
Exploring Assessment Criteria for Sustainable Software Engineering
Processes

Michael Wahler
Zurich University of Applied Sciences

(ZHAW)
Winterthur, Switzerland

wahl@zhaw.ch

Norbert Seyff
University of Applied Sciences and
Arts Northwestern Switzerland

(FHNW)
Windisch, Switzerland
norbert.seyff@fhnw.ch

Maria Susana Soriano Ramirez
Zurich University of Applied Sciences

(ZHAW)
Winterthur, Switzerland

sori@zhaw.ch

ABSTRACT
It is our duty as software engineers to understand our contribu-
tion towards sustainability and ultimately assess and improve the
sustainability of the software engineering (SE) processes we apply.
However, commonly established criteria for such an assessment
are currently lacking. In this experience report, we share insights
from our investigation into the sustainability of software engineer-
ing processes, focusing on a collaborative project with an industry
partner. Our research delves into lessons learned while exploring
this critical issue. Our contribution lies in the introduction of an
initial framework, which includes assessment criteria as the core
element, and on the results of using this framework to assess the
software engineering process of our industry partner. By sharing
our experiences and findings, we aim to contribute to the under-
standing of sustainable software engineering practices and stimu-
late dialogue on how software engineering can address societal and
environmental challenges. Our work underscores the significance
of adopting sustainable practices and encourages the software en-
gineering community—in both academia and industry—to embrace
a proactive role in advancing sustainability for society.

CCS CONCEPTS
• Software and its engineering → Software development pro-
cess management; Collaboration in software development.

KEYWORDS
software engineering, sustainability, criteria, assessment
ACM Reference Format:
Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez. 2024.
Exploring Assessment Criteria for Sustainable Software Engineering Pro-
cesses. In Software Engineering in Society (ICSE-SEIS’24), April 14–20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3639475.3640109

Lay Abstract. It is important for software engineers to under-
stand the effects of their work on sustainability. This also includes
understanding the sustainability of the software engineering pro-
cesses used and figuring out how to make them more sustainable.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0499-4/24/04.
https://doi.org/10.1145/3639475.3640109

The problem is that currently, it is hard for software engineers and
software companies to understand how sustainable their software
engineering process is. There is a lack of criteria and established
assessment frameworks that would allow that. In our experience
paper, we talk about what we have learned from our efforts in es-
tablishing the first version of such a framework. Key contributions
include identifying a set of criteria for the assessment and perform-
ing a first assessment in an industrial setting. We want to share
what we have learned so that others can understand how to make
software engineering processes more sustainable. The results are
relevant for both researchers and practitioners.

1 INTRODUCTION
Digital products and services have the potential to significantly
increase the sustainability of critical processes that impact society,
for example by improving energy efficiency [11]. These solutions
are shaped by the software engineers and the software engineering
process applied. Poor requirements engineering, a lack of user
involvement, inadequate architectural decisions, insufficient testing
and quality assurance are issues that can lead to software solutions
that have a negative effect on society.

Moreover, the immediate negative consequences of an insuffi-
cient software engineering process are not limited to the software
product alone. Poor communication, ignored stakeholders, inade-
quate planning, overworked developers, ageism, the unnecessary
consumption of resources, and cultural problems can have a pro-
found and immediate impact on individuals involved in software
engineering and the broader society.

In this context, we argue that sustainable software engineering
processes (agile and plan-driven) should encompass a comprehen-
sive perspective, considering the five dimensions of sustainability:
environmental, social, individual, economic, and technical, as de-
fined in [8]. With an estimated 26.9 million people working in
software engineering around the world [13], understanding and
assessing the sustainability—i.e., the ability to endure—of software
engineering processes brings significant benefits to society. For
example, by promoting eco-friendly practices and optimizing re-
source utilization, it contributes to environmental preservation and
climate change mitigation. Emphasizing sustainability in software
engineering aligns with societal values, paving the way for a more
equitable, environmentally responsible, and socially conscious digi-
tal landscape.

Yet, we are not aware of generally accepted criteria for the sus-
tainability of software engineering processes. Therefore, we have
started to identify key criteria ourselves.

https://doi.org/10.1145/3639475.3640109
https://doi.org/10.1145/3639475.3640109
https://doi.org/10.1145/3639475.3640109


ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez

In this paper, we report on our experiences in a collaborative
research project with an industry partner on the identification of
specific criteria relevant to the sustainability of software engineer-
ing processes and howwe utilized them to explore the creation of an
initial assessment framework. We hereby focus on aspects that are
directly related to software engineering activities. Other common
human activities, such as commuting or heating an office building,
which might occur in relation to dedicated development activities,
lie beyond the immediate purview of this research.Whereas sustain-
ability is often associated with ecological aspects only, principles
and values play a pivotal role in the pursuit of sustainable software
development [3]. These commitments, including multidisciplinar-
ity, transparency, and flexibility, must be integrated throughout all
phases of the software engineering process for any digital solution.
We consider the experience gained in the discussions and in the
identification and evaluation of criteria with our industry partner
to be equally important for this paper, and in this context we place
particular emphasis on presenting lessons learned. Given the im-
portance of the topic, we consider these experiences to be highly
relevant for both researchers and practitioners.

This paper is structured as follows. In Section 2, we present our
research goal and questions and discuss key steps of our research.
The identified criteria are presented in Section 3. In Section 4, we use
these criteria to assess the sustainability of the software engineering
process applied by our industry partner. In Section 5, we present
threats to validity and related work and conclude the paper with
Section 6.

2 RESEARCH GOAL, QUESTIONS AND
METHOD

Our overall research goal is to identify criteria for assessing the
sustainability of software engineering processes and to build an
assessment framework for assessing its sustainability. Based on this
main goal we have derived two research questions (RQs):

RQ1 What aspects have an influence on the sustainability of soft-
ware engineering processes?

RQ2 How can software engineering processes be assessed regard-
ing their sustainability?

The work was carried out as part of a funded research project
with Rieter, a manufacturer of machines for the textile industry.
Rieter develops a digital tool that analyzes data of their machinery
and calculates key performance indicators. Sustainability is a clear
business objective of the company as a whole. The goal of the
research project was to find out how their software engineering
activities relate to the sustainability targets of the company.

To conduct our research, we adopted the Design Science research
methodology [23]. Design Science is a suitable research methodol-
ogy for our work as it aligns with the goal of creating innovative
artifacts to address the specific problem of sustainability in soft-
ware engineering processes. By adopting Design Science, we aim
to design, develop, and evaluate a novel assessment framework
tailored to promote sustainable software development practices.
The iterative nature of Design Science allows us to refine the arti-
fact through continuous evaluation and improvement, ensuring its
relevance and applicability in real-world contexts.

In our research, we adopted a systematic approach using the
Relevance, Design, and Rigor Cycles. We initiated the Relevance
Cycle by identifying the significance of sustainable software en-
gineering processes and their practical implications. We analyzed
the existing software engineering process and its documentation
of our industry partner to understand the environment and the
relevance of the problem in a real-world scenario as part of the first
Relevance Cycle. Furthermore, we conducted a literature review on
sustainability design and software. This step allowed us to establish
a strong knowledge base as part of the first Rigor Circle. Moving on
to the Design Cycle, we created a light-weight assessment frame-
work tailored to address the identified criteria and dimensions.
Building on the knowledge base and foundations established in the
Relevance Cycle, we formulated a set of questions aimed at various
roles within the company to address our research goal. We followed
the problem-centered interview model defined by Mayring [15] to
refine the questions and ensure their effectiveness in capturing
essential aspects of sustainable software engineering processes.
Subsequently, we identified criteria for sustainability assessment
through collaborative discussions and agreement on a final set. The
list of criteria provides answers to RQ1. Moreover, we systemati-
cally mapped each criterion to sustainability dimensions defined
by Duboc et al. [8], thereby ensuring a comprehensive evaluation
framework. The refined questions now aligned with criteria and di-
mensions, effectively addressing RQ2. We understand our results as
worthwhile, but also as initial results. As our work progresses, fur-
ther cycles will be necessary to refine and enhance the framework.
As part of the evaluation within the Design Cycle, we first con-
ducted an initial evaluation with our industry partner. We sought
qualitative feedback from the Head Competence Center Digital on
the identified assessment criteria. They provided valuable insights,
validating the relevance and understandability of the criteria. This
feedback from industry experts enhances the practical applicabil-
ity and effectiveness of our assessment framework. Furthermore,
and more importantly, we applied the assessment framework to
evaluate the sustainability of the software engineering processes
used by the company. This step allowed us to gain first-hand experi-
ence and insights into the framework’s performance and its ability
to assess and eventually improve the sustainability of real-world
development processes.

3 IDENTIFIED SUSTAINABILITY CRITERIA
In this section, we investigate RQ1: What aspects have an influence
on the sustainability of software engineering processes?

As initially mentioned in Section 2 of our paper, in our inves-
tigation, we made ourselves familiar with the existing software
engineering process of our industry partner by talking to different
employees about the process and a collection and analysis of the
process documentation provided. This was done by the first and
the third author of the paper. Additionally, the first and second
author conducted a comprehensive, but informal literature review
on sustainability design, sustainable software engineering, stake-
holder characterization, sustainable project management, digital
sustainability, sustainable deployment infrastructures, and energy
consumption analysis within the field of software engineering. This
review served as the foundation for our knowledge base, providing



Exploring Assessment Criteria for Sustainable Software Engineering Processes ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

insights into existing frameworks and theories. As part of the first
Design Cycle, both inputs (process and literature analysis) were
used to define relevant sustainability criteria, which are observ-
able characterizing traits that contribute to the sustainability of
the software engineering process. Criteria were identified by the
first and second author of the paper individually, and refined by
individually discussing the identified criteria and agreeing on a
final set. In particular, criteria that both authors have identified
were added to the final list without further discussion. For criteria
that only one author had identified, a discussion was started, and a
final agreement of the other author was needed to add the criterion
to the list. In a last step, the concrete names of the criteria were
jointly defined by both authors. This list was finally reviewed and
validated by the third author of the paper and the industry partner.

So far, we have identified 38 sustainability criteria. The list of all
criteria with all details and scientific references would quadruple
the size of this paper. Therefore, we have uploaded a document,
which presents all criteria in detail, to an archival repository [22].
We have also created a website1 where we show the criteria as
cards (see Figure 1) with the affected dimensions of sustainability,
a description, possible consequences if the criterion is neglected,
different levels of maturity at which the criterion can manifest, the
references to the scientific articles and books that motivated the
criteria, and examples of best practices (on the back of the card).

Figure 1: Graphical representation of sustainability criteria

We cluster our sustainability criteria in 5 groups:

Software Engineering Best Practices. We have found that many
best practices in software engineering have a positive impact on
sustainability. We present the identified criteria for this category in
Table 1.

1https://criteria.greensoftware.ch/

Implications of Software Operations. Software operations impacts
important aspects of sustainability such as energy consumption and
cost. Therefore, a sustainable development process must consider
operational aspects (which is, for example, done in DevOps). We
list the identified criteria in Table 2.

Sustainable Team Culture. Two dimensions of sustainability (so-
cial and individual) directly concern human aspects. Therefore, it
is important that the culture of the software development team em-
braces sustainability. We list the identified criteria for this category
in Table 3.

Sustainability Awareness. For any software engineering process
to be sustainable, it is important that all involved stakeholders are
aware of how their decisions and actions influence sustainability.
Our criteria in Table 4 therefore concern process aspects that are
important for any technical or non-technical stakeholder in the
development process.

Sustainable Procurement and Governance. The criteria in this
category are motivated by the fact that a software engineering
process can only be considered sustainable if it takes place in a
sustainable environment. This requires a sustainable supply chain
and effective governance mechanisms. The criteria are shown in
Table 5.

3.1 Feedback from Industry Partner
After having documented our sustainability criteria, and as evalu-
ation within the Design Cycle, we asked our industry partner for
feedback and in particular discussed four key questions:

1. Are the criteria and their associated details understandable?
According to our industry partner, the criterion ”Usage of tools to
assess sustainability” requires that there be metrics in place that
can be measured and thresholds for these metrics be defined. We
clarified this criterion, focusing on the presence of tools and their
frequency of use [22] instead on the availability of metrics.

2. Do you consider the criteria as relevant for assessing the sustain-
ability of your software engineering process? Our industry partner
suggested the criterion ”Sustainability Incentive” to be removed be-
cause the relation between costs and sustainability was not clear. In
the initial version of this criterion, this relation was not sufficiently
explained. We therefore improved the details of this criterion and
are convinced that with this further explanation, the criterion is
relevant.

3. Do you consider the list of criteria as complete? If not, what
are you missing? Our industry partner suggested an additional
criterion ”Sustainability in Deployment Planning”. We explained
that this is covered by the existing criteria “Implications of Software
Operations” and “Development for Efficient Execution” and improved
the details of these two criteria to reduce misunderstandings in
future assessments.

4. Do you have any additional comments or ideas? Our industry
partner also provided 11 comments on additional ideas. Most of
these ideas are about the evidence that the development process
needs to provide in order to meet the respective criterion. We used
these ideas to refine the levels of maturity for those criteria [22].

https://criteria.greensoftware.ch/


ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez

Table 1: Sustainability Criteria in Software Engineering Best Practices

Title Description
Automatic Quality Checks Automatic quality checks determine metrics and calculate KPIs that reflect the code quality.
Business Continuity of the Development En-
vironment

The development environment (e.g., frameworks, libraries, operating systems) and process
can be effectively adapted to new or changing technologies, business requirements, or
regulations. It is important to notice that these are major changes and in the practice only
occur in rare occasions.

Code Maintainability The code has a high degree of maintainability.
Software Engineering Best Practices The process uses best practices in software engineering (such as configurationmanagement,

continuous integration and delivery, or devops).
Sustainability Quality Attributes The requirements document explicitly states sustainability of the product as a quality

attribute, which is further refined.
Sustainability in Different Process Phases Sustainability considerations are done in different phases of the process.
Sustainability in Release Planning Sustainability considerations are part of release planning.
Sustainable Data Structures The architect team considers needs of the environment, individuals, and society, as well

as economical aspects while deciding on which data structures to use. They are optimized
with respect to sustainability (e.g., energy consumption or extensibility).

Sustainable Design Decisions Design decisions are written in a sustainable way. For each decision, its impact on the
sustainability of the software is explicitly documented.

Sustainable Test Management There is a policy in place to ensure that the right tests are run at the right time

Table 2: Sustainability Criteria in Implications of Software Operations

Title Description
Development for Efficient Execution The development process involves optimization steps to reduce the energy consumption

of the software under development.
Implementation of Resource-Intensive Oper-
ations

For resource-intensive operations (e.g., computation-intensive calculations), measures are
in place to assess the resource consumption and optimize it where needed.

Implications of Software Operations The effects on sustainability of the operational tools, processes and mechanisms for the
software are transparent.

Table 3: Sustainability Criteria in Sustainable Team Culture

Title Description
Multidisciplinarity of the Development Team Different disciplines have been included in the development of the software.
Participation of the Team The proposals and strategies to improve the sustainability of the software engineering

process of the development team should be heard and be evaluated by a governing body.
Sustainability Incentive If the development team acts efficiently and stays under budget, it is not punished by

having its budget reduced in the future.
Sustainable Collaboration Setup The project team can collaborate effectively and efficiently with minimum resource con-

sumption. This is achieved through virtual collaboration tools, an inclusive mindset, and
largely eliminated business travel.

Sustainable Team Culture Team members have an understanding of the importance of ethics, social communication,
and respect for their team members.

Transparency of Communication Project documentation, including minutes of meeting, is available to all stakeholders.

Another suggestion was that several sustainability criteria are
dependent on other criteria. As an example, the criterion ”Value of
Sustainability” requires the presence of sustainability awareness in
the organization. This feedback has helped us to group our criteria,
which can be exploited to make assessments leaner; if the assessors
determine the absence of any sustainability awareness, the assess-

ment of subordinate criteria such as ”Value of Sustainability” can
be skipped. Based on this feedback, we improved the description
and structure of our sustainability criteria before we carried out
our assessment.



Exploring Assessment Criteria for Sustainable Software Engineering Processes ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Sustainability Criteria in Sustainability Awareness

Title Description
Ability to Handle Changing Requirements The process is able to adapt to changing requirements.
Availability of Metrics There are metrics available that allow sustainability to be measured.
Capacity for Technical Debt Reduction The software engineering process must provide capacity for reducing technical debt (e.g.,

refactoring, updating/complementing documentation).
Consideration of Different Orders of Effects Different orders of effects are considered when analyzing the sustainability of the process.
Continuous Sustainability Improvement There is a regular assessment of the sustainability of the development process and potential

gaps are addressed.
Different Sustainability Dimensions The process has means to investigate sustainability in different dimensions.
Energy Consumption of the Development
Process

There are policies in place to assess and reduce the energy consumption in software
development.

Knowledge about Sustainability The stakeholders of the project possess sufficient knowledge about sustainability.
Strong Feedback Loops The process uses feedback loops to regularly monitor external feedback and feeds it into

the process to improve quality.
Sustainability Awareness All stakeholders must be aware of the need for sustainability and its potential implications

on the process and the product. They must also be aware how their role influences the
sustainability of the software engineering process.

Sustainability Reporting Sustainability is a distinct part of project reporting.
Usage of tools to assess sustainability There are tools in use to assess sustainability in a software system development
Value of Sustainability The company puts a value on sustainability. This is a prerequisite for investing money

and making tradeoffs between requirements that are related to sustainability and those
that are not.

Willingness to Change Requirements There is a willingness to change the software system requirements to make the system
more sustainable.

Willingness to Change the Process There is a willingness to change the process towards higher sustainability.

Table 5: Sustainability Criteria in Sustainable Procurement and Governance

Title Description
Direction and Policies to Improve Sustainabil-
ity

The development process of a software product must be directed by regulatory obligations
of sustainable digitalization, stakeholders expectations and business needs.

Sustainable Infrastructure The choice and decision of the infrastructure on which the software is built takes sustain-
ability into account. Such design decisions (e.g., PaaS, IaaS) are well documented.

Sustainable Procurement and Governance Procurement and governance are driven by sustainability principles.
Technologies for System Development The project uses and/or adopts sustainable technologies for system development.

3.2 Lessons Learned
In this section, we present key lessons learned of investigating
sustainability criteria.

There might not be a complete set of sustainability criteria, but what we
have is good enough for now. During our investigation of sustain-
ability criteria, we discussed whether it was possible to create a set
of criteria that we can consider as complete, i.e., any other criteria
imaginable would be subsumed by the previously identified criteria.
The short answer is “no”, but the long answer shows that this does
not make our approach any less valuable.

We consider the set of criteria we have identified as a snapshot
of the cross-product of what is covered in the literature and what is
relevant to our industry partner. The important thing for us is that
these are the criteria that allow our industry partner, and, ideally,
other companies who also consider them relevant, to grow and

improve their software engineering process towards sustainability.
We expect that working with other companies and also working
together with our industry partner for a longer period of time will
allow us to identify further criteria.

Focus on development, but don’t forget about runtime and the software.
Our criteria focus on software development and cover the whole life
cycle. In the discussions with our industry partner, it surfaced that
the operations phase has strong ties with the sustainability of the
software product itself, where there is already a lot of research work
available (e.g., on energy consumption in cloud computing [4] or
mobile computing [10]). We conclude that the sustainability of the
operations phase (in particular, the sustainability of the software
product) needs to be considered together with the sustainability of
the development process to see the larger picture.

We suggest that a sustainable software engineering process



ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez

should incorporate the continuous analysis of the software’s ef-
fects on various sustainability dimensions. Approaches like the
Sustainability Awareness Framework (SusAF) [8] aim to provide
an initial analysis of potential effects based on the system vision.
However, we argue for a continuous analysis of effects, even during
system runtime, which necessitates further research and the devel-
opment of novel approaches and tools to support practitioners in
this endeavor.

Sustainability strategies are available, but are not holistic. Today, many
companies have a publicly available sustainability strategy. From
what we have seen at our industry partner, their strategy covers
several dimensions of sustainability. However, it was not clear to
us (or, them) how their sustainability strategy affects software de-
velopment and, conversely, how sustainable software development,
as anticipated, affects the general sustainability strategy. Our key
learning is that for the future, there needs to be traceability between
the sustainability strategy of companies and their software engi-
neering process(es). This traceability should go in both directions.

We suggest that practitioners use the criteria presented in this
paper and trace them to their sustainability strategies. As an exam-
ple, if the company as a whole wants to reduce energy consumption,
the criteria “Sustainable Collaboration Setup” or “Implementation
of Resource-Intensive Operations” are strongly related.

Companies can learn from software engineering. While conducting
our research, we have come to the conclusion that certain aspects of
software engineering knowledge and practices already contribute
to fostering sustainability within the software engineering pro-
cess. We foresee that some of these practices can not only support
sustainable software engineering, but also serve as a model for im-
plementing sustainability in non-technical processes and practices
within the company. In particular, agile development [2] suggests
principles that improve the social (e.g., through participation of
the customer), individual (e.g., through focus on trust), technical
(e.g., through focus on delivering working software), and econom-
ical (e.g., through focus on value and constant pace) dimensions
of sustainability. As an example, agile enterprises should use cus-
tomer feedback as “the driver that steers the engine of customer
value” [16]. We suggest that researchers and practitioners explore
how aspects and practices that support sustainable software engi-
neering can also be applied to other processes within the company.

4 ASSESSMENT OF THE SOFTWARE
ENGINEERING PROCESS

In this section, we provide first answers to RQ2: How can software
engineering processes be assessed regarding their sustainability?
Hence, an initial assessment, based on the 38 sustainability criteria,
was conducted with our industry partner. As described in Section 2,
this is part of our evaluation activities within the Design Cycle and
was conducted by the first and third author of the paper. To answer
the question, we had to consider a few specifics.

First, our criteria are predominantly qualitative and therefore,
they must be assessed manually based on the personal judgment
of the assessors. This makes the assessment prone to subjectivity
and difficult to replicate, at least to some extent. However, such a
manual assessment (e.g., through a series of interviews) can provide

a richer context and insights, capturing nuances that quantitative
criteria may miss.

Second, our industry partner is interested in the aforementioned
context and insights for improving their software engineering pro-
cess rather than obtaining a score that would allow them to adver-
tise their software development with a sustainability certificate.

Third, our industry partner is just starting their journey towards
sustainability in software development. Therefore, they are not
only interested in an initial assessment, but also in repeating the
assessment and continuously monitoring their efforts to improve
the sustainability of their software engineering process.

Due to these facts, we decided with our industry partner to
aim for and develop a lightweight, open assessment framework
that can be easily applied by software companies even without
the involvement of external experts. This might stand in contrast
to established approaches such as lifecycle assessments (LCA) or
established maturity models (e.g., CMMI).

Our light-weight framework consists of three steps. In the fol-
lowing paragraphs, we describe how we applied the assessment
framework to initially assess the sustainability of the software en-
gineering process of our industry partner. This, at the same time,
discusses the three steps we recommend for performing an assess-
ment and shows how we actually performed the assessment.

The assessment was done within the scope of their key software
development project, where they are building a complex and large
piece of industrial software.

4.1 Step 1: Data Collection
Carrying out our first assessment, we involved 7 stakeholders in-
volved in the software engineering process at our industry partner.
This included software engineers, but also the product owner.

Participants in the assessment were asked to rate the sustain-
ability of their software engineering processes based on the criteria
we have identified. This rating was based on their knowledge and
perception of the process.

As a tool to conduct the assessment, we developed a question-
naire basically listing the criteria and an explanation. Furthermore,
there were 6 possible response choices for each criterion, with
four response choices on the level of maturity (none, low, medium,
high) and twowith thenot applicable and don’t know responses.
Next to each response choice, a follow up text box was available, so
participants could write the reason for their selection. The question-
naire was made available to the participants via Microsoft Forms.
This also allowed for easy data collection, as each response was
stored separately in an Excel document.

Each session of data collection was conducted during an on-
line video call with one or two individual participants, where they
gave their independent assessments. In each call, at least one of
the authors of this paper was present to provide guidance and sup-
port. This mainly included providing an introduction, explaining
the procedure, and answering questions about the criteria. There
otherwise was no discussion amongst the people in the call.

4.2 Step 2: Results Analysis
In the next step, we wanted to create a ranking of the criteria
based on the responses in the assessment. Such a ranking allows



Exploring Assessment Criteria for Sustainable Software Engineering Processes ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

Table 6: Average score and variance of each criterion

Criterion avg 𝝈2

Multidisciplinarity of the Development Team 3.00 1.14
Software Engineering Best Practices 2.86 4.81
Capacity for Technical Debt Reduction 2.50 1.81
Sustainable Collaboration Setup 2.50 3.14
Sustainable Team Culture 2.50 0.81
Ability to Handle Changing Requirements 2.33 1.14
Code Maintainability 2.00 1.14
Strong Feedback Loops 2.00 1.47
Willingness to Change the Process 2.00 0.67
Transparency of Communication 2.00 1.14
Automatic Quality Checks 1.80 1.00
Business Continuity of theDevelopment Environment 1.67 2.14
Willingness to Change Requirements 1.57 1.14
Implementation of Resource-Intensive Operations 1.50 0.47
Sustainable Test Management 1.50 0.47
Continuous Sustainability Improvement 1.33 1.00
Participation of the Team 1.33 0.47
Sustainability in Different Process Phases 1.29 0.81
Sustainable Design Decisions 1.25 1.14
Sustainability Reporting 1.25 0.67
Implications of Software Operations 1.00 1.14
Sustainability Awareness 1.00 1.47
Value of Sustainability 1.00 3.47
Availability of Metrics 1.00 0.67
Sustainable Procurement and Governance 1.00 3.14
Knowledge about Sustainability 0.86 2.14
Development for Efficient Execution 0.80 1.33
Sustainability in Release Planning 0.80 1.00
Sustainable Data Structures 0.75 1.81
Sustainability Incentive 0.75 0.33
Sustainability Quality Attributes 0.60 2.14
Usage of tools to assess sustainability 0.50 1.00
Energy Consumption of the Development Process 0.25 1.33
Different Sustainability Dimensions 0.00 2.81
Consideration of Different Orders of Effects 0.00 3.47
Direction and Policies to Improve Sustainability 0.00 1.25
Sustainable Infrastructure 0.00 0.58
Technologies for System Development 0.00 0.58

us to easily identify the strengths and weaknesses of the software
engineering process in terms of sustainability. To this end, we
calculated a score for each criterion by awarding points for the
different levels of maturity: 0 points for none, 1 point for low,
2 points for medium, and 3 points for high. For not applicable
and don’t know responses, 0 points were awarded. Because of the
relatively low number of responses, the median response can be
ambiguous. Therefore, we decided to calculate the average score
and the variance 𝜎2, indicating how far the responses are spread
out. A low value for 𝜎2 thus indicates disagreement between the
respondents, whereas a high value means that the respondents
agree to a large extent. Table 6 shows the criteria sorted by the
average score in a descending way.

From these results in Table 6, we can draw several conclusions:

(1) 84 % of all criteria (32 out of 38) already show some level of
maturity (score ≥ 0.5). We consider this a respectable result
for a first assessment.

(2) Several of the criteria at the bottom of the list (i.e., with a
low score) might relate to criteria where more fundamental
knowledge regarding sustainability (e.g., sustainability di-
mensions, orders of effects) is required in order to receive
higher scores. As mentioned earlier, the software engineer-
ing team at the industry partner has not had any formal
training on sustainability. We are convinced that by making
sustainability an official process goal and providing basic
knowledge and training in this regard to all stakeholders,
the results can be dramatically improved.

(3) Criteria with a variance 𝜎2 ≥ 1.0 show a sufficient level of
agreement among the respondents. For criteria with𝜎2 < 1.0,
we suspect that the low variance could also be attributed
to differing notions of sustainability among practitioners.
However, this requires further investigation.

(4) Despite such open questions and a rather small sample size of
interviewees, the results can be used to recognize strengths
and weaknesses and to define improvement measures.

4.3 Step 3: Recommendations
Striving for continuous improvement is an important aspect in
sustainable software engineering processes. Therefore, we see the
value of such a sustainability assessment not only in computing an
average score, but rather in deriving recommendations for improv-
ing the status quo.

The results clearly show some of the strengths and weaknesses
of the software engineering process with respect to sustainabil-
ity. As can be seen, the software engineering team already uses
many best practices for sustainable software engineering although
it has never received training on the concept of sustainability. In
a first follow-up discussion with our industry partner, we decided
that the currently used practices (such agile software engineering
and virtual collaboration across countries) should be continued.
Since several of the identified weaknesses concern a lack of formal
training on sustainability, we suggest including basic sustainabil-
ity training for all project stakeholders and raising sustainability
awareness at regular intervals, e.g., at sprint planning meetings. We
suspect that such training will help to establish a common under-
standing of sustainability in the team. This, in turn, could help to
increase the variance 𝜎2 in the responses for future sustainability
assessments and likely lead to improved sustainability practices.

4.4 Feedback from Industry Partner
After having performed our sustainability assessment, and as eval-
uation within the Design Cycle, we asked our industry partner for
feedback and in particular discussed three key questions:

1.What are your own conclusions on your weaknesses and strengths?
Our industry partner is happy to see that agile principles and sus-
tainability go hand-in-hand, which resulted in most criteria being
at least partially fulfilled. They will continue to foster best practices
in software development, having a good team culture, and reduce
business travel to what is needed. Therefore, it was not a surprise
to them that their process scored high values for the corresponding



ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez

criteria. On the other hand, they expected relatively low scores
regarding the knowledge and awareness of conceptual aspects of
sustainability because their software engineering team has never
had a formal training on these aspects. They now see the value in
such a training, and they are planning to roll out training sessions
on sustainability as integral part of their Learning Management
System (LMS).

2. How do you respond to the conclusions the researchers made
upon evaluation? Our industry partner thinks that our conclusions
are comprehensible and valid. Despite the rather small number of
participants in the assessment, they think that it is quite accurate
having had representatives of each stakeholder group participating
in the assessment (from developers through business analysts to
management).

3. How are you going to move forward from there? Our industry
partner has already added sustainability as a “development value”
to their software development principles and values. As one of the
outcomes, the use case templates were updated accordingly. As a
next step, they are going to implement additional improvement
measures such as sustainability awareness trainings to selected
stakeholders and having regular sustainability assessments as a
part of their software release process to monitor their ongoing sus-
tainability initiatives. They are also planning to share the research
and their findings with their industry peers through existing digital
cluster meetings.

4.5 Lessons Learned
We have learned valuable lessons regarding the assessment and the
communication of the results:

Limited sustainability awareness, but “implicit” measures were already
present. While assessing the software engineering process of our
industry partner, we observed that stakeholders lacked substan-
tial sustainability awareness regarding software engineering and
software products. Moreover, those who recognized a connection
tended to have a limited perspective, primarily focusing on the
environmental dimension of sustainability. This finding is consis-
tent with previous research [6], which highlighted a similar lack of
awareness in the industry. However, we also noticed that following
a mature and quality-focused software engineering process several
aspects of their process were already implicitly contributing to the
sustainability of the process according to our expectations. How-
ever, we also noticed that by following amature and quality-focused
software engineering process, several aspects of their operations
were already implicitly contributing to sustainability.

We suggest that practitioners ensure that all project stakeholders
have a basic knowledge of the different sustainability dimensions
and how their work affects these, as well as different order of effects.

Industry would like to have a certificate, but there is the danger of
“greenwashing”. Although our framework can be used to calculate a
sustainability score for each criterion and a weighted total average
score, we do not intend to use it to grant sustainability certificates.
Themain reason is that our sustainability criteria are largely qualita-
tive and the assessment rather subjective. Although we encourage
the introduction of quantitative criteria that can be objectively

measured, we are afraid that our framework could be misused by
software development teams to stop improving their sustainabil-
ity once a desired score has been reached and use the framework
for greenwashing, i.e., using the assessment for green marketing
instead of a starting point for further improvements.

We suggest that practitioners use our sustainability criteria to
stimulate discussions and improve their processes. They should not
use the assessment results to simply reach a high score or compare
themselves with competitors, but to benchmark their processes with
previous iterations of these processes with the goal of continuous
improvement.

Sustainability in software engineering is a process, not a state. We
consider our assessment criteria and framework as a helpful com-
panion that guides software development teams on their journey
toward increased sustainability. There is little value in carrying out
a single sustainability assessment to evaluate the status quo with
respect to sustainability. In other words, achieving sustainability in
the context of software engineering is not a fixed or static condition
that can be reached and then forgotten. Instead, it is an ongoing
and dynamic journey or series of actions and practices that need to
be continually maintained and improved.

We suggest that practitioners repeat assessments regularly, e.g.,
at quarterly retrospective meetings, define follow-up actions, and
measure the results of these actions.

Be aware of weaknesses, do not ignore strengths. When being evalu-
ated, people and organizations may focus on their weaknesses (and
sometimes, even get defensive). This has two consequences: First,
they may oversee their strengths, which may even outweigh their
weaknesses. Second, improving on one’s weaknesses is typically
more difficult than further refining one’s strengths.

We suggest that practitioners take each sustainability assessment
as an opportunity to discuss the current situation, put weights on
their strengths and weaknesses, and carefully craft an improvement
plan. This will allow them to approach sustainability in a holistic
way and achieve the biggest progress.

5 DISCUSSION
In this section, we discuss next steps for our research, summarize
the current limitations of our approach in the form of threats to
validity, and present related work.

5.1 Next Steps
As our research continues, we plan to further validate our frame-
work through additional case studies in different organizational
settings and software development approaches, such as agile and
plan-driven methods. This iterative process following Design Sci-
ence allows us to continuously refine and enhance the framework,
ensuring its reliability and effectiveness in assessing the sustain-
ability of software engineering processes.

We consider our assessment framework for sustainable software
engineering processes as a starting point for further exploration,
which should be a joint endeavor of researchers and practitioners
working together and continuously extending the suggested set of
sustainability criteria based on their knowledge, experience, and



Exploring Assessment Criteria for Sustainable Software Engineering Processes ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

research done in the field of software engineering. For such an
exploration, we consider three actors as important.

Our industry partner. Our industry partner states that our sus-
tainability criteria have given them valuable insights about the
maturity of their software development process related to sustain-
ability. As the next step, they are going to discuss which of the
identified weaknesses have the biggest perceived negative impact
for them and start working on improving them. They will continue
the discussion with us on their progress an jointly improve the
criteria catalogue based on the findings.

For now, we are planning to continue our collaboration with
our industry partner, offering guidance and mentorship in their
pursuit of a more sustainable software engineering process based
on the first evaluation results. This in particular could include
educational interventions, such as training sessions or workshops
focused on the foundational principles of sustainability to also
improve awareness. This exchange supports further understanding
our partner’s expectations and requirements, contributing to the
Relevance Cycle.

The authors. As authors of this research, we commit to an on-
going exploration of sustainability within the context of software
engineering and digitalization. In particular, we want to use our
assessment framework with other companies across different in-
dustries. This will help us to extend our current set of sustainability
criteria with new insights, tailor it towards specific use cases, im-
prove the assessment process, and align it with existing quality
assurance and maturity assessment processes in the respective
company. These activities can be seen as new Design Cycles and
outputs will contribute to Rigor Cycles.

Software engineering community. In recognition of the collabora-
tive and open nature of scientific research, we intend to release our
sustainability criteria under a Creative Commons license and invite
the software engineering community to contribute. This will help
to ensure that the criteria cover a wide range of software engineer-
ing processes across many industries, standardize the terminology
and levels of maturity, and create a higher awareness in the soft-
ware engineering community. This emphasizes rigor through open
collaboration and contribution to further refine and validate the
sustainability criteria.

5.2 Threats to Validity
In this paper, we have presented the first results of our ongoing
research. We are aware of several threats to validity, including
internal, external, conclusion, and construct validity [24], especially
also because of the exploratory nature of this paper. Key threats to
validity regarding the identified assessment criteria include:

Internal validity. It can be affected by the method used to identify
potential assessment criteria, which was done by the authors of this
paper in cooperation with the industry partner. The authors con-
sider themselves to be experts in the field of software engineering,
and a first validation of the identified criteria confirms their rele-
vance. However, further validation is needed. Furthermore, using a

non-systematic literature review method to establish our knowl-
edge base may introduce a threat to the research study’s internal
validity, particularly in terms of incomplete coverage.

External validity. So far, our focus is on our industry partner and their
software engineering process. We are positive that the identified
criteria are also relevant for other companies and other software
engineering processes, and we are planning to validate our results
within different use cases. Furthermore, the type of software devel-
oped (e.g., mobile apps), may have an influence on our work and
needs to be considered in the planned studies.

Another issue is that most sustainability criteria that we have
identified are qualitative. This means that a manual assessment
is necessary, and the accuracy of the assessment depends on the
fidelity of the levels of maturity. Thus, there is room for subjectivity
in the assessment. More quantitative criteria can help to obtain
more accurate and less subjective assessments.

Conclusion validity. The completeness of the identified assessment
criteria is an issue. We argue that the list of identified criteria is not
complete. By studying more development processes and refining
sustainability targets, more criteria will eventually be identified.
It is an open question if at any time, the list of criteria can be
considered complete. It is also an open question if some properties
of our criteria (such as their weight) will change over time.

The sample size of the assessment with our industry partner was
of 7. This sample size is rather small and might not be represen-
tative. However, for this specific assessment (with an entire team
size of around 50 people) we needed specialized populations, and
interesting results can be drawn even from this small sample size.

Construct validity. In order to minimize the threats to construct va-
lidity, the criteria were identified based on questions used for an
early analysis of the software process and the software product of
our industry partner. These questions defined the scope and guided
the identification of assessment criteria.

5.3 Related Work
To the best of our knowledge, there is no research that provides
criteria to assess the sustainability of software engineering pro-
cesses. Our work aims to fill this gap. Furthermore, we consider
the participation of industry professionals and having a real-world
case study as highly relevant to explore our assessment framework.
Here is related work that complements our approach.

Lami et al. [14] investigate software process sustainability. Their
contributions are on sustainability management, capability levels,
and the environmental dimension of sustainability. Our work is
focused on sustainability criteria across several dimensions and how
these resonate with an industry partner. Their structured approach
to sustainability management could be combined with our diverse
set of criteria to build a more complete assessment approach.

The book from Calero and Pattini [5] covers many aspects of
sustainable software engineering such as definitions, processes,
or roles while covering multiple dimensions of sustainability. The
knowledge in this book can be augmented with our sustainability
criteria to obtain more concrete guidelines for practitioners. As
an example, the chapter from Kern et al. [12] presents a process
model for sustainable software engineering that can be integrated



ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez

into common engineering processes such as SCRUM. Similar to
our criteria, this model covers the whole SDLC. Therefore, both
approaches could be combined to obtain a holistically sustainable
software engineering process.

More recently, the social and individual dimensions of sustain-
ability have moved into the focus of software engineering research-
ers. In [9], Dutta et al. investigate the representation of different
social groups in software engineering studies. Although a vast
majority of the investigated studies report on the diversity of the
participants regarding their professional background, there is a
general lack of reporting on their social background. This may
have negative impact on the software engineering process and
its sustainability. In [25], Zhao and Young investigate workplace
discrimination in software engineering and provide concrete sug-
gestions to help reduce it. They have found out that workplace
discrimination does exist and has “various negative impacts on soft-
ware professions”. This is, of course, detrimental to a sustainable
team culture and thus, threatens the sustainability of the software
engineering process.

Naumann et al. [18] define green and sustainable software and
green and sustainable software engineering. They argue that a sus-
tainable software product should have not only a low impact on
sustainable development, but also, if it is its purpose, should pro-
mote it. The authors also mention the importance of organizations
to be aware of the positive and negative impacts on sustainable
development. They map sustainability-related quality attributes
to the different phases of development (e.g., modifiability takes
place in the development phase). Each phase can then be reviewed
according to whether it meets the desired attributes [7].

Shenoy et al. [19] present some practices for the different phases
of the SDLC to make them more sustainable. We consider some
of these practices as not relevant anymore in today’s software
development (e.g.,”avoid paper”) and other practices out of scope
(e.g., avoid air-conditioning, see Section 1). However, we believe
many best practices are still relevant; thus, we integrate them into
our assessment framework.

Taina [20] analyzes a software life cycle and gives estimates of
the carbon footprints each step produces. Ardito et al. [1] provide a
conceptual framework that unifies strategies, models, and tools for
designing and developing greener software. This framework aims
to reduce software power consumption through code refactoring
and by implementing self-adaptation from the starting point of the
design and development of the software.

Venters et al. [21] define software sustainability as a measure of
quality attributes such as extensibility, interoperability, maintain-
ability, portability, reusability, and scalability. They propose that
software sustainability can be achieved through software archi-
tectures and architectural evaluation methods. Additionally, they
argue that software sustainability is a non-functional requirement
which helps to understand how people can develop sustainable
software in the future instead of focusing on how people should
sustain existing software. The authors do not mention nor do they
explore the five dimensions of sustainability as defined by [8].

Mourão et al. [17] provide a systematic mapping study to encom-
pass state-of-the-art approaches for sustainable software engineer-
ing practice. They conclude that more research needs to be done
in terms of techniques, tools, and metrics to cover construction

(implementation), testing and maintenance of the software, since
most of the relevant contributions are in the form of approaches
and frameworks in the requirements and design phase of the soft-
ware engineering process. The authors observe that most primary
studies in sustainable software engineering use simulated scenarios
and need to be evaluated in practice. They also found little evidence
of participation of industry professionals in studies of sustainable
software engineering. The authors conclude that industry profes-
sionals can enrich the findings of sustainable software engineering
studies with their experiences and guide researchers to prioritize
their research objectives.

6 CONCLUSIONS
With an estimated 26.9 million people working in software engi-
neering around the world [13], understanding and assessing the
sustainability of software engineering processes brings significant
benefits to society. In this experience paper, we have introduced
sustainability criteria for software engineering processes, presented
the first version of an assessment framework, and reported on a
first assessment of a software engineering process in the industry.
Furthermore, we have presented several lessons learned. This al-
lows the software engineering community to better understand
what makes software engineering processes sustainable, how they
can be assessed, and how their sustainability impacts society.

The first assessment that we performed has already had a positive
impact on our industry partner. It raised sustainability knowledge
and awareness of several members of the software engineering
team. It also stimulated discussions about the extent to which some
of the criteria are already met (or not). Thus, we conclude that
our criteria and framework are a good fit for our industry partner.
We are looking forward to extending our approach to evaluate its
suitability for other companies and adapt and extend it as needed.

With the work conducted so far, we can also present first answers
to our research questions. Regarding RQ1, “What aspects have an
influence on the sustainability of software engineering processes?”, we
have identified a first set of criteria to assess software engineering
processes, which was confirmed as relevant and sufficiently com-
plete by our industry partner. As discussed in Section 5.2, further
studies are, however, needed to evaluate and extend the criteria
presented.

Regarding RQ2, “How can software engineering processes be as-
sessed regarding their sustainability?”, we have shown that our sug-
gested initial assessment framework is a first step in the right
direction because it has helped our industry partner to obtain a
comprehensive view of the sustainability of their software engineer-
ing process and define measures to further improve it. As discussed
in Section 5.1, performing assessments of the software engineering
processes of other industry partners is a key next step for improving
and extending our assessment process.

ACKNOWLEDGMENTS
This work is supported by the Zürcher Stiftung für Textilforschung
(Project 147: Green and sustainable digitalization for the textile
industry). We thank David H. Gehring from our industry partner
Rieter for his commitment, valuable input, and for making himself
and other key stakeholders available during the project.



Exploring Assessment Criteria for Sustainable Software Engineering Processes ICSE-SEIS’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Antonio Vetro. 2015.

Understanding green software development: A conceptual framework. IT profes-
sional 17, 1 (2015), 44–50.

[2] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. The agile manifesto.

[3] Christoph Becker, Ruzanna Chitchyan, Leticia Duboc, Steve Easterbrook, Birgit
Penzenstadler, Norbert Seyff, and Colin C Venters. 2015. Sustainability design and
software: The Karlskrona manifesto. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, 467–476.

[4] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann
De Meer, Minh Quan Dang, and Kostas Pentikousis. 2010. Energy-efficient cloud
computing. The computer journal 53, 7 (2010), 1045–1051.

[5] Coral Calero and Mario Piattini. 2015. Introduction to Green in Software Engineer-
ing. Springer International Publishing, Cham, 3–27. https://doi.org/10.1007/978-
3-319-08581-4_1

[6] Ruzanna Chitchyan, Christoph Becker, Stefanie Betz, Leticia Duboc, Birgit Pen-
zenstadler, Norbert Seyff, and Colin C. Venters. 2016. Sustainability Design in
Requirements Engineering: State of Practice. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). 533–542.

[7] Markus Dick and Stefan Naumann. 2010. Enhancing Software Engineering
Processes towards Sustainable Software Product Design. In EnviroInfo. Citeseer,
706–715.

[8] Leticia Duboc, Birgit Penzenstadler, Jari Porras, Sedef Akinli Kocak, Stefanie
Betz, Ruzanna Chitchyan, Ola Leifler, Norbert Seyff, and Colin C Venters. 2020.
Requirements engineering for sustainability: an awareness framework for de-
signing software systems for a better tomorrow. Requirements Engineering 25, 4
(2020), 469–492.

[9] Riya Dutta, Diego Elias Costa, Emad Shihab, and Tanja Tajmel. 2023. Diversity
Awareness in Software Engineering Participant Research. In Proceedings of the
45th International Conference on Software Engineering: Software Engineering in
Society (Melbourne, Australia) (ICSE-SEIS ’23). IEEE Press, 120–131. https://doi.
org/10.1109/ICSE-SEIS58686.2023.00017

[10] J. Flinn and M. Satyanarayanan. 1999. PowerScope: a tool for profiling the energy
usage of mobile applications. In Proceedings WMCSA’99. Second IEEE Workshop
on Mobile Computing Systems and Applications. 2–10. https://doi.org/10.1109/
MCSA.1999.749272

[11] Shahryar Habibi. 2017. Micro-climatization and real-time digitalization effects on
energy efficiency based on user behavior. Building and Environment 114 (2017),
410–428.

[12] Eva Kern, Stefan Naumann, and Markus Dick. 2015. Processes for green and
sustainable software engineering. Green in Software Engineering (2015), 61–81.

[13] Qubit Labs. 2022. How Many Programmers are there in the World and in the
US? https://qubit-labs.com/how-many-programmers-in-the-world/. Online;
accessed 2023-09-14.

[14] Giuseppe Lami, Fabrizio Fabbrini, andMario Fusani. 2012. Software Sustainability
from a Process-Centric Perspective. In Systems, Software and Services Process
Improvement, Dietmar Winkler, Rory V. O’Connor, and Richard Messnarz (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 97–108.

[15] Philipp Mayring. 2016. Einführung in die qualitative Sozialforschung. Beltz.
[16] E Moreira Mario. 2017. The Agile Enterprise–Building and Running Agile Orga-

nization. Apress. Winchester, Massachusetts (2017).
[17] Brunna C Mourão, Leila Karita, and Ivan do Carmo Machado. 2018. Green and

sustainable software engineering-a systematic mapping study. In Proceedings of
the 17th Brazilian Symposium on Software Quality. 121–130.

[18] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. 2011. The GREEN-
SOFT Model: A reference model for green and sustainable software and its
engineering. Sustainable Computing: Informatics and Systems 1, 4 (2011), 294–
304.

[19] Sanath S Shenoy and Raghavendra Eeratta. 2011. Green software development
model: An approach towards sustainable software development. In 2011 Annual
IEEE India Conference. IEEE, 1–6.

[20] Juha Taina. 2010. How green is your software?. In Software Business: First Inter-
national Conference, ICSOB 2010, Jyväskylä, Finland, June 21-23, 2010. Proceedings
1. Springer, 151–162.

[21] Colin Venters, Lydia Lau, Michael Griffiths, Violeta Holmes, Rupert Ward, Car-
oline Jay, Charlie Dibsdale, and Jie Xu. 2014. The blind men and the elephant:
Towards an empirical evaluation framework for software sustainability. Journal
of Open Research Software 2, 1 (2014), 1–6.

[22] Michael Wahler, Norbert Seyff, and Maria Susana Soriano Ramirez. 2023. As-
sessment Criteria for Sustainable Software Engineering Processes. https:
//doi.org/10.5281/zenodo.10417685

[23] Roel J. Wieringa. 2014. What Is Design Science? Springer Berlin Heidelberg,
Berlin, Heidelberg, 3–11. https://doi.org/10.1007/978-3-662-43839-8_1

[24] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and Anders Wesslén. 2012. Experimentation in Software Engineering. Springer,
Germany. https://doi.org/10.1007/978-3-642-29044-2

[25] Xin Zhao and Riley Young. 2023. Workplace Discrimination in Software Engi-
neering: Where We Stand Today. In 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS). 188–193.
https://doi.org/10.1109/ICSE-SEIS58686.2023.00026

https://doi.org/10.1007/978-3-319-08581-4_1
https://doi.org/10.1007/978-3-319-08581-4_1
https://doi.org/10.1109/ICSE-SEIS58686.2023.00017
https://doi.org/10.1109/ICSE-SEIS58686.2023.00017
https://doi.org/10.1109/MCSA.1999.749272
https://doi.org/10.1109/MCSA.1999.749272
https://qubit-labs.com/how-many-programmers-in-the-world/
https://doi.org/10.5281/zenodo.10417685
https://doi.org/10.5281/zenodo.10417685
https://doi.org/10.1007/978-3-662-43839-8_1
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/ICSE-SEIS58686.2023.00026

	Abstract
	1 Introduction
	2 Research Goal, Questions and Method
	3 Identified Sustainability Criteria
	3.1 Feedback from Industry Partner
	3.2 Lessons Learned

	4 Assessment of the software engineering process
	4.1 Step 1: Data Collection
	4.2 Step 2: Results Analysis
	4.3 Step 3: Recommendations
	4.4 Feedback from Industry Partner
	4.5 Lessons Learned

	5 Discussion
	5.1 Next Steps
	5.2 Threats to Validity
	5.3 Related Work

	6 Conclusions
	Acknowledgments
	References

