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ARTICLE INFO ABSTRACT

Keywords: Sophisticated geospatial metering devices used in today's networks such as the advanced metering infrastructure
Three-way tensor decomposition (AMI), wide area measurement system (WAMS) and supervisory control and data acquisition (SCADA) open new
PARAFAC opportunities to monitor the security of the system in real time. Consequently, these metering infrastructures
giﬁf:i:ion have received significant attention in recent years from data mining communities because of the new challenges

involved on managing this information. One of the main challenges is the analysis of multivariable data, which
represents datasets containing variables of different nature, which are linked. In this document a data mining
technique that allows the analysis of multivariate data is presented. Moreover, an innovative application of an
unsupervised data mining algorithm for smart meters data, particularly to Electrical Load Profile using tensor
decomposition is presented. Since the proposed tensor representation allows to assign a given dimension to a
particular variable involved; data reduction, data compression, data visualization and data clustering is archived
separately for every variable. To validate the effectiveness of the proposed methodology, a three-way tensor built
with data from the Electrical Reliability Council of Texas (ERCOT) is presented. The results demonstrate that is
possible to extract more information than using conventional approaches based on 2-way arrangements (ma-
trices). Additionally, the proposed algorithm is solved using an iterative approach, which indirectly enable to

Missing data
Electrical load data

estimate missing data.

1. Introduction

The main challenges existing moving towards the paradigm of in-
dustry 4.0 is to integrate, manage and exploit process data to benefit
business and society [1]. Based on this trend, digitalization of power
systems is becoming an strategic pillar for the development of the new
market energy models [1,2]. As result, the sophisticated geospatial
metering devices that are currently used in the network such as the
advanced metering infrastructure (AMI), wide area measurement
system (WAMS) and supervisory control and data acquisition (SCADA)
are not just providing the basis of the new digital era on power systems
but are in fact providing more visibility of the network variables and
open new opportunities to monitor the security of the system in real
time. Consequently, metering infrastructures has lately received sig-
nificant attention from data analytic communities such as data mining
because of the new challenges involved on managing this information.

This document presents an innovative application of an un-
supervised data mining algorithm for smart meter (SM) data, particu-
larly to Electric Load Data (ELD) using tensor decomposition. The
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motivation of choosing the aforementioned data analytic tool on this
specific power system application is to face the challenges arising from
these type of devices such as: 1) Multivariable data: SM data are in-
trinsically multivariable, these means that one stream can contain
variables of different nature, which are related to each other. A sensi-
tivity analysis of the electricity and gas consumption to climate pre-
sented in [3] shows how SM can provide a mix of variables such as
temperature, relative humidity and wind speed simultaneously and this
document emphasis the need to deal with multivariable data. Similarly
[4], highlight the relevance of combining SM information with eco-
nomic growth and financial development in order to derive dynamic
links of energy consumption. 2) Big Data: Sophisticated monitoring
infrastructure, such as SM, generate significant amounts of data that
needs to be stored on servers. Until 2018, more than 86.5 millions of SM
have been installed only in the USA [52], generating monthly more
than 23.7 Tb of information per million of SM installed [5]. 3) Visua-
lization: Plotting data to fit models, make predictions and derive con-
clusions is a crucial component of data analytics [6]. The more data
available the more complex becomes to visualize this information. For
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this reason, ensuring accurate visual representations irrespective of the
complexity of the problem is an important task.

These constraints open the opportunity to explore data analytic
tools on this field. In this case, a data driven approach based on tensor
decomposition is used for analysis and process of datasets collected on
distribution systems.

Given that, tensor decomposition is a dimensionality reduction
technique, additionally to this property, the method allows to achieve
at the same time data compression, data visualization, and data clus-
tering. Moreover, in contrast with traditional techniques that work with
2D arrays such as PCA and SVD, tensor decomposition allows to work
with multivariate data. As result, the proposed technique allows to
extract more information after application of the data mining process
and thus, more flexibility than working with traditional techniques is
obtained.

1.1. Background

The most popular methods to process and analyze ELD can be di-
vided in three categories, namely: direct data analytic approaches, model-
based data analytic techniques and indirect data analytic techniques. Some
of the direct data analytic technics include the minimization of various
types of Euclidean distances [7,8], unsupervised neural network [9],
swarm optimization techniques [10,11] and k-means [12,13]. Each of
these methods allows the algorithm to extract the implicit knowledge of
the energy data. Hierarchical clusters depicted using dendrograms,
present visualization problems when large volumes of high-dimensional
data are processed. Model-based data analytic methods have been used
to overcome ELD customer clustering, such is the case of Gaussian
mixture model (GMM), which is one of the most widely used model-
based clustering [14-16]. However, the performance of this type of
algorithms is directly affected from the inherent limitations existing on
standard multivariate functions; all mixture model components follow a
predefined marginal distribution function and dependency structure. To
circumvent these limitations new approaches such as finite mixture
modeling frameworks have been proposed in [17], which is a method
based on C-vine copulas (CVMM) for carrying out consumer categor-
ization. The advantage of [17] over other approaches, resides in the
eminent flexibility of pairing copulas toward identifying multi-
dimensional dependency structures present in load profiling data.

Conversely, indirect data analytic techniques offer two sub-cate-
gories: time series grouped and feature extraction. The first sub-cate-
gory assumes that electric profile data are essentially time series
[18,19]. Both sub-categories can reduce the dimensionality of the time
series while maintaining some of the original characteristic of the
consumption profiles. Additionally, the tuning parameters required and
the high computational cost, impose limitations to process large mul-
tivariable data sets. Therefore, a well-known family of statistical and
embedding methods such as: principal component analysis (PCA), ca-
nonical component analysis (CCA), and more recently Sammon, sto-
chastic neighbors embedding (SNE) and local linear embedding (LLE)
can be applied directly to process a multivariate time-series due to its
ability to handle and analyze large volume of data sets [7,8]. These
methods can be used to obtain data dimensional reduction, data vi-
sualization and indirect data clustering analysis. Similarly, these
methods transform high-dimensional space data into a low dimensional
space while retaining the most significant information, allowing to
obtain significant data compression.

Irrespective of the popularity and advantages of these approaches
for analyzing ELD data, a negative aspect related to these methods is the
processing of the input data as two-dimensional arrays (matrices). The
2D representation neglects the fact this type of data, are intrinsically
multivariable. If a process with more than one variable, like is the case
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for SM data, is represented on a 2D array, after application of the
mining process the different variables will mix and important in-
formation will be lost, which will not be possible to retrieve.

To cope with these challenges, a novel application of data mining
based on tensor decomposition for power systems applications is pro-
posed. The benefit of using multidimensional arrays on SM data is the
designation of a particular dimension to a given variable. As result,
after the data mining process, the physical nature of the involved
variables remains the same and as result, dimensionality reduction,
data compression, data visualization and data clustering is possible to
obtain.

The mathematical background of tensor decomposition can be
found in [20-22], and the resume of the particular algorithm used on
this work, which is referred as Parallel Factor model (PARAFAC) can be
found in [23,24].

Tensors and their decompositions is a truly established and docu-
mented methodology that has been successfully applied on different
disciplines of science such as: Phonetics [25], Psychometrics [26],
Chemometrics [27,23] and Neuroscience [28,29] just to mention some.
However, on these applications it has not been proposed the use of
tensor as a tool for data mining. This alternative use of tensors and how
the idea was first introduced is summarized and documented in works
such as [30,20] and [21], respectively. Although these documents re-
port and categorize together different procedures on how to profit using
tensors, the authors do not provide a clear description about the for-
mulation and information extracted from the decomposition. Moreover,
these documents lack to explain what the implications are when the
input data to build the tensors are time series, like is the case in this
work. In power systems applications, the use of tensors has not been
fully exploited and very limited reported cases that can be found in the
literature. Such is the case of [31,32], where tensors are used to forecast
power grids sequences and to find energy disaggregation, respectively.
Therefore, this work represents the first actual application of tensors for
data mining on electrical power systems. Here, the problem is re-
formulated for the first time as a 3-Dimensional array or tensor
(I xJxK) and introduces a new multivariate data mining approach with
the main objective to achieve data dimensionality reduction, data
compression, data visualization and indirectly, also data clustering.

It is worth noticing that as mentioned before, tensors and their
decompositions are well stablished methodologies; however, combining
them for power systems applications is not trivial and there are not
similar applications available in the literature. Thus, the contribution of
this work is in the form of establishing the basis for the combination of
these tools and the application itself.

1.2. Summary of contributions

The innovation of using tensor decomposition on smart meters (SM)
data results on the following contributions:

e Formulation of the problem from a different perspective. Until now,
measurements from SM were expressed only as vectors (1D) or
matrices (2D). In this work, a higher order representation, 3D in this
case, is proposed. The new format allows to store multivariate data
in a more natural form, and at the same time is possible to retrieve
more information about a certain event. It should be stressed that,
although in other disciplines such as data science the introduction of
more dimensions is not required and it actually complicates the
formulation of the problem, in power systems applications where
data have multivariate nature, working with two dimensions leads
to insufficient visibility of the problem and consequently to mis-
interpretation of the phenomena under investigation. Thus, al-
though the proposed approach would certainly add complexity to
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find the solution when working with conventional algorithms such
as PCA or LLE, the higher dimension does not represent an obstacle
for the proposed approach and guarantees a more accurate inter-
pretation of the solution.

® Significant data compression. After the tensor decomposition has been
performed, the original data sets are kept on new formats of the
decomposition, which require significant less memory space.

® Reduction and Visualization: The reduction is carried out for each
dimension and thus, visualization and clustering of each variable is
achieved.

® Reconstruction of missing data. The iterative nature of the algorithm
for solving the objective function during the tensor decomposition
process, indirectly allows the estimation and reconstruction of
missing data.

To validate the effectiveness of the proposed methodology, the re-
sults are compared against classical dimensional data mining tools such
as PCA and SVD. However, since these basic approaches work only for
matrices and vectors, the 3D arrays resulting from the ELD are unfolded
into equivalent 2D arrays to perform the comparing [30,33].

2. Tensor decomposition
2.1. Multidimensional representation (tensors)

A tensor is a multidimensional array. More formally, a N-way or N-
order tensor is an element of the tensor product of N vector spaces, each
of which has its own coordinate system [34]. In this work, we use three-
way or three-dimensional (cubes) tensors to represent smart meter in-
formation. Up to now, vectors and matrices have been the most tradi-
tional way to handle these data types, which are in principle tensors
representations of first and second order, respectively. However, al-
though these low order tensor representations allow to work with al-
most any type of data and must of the classical techniques could be
applied, some properties of the original set of data could be lost during
the transformation process. In this work, the benefits of adding one
extra dimension will be demonstrated in the context of power systems.
Before providing the general background of tensor decomposition, the
mathematical notation used through the document is first introduced.

The standardized notation and terminology for multivariate analysis
used in this document is adopted from reference [35]. Therefore, the
tensors are represented with bold letters underlined X. Matrices, vectors
and scalars are represented by uppercase letters in bold, lowercase
italics in bold and lowercase italics, respectively (X, x, x). The element
(i, j, k) from tensor Xe>IXK is denoted as x;, meanwhile the element (i,
j) from matrix X €' * 7 is denoted as x;;, in a similar way the i-th input
of vector x €' is x;. Note that a vector x and matrix an X can be denoted
as tensor of order one (X € !) and tensor of second order (Xe™¥).

2.2. PARAFAC for tensor decomposition

Tensor decomposition is an established and documented area of
multilinear algebra. This subsection provides the basis of the definitions
that are going to be used on subsequent sections and it is worth noticing
that no scientific contribution has been done in relation to this meth-
odology itself.

Following the standardized notation, assume that Xe>*X is defined
as 3D tensor. Assume that I = 1, ...,m denotes an element of observa-
tion, at J measurement points at;, i = 1, 2...I, ...,w is the time at which
the observations are made and K is the different operation condition at
which each Xe™*X data are collected or stored. Applying the
PARAFAC decomposition, a triadic vector decomposition is represented
as follows:
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X=3 aobec, +E &)
wherer = 1, 2, ..., R is the tensor's rank that allows rebuilt the tensor X.
Fig. la illustrate, how the outer vector product of the three vectors a,, b,
and c,, generate an approximation to generate the tensor X, and the
symbol “°” represent the vector outer product.

A different way to represent the PARAFAC model decomposition is
denoted as the sum of R tensors as follow

X=) X, +ExX

1 (2)

M=

r

where (2) is illustrated at Fig. 1b.

Equations (1) and (2), are equivalent. The triadic outer product
among a, o by - ¢; allows to build the tensor X;, and the outer product
between ag, bg and cg generates the tensor Xg. Additionally, the error
denoted by E in equations (1) and (2), are the same.

The foremost tensor decomposition will be that which minimize the
cost function and expresses the least square difference between the
original tensor X and the calculated approximation 2:

fla, by, c) =X - XII 3)

To carry out the solution of (3) the alternating least squares (ALS)
[36] algorithm is used. Considering, that the accuracy of the PARAFAC
model is determined by the rank R, this parameter has been developed
in such a way that is possible to solve this challenging problem with the
following criterions: Assessment error [36], the Euclidean norms of
successive estimates of A, B and C [36], and CORCONDIA algorithm
[37]. In this study is used the CORCONDIA algorithm, unlike the other
two, determines the number of components based in analyze if the
tensor reflects a trilinear variation in the data; a necessary condition to
be decomposed by PARAFAC.

2.3. Interpretation of the tensor decomposition

Since there are no literature available regarding time series as raw
data used to build 3-dimensional tensors, it was not possible to correlate
the results produced from the tensor decomposition with the physical
significance of the smart meter data. For this reason, the relations are
derived first and represent some of the main contributions on this work.
To gain insight on the meaning of the tensor decomposition let us
analyze a third order tensor denoted as Xe™*K, Note that for this ap-
plication, the tensor was built using measurements of I days, measured
Jsamples of time, in K locations.

The tensor decomposition of X is carried out using the PARAFAC
model with rank R, which is described by three load matrices: A, B and
C, which are composed by the vectors a,, b, and c, as depicted on
Eq. (4):

A = [a..ag] € RI*E, a, = [a...a;]" € R!
B = [b]...bR] € R/¥R, b, = [b]b]]T € R’
C = [cy..cg] € REXR ¢ = [cr..c]f € RE (&)

The information contained in vectors a,, b, and c,, has relation with
the physical significance of the input data and at the same time could be
used to reconstruct part or all the original tensor. After Eq. (3) has been
solved using the ALS algorithm, the reconstruction of the tensor de-
noted by ﬁ can be performed using the load matrices introduced in
Eq. (4). Frontal slices are denoted by X(:,:,k), where each reconstructed
frontal slice is described as follows:
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b)
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Fig. 1. (a)Tensor decomposition: Sum of triad outer vector products. (b) Tensor decomposition: Sum of rank one tensors
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A
where oc,-]’-k is an element of the reconstructed tensor X, conformed by the
scalar products between a;, b; and ¢, which correspond to vectors a;, b,
and c,, respectively; where each element o, is described as:

R
ro_ z -~ h.
ocl-jk = o1 alrbj,ckr (6)

Consequently, each element of the matrices depicted on Eq. (5) are
the result of multiple product combinations on Eq. (6); and thus, the
following remarks can be derived:

e Assume that each row of the frontal slice X(:,:,k), represents a time
series and assume that the subscript “i” of ay is fixed; it can be
concluded that the i-th scalar g; of the vector a, influence only the
time series of the i-th row of each frontal slice. Thus, each vector a,
represents a particular day of the week.

® Analogously, assume that each column of the frontal slice ﬁ(:,:,k)

represents the measurements at each instant of time and assume that

the subscript “j” of o is fixed; it can be concluded that the j-th
scalar b; of the vector b, influence the specific j-th sampling time.

Finally, each frontal slice represents data collected under different

operation conditions. Now, assume that the subscript “k” associated

to each frontal slice is fixed; then each element c; of the vector c,

influence the time series of the k point of each frontal slice. As result,

each vector c represents a particular condition.

2.4. Analysis of slices as result of PARAFAC model decomposition

To gain more in depth in the analysis of tensor decomposition given
in Egs. (1) and (2), this subsection introduces two subarrays within this
theory: Slices and Fibers.

Slices: Different subarrays referred as slices can be used to build a

a) b) )
Fig. 2. Tensor partition for slices: (a) Horizontal slices. (b) Lateral slices. (c)
Frontal slices

tensor X. Three different projections are illustrated on Fig. 2: hor-

izontals, laterals and frontals.

e The i-th horizontal slice (depicted on Fig. 2a in red) represent i-th
sensor measurements for the J instant of time for different K regions.
The i-th horizontal slice is denoted as follow:

Xu(i, :2) = C diag(a;) BT @)

where C and B are the load matrices obtained from tensor decom-
position (2). The term diag( ) is an algebraic operation that transform a
vector on diagonal matrix. The row vector a; obtained from A, contains
the a, values for the i-th sensor.

o The j-th lateral slice, (Fig. 2b in red) represent the j-th measurement
at each instant of time j for all I located through K conditions:

Ri(:J, ) = A diag(by) CT @)

where b; is a row vector from B, which contains the b, values for the j-th
interval of time.

o The k-th frontal slice (Fig. 2c in red) represent the measurement of I
sensors, during J instances of time, for the k-th condition:

Xf(:,:,k) = A diag(c) B” 9

where ¢ is a row vector obtained from the C, which contain the c,
values for the k-th condition. Note Egs. (7)-(9) where deduced from the
definition presented on Eq. (4), which is not trivial.

2.5. Analysis of fibers as result of PARAFAC model decomposition

Different subarrays based on fibers can be used to obtain a specific
information about tensor X(i, Jj» k). To compute the fibers, two indexes
of tensor X(i, Jj, k) must remain fixed and one of them must be shifted.
Based on this, three types of fibers can be computed: mode-1 where
only the subscript “i” is varying, mode-2 where only the subscript “j” is
varying and mode-3 where only the subscript “k” is varying. These
modes are illustrated on Fig. 3a—c, respectively.

Once the tensor is decomposed by PARAFAC, the approximation of
any mode fiber can be calculated.

a) b) c)

Fig. 3. Fibers-of mode: (a) Mode-1. (b) Mode-2. (c) Mode-3.
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Fiber of mode-1, represent the measurement of I sensors at the time
instant j, for the specific condition k. The fiber of mode-1 is computed as
follow:

A ) R
X(:j, k) = Zr:l b Cir @y (10)

Fiber of mode-2, represent the measurement of the sensori, during
the time J, for the specific condition k. The fiber of mode-2 is computed
as follow:

AL R
X(i, k) = )5 apc by an

Fiber of mode-3 represent the measurement of K conditions for the
specific sensor i, and specific time instant j.The fiber of mode-3 is
computed as follow:

AL, R
X, j, )= Zr:l airbjr Cr 12)

Similar to slices, the deduction of Eqgs. (10)—(12) is derived from the
definition of Eq. (4) and are not obvious.

3. Added value of PARAFAC in power systems

The following stages describe the advantages of using PARAFAC as
an algorithm for data mining in power systems applications over the
existing techniques.

Stage 1: Tensor design:

e The multivariate data is stored in a 3D-tensor, where days, time and
the geographic region represent each of the dimensions. As result,
the final tensor hold more information than that stored on con-
ventional matrices.

Stage 2: Tensor decomposition:

e Data compression: As result of the tensor decomposition using
PARAFAC, the load matrices A, By C are calculated and are used to
build the tensor approximation X Hence, the new order of the
compressed data is the sum of the orders of the individual load
matrices. A, Band C.

e Data visualization: Every load matrix contains information related
to a particular variable in a reduced dimension, because of that, the
following is possible: 1) Matrix A allows you to create a low-di-
mension score plot R > I to visualize a daily dynamic behaviour. 2)
Similarly, C matrix outputs are used to build a low dimensional
score plot, used to visualize information related to the geographical
location for a reduce-dimensional space R > K. Note that using a
formulation of the problem based on conventional matrix re-
presentations, it is not possible to obtain such data groups.

o (Clustering data: The optimal number of clusters in the Euclidean
score plots, built with matrices A and C, can be determined using K-
means. Additionally, a validity index to confirm the geographical
clusters is proposed.

2) Tensor

Data collection

1) Design of
the Tensor

1
i
i
1
1
1
1
i

-4

decomposition

€ Cr
by .4 by
a; ag

2.1)Data compression
2.2)Data visualization
2.3)Data clustering
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Fig 5. (a) Geographic areas of ERCOT system. (b) Designed tensor X € $28x96x8

Stage 3: Data reconstruction:

o Handling Missing Data: In the face of lack of data in the original time
series, PARAFAC decomposition allows to estimate these missing
information through the ALS algorithm. It is worth noticing that
neither the 2-way SVD nor the 2-way PCA, can deal with this con-
straint.

The general diagram depicted on Fig. 4 provides a comprehensive
graphical description of the information related to the different stages.
This procedure was implemented using the toolbox N-WAY for Matlab
[38] in the version R2015. The main results of this work are presented
in the following section.

4. Main results

To test the effectiveness of processing multivariable data using the
PARAFAC decomposition for power systems applications, the open
database from the ERCOT system in the USA was used as input and the
results are presented in 3 different subsections divided as follows:
Tensor design for the ERCOT system, tensor decomposition of the same
system, and data reconstruction.

4.1. Tensor design for the ERCOT system

To validate the methodology presented on Section 3, the repository
open source data provided on the website of the ERCOT system is used
as input [39]. For sake of simplicity, in the following subsections the
proposed methodology is evaluated using historical data collected from
eight different areas: 1) coast area, 2) east zone, 3) far west zone, 4)
north central zone, 5) north zone, 6) south central zone, 7) south zone,
and 8) west zone. These zones are graphically displayed on Fig. 5a and
the repository database contains historical information from 1998 up
today, for 8 types of electric consumption profiles.

On this paper, the summers from 1998 to 2006 of the business low
load profile (BLLP) type, disperse on 8 zones of the ERCOT system are
analysed. The BLLP with time of use electricity rate scheme may be

3)Data Reconstruction:
missing data

Tensor with missing data

Tensor without missing data

—

—>

Fig. 4. Flow-chart for the proposed tensor data mining technique based on PARAFAC decomposition
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used to shift or reduce load in times of high prices or increment in times
of load prices. Therefore, a more detail segmentation of the BLLP
consumption provides a wider range of related analysis such as the need
of grid expansion and load prediction of electricity markets that allow
to design better electricity price schemes.

Summer is one of the most challenges periods for the utility ERCOT,
because it must keep the balance among high temperature (33 Celsius
degrees) and the increment of the energy demand with low energy
prices. The summer is composed of 92 days. The difference between
working days (Monday-Friday) and weekends (Saturday-Sunday) is also
analyzed in this research. The ELD were collected using 15 minutes
sampling time until complete a period of 24 hrs. These information was
organized on a 3D tensor of dimensions X € 328%%x8  The subscript
“828” is the total number of days over nine years, “96” is the number of
samples per day and the subscript “8” is the number of geographic
zones. The resulting tensor is illustrated on Fig. 5b.

4.2. Tensor decomposition of the ERCOT system

After the decomposition has been calculated, the stored information
in tensor X is now represented by the three load matrices A, Band C.
Now, the subsequent section introduce the data mining process based
on PARAFAC decomposition for: 1) data reduction and compression, 2)
data visualization and 3) data clustering.

4.2.1. Data compression

To provide a more efficient storage and data processing and to
preserve high resolution as much as possible, an efficient compression
data algorithm is required. In [40], different data compression methods
have been classified in two categories: lossless compression and lossy
compression. The difference between these categories is the quality of
the original data recovered after compression. In lossless compression,
the reconstructed data are identical to the original; meanwhile lossy
compression is essentially used to preserve the most relevant details and
extract punctual characteristics. Data compression techniques are
chosen base on the characteristics of the datasets such as coarse gran-
ularity and communication data for storage. In this regard the lossless
compression have demonstrated to be more effective for handling in-
formation with high coarse granularity [41] and less popular to store
and transmit compressed data. On the other hand, lossy data com-
pression is the best option to transmit, store and analyze consumption
profiles, because of the characteristics (sparse and diverse) of the smart
meter data. The ability to compress data of the proposed PARAFAC
methodology is compared against two additional lossy compression
techniques: the 2-way singular value decomposition (2W-SVD) and the
2-way principal component analysis (2W-PCA). Since the proposed
approach works with a 3D tensor arrangement X € 828X9x8_ the data is
unfold on its mode-1 [20] into a 2D arrangement X (;y € 828%748 5o it can
be used for comparison. It is worth noticing that the PARAFAC tensor
requires 4.8516 Mb of storage, while the 2W-SVD and 2W-PCA matrices
represent a storage demand of 4.8516 Mb each, respectively. To

< 100
o ——2W-SVD
8_ 80 - — 2W-PCA
E

8

S, 60

0

§ 40 191 Singular Values 99%
©

= 6 Principal Components 99%

S 20f4 P P ’

G [

R

50 100 150 200
Number of Components

Fig. 6. Percentages of variability associated at 2W-SWD and 2W-PCA.
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represent 99% of the original data 2W-SVD uses 191 singular values
and 2W-PCA uses 6 principal components. Fig. 6 shows the percentage
variability of the data resulting from the 2D techniques as follows:
vusvp = Xr, 0i/max (a)¥100 y vppea = X, Ai/max (1)*100

Table 1 summaries the results of the comparison. First column dis-
plays the methodology used, second column depicts the size in bytes of
the matrices involved on the decomposition process, third column
shows the total size of the matrix decomposition and the last column
depicts the compression ratio (CR) [42], which is a measure to stan-
dardize and quantify the individual level of compression achieved. The
CR index is defined as the ratio between the original data and the
compressed data as depicted on Eq. (13)

CR = S¢S 13

where S, is the size of the uncompressed data and S is the size of the
compressed data. The higher the value of CR, the smaller the magnitude
of the compressed file.

The results show that PARAFAC achieve the maximum compression
with up to 99.69% packing of the original data, followed by 2W-PCA
with 98.39% and 2W-SVD in last with only 46.18%, respectively.
Although the difference between the 2W-PCA and PARAFAC is mar-
ginal, the magnitude of the CR index shows a significant difference
between the two approaches, demonstrating the relevance and the
potential of using PARAFAC for compression of large volumes of data.

4.2.1. Data visualization and data clustering

In this section, the number of groups existing in tensor X are de-
termined. The groups are identified based on the following variables: 1)
clustering of days for the ELD and 2) clustering of geographical areas.

1) Grouping ELD: In Section 2.3 was shown that the i-th scalar g; of the
vector a, is used to weight exclusively time series of the i-th row of
each frontal slice. Therefore, vectors a; represent a given day of the
week. The next step is to consider that the load matrix A captures
the grouping of the data associated with the load profiles stored in
tensor X . Then, the r-vectors a, can be used to visualize the original
profile in a reduced-dimensional space; since the dimension of the
decomposition is smaller than the original: R < I. Fig. 7 shows the
score plots of the different approaches. Fig. 7a depicts vectors a; vs
a, resulting from PARAFAC where two groups are clearly observed.
Following an iterative procedure, three right eigenvectors (u;, u, us
and wy, wo w3) were considered, which are associated to the cor-
responding dominant singular values (07, 0> 03) and eigenvalues
(A1,A2 A3) resulting from the 2W-SVD and 2W-PCA, respectively.
Fig. 7b shows that with three singular values up to 64.21% of data
variability is captured, while using three principal components
97.60% of data variability is achieved (Fig. 7c). However, in both
cases (Fig. 7b and c) only disperse data is displayed and is not
possible to identify any cluster.

To gain more insight into the cluster identification analysis, 99% of
the data variability is considered to carry out cluster identification. For
that, 191 singular values and 6 eigenvalues for 2W-SVD and 2W-PCA
respectively are considered. Then its respective curve of validation in-
dexes based on Davis-Bouldin (D-B) and Silhouette are outlined and an
automatic search of the significant “knee” within the diagram is per-
formed. The number of clusters at which the “knee” is observed, in-
dicates the optimum clustering for the selected data set.

Based on the above comment, the lowest value of index D-B and the
highest value of index Silhouette indicate the optimum number of
clusters [43]. Both validation indexes assess the quality of the clusters
in terms of compactness and separation of each cluster. For the case
under study, K-means operates 100 times a partition of 2-6 groups. The
validation indexes values obtained from the K-means are formulated in
the form of a box-whisker plots and are presented on Fig. 8 and show
the results of the D-B and Silhouette indexes, respectively. The results
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Table 1
Data compression comparison
Method Matrix decomposition Total kb CR
PARAFAC Aec R828 %2 12.937 kb Be R %2 1.500 kb Ce R®*2 0.128 kb 14.5650 333.09
2W-SVD Ue 1206.60 kb Te 285.00 kb Ve 1119.1 kb 2610.7 1.85
[R828 x 191 |R191 x 191 [R768 x 191
2W-PCA We R828 %6 38.812 kb Ee 0.288 kb V e R828%6 38.812 kb 77.9120 62.27
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presented on Fig. 8 reinforce the outcomes displayed on Fig. 7. From
Fig. 8a it can be observed that both indexes agree on identifying two
groups with PARAFAC. Contrary to the other approaches, where in the
case of the 2W-SVD method, the index D-B identifies three groups and
the index Silhouette only two. However, the number of groups com-
prised between 25 and 75 percent of the evaluations determine two or
four groups for both indexes. The results demonstrate that both
methods 2W-SVD and 2W-PCA fail to identify a clear number of groups.

The proposed indexes (D-B and Silhouette) also allow obtaining the
corresponding labels, which helps to evaluate the quality of the com-
pactness and separation of each cluster as well as provide visual in-
formation. Based in this information the electric load profile (ELP) is
grouped based in its associated label and is displayed on Fig. 9. The
groups identified with PARAFAC are clearly shown on Fig. 9a; where g;
represents working days and g, depicts weekends. Conversely, 2W-SVD
and 2W-PCA approaches displayed on Figs. 9b and c, respectively,
cannot group correctly the ELD data and mix the results.

1) Grouping Electrical Geographic Areas: As described on Eq. (4), the

a) b)
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Fig. 10. (a) Score plot c; vs c. (b) Geographic groups.

matrix decomposition C is related to the geographical location of the
measurements, given that c; elements on vector ¢, weight the time
series of the k point of each frontal slice. This means that r vectors c,
can be used to visualize the information related to the geographical
location in the reduced-dimensional space: R > K. Based on this,
Fig. 10a shows the score plot of vector c,, which allows to observe
the data distribution on a 2D dimensional plot. Following the clus-
tering identification procedure introduced on the previous Section,
two groups are identified (g1, g»), which are conformed by the
geographic zones: where g; include the Coast (1), East (2), North-
Central (4), North (5), South-Central (6) and South (7) areas, re-
spectively. Meanwhile g, is comprised by the Far-West (3) and the
West (8) areas. These groups are displayed on Fig. 10a and b depicts
these groups in the map.

It should be noted that the visualization and clustering of the geo-
graphical areas cannot be performed if the input data is stored on two-
dimensional structures, because in this form, temporal and geo-
graphical information is combined in one axis. Only higher order re-
presentations (3D), allows to visualize and separate each variable in its

Fig. 9. ELP Clustering plot obtained by: (a)
PARAFAC. (b) 2W-SVD. (c) 2W-PCA

L] 10 15 20
Time (Hrs)
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actual unit of measurement. Moreover, the presented results are not
possible to replicate even if the original data are split into eight dif-
ferent datasets (one for each area) and then analyzed individually. This
is only possible with PARAFAC because the content of the matrix C
allows to build a low dimensional score plot where the geographical
information can be visualized.

To validate the clustering process shown on Fig. 10, the ELP of each
region is averaged and assigned at each group using Eq. (14)

I

BIP = = 3 R(, k) € RIXS

'3 (14)
where k represent the k-th geographical area, and I the total number of
days. Fig. 11 depicts the dynamic response of the averaged ELP related
to groups g; and g, respectively. Fig. 11a shows that electricity con-
sumption begin at 5 hrs and increases gradually to reach its maximum
electricity consumption between 11 hrs and 17 hrs. Similarly, Fig. 11b
displays that electricity begins around 7 hrs, and reach its maximum
consumption between 15 hrs and17 hrs. Note, that g, shows a higher
energy consumption than g.

4.3. Analysis of computational complexity

As shown on Section 4.2.1, two-way approaches such as 2W-SVD
and 2W-PCA do not allow to retrieve information for a given each
variable, therefore it is necessary to unfold the tensor in three different
modes X (1), X (2), X (3) (see Section 2.5). In this form is possible to
obtain the same information as it is given for the tensorial decom-
position. In consequence, the computational complexity of 2W-SVD and
2W-PCA will be the sum of the three unfolding processes.

The computational cost for PARAFAC is equal to
(UK+KI+1J)+ (7R + R) + 3RIUK + (I + J + K)(R> + R) + 11R%),
more information can be found in [44]. The numerical calculation of
2W-SVD is currently performed using the Golum-Reinsch algorithm
because it is the most efficient, popular and numerically stable tech-
nique for computing an arbitrary matrix 2W-SVD [45]. To evaluate the
components U, £ and V [46] required in 2W-SVD, require a computa-
tional effort, which is equal to (4m?n + 8mn? + 9n®). Whereas the
computational cost to evaluate the covariance matrix required in 2W-
PCA is (m?n) and its eigenvalue decomposition is (m®); therefore the
computational complexity of 2W-PCA is (m?n + m3) [47]. Where m are
the number of the rows and n are the number of columns in the matrix.
The values of these variables in the unfolding process are as follows: in

<1018
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Fig. 12. Computational complexity of PARAFAC, 2W-PCA and PCA for the
mode-1
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mode-1 m = I and n = JK; in mode-2 m = J and n = IK; while in the
unfolding mode-3 m = K and n = IJ. If mode-2 and mode-3 are fixed
and mode-1 increase, it is possible to quantify the computational
complexity for the different approaches PARAFAC, 2W-SVD and 2W-
PCA in function of the magnitude of mode-1. For instance, to compute
the mode-1, let us assume m = 828 and n = (96 X 8), yields a number of
operations of 3835150, 4.5232 x 10'® and 2.8827 x 107, for PAR-
AFAC, 2W-SVD and 2W-PCA respectively. Fig. 12 displays the com-
parison of the different computational effort required for the respective
approaches. It can be seen how PARAFAC is significantly less compu-
tational expensive in comparison to the other approaches.

4.4. Data reconstruction: missing data

Conventional statistical approaches assume that data values from
variables measured are stored every sampling time and this is not al-
ways the case in real life [48]. It has been reported in [49], that power
systems advance metering infrastructure (AMI) fail to record between
2.7% and 9.4% of measured data. The so called missing data could lead
to computational problems and erroneous calculations. In this section,
it is shown how as an indirect result of the iterative ALS algorithm,
which is used to solve the PARAFAC tensor decomposition model, the
iterative algorithm is also used to reconstruct missing data. The basic
principle is that nonexistent elements are replaced by estimates so that
the iterative procedure continue until the estimates of the missing in-
formation remains constant indicating the end of the iterative process
[26].

The lack of data could be classified in two states according to the
severity of the problem: 1) lack of single observations and 2) lack of
variables. In the first case, no observations are stored for a limited
number of samples. In the second case, an entire variable is missing, for
instance: one fiber of the tensor.

To demonstrate the ability of PARAFAC to handle missing data, an
example using data from the ERCOT system, is now presented for both
cases: lack of single observations and lack of variables. It is worth no-
ticing that reconstruction of missing data is performed during the initial
stage of any data mining algorithm, as part of the regular preprocessing
phase. In this work, this process was performed in the final stage in
order to have the load profiles already classified according to their daily
dynamic and their geographical position. In this form, it was possible to
approximate the reconstructed data with the actual data with a rela-
tively low error.

In the first example, the effectiveness of the proposed approach
against lack of single observations is demonstrated. In this case, data
from one day in summer of 1998 (30.07.1998) was used, where five
consecutive samples of time were artificially removed from the original
data to mimic the temporary loss of data. Note that each sample of time
correspond to 15 minutes and thus, in the example an absence of one
hour of recorded measurements is simulated. The first step is to build a
tensor for the selected date 30.07.1998, which was Friday, a working
day that belongs to the coast zone. Therefore, tensor ﬁ is built only
considering working days with the regions belonging to cluster g;

Estimation

5 %
— Original = =With missing D(ava)— Estimation— Eror [%) —— Original Eror (%)
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Fig. 13. (a) Lack of single observations 7: 30 — 8: 30 in the morning and
11: 25 — 13: 45 Rush hour, July 30th of 1998. (b) Approximation of a missing
variable, July 31th of 1998.
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(1,2,4,5,6,7). In this way, the new tensor, which will be used to cal-
culate the approximation has the following dimension X € 65%%x5,

Fig. 13a shows the results of data reconstruction for lack of single
observations twice during the same day. The first lack of observation
occurred between 7:30 and 8:30 in the morning, where a linear incre-
ment on the consumer profile was missing. The second lack of ob-
servation occurred between 11:25 and 13:45, which was characterized
by the effect of increase-decrease profile behavior caused by con-
sumption during rush hour on this particular day. From the results, the
effectiveness of the missing data reconstruction can be observed by the
accuracy between the original data (gray) and the estimated signal
(red). Moreover, the error in percent of the estimation is also displayed
(orange).

In the second example, the procedure to reconstruct the lack of a
variable, a fiber in this case, is presented. After the tensor X has been
reconstructed and the load matrices A, B, C have been calculated, any
missing variable can be retrieved using the equations of fibers or slices
(7)-(9) and (10)-(12), respectively. Carrying on with data from example
one and using the load matrices, is possible to reconstruct any day of a
particular region or any region of a particular day, represented as:
ﬁ(:,:,k) or ﬁ(i, ;1) using Egs. (7) and (9), respectively.

In the second example it was assumed that the measurements of an
entire day (31.07.1998) were missing, which correspond to variable
2(31, ;,1) and to the frontal slice ﬁ(:,:,l), computed with Eq. (9).
Fig 13b depicts the original and the estimated data of the entirely day
(31.07.1998) and it can be observed the accuracy in the approximation.
Note that this day can also be reconstructed using Eq. (11).

In order to demonstrate the higher performance of PARAFAC, the
former approach is compared against two of the most popular algo-
rithms used to estimate intervals of missing data: the Linear
Interpolation (LI) and the Nearest-neighbor approach [50]. LI estimates
a missing value x; from the nearest preceding and succeeding available
value using linear interpolation. Meanwhile, Nearest-neighbor tech-
nique requires the value of the nearest available observation. To com-
pare the performance of PARAFAC against the other two estimation
approaches, data from the 30.07.1998 is used. 25 samples were with-
drawn in increasing order, and this process was repeated 50 times
randomly. For the length of each missing period, the Mean Absolute
Percentage Error was calculated: MAPE = 1/N Zfil Ix, — xo/x,|, where x,
is the original value, and x, is the estimate value. Fig. 14 shows the box-
whisker plot, done based on the MAPE values for different lengths of
missing data.

From Fig. 14 it can be observed that for PARAFAC the error (MAPE)
remains constant, regardless of the length of missing data. Contrary to
LI and Nearest-neighbor approach, where the error is proportional to
the length of missing data e.g. marginal for small number of missing
samples and large in the opposite case.

5. Conclusion

In this paper an innovative application of unsupervised data mining

algorithm for Electrical Load Profile using tensor decomposition is
proposed. For the ERCOT data base, and example of using multi-
dimensional data and how to process these information has been
shown; in order to obtain: data compression, data visualization and
data clustering. The results demonstrate the ability of PARAFAC to
obtain an individual reduction for every variable; this was proved by
obtaining a score plot to visualize and cluster the time variable, and a
second score plot for the spatial variable. The results of PARAFAC
against traditional techniques show that common methodologies fail to
manage multivariate data.

The comparison of the computational complexity between
PARAFAC, 2W-PCA and 2W-SVD confirm the advantage of working
with tensor decompositions over traditional 2D arrangements. The re-
sults illustrate that the computational complexity with 2W-PCA and
2W-SVD grows exponentially in relation to PARAFAC and that the rate
of grow is equal to the square and cubic exponents that weigh the di-
mension of the matrix that stores the data.

Finally, since PARAFAC is solved using an iterative procedure, in-
directly is also possible to provide a solution to the missing data pro-
blem. The additional attribute of the proposed approach was demon-
strated comparing the performance of PARAFAC following the artificial
loss of 1 to 25 samples measured, in random position. The comparison
was carried out against two of the most popular techniques available in
the literature, namely Linear Interpolation and the Nearest-neighbor.
The results show that the error when using PARAFAC is small and re-
mains constant even for the case with more loss of missing data, while
the error grows as the missing data increases when using more tradi-
tional techniques.
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Appendix
Unfolding 2-Way methods: 2W-SVD and 2W-PCA

Alternative approaches to PARAFAC based on tensor decomposition of the response matrix (1) have been developed in [30,33]. Therefore, two
standard approaches to deal with matrix unfolding of X € ™*X which is denoted as X (;)! *'*X were implemented in this paper: 2W-SVD and 2W-
PCA.

The modal decomposition of 2W-SVD applied to tensor model X yields:

vi
X )=UzVT = [U][Z; O]f .

v, (15)
where U €' * 'is an orthonormal matrix containing the left singular vectors, £ €' *!is a matrix containing the singular values, g,and V € 7% * 7K jg
a matrix containing the right singular vectors.

Similarly, 2W-PCA decomposes the tensor of data using the following expression:
Xp=1%¢"+WVT +¢ 16)

From [51], 1*x’ represents the averages value of the original variables, which results from a pre-processing step. The matrix product WV T is the
model of the structure, where We' * ! denotes the scores, V&’ %! loadings and & the residual. The solution to the problem to PCA using ei-
genvector decomposition, the covariance matrix of X (;): is denoted as:

CxW = EW a7

where the right eigenvectors are the score W, E return the eigenvalues of Cx sorted in descending order, and the loadings V are computing as
V = WE. The first few columns of W* and ¥ explain most of the variance in X -
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