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Abstract: The current need for power-system control-room operational tools to increase real-time
situational awareness has led to various proposals on data analytics algorithms to obtain operational
information from SCADA and PMU power system networks. Most of the proposals are implemented
in simulation, with reduced practical significance for system operators. This work proposes a web-
based simple algorithm to identify the dynamic parameters of a reduced-order model of power
system frequency dynamics that is implemented with industrial hardware on a PMU network in
the Chilean power system. To demonstrate the applicability of the proposed tool, the algorithm is
implemented in a web page with real-time monitoring of the frequency of the Chilean power system,
so that utilities and academic institutions with access to PMU measurements can apply the proposed
concepts regardless of the topology of the monitored system.

Keywords: phasor measurement systems; power system scada; data analytics

1. Introduction

With increasing penetration of renewable generation and the progressive de-commitment
of synchronous machines, frequency stability is becoming an important concern of systems
operators [1]. One aspect that becomes challenging is real-time operation, for which
situational awareness is a necessity. Traditionally, power system operators conduct studies
and simulations on complex and detailed models based on mathematical modeling of the
underlying physics of power system dynamic phenomena. These approaches are normally
known as physically driven or first principle-driven modeling [2], and they manifest in a
computational complexity that limits their application to situational awareness in real-time
operation [3].

With the development of supervisory control and data acquisition (SCADA) and
phasor measurement unit (PMU) networks, the precision of a resolution of the measured
data has increased from 1/3600 Hz up to 100 Hz, significantly increasing the volume of
generated data [4]. This growth on the measured information has led to the development
of simplified models with less physical meaning but more accurate representation of actual
data, normally known as data-driven models [5–7]. Power system data-driven models
have captured particular attention in terms of modeling diverse elements of the grid, such
as generators, power electronics devices, and loads to improve the accuracy of physically
driven models [8–12].

Similarly, pure data-driven or mixed-type models are becoming more useful, as they
can be easily integrated into power system control rooms. They can be identified by using
real-time data, and provide very fast assessments of diverse operating situations to assist
in decision making. On a recent report from an IEEE task force, the authors present the
results of a survey to 10 different transmission system operators from different parts of the
world. The need to develop tools based on data-driven models is emphasized, concluding
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that these tools must be simple enough that they can actually be used in control rooms [13].
Some examples of the application of data-driven models for power systems include the
estimation of inertia and estimation of the rate of change of frequency (ROCOF) and
nadir [14–16].

There is extensive literature on mathematical formulations to process data to improve
situational awareness; however, most of the proposals are tested in simulations with
limited practical significance. In general, analytical tools have to be integrated to existing
technologies in power system control rooms, and solutions must be simple to facilitate
integration to a growing number of different platforms [17–19]. In this scenario, data
analytics and data-driven applications must be configured by using commercial software
and hardware implementations.

Educational and industrial initiatives showing practical applications are in the de-
velopment process. The initial FNET/GridEye from the University of Tennessee has
developed various applications [20–22], such as real-time power system status visualiza-
tion, disturbance recognition and location, interconnection-wide oscillation detection and
analysis, modal analysis using ambient measurement data, islanding and off-grid detection,
measurement-aided model validation, electro-mechanical speed map development, and
historical data statistical analysis. One aspect that is not explored in this initiative is the
online identification of dynamic parameters associated with data-driven models, which
is an important feature as mentioned above. Another initiative is the Meedfasee project,
which is a low-voltage synchropahosor network development in Brazil. The applications
that have been developed are disturbance detection, system-wide model validation, small-
signal stability, and fault location [23,24]. Data-driven models are also not considered in
this development.

Industrial applications for inertia estimation can also be found. For instance, the
Electric Reliability Council of Texas (ERCOT) [25] has an inertia estimation and forecasting
tool that sums the inertia of all online generators reported from the SCADA system to
estimate total system inertia. In the National Grid ESO [26], a tool to estimate inertia
has been developed as well by the Ultracapacitor technology from the company Reactive
Technologies [27]. GE’s digital effective inertia measurement tool, which is non intrusive,
can measure frequencies and power flows every 50 s to estimate and forecast the inertia on
the system [28]. In this sense, in the context of industrial applications, data-driven models
have not been widely explored.

As can seen above, most real-time applications currently in place are focused on
estimating inertia, neglecting the estimation of other parameters. Although various data-
driven proposals can be found in the literature on applications for control room situation
awareness in the context of power systems [29], the implementation of more sophisticated
algorithm tools to characterize in depth the dynamic response of the frequency are limited
to theoretical/simulation demonstration, with limited practical applications valuable to
system operators.

This work proposes a web-based tool to identify the parameters of a reduced order
model of the frequency variations in real time. The proposed methodology first processes
the frequency in real time measured from a PMU network in order to capture abnormal fre-
quency behavior associated with the sudden changes in power balance. Then, a parameter
identification of a reduced order model that mimics the frequency response measured is
performed. The tool is implemented in a web application by using real measurements of
the Chilean power system to show practical significance. The following sections present
the hardware and software implementations of the proposed tool.

2. Frequency Dynamic Model

The reduced-order frequency model used in this work is shown in Figure 1.
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Figure 1. Reduced-order frequency model [30].

In Figure 1,4Pk (MW) represents the magnitude of power imbalance, f0 (Hz) is the
scheduled system frequency, K (MWs) is the kinetic energy stored in the rotational masses
within the system (also known as inertia), KD (MW/Hz) is the overall proportional gain
of all governors, and G(s) is the transfer function associated with the overall governor
response (for this study, G(s) = (1+Tcs)

(1+Tbs+Tds2)
). 4 f is the incremental variation of system

frequency over f0 computed as the center of inertia (COI). The COI is the weighted arith-
metic mean of the frequency at all buses averaged by the corresponding inertia of such
a bus [31]. Note that the model does not represent other stability aspects such as voltage
stability or small signal stability that are assumed to be controlled. The model is only
meant to represent frequency stability. The following section will consider how to tune the
parameters of the model to obtain a correspondence between the model an actual data.

3. Synchrophasor Network and PMU Hardware

Measurements of frequency are obtained from the Chilean power system, which is a
50-Hz, isolated power system in South America. There is a synchronous tie-line connecting
Chile and Argentina, which is currently out of service.

The University of Santiago belongs to a low-voltage synchrophasor network, called
Medfasee (see right side of Figure 2). This synchrophasor network shares electrical vari-
ables from several places from Chile and South America [32]. The University of Santiago
contributes to the Medfasee project with a PMU located in Chile’s northern town of Iquique
(see left side of Figure 2).

The PMU implemented is a SEL-351A; it is an over-current relay that can work as
PMU, through the std. IEEE C37.118 to share measurements. This device works with a
sample rate of 50 sample per second.

The frequency data of PMU located at Iquique and in the Medfasee project are trans-
mitted over the internet to Santiago, where a phasor data concentrator (PDC), SEL-3373,
receives the measurement for further processing.

Figures 2–4 show the synchrophasor network, the PMU, and the PDC respectively.

Figure 2. Syncrophasor network. There are 8 PMU points located in Chile.
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Figure 3. PMU SEL-351A.

The PMU data from the network is grouped together in the PDC, which is a SEL 3373,
and it is located in Santiago, Chile. The Figure 4 shows PDC.

Figure 4. PDC SEL 3373.

In this way, the real-time data from the actual Chilean power system is collected.

4. Data Analytics Algorithms

The main purpose of the algorithm is to identify the parameters of the model depicted
in Figure 1 to identify actual data that is captured with the hardware described above.
More explanatory details on the algorithm are found in [33,34]. The general structure of the
identification algorithm is shown in Figure 5, and it was built by using Python and Matlab.
The algorithm receives measured frequency uninterruptedly and detects frequency events
that are suitable for identification of the dynamic parameters of the model in Figure 1 by
using COI, which is approximated by using the data of 8 PMUs in the Medfasee project
located in Chile.

The COI is approximated as shown in (1),

COI ≈
8

∑
i=1

fn

n
(1)

where fn is the frequency of PMU available online in Medfasee Project. As one can see, the
COI approximation overlooks the inertia of the areas. However, this approximation was
found to be accurate enough after observing the resulting identifications.
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Figure 5. Backend Algorithm.

4.1. Algorithm for Contingency Identification

In order for the event-driven identification to be executed, data of sudden changes
of power balance must be provided. Figure 6 shows the algorithm developed to identify
contingencies from the PMU network data stream.
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Figure 6. Contingencies Identification Algorithm.

The algorithm begins measuring data from the PMU network and then considers a
time-window of 240 s to have enough data from the event. After a digital filtering process
to remove noise is applied, the algorithm determines if there is a pair of points ( fi, fi+1) that
exhibit a difference larger or equal to 0.135 Hz. If that happens, the algorithm declares the
occurrence of an event. The rationale behind this definition is simple; when a contingency
occurs, the frequency drop/raises faster. By successive observation of measured data in the
Chilean power system, the 0.135 Hz threshold was determined; see the analysis in [33] on
this threshold. Clearly, this threshold definition is completely idiosyncratic to the Chilean
power system, and a similar observation process must be performed if the algorithm is to
be implemented in a different power system.
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4.2. Inertia Identification

After a contingency has been detected, the system’s inertia K can be calculated by
using the swing Equation (2), at the first instance following the power imbalance, using
Equation (3),

2K
fo

d
dt
(4 f (t)) = 4Pm − ∆Pk, (2)

K ≈
fo
2

d
dt (4 f (0))

(−∆Pk), (3)

where
d
dt
(4 f (0)) =

4 f (t1)−4 f (t0)

t1 − t0
, (4)

where t0 and t1 are consecutive time instants during the inertial behavior of system fre-
quency after a sudden power imbalance. This definition of inertia from data is significantly
sensible to the selection of t0 and t1 as it was observed by successive inertia estimations.
Based on a database of frequency events in the Chilean power system, the first point of the
frequency time series was not always in line with the rest of the slope, and the best straight
line fitting the actual response was obtained by considering the second fs+1, third fs+2, and
fourth fs+3 points. Figure 7 shows a sketch of the inertia algorithm estimation.
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Figure 7. Inertia Algorithm.

Figure 8 shows a flowchart of inertia algorithm estimation.
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4.3. Droop Estimation

The frequency droop KD is a parametrization of the steady-state response of the
overall governor actions within a power system. It measures the steady-state frequency
drop4 f (∞) that a power imbalance of magnitude4Pk produces as shown in Equation (5),

KD =
4Pk

4 f (∞)
. (5)

Depending on the dynamic conditions, the damping of the frequency response is
subject to change. Qualitatively speaking, frequency responses can be classified as having
one or multiples swings, as shown in Figures 9 and 10 respectively. In these figures, it can
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be observed that the points f j, fk, fl of the frequency response in which the derivative of
the frequency response is zero.
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Figure 9. Frequency response with one swing [34].
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Figure 10. Frequency response with multiple swings [34].

Moreover, it can be seen that the steady-state response can be associated with fk

directly, whereas the steady-state response can be approximated as fl+ fk
2 if the response

has multiple swings. This is a simple way to estimate the steady-state response based on
the principle of identifying the number of swings that the frequency response has, namely
one or more.

From experimental observations, it was observed that the difference between fk and f j
is a clear indicator of the shape of the response. Consequently, the following condition was
derived to successfully discriminate the form of the frequency response:

i f | fk − f j| ≥ 0.1 then The response has multiple swings

i f | fk − f j| < 0.1 then The response has only one swing.
(6)

In this form, the algorithm depicted in Figure 11 was developed to estimate the
droop KD.

In this way, the algorithm in Figure 11 is developed to estimate the droop KD.
Similar to the frequency threshold, the indicator used is idiosyncratic to the Chilean

power system and a similar observation process must be performed if the algorithm is to
be implemented in a different power system.

4.4. Power Unbalance Estimation

The power imbalance is a datum that is not directly obtained by the proposed tool. In
order to obtain the value of the power imbalance, the Chilean National Electric Coordinator
issues daily an operational report on the operator’s website. These reports specify the
occurrence of all events, faults, and maneuvers during real-time operation. In this way,
every time a frequency contingency is detected by the tool, the information of the imbalance
must be obtained manually from the operator’s website. The research group is currently
working on obtaining this information automatically for the operator’s SCADA.
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2

yes
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4.5. Estimation of Tb, Tc, and Td

A predictor error method (PEM) algorithm, which is an algorithm based on the
optimization process, was proposed to identify the parameters Tb, Tc, and Td. The single-
machine model in state-space representation is displayed in Equations (7) and (8), respec-
tively. The one-machine model described in state variables is shown in (8).

ẋ =


0 0 0 − fo

2K
KD
Tb

0 −1
Tb

0
KDTd

Tb
0 −Tc

Tb
0

0 0 1
Ta

−1
Ta

x +


− fo
2K
0
0
0

Pk (7)

4 f =
[
1 0 0 0

]
x. (8)

In general, a discrete single-input, single-output (SISO), linear time-invariant (LTI)
system, with form ẋ = Ax + Bu, can be written as shown in Equation (9) for a sample
time T,

xk+1 = Fxk + Guk,
yk = Hxk.

(9)

where x εRn is the state vector, y εR1 is the system output, and u εR1 is the system input.
The matrices F εRn×n, G εRn×1, and H εR1×n are defined above; n is the order of the system,

F = eAT ,

G =
∫ T

0
eAτ dτ, B

H = C.

. (10)

The output of a discrete system yk, for an instant of time k > 0 can be determined by
knowing the initial condition x0, the input of the system ui, and the matrices F, G y H, as
shows in Equation (11),

yk = Hxk,

= H
k

∑
i=1

(Fix0 + Fi−1Gui).
(11)

Let us consider that a vector of real data from the input and the output of the system
is available, labeled as yα ε Rm for the output, and uα ε Rm for the input; m is the number
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of samples. Let ym ε Rm be the output of the discrete system for m consecutive samples.
The error e ε Rm can be determined by using Equation (12),

e = yα − ym,

= [yα1yα2...yαm]− [y1y2...ym]
t.

(12)

The objective is to achieve a minimum error, and thus the problem is formulated to
solve an optimization problem as depicted in Equation (13),

min e = min f (yα − ym)

s.t.

g(x) ≤ 0,

−tb ≤ 0,

−tc ≤ 0,

−td ≤ 0

(13)

where f is a the sum of the square or errors, and g(x) is a function that represents the
structure of the state matrix of system displayed in Equation (8).

Figure 12 shows the algorithm to identify parameters.

Event detected starting at point ts

Execute inertia identification

Execute KD identification

Execute PEM algorithm to obtain Ta, Tb, Tc and Td

Figure 12. Process to estimate the additional time constants.

5. Web-Based Application

To demonstrate the effectiveness of the proposed approach and highlight its prac-
tical application, the algorithm was implemented in a web page that displays the PMU
measurements from the network in real time. The results validate the hypothesis that the
simplicity of the resulting algorithm make it an ideal candidate for actual implementation
in the transmission system operator control room by means of an ethernet connection.

5.1. Back-End Development

The back-end of the application is built in the Python language and NodeJS frame-
works. Python is used to develop the algorithms to identify contingencies, inertia, droop,
time constants, and decode std. C37.118 from the PMU measurements. On the other hand,
the NodeJS is used as manager for the information between the front end, algorithms, and
databases. Figure 13 shows the software running back end.

The web-service is performed by Node JS framework allowing for the handling of
the query from client’s host. By using Python, all variables are set, and objects and UDP
socket communication are initialized. Then, PMU frames are validated and, if so, they are
decoded. Next, two threads are run; one is to set the data configuration and the other to
process PMU data, in accordance with the IEEE std. C37.118.

When PMU data is decoded and saved, the identification algorithm is executed in
a slide time window of 2 min. If a contingency is recorded, the frequency data from
different buses is turned into a one-time series representing the COI. All data, such as
the current frequency stream, identified contingencies and parameters are saved into the
MongoDB/NoSql database. All these data are available for the front-end to display on the
website. The back-end application is depicted in Figure 14.



Energies 2022, 15, 3384 10 of 15

Figure 13. Backend softwares.
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Figure 14. Back-end algorithms.
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5.2. Front-End Development

The front-end software was built on JavaScript by using the framework Angular, and
it can be accessed in https://tesis.dispersiondigital.cl/#/session/login (accessed on 1 June
2021). Figure 15 shows a screenshot from the web front end.

Figure 15. Web initial page.

The main windows are shown in Figure 16, where the frequency of the Chilean system
is displayed.

�������������	�
� ����������
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Figure 16. Main windows.

The web has several tabs to display information about the user, frequency, and contin-
gencies. The Dashboard tab, displays real-time frequency from the PMU measurements of
the Medfasee network. In this window, the user can select the frequency measurement of a
particular PMU or all PMUs available. The recorded contingencies are available in a tab
called Contingencies. Figure 17 displays the list of contingencies recorded on August 2021
in order to demonstrate how the data is stored.

After selecting a contingency from the list, the tool displays the graphic representation
of the event and the parameters of the model that have been identified for that contingency.
Similarly, the results of the identification are also displayed and compared against the actual
event. In this way, it is possible to visualize the difference between the real measurement
and the approximation. Figure 18 shows a generator trip of magnitude 345 MW recorded
on 25 June 2021, and Figure 19 shows the identified parameters.

Contingency Size

An aspect of the development that needs to be improved upon is the input of the size
of the contingency that is necessary to perform the identification process. Currently, after

https://tesis.dispersiondigital.cl/#/session/login
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the software has detected a contingency, the human webmaster manually check the daily
report of the National Electric Coordinator of Chile (CEN) https://www.coordinador.cl/
operacion/documentos/novedades-cdc/ (accessed on 1 June 2021) and manually updates
the value of the power imbalance. The size of the contingency is estimated by CEN
operators that examine the daily information of the SCADA system and look for large
disconnections of load and generation. After that, the event is analyzed, and the size of
the loss is that of the last reading of power before the event. Unfortunately, the operator’s
website does not count with an application programming interface (API) to obtain the
datum in an automated manner.
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Figure 17. Contingences windows.

Figure 18. Contigence of 345 MW-25 June 2021.

https://www.coordinador.cl/operacion/documentos/novedades-cdc/
https://www.coordinador.cl/operacion/documentos/novedades-cdc/
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Figure 19. Parameters identified for contingence of 345 MW-25 June 2021.

6. Conclusions and Future Work

This work has presented a practical implementation of a reduced-order model param-
eter identification in the case of Chile. The tool was implemented in a web page to show
the applicability of the development, which can be integrated to other data analytic tools in
power system control rooms through ethernet.

The identification of dynamic parameters of a reduced-order model for various dy-
namic conditions has numerous applications. A reduced-order model significantly reduces
the simulation processing time with respect to detailed simulations, which gives the mile-
stone for online dynamic security assessments [35] faster than real-time simulations [33].
The development of practical demonstrations is an important step toward increasing the
technological maturity level of data analytics tools to improve the operational awareness of
power system control rooms.

Various aspects have been identified as future work. The software tool has thresholds
and levels of detection that have a strong connection with practical experience and obser-
vation. Future work is proposed to improve the generality of the tuning processes as to be
able to propose the tool for any power system. Also, auto-tuning and machine-learning
algorithms can be useful in that scenario. Another point of improvement is the imbalance
size input process. Currently, it is a manual process that depends on the reports of the sys-
tem operator. The research group is currently developing a connection of the software with
the SCADA of the Chilean power system to automate the capture of the imbalance size.

Finally, the variability of the identified parameters will be considered in a future
work. As one can see above, different dynamic conditions lead to different parameters
for identifying actual data. This variability is expected as the dynamic equivalent of the
system depends on the number of generating units and loads that are connected to the
system, both of which change on an hourly basis during power systems’ normal operation.
One way to face this difficulty is to obtain a large enough dataset from actual generation
contingencies, so that one can extrapolate any future condition of the parameters from the
historical data by using data analytics; however, this solution has the drawback of needing
a large amount of observation time as contingencies are not usually frequent (in the Chilean
power system, three of these events happen every week on average). A second solution
would be to include other dynamical events to be input to the identification process; for
example, load contingencies. However, load contingencies tend to be of low magnitude,
so they have an unnoticeable effect on the frequency of the system. Future work can
be conducted to obtain data of load contingencies from the SCADA system. Until then,
this data can be used as an input of a modified identification algorithm to increase the
database’s identified parameters to have a large enough historical data set and estimate the
parameters for any condition.
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