructuring can allow teams to combine both agile methods (development) and best-practice approaches
(operations) to navigate the tension of method discomfort.

4.2. Right of co-determination

The right of co-determination dimension relates to the method discomfort and decision rights tensions. Appendix B Table 7 provides
more detailed findings and further illustrative quotations. Our findings indicate that these tensions can be mitigated by social capital,
mentality change, and accepting responsibility, which we explain in more detail below.

Social capital: Our findings show that DevOps teams develop a high level of shared social capital (communication, knowledge, and
trust) through the acquisition of new skills, which can help bridge the different cultural mindsets of development and operations and
mitigate the method discomfort tension, which involves a tension between agility and structure. In our service case, the firm delivered a
very successful internet platform with a huge number of digital services to its customers. In this case, DevOps team leaders had
complete responsibility for everything that happened in the team and for performing all relevant tasks for the internet platform service,
which required an immense training effort. The team leads can represent each other. In addition, the team leader must train the team
members to develop new skills and acquire new knowledge within the team to ensure a backup option in future:

The team leader is the [developer and] system administrator for his application—it plays a dual role. In my opinion, this is classic
DevOps. […] Each of these team leaders can represent each other's team (Service, Director IT).

Another case in the Retail Non-Food area indicates that team members were expanding their knowledge—rather than being a
specialist in one area (e.g., either development or operations) they became generally competent in both areas. Hence, team members
helped each other develop general knowledge, which is necessary to manage the software delivery lifecycle and overcome cultural
obstacles that appear due to different professional backgrounds. For example, in the Retail Non-Food case, the team was responsible for
building and running a platform and the team members mainly had operations backgrounds. Hence, as one Retail Non-Food team
member explained:

The hardest thing for me personally is that I was never a programmer, and, with some concepts, I still have a bit of a hard time learning it
all now.

DevOps team members can thus mitigate the method discomfort by gaining expertise in both development and operations. Team
members gradually develop a common skill set by working together, which reduces the strain between using best-practice versus
agility approaches. All team members have the same focus (the product) which leads to a common control choice.

Mentality change: Our research suggests that DevOps teams can mitigate the decision rights tension, which involves a project vs.
service conflict, through a mentality change that enables collaboration and communication across different cultural and professional
backgrounds. Importantly, DevOps teams are responsible for managing different management styles (project vs. service management)
and control contexts. The mentality change can reduce management style conflicts. For example, because code deployments can be
executed without downtimes by developers within the DevOps team, service managers need to worry less about downtimes that could
potentially affect software stability:

Tasks are appropriately small, but we have much better control over what happens within the release (Service, Team Lead). You can
migrate with the “snap of a finger” and therefore we need no downtime (Service, Director IT).

Likewise, classic project management control becomes less important because DevOps teams work in a product-oriented setup
concentrating on the efficient management of the software delivery lifecycle instead of focusing on projects with strict budgetary and
time constraints. In the words of a Retail Store team lead:

For me, that's where the product differs from the project. A product runs until sundown until it is no longer needed.

Since DevOps teams focus on the software delivery lifecycle, DevOps teams are managed differently from project teams. In
traditional teams, method discomfort (agility vs. structure) and decision rights (project vs. service) tensions occurred because once
development completed their software project, the software was handed over to operations for support and maintenance. In DevOps
teams, the product can be continuously developed and supported: DevOps employees work together on the data and the methodical
procedure is defined together for the team. Hence, the mentality change facilitated by DevOps teams can alleviate the method
discomfort and decision rights tensions.

Accepting responsibility: In DevOps teams, the conflict between project and service characterizing the decision rights tension can
also be mitigated by accepting responsibility. Our Retail Food and Banking cases showed that cross-functional working styles are
helpful for DevOps teams to organize their work as one common team. The Retail Food firm was developing a mobile app for customers
but also mobile hardware for delivery personnel. Ideally, new orders or order changes would be visible to delivery personnel as quickly
as possible. While mobile apps in the Retail Food case are developed by DevOps teams, great effort is necessary to integrate cross-
functional teams:

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

10

We would like to work together […] on the product and thus we need to manage our culture more consistently (Retail Food, Agile
Coach).

Often, several development teams work on a common infrastructure (e.g., a cloud platform). Sometimes, problems occur and
cannot be located. Hence, it is often unclear who is responsible for this problem. As a team member from Retail Food highlighted:

The biggest challenge now is making sure that the entire platform is in a healthy state. So, this topic: “How do I localize when a problem
occurs where this problem has its cause?”

In DevOps teams, the responsibility for problems is accepted by the team as a whole rather than any particular component of the
team being blamed. In the Banking case, the firm was working to improve the sense of responsibility and combining the power of
development and operations in DevOps teams. IT functions with separate units for development and operations often suffer from a
problem of managers blaming the other unit when problems occur. The former group lead of Banking stated the need to

Get people to feel end-to-end collectively responsible for lead time, both ways, and then stop pointing fingers at each other.

DevOps teams navigate the decision rights problem by accepting responsibility at the team level. For example, as the Banking case
indicates, if a problem occurs, the team needs to identify the cause and fix it. If several DevOps teams are working on the same
platform, every team must be responsible for identifying the cause of problems.

4.3. Common sense of duty

The common sense of duty dimension describes how the team overcomes deeply ingrained work attitudes by integrating a common
mindset and a team spirit with a willingness to learn and cooperate. Appendix B Table 8 provides an overview of coding examples for
common sense of duty with the respective first-order concepts and second-order concepts as well as quotations from our case study. Our
cases indicate that democratization and traceability help DevOps teams and managers navigate the time rhythm tension, which is related
to a conflict between short-term and long-term orientation.

Democratization: The Banking and Insurance cases emphasized the need to democratize their leadership style to guide and enable
the DevOps teams, which is especially important for large firms. In DevOps teams, democratization can reduce the stresses associated
with the time rhythm tension because development is no longer managed in projects with rapid lifecycle changes whereas the control
dynamics appear frequently. Operations used to work in stable IT units whereas control dynamics occur in the form of punctuated
equilibrium. These have long stable control phases and rarely control changes. The adoption of a more democratic leadership style in
DevOps teams is a possible solution for this tension. Our Insurance case, is a huge firm with global reach. Their IT function was
previously organized by many development teams independently working on projects. These projects were supported by a separated
operations unit organized in silos within their IT function. More recently, they implemented DevOps teams and reduced the pressure
and dependencies between the different units of development and operations. This was made possible by leaders who were trained to
be less directive and more collaborative by enabling the DevOps team to find a common way to align the tasks in terms of time:

The world evolved to a more, to a faster environment, supported by technology of course, to develop things in a faster way […]. This also
changes the leadership style from directive to more collaborative and consensual (Insurance, Head of Architecture).

Hence, through the democratization of control, DevOps teams can mitigate the time rhythm tension. Different time rhythms are
aligned in DevOps teams and are oriented around the decisions and dynamics associated with the software delivery lifecycle for which
DevOps teams are responsible.

Traceability: The time rhythm tension can also be mitigated by the high level of traceability of activities in DevOps teams. Our
findings indicate that both development and operations need to understand how, when, and by whom activities are performed. In
traditional IT functions, development focuses on its own plan, and if operations problems occur, it may take a long time before they are
prioritized. DevOps teams can ameliorate this tension because team members develop a common sense of duty for all product-relevant
tasks. The Retail Store case integrated DevOps teams, and they visualized all tasks related to development and operations. This has
released the time rhythm tension by giving higher priority to the often long-term orientated operations tasks. As a result, operational
tasks are processed more quickly:

Operation[s] has become a much higher priority with all the issues. The whole monitoring issue is something I notice because the quality
of many topics is getting better and better every day, whenever something pops up (Retail Store, Team Member).

In the Retail Non-Food case, the DevOps journey began from an operational perspective. Originally, the DevOps team members
were operations employees with a strong focus on system administration tasks. They started to implement an online platform for
digital services. The platform team recognized the need for coding and customizing and also had to be agile and flexible since their
infrastructure was now running on the cloud and the platform was online 24/7. The platform and the digital services were eventually
delegated to DevOps teams. One challenge the firm had to overcome was aligning the teams not only internally but also across teams
using the platform. The short- vs. long-term orientation is solved in DevOps teams because the tasks are discussed and coordinated
within the team and with other teams. Deployments are coordinated, and planning steps in the Non-Food Retail case changed
significantly, which meant convincing the IT function:

New ideas are constantly being added, and the biggest challenge was simply to convince the IT people, who have a very fixed planning
rhythm, that we have a completely different speed here (Retail Non-Food, Team Lead).

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

11

Hence, DevOps teams can encourage common time rhythms and the problem of different control dynamics is diminished because
activities are aligned via a high level of traceability.

5. Discussion

In this study, we identify four main tensions between development and operations activities that can be addressed through
implementing cross-functional DevOps teams. Our empirical study of six DevOps teams led to the identification of three dimensions
controlling DevOps teams navigating these tensions. To further develop these findings, we conceptualize DevOps control as a series of
frequent adjustments between different control mechanisms. This differs significantly from prior research, which has primarily paid
attention to the contextual antecedents and performance consequences of control modes or the degree of control portfolio configu-
ration (Choudhury & Sabherwal, 2003; Kirsch, 1996; Kirsch, 1997).

The model of DevOps control in internal IT teams introduced in this paper explains the coexistence of controls used successfully in
practice and provides insights into the control of DevOps teams as a dynamic and iterative approach, rather than a linear process
(Choudhury & Sabherwal, 2003; Gregory et al., 2013; Kirsch, 2004). Fig. 2 below illustrates the three control mechanisms that help to
cope with the tensions that arise in DevOps teams.

Participation in shared vision: This dimension develops and enacts a common view for the future shared orientation in DevOps
teams. Our findings indicate that DevOps teams' control themes include consensus, automation, and the restructuring of activities and
processes for managing the software delivery lifecycle. The team achieves its goals and team members come to an agreement regarding
their usage of methods by making joint decisions regarding the software product. Some of our cases still had a formal team leader to
make certain high-level decisions. However, our cases indicate that classic tight project control in terms of day-to-day business needs
hinders the development of a common mindset. Control effects and control choices in development and operations units differ
significantly. While both focus on different goals such as efficiency and quality (Kirsch, 2004) vs. stability and ticket resolution
(Trusson et al., 2014). DevOps teams need to organize many tasks that were previously performed by highly specialized people from
several IT functions and units. Hence, DevOps teams work toward a common goal and combine the goals of both worlds to ensure
quality, speed, and stability. The method discomfort tension between development and operations disappears since the control method
is based on project approaches (development) and best-practices (operations). DevOps mitigates this discomfort by enabling opera-
tions to work with agile methods and development to benefit from using best practices for ticket resolution. The dimension of
participation in a shared vision connects goals and methods from both sides in DevOps teams to develop an effective approach to
control.

Right of co-determination: The dimension determines how to assume responsibility and navigate decision rights for the software
delivery lifecycle in DevOps teams. The establishment of cross-functional DevOps teams is one way of using control mechanisms to
navigate method discomfort and decision rights tensions. Through fostering social capital in DevOps teams, team members are enabled to
adopt new best-practices and agile methods. The control context has different characteristics for development and operations (Kirsch
et al., 2002; Shaft & Vessey, 2006). DevOps teams can mitigate the decision rights tension, which involves project vs. service man-
agement because the organizational setup of established IT functions changes becomes oriented toward teams and products rather than
projects and services. This movement toward product orientation leads to a change of control context and brings different managers
closer together. Decisions are no longer made in different IT units; DevOps team members are open to learning new types of work and
team leaders are open to adopting new leadership styles that demand more responsibility from the team. The right of co-determination
dimension suggests that DevOps teams have an active voice and make most product-related decisions themselves. Hence, the classic
decision rights tension between project and service managers becomes blurred.

Common sense of determination: Describes the dimension by which a sense of ownership is achieved through the adaption of the
leadership style and transparency for all activities of the DevOps team. Our findings highlight the shift toward the management of

Fig. 2. Mitigation of tensions through control mechanisms.

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

12

software delivery, such that there is no date at which projects will be shut down. DevOps navigates the time rhythm tension through
the democratization of control and higher traceability for development and operations tasks. Our study suggests that DevOps teams
outperform other teams not in project setups but in product setups. Control dynamics in development and operations differ because
development control dynamics appear due to rapid project lifecycle whereas operation dynamics manifest in long-term stability phases
with few changes. DevOps teams can solve the time rhythm tension associated with short- vs. long-term orientation in that development
and operations tasks are now mapped together in the software delivery lifecycle for which DevOps teams are responsible.

5.1. Implications for research

Based on our findings, we present a model that serves as a DevOps control approach for navigating development and operations
tensions. Our research complements prior literature focusing on control in project management (Remus et al., 2020) and digital agility
in software development projects (Salmela et al., 2022) by showing how these tensions can be mitigated in DevOps teams.

Specifically, our model illustrates how IT managers and DevOps teams can use control to navigate tensions between development
and operations in three different ways. First, the mechanism participation in shared vision extends prior literature. Our findings support
Hemon-Hildgen et al. (2020) observation that classical silo setups in IT functions do not work well with DevOps approaches. Removing
organizational silos enables team collaboration and fosters the cultural mindset of the team members to work toward a common
goal—the product. One key concern of DevOps teams is automating manual processes whenever possible. Automation is recommended
not only for continuous testing and code delivery, as presented by Fitzgerald and Stol (2017), but also for monitoring activities such as
sending automated alerts in case of software malfunctions, etc. Minimizing standardized, highly repetitive manual processes provides
DevOps teams with more time and freedom to work on product enhancements and team culture.

The second implication addresses control choices and context (Kirsch, 2004; Wiener et al., 2016). Our model shows the trans-
formation from project control to product-oriented control through the dimension right of co-determination. DevOps teams require
redesigning processes and establishing end-to-end IT product responsibility. This is enabled by bringing people together into a single
team responsible for the entire software delivery lifecycle. Our findings indicate that the tasks, knowledge, and skills of DevOps teams
depend on the product. Team leads train team members to ensure a balanced representation of both development and operations
needs—even in small teams. This builds on extant research on skills and collaboration in DevOps teams, such as work by Hemon et al.
(2019) and Wiedemann and Wiesche (2018).

Third, the mechanism of common sense of duty builds on and extends prior research, recommending shifting from command-and-
control to a more collaborative and enabling leadership style. This is in line with prior literature in the area of agile and self-
organization, such as work by Matook et al. (2016) and DevOps studies e.g., Hemon et al. (2019). Successful DevOps teams have
members with deep expertise and skills in technology and social competency. Our focus on aligning development and operations
extends existing literature focusing on software development project control (Cram et al., 2016a; Kirsch et al., 2002; Wiener et al.,
2019) to consider how software operations can be integrated and controlled. Considering operations work fully in the planning and
development process leads to a smoother-running software product. Our results show that when operations is involved in planning
meetings, the team leaves room for unplanned operations work needed to solve problems and repair software defects.

5.2. Implications for practice

Our study has several important implications for managers and practitioners. For development teams, we recommend prioritizing
the rapid development of new software features and updates (McAvoy & Butler, 2009), i.e., teams need permission to decide on the
technology and tasks instead of opening a ticket. Based on our findings, high levels of autonomy are guaranteed within DevOps teams
and team leads can decide how much autonomy the team requires. Thus, enabling work within the team rather than in separated IT
units leads to better collaboration and communication between team members, and conflicts can be resolved through orienting teams
toward the product.

An increasing number of companies are currently implementing DevOps teams to achieve speed and stability and other benefits
that are key to digital innovation. However, integrating DevOps is associated with its own tensions. Our findings indicate that not every
tension appears in every context. Our control approach can help management overcome tensions that may arise in DevOps teams
through the use of dedicated control mechanisms. Practitioners can use our control approach to guide and manage DevOps imple-
mentation and improve existing DevOps teams.

In our case studies of DevOps teams in firms across a variety of different industries, the type and intensity of tensions varied across
DevOps teams. We recommend applying the control mechanisms in a dynamic, iterative, and adaptive way. DevOps integration must
be well considered and is highly dependent on the software product. Not every product is suitable for DevOps.

5.3. Limitations and further research

Our research has certain limitations, which point to avenues for further research. We examined the control themes of DevOps teams
from IT function perspectives, implicitly excluding other control relationships, such as business stakeholders. While we made inroads
into the neglected field of enacting control in DevOps in practice, our study concentrates more on the process of implementing and
controlling DevOps teams. Further research is needed to flesh out our initial findings on how to successfully integrate control
mechanisms. Our research focuses on control and relationships, considering DevOps teams as product management rather than project
management entities. Future investigations could examine suitable measures of success and failure for DevOps teams and address the

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

13

influence of control characteristics. Based on the sets of individual tensions and control mechanisms summarized in this study, future
research could also consider control configurations. Finally, our study focused on intraorganizational control; we neglected the po-
tential role of interorganizational control and its effect on control.

6. Conclusion

This research provides insights into the neglected area of control in cross-functional teams, elucidating the dynamic and iterative
nature of the control of DevOps teams. Our review of relevant extant research into a collaboration between IS development and
operations revealed four control-related tensions: goal conflict, method discomfort, decision rights, and time rhythm. We derived three
aggregated dimensions (participation in a shared vision, right of co-determination, and common sense of duty) for controlling DevOps teams
that can be used to successfully navigate these tensions. Our DevOps control model illustrates the interplay of dimensions, mecha-
nisms, and control tensions and offers suggestions on how tensions can be iteratively and dynamically controlled. We hope that re-
searchers and practitioners will apply our findings to improve interfirm relationships, overcome tensions stemming from cross-
functional teams, and integrate DevOps teams successfully in order to foster digital innovations and products within their
organizations.

CRediT authorship contribution statement

Anna Wiedemann: Conceptualization, Methodology, Writing – original draft, Writing – review & editing, Formal analysis,
Investigation, Resources. Manuel Wiesche: Conceptualization, Writing – original draft, Writing – review & editing, Methodology,
Investigation. Heiko Gewald: Conceptualization, Writing – original draft, Writing – review & editing, Resources. Helmut Krcmar:
Conceptualization, Writing – original draft, Writing – review & editing, Resources.

Acknowledgements

The authors gratefully acknowledge the constructive input of the senior editor which greatly helped us to improve the paper. The
authors extend their gratitude to all participants involved in the data collection activities for their collaboration and contribution
during this study. We thank the German Federal Ministry of Education and Research (BMBF) for funding this research under grant code
03FH005PX4.

Appendix A. Appendix

Table 5
Case description.

Case DevOps Service Description and Team Setting

Retail Food The objective is to build and operate a delivery service app. The team consists mainly of developers. They are responsible for developing features,
conducting continuous delivery, monitoring, and providing daytime support. Decentralized support units provide on-call duty outside normal
business hours.

Banking This team runs a securities management system that provides tools and is highly concentrated on integrating automated processes across several
environments. DevOps activities are automated for the packaging and the automation of tests at the integration stage, release management,
monitoring, end-user communication, and product support (first- and second-level support); third-level support is provided by the developer
teams.

Insurance This team builds and runs an internal delivery platform for evaluating infrastructure, including development tasks such as building features,
operations tasks such as maintenance upgrades, capacity scaling, security fixes, and strategic work. They have rotating responsibilities for on-
call duty.

Service This team builds and runs web applications that provide customers with ratings of different products. The team members are responsible for
developing the application, monitoring, bug fixes, and quality assurance. The team lead is responsible for managing on-call duty and training
team members for on-call duty.

Retail Store This team builds and runs an online shop. The members are responsible for the check-out process. The main tasks are front-end and back-end
development, quality assurance, automation implementation, and operations tasks like monitoring. The team is responsible for on-call duty.

Retail Non-
Food

This team builds and runs an internal platform, which is the foundational structure of the online shop of the company. On-call duty is organized
within the team. Team members are mainly system administrators who assumed the development activities concerning the platform. The main
tasks are developing and providing platform support, integration of continuous delivery, integration of infrastructure as a code, building
interfaces for development teams, cooperation with vertical developer teams for testing, and the automation of system configuration.

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

14

Appendix B. Appendix

Table 6
Aggregate Dimension 1: Participation in shared vision.

Aggregate dimension: Participation in shared vision

1. Consensus (addresses goal conflict)

a) Solve differences in cultural aspects to avoid team disagreements
“We have a challenge, especially in the cultural aspect, and this is reflected at various levels. In budget
discussions, in discussions about understanding, and so on.” (Banking, Group Manager)

b) Give responsibility to teams for more autonomous decision-making
“A team can make simple technology decisions autonomously […] it's a good thing that the team's autonomy
is relatively high.” (Retail Food, Team Member)
2. Automation (addresses goal conflict)

c) Reduce manual activities for operations
“It helps to prevent incidents and improves the quality of the deployment because we no longer operate any
kind of deployment manually.” (Insurance, Head of Architecture)

d) Testing of software and production deployments
“It [the software update] is built, is tested, and goes to the test environment. Then it's also tested again with
other services and automatically goes into production. If it wasn't good […] the developer gets a message
during testing, this is broken. What you built was not functional.” (Retail Food, Team Member)

e) Avoid interruptions due to manual processes
“We don't want anything to be done manually, we want everything to be done via automation […] in the end I
don't know, 80% were automated, and then I had to write a ticket.” (Retail Store, Team Lead)

f) Enable proactive monitoring to recognize failures early
“Automated monitoring for the features, i.e., for certain threshold values, alerts are triggered or, if there is too
much CPU load, i.e., a server that suddenly becomes very slow, then, of course, we also receive alerts for this.”
(Retail Food, Team Member)
3. Restructuring (addresses method discomfort)

g) Break down vertical IT silo structures
“This is then reflected in decisions such as these, that perhaps areas are moving closer together and that we are
trying to break down these vertical silos bit by bit.” (Retail Food, Product Owner)

h) Creation of agile operations
“We are also contributing to propose new ways to adapt our agile performance management processes to fully
embrace the DevOps principles. So ensure that regardless of the fact that there are people belonging in two
different pillars they can have still the same targets aligned to a product, to the manager to help.” (Insurance,
Head of Architecture)

i) Reshuffle the workforce
“This is probably the most difficult component because this will mean really to reshuffle the entire workforce
or part of the workforce but if you want to leverage to this practice.” (Insurance, Head of Architecture)

j) Solve dependencies on other IT units
“The teams are all on the same level, regardless of which squat or tribe they are in, and then above that there
are the respective heads of who then take over a bit of the disciplinary leadership, but the technical decisions or
something like that remains within the teams.” (Retail Food, Team Member)

Table 7
Aggregated Dimension 2: Right of co-determination.

Aggregate dimension: Right of co-determination

4. Social capital (addresses method discomfort)

k) Adapt new skills and acquisition of knowledge
“What is hardest for me is still that I have never been a programmer and probably will never become a full
programmer because I have done ops for too long and it is not the speaking of the language that is the problem
but just some of the concepts.” (Retail Store, Team Member)

l) Enable few people with the right skills to work in teams

(continued on next page)

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

15

Table 7 (continued)

Aggregate dimension: Right of co-determination

“We have a very big skills problem. There are very, very few people, especially in application management,
who can work analytically with such data.” (Banking, Team Member)

m) Bring different professional backgrounds together
“I had to learn over the years what kind of rough edges there are in such a system. Today, I would say that I
could do sys-admin. […] It's not my focus topic, but I also say that I'm quite good at 70% of it.”
(Service, Team Lead)

n) Share knowledge within the team to ensure backup options if the team lead is unavailable
“We have mixed expertise and backgrounds on this team from the classic sys admins who used to set up
servers and build things, to the developers like my person.” (Retail Food, Team member)
5. Mentality change (addresses decision rights)

p) Strive to adopt a “you build it, you run it” mentality
“What can we put into the teams to make that possible and more interesting? For example, this was a topic
that we started last year called “You build it, you run it," where we simply want to make the teams feel more
responsible for the product.” (Retail Food, Team Member)

q) Transform mindsets to understand development and operations tasks
“You need exactly this mindset, that you say: okay, when I program something, I also have to think about how
it will work under load in production around the clock.” (Retail Store, Team Lead)

r) Move from project to product orientation
“For me, that's where the product differs from the project. A product runs until sundown, until it is no longer
needed.” (Retail Store, Team lead)
6. Accepting responsibility (addresses decision rights)

s) Establish shared responsibilities to avoid finger pointing
“Get people to feel end-to-end collectively responsible for lead time, both ways, and then stop pointing fingers
at each other.” (Banking, Former Group Lead)

t) Taking responsibility for software quality
“The biggest challenge now is making sure that the entire platform is in a healthy state. So, this topic: How do I
localize when a problem occurs where this problem has its cause?” (Retail Food, Team Member)

Table 8
Aggregate Dimension 3: Common sense of duty.

Aggregate Dimension: Common sense of duty

7. Democratization (addresses time rhythm)

u) Loss of supervisors' control
“But the problem that comes then […] is that you have a loss of control, especially from superiors towards
now the DevOps team.” (Retail Food, Team Member)

v) Change leadership style from command-and-control to collaborative
“The world evolved to a more, to a faster environment, supported by technology of course, to develop things in
a faster way […]. This also changes leadership style from directive to more collaborative and consensual.”
(Insurance, Head of Architecture)
8. Traceability (addresses time rhythm)

w) Greater prioritization of operational work
“Operation[s] has become a much higher priority with all the issues. The whole monitoring issue is something I
notice brutally because the quality of many topics is getting better and better every day, whenever something
pops up.” (Retail Store, Team Member)

x) Voluntary readiness of performance team members for on-call duties
“Many people want to take on stand-by because they also want to take responsibility for what they have
built.” (Retail Food, Team Member)

y) Ensure execution traceability of development and operations tasks
“Now there is a massive difference because this operating share is also included in the planning to a much
greater extent and is simply also seen.” (Retail Store, Team Lead)

A. Wiedemann et al.

Information and Organization 33 (2023) 100474

16

References

Agarwal, N., Soh, C., & Yeow, A. (2022). Managing paradoxical tensions in the development of a telemedicine system. Information and Organization, 32(1).
Aime, F., Humphrey, S., DeRue, D. S., & Paul, J. B. (2014). The riddle of heterarchy: Power transitions in cross-functional teams. Academy of Management Journal, 57

(2), 327–352.
Ajer, A. K. S., Hustad, E., & Vassilakopoulou, P. (2021). Enterprise architecture operationalization and institutional pluralism: The case of the Norwegian hospital

sector. Information Systems Journal, 31(4), 610–645.
April, A., Huffman Hayes, J., Abran, A., & Dumke, R. (2005). Software maintenance maturity model (Smmm): The software maintenance process model. Journal of

Software Maintenance and Evolution: Research and Practice, 17(3), 197–223.
Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software development practices, software complexity, and software maintenance performance: A field study.

Management Science, 44(4), 433–450.
Banker, R. D., Slaughter, S., Swatman, P., Wagenaar, R., & Wrigley, C. (1994). Project size and software maintenance productivity: Empirical evidence on economies

of scale in software maintenance. In International conference on information systems. New York, USA.
Barki, H., Rivard, S., & Talbot, J. (2001). An integrative contingency model of software project risk management. Journal of Management Information Systems, 17(4),

37–69.
Berente, N., & Yoo, Y. (2012). Institutional contradictions and loose coupling: Postimplementation of Nasa's enterprise information system. Information Systems

Research, 23(2), 376–396.
Choudhury, V., & Sabherwal, R. (2003). Portfolios of control in outsourced software development projects. Information Systems Research, 14(3), 291–314.
Cram, A., & Newell, S. (2016). Mindful revolution or mindless trend? Examining agile development as a management fashion. European Journal of Information Systems,

25(2), 154–169.
Cram, W. A., Brohman, K., & Gallupe, R. B. (2016a). Information systems control: A review and framework for emerging information systems processes. Journal of the

Association for Information Systems, 17(4), 216–266.
Cram, W. A., Brohman, M. K., & Gallupe, R. B. (2016b). Hitting a moving target: A process model of information systems control change. Information Systems Journal,

26(3), 195–226.
Cross, J., Earl, M. J., & Sampler, J. L. (1997). Transformation of the IT function at British petroleum. MIS Quarterly, 21(4), 401–423.
Debois, P. (2008). Agile infrastructure and operations: How infra-gile are you?. In Agile 2008 conference (pp. 202–207). Toronto, Canada: IEEE.
Debois, P. (2011). Opening statement. Cutter IT Journal, 24(8), 3–5.
Dönmez, D., Grote, G., & Brusoni, S. (2016). Routine interdependencies as a source of stability and flexibility. A study of agile software development teams.

Information and Organization, 26(3), 63–83.
Edberg, D., Ivanova, P., & Kuechler, W. (2012). Methodology mashups: An exploration of processes used to maintain software. Journal of Management Information

Systems, 28(4), 271–304.
Ethiraj, S. K., Kale, P., Krishnan, M. S., & Singh, J. V. (2005). Where do capabilities come from and how do they matter? A study in the software services industry.

Strategic Management Journal, 26(1), 25–45.
Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda. Journal of Systems and Software, 123, 176–189.
Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking qualitative rigor in inductive research: Notes on the Gioia methodology. Organizational Research Methods,

16(1), 15–31.
Gkeredakis, M., & Constantinides, P. (2019). Phenomenon-based problematization: Coordinating in the digital era. Information and Organization, 29(3).
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New York, NY: Aldine Publishing Company.
Gregory, R. W., Beck, R., & Keil, M. (2013). Control balancing in information systems development offshoring projects. MIS Quarterly, 37(4).
Gregory, R. W., & Keil, M. (2014). Blending bureaucratic and collaborative management styles to achieve control ambidexterity in is projects. European Journal of

Information Systems, 23(3), 343–356.
Haight, C., & Spafford, G. (2022). Research roundup for Devops, 2022. Gartner.
Hemon-Hildgen, A., Rowe, F., & Monnier-Senicourt, L. (2020). Orchestrating automation and sharing in Devops teams: A revelatory case of job satisfaction factors,

risk and work conditions. European Journal of Information Systems, 29(5), 474–499.
Hemon, A., Lyonnet, B., Rowe, F., & Fitzgerald, B. (2019). From agile to devops: Smart skills and collaborations. Information Systems Frontiers, 1–19.
Henderson, J. C., & Lee, S. (1992). Managing I/S design teams: A control theories perspective. Management Science, 38(6), 757–777.
Herbsleb, J. D., & Mockus, A. (2003). An empirical study of speed and communication in globally distributed software development. IEEE Transactions on Software

Engineering, 29(6), 481–494.
Heumann, J., Wiener, M., Remus, U., & Mähring, M. (2015). To coerce or to enable? Exercising formal control in a large information systems project. Journal of

Information Technology, 30(4), 337–351.
ISACA. (2012). Cobit - 5th edition. USA: Rolling Meadows.
Jaworski, B. J. (1988). Toward a theory of marketing control: Environmental context, control types, and consequences. The Journal of Marketing, 52(3), 23–39.
Keil, M., Lee, H. K., & Deng, T. (2013). Understanding the most critical skills for managing IT projects: A Delphi study of IT project managers. Information &

Management, 50(7), 398–414.
Kim, C., & Westin, S. (1988). Software maintainability: Perceptions of Edp professionals. MIS Quarterly, 12(2), 167–185.
Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The Devops handbook. Portland, USA: IT Revolution Press, LLC.
Kirsch, L. J. (1996). The management of complex tasks in organizations: Controlling the systems development process. Organization Science, 7(1), 1–21.
Kirsch, L. J. (2004). Deploying common systems globally: The dynamics of control. Information Systems Research, 15(4), 374–395.
Kirsch, L. J., Sambamurthy, V., Ko, D.-G., & Purvis, R. L. (2002). Controlling information systems development projects: The view from the client. Management Science,

48(4), 484–498.
Kirsch, L. S. (1997). Portfolios of control modes and IS project management. Information Systems Research, 8(3), 215–239.
Krancher, O., Luther, P., & Jost, M. (2018). Key affordances of platform-as-a-service: Self-organization and continuous feedback. Journal of Management Information

Systems, 35(3), 776–812.
Lee, G., & Xia, W. (2010). Toward agile: An integrated analysis of quantitative and qualitative field data on software development agility. MIS Quarterly, 34(1),

87–114.
Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise: The alignment of business and information technology strategies. IBM Systems

Journal, 32(1), 198–221.
Mähring, M. (2002). It project governance: A process-oriented study of organizational control and executive involvement. Business Administration, 15.
Maruping, L., Venkatesh, V., & Agarwal, R. (2009). A control theory perspective on agile methodology use and changing user requirements. Information Systems

Research, 20(3), 377–399.
Matook, S., Soltani, S., & Maruping, L. (2016). Self-organization in agile ISD teams and the influence on exploration and exploitation. In International conference on

information systems. Dublin, Ireland.
McAvoy, J., & Butler, T. (2009). The role of project management in ineffective decision making within agile software development projects. European Journal of

Information Systems, 18(4), 372–383.
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousands Oaks, Carlifornia: Sage Publications.
Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. Information and Organization, 17(1), 2–26.
Nelson, K. M., Nadkarni, S., Narayanan, V. K., & Ghods, M. (2000). Understanding software operations support expertise: A revealed causal mapping approach. MIS

Quarterly, 24(3), 475–507.

A. Wiedemann et al.

http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0005
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0010
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0010
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0015
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0015
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0020
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0020
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0025
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0025
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0030
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0030
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0035
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0035
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0040
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0040
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0045
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0050
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0050
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0055
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0055
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0060
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0060
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0065
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0070
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0075
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0080
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0080
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0085
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0085
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0090
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0090
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0095
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0100
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0100
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0105
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0110
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0115
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0120
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0120
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0125
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0130
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0130
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0135
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0140
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0145
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0145
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0150
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0150
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0155
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0160
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0165
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0165
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0170
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0175
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0180
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0185
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0190
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0190
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0195
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0200
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0200
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0205
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0205
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0210
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0210
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0215
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0220
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0220
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0225
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0225
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0230
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0230
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0235
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0240
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0245
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0245

Information and Organization 33 (2023) 100474

17

Onita, C., & Dhaliwal, J. (2011). Alignment within the corporate IT unit: An analysis of software testing and development. European Journal of Information Systems, 20
(1), 48–68.

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organizations: Research approaches and assumptions. Information Systems Research, 2
(1), 1–28.

Pollard, C., & Cater-Steel, A. (2009). Justifications, strategies, and critical success factors in successful ITIL implementations in US and Australian companies: An
exploratory study. Information Systems Management, 26(2), 164–175.

Putnam, L. L., Fairhurst, G. T., & Banghart, S. (2016). Contradictions, dialectics, and paradoxes in organizations: A constitutive approach. The Academy of Management
Annals, 10(1), 65–171.

Remus, U., & Wiener, M. (2012). The amount of control in offshore software development projects. Journal of Global Information Management (JGIM), 20(4), 1–26.
Remus, U., Wiener, M., Saunders, C., & Mähring, M. (2020). The impact of control styles and control modes on individual-level outcomes: A first test of the integrated

IS project control theory. European Journal of Information Systems, 29(2), 134–152.
Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, T., Eskeli, J., et al. (2017). Continuous Deployment of Software Intensive Products and

Services: A Systematic Mapping Study. J. Syst. Softw., 123, 263–291.
Salmela, H., Baiyere, A., Tapanainen, T., & Galliers, R. D. (2022). Digital agility: Conceptualizing agility for the digital era. Journal of the Association for Information

Systems, 23(5), 1080–1101.
Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., & Fonstad, N. O. (2017). How big old companies navigate digital transformation. MISQ Executive,

16(3), 197–213.
Shaft, T. M., & Vessey, I. (2006). The role of cognitive fit in the relationship between software comprehension and modification. MIS Quarterly, 29–55.
Stachour, P., & Collier-Brown, D. (2009). You don't know Jack about software maintenance. Communications of the ACM, 52(11), 54–58.
Tarafdar, M., & Tanriverdi, H. (2018). Impact of the information technology unit on information technology-embedded product innovation. Journal of the Association

for Information Systems, 19(8).
Trusson, C. R., Doherty, N. F., & Hislop, D. (2014). Knowledge sharing using IT service management tools: Conflicting discourses and incompatible practices.

Information Systems Journal, 24(4), 347–371.
Urquhart, C. (2012). Grounded theory for qualitative research: A practical guide. London: SAGE Publication Inc.
Väätäjä, H. K., Hildén, E., Roto, V., & Uusitalo, K. (2016). A case study on participatory approach to support shift to experience design of work tools in B2b context. In

International conference on information systems. Dublin, Ireland.
Wallace, L., Keil, M., & Rai, A. (2004). How software project risk affects project performance: An investigation of the dimensions of risk and an exploratory model.

Decision Sciences, 35(2), 289–321.
Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. (2019). Research for practice: The DevOps phenomenon. Communications of the ACM, 62 8,

44–49.
Wiedemann, A., & Wiesche, M. (2018). Are you ready for Devops? Required skill set for DevOps teams. In European conference on information systems. Portsmouth, UK.
Wiener, M., Mähring, M., Remus, U., Saunders, C., & Cram, W. A. (2019). Moving IS project control research into the digital era: The “why” of control and the concept

of control purpose. Information Systems Research, 30(4), 1387–1401.
Wiener, M., Mähring, M., Remus, U., & Saunders, C. S. (2016). Control configuration and control enactment in information systems projects: Review and expanded

theoretical framework. MIS Quarterly, 40(3), 741–774.
Yin, R. K. (2018). Case study research and applications: Design and methods. Los Angeles: SAGE Publication Inc.
Young-Hyman, T. (2017). Cooperating without co-laboring: How formal organizational power moderates cross-functional interaction in project teams. Administrative

Science Quarterly, 62(1), 179–214.

A. Wiedemann et al.

http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0250
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0250
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0255
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0255
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0260
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0260
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0265
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0265
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0270
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0275
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0275
http://refhub.elsevier.com/S1471-7727(23)00028-3/optvjyU5bdMDE
http://refhub.elsevier.com/S1471-7727(23)00028-3/optvjyU5bdMDE
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0280
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0280
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0285
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0285
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0290
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0295
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0300
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0300
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0305
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0305
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0310
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0315
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0315
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0320
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0320
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0325
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0325
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0330
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0335
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0335
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0340
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0340
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0345
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0350
http://refhub.elsevier.com/S1471-7727(23)00028-3/rf0350

	Integrating development and operations teams: A control approach for DevOps
	1 Introduction
	2 Background literature
	2.1 The DevOps concept
	2.2 Information systems control literature
	2.3 Differences in control themes
	2.4 Tensions resulting from differences in control themes

	3 Research design
	3.1 Data collection
	3.2 Data analysis

	4 Mitigating tensions in DevOps teams
	4.1 Participation in shared vision
	4.2 Right of co-determination
	4.3 Common sense of duty

	5 Discussion
	5.1 Implications for research
	5.2 Implications for practice
	5.3 Limitations and further research

	6 Conclusion
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Appendix
	Appendix B Appendix
	References

