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Abstract A new approach to find the fastest trajectory of a robot avoiding

obstacles, is presented. This optimal trajectory is the solution of an optimal control

problem with kinematic and dynamic constraints. The approach involves a direct

method based on the time discretization of the control variable. We mainly focus on

the computation of a good initial trajectory. Our method combines discrete and

continuous optimization concepts. First, a graph search algorithm is used to

determine a list of intermediate points. Then, an optimal control problem of small

size is defined to find the fastest trajectory that passes through the vicinity of the

intermediate points. The resulting solution is the initial trajectory. Our approach is

applied to a single body mobile robot. The numerical results show the quality of the

initial trajectory and its low computational cost.
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1 Introduction

Time-optimal kinodynamic motion planning refers to the computation of the fastest

trajectory of a robot that must avoid obstacles (kinematic constraints) and observe

the dynamic laws and the bounds on the velocity or the acceleration (dynamic

constraints). This expression was first introduced by Donald et al. (1993). However,

finding the optimal collision-free trajectory is an old and still topical subject in

robotics, which received several names: minimum time path planning (Gilbert and

Johnson 1985; Johnson and Gilbert 1985), optimal robot path planning using the

minimum-time criterion (Bobrow 1988), trajectory planning or modeling (Dubow-

sky et al. 1989; Saramago and Steffen 2001).

Gilbert and Johnson were the first to formulate the kinodynamic planning as an

optimal control problem (Johnson and Gilbert 1985). In their formulation, the

objective function is the travel time, the dynamic is modelled by a set of ordinary

differential equations and the collision avoidance is a state constraint. In addition,

box constraints and boundary conditions are prescribed. There exist several

approaches to solve this optimal control problem. The first approach was introduced

by Gilbert and Johnson in Johnson and Gilbert (1985) and extended by other

authors, such as Bobrow (1988) and Dubowsky et al. (1989). The technique first

discretizes the state variable with B-splines and then looks for a control variable that

satisfies the dynamic constraints and minimizes the travel time. It is often assumed

that the control variable has a bang-bang behaviour. The technique involves then

finding the switching points (Bobrow et al. 1985). This first approach does not

guarantee that the resulting trajectory is the fastest one, since the control variable is

not necessarily optimal.

Another approach involves path planning techniques. Path planning uses a graph

search algorithm to find a collision free path. For that purpose, a graph is defined on

the workspace. The technique looks for a collision-free path on the graph. The

simplest method in graph algorithm is A* algorithm or Dijkstra’s algorithm. In the

last years, several efficient methods have been developed such as rapid-exploring

tree (RRT) or probabilistic roadmap planner (PRM) (Goerzen et al. 2010; LaValle

2006). The resulting path is collision-free, but does not take into consideration the

dynamic constraints. One idea was then to build a trajectory that satisfies the

dynamic constraints by smoothing the path and finding the control variables, so that

the dynamic constraints are observed. Again, this method does not guarantee to find

the optimal solution.

LaValle and Kuffner developed a new approach which solves the drawback of

path planning (LaValle and Kuffner 2011). The path is not searched in the

workspace, but in the state space. That is, LaValle and Kuffner consider the bounds

on the velocity and build a graph, so that a motion between two nodes is

dynamically possible. This new approach still does not lead to the optimal solution,

but at least can handle the dynamic constraints.

We model the kinodynamic planning with an optimal control problem like

Gilbert and Johnson or Bobrow did. However, we use a different technique to solve

the optimal control problem. We prefer to discretize the control variable since the
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goal is to find the best control, so that the travel time is minimized and the kinematic

and dynamic constraints are satisfied.

The weakness of gradient based methods for continuous optimization problems

and optimal control problems is their dependence on a good initialization, especially

if obstacles have to be avoided. Without a good initial trajectory, the chances to

reach the optimal solution are low. Gilbert and Johnson (1985) and other authors

need a collision-free trajectory to find a solution. However, there is a lack of

research into the computation of such a collision-free trajectory.

In this article, we propose a method that searches for a good initial trajectory.

This method combines discrete and continuous optimization methods. A path

planning algorithm is first applied to get a list of intermediate points. Then, the

initial trajectory is obtained by computing the fastest trajectory that passes through

the vicinity of the intermediate points. We will not use sophisticated path planning

algorithm such as RRT or PRM. Our goal is to find a rough collision-free path, since

the path is then post processed through an optimal control problem.

This article is divided as follows. In the next section, we formulate the

kinodynamic motion planning problem as an optimal control problem. Then, our

numerical method, which is based on the time discretization of the control variable,

is given. Section 3 is devoted to the computation of a good initial trajectory. In Sect.

4, we study more precisely the collision avoidance constraint and see which

numerical difficulties this constraint can cause. Depending on the quality of the

initial trajectory, the kinodynamic planning problem may be slightly modified.

Numerical results are presented for a two dimensional mobile robot in Sect. 5.

Finally, conclusions and extensions to three dimensional problems are given in

Section 6.

2 Problem formulation

Let us consider a two dimensional robot whose geometry is modelled by a convex

compact polyhedron. Extensions to more complicated robots are given at the end of

Sects. 2.1 and 6. The robot evolves in a space that contains fixed obstacles. These

obstacles are also convex compact polyhedra. We are interested in finding the

fastest collision-free trajectory of the robot that moves between two given positions.

We start this section by introducing the model to find such a trajectory.

2.1 Kinodynamic motion planning

Let P0 2 R2 be the initial position and Pf 2 R2 the goal position. To describe the

motion of a robot between P0 and Pf, we need to define several variables. Let r, v
and a, respectively, denote the position, velocity and acceleration of the center of

gravity of the robot in the two dimensional plane. Since the robot can rotate, let h
denote the angle of rotation of the robot and l be the velocity of the angle of

rotation. Finally, let tf be the travel time between P0 and Pf. The motion of the robot

on the time interval ½0; tf � is then given by the following dynamic laws:
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r0ðtÞ ¼ vðtÞ; v0ðtÞ ¼ aðtÞ and h0ðtÞ ¼ lðtÞ: ð1Þ

In this paper, a trajectory from P0 to Pf is defined by the pair ðt; rðtÞÞt2½0;tf � that
satisfies rð0Þ ¼ P0 and rðtf Þ ¼ Pf . We assume that the robot does not have any

velocity and angle at the start and goal position. Therefore, the following boundary

conditions are defined

rð0Þ ¼ P0; vð0Þ ¼ 0; hð0Þ ¼ 0; rðtf Þ ¼ Pf ; vðtf Þ ¼ 0; hðtf Þ ¼ 0: ð2Þ

With the robot, we associate a Cartesian coordinate system, called body frame,

whose origin is located at the center of gravity of the robot. In this coordinate

system, the vertices of the robot at time t = 0 are stored in the matrix R0. If n is the

number of vertices in the robot, then R0 2 Rn�2. With the workspace, we associate

another coordinate system, that is called world frame. The coordinates of the ver-

tices at time t in the world frame are obtained by rotating R0 of angle h(t) and then

applying a translation of vector rðtÞ (LaValle 2006). Let RðtÞ be the matrix of the

vertices at time t. Then, we have:

RðtÞ> ¼
cosðhðtÞÞ � sinðhðtÞÞ
sinðhðtÞÞ cosðhðtÞÞ

� �
R>
0 þ rðtÞ � e>n ; ð3Þ

where en is the vector that contains n components, which are all equal to 1. Hence,

the product rðtÞ � e>n yields a 2 9 n matrix. In what follows, R designates the robot

as a convex compact polyhedron and the matrix of vertices at the same time.

Let us assume that the workspace contains K fixed obstacles, which are convex

compact polyhedra and denoted by Hk, k ¼ 1; . . .;K. A trajectory is collision-free if

and only if R(t) and the polyhedra Hk, k ¼ 1; . . .;K, are disjoint for all t in ½0; tf �.
There exists several manners to express that the robot R does not intersect any

obstacle. For instance, we can use arguments from linear programming. Let us

describe the polyhedra with the following sets of inequalities

R ¼ fy 2 R2 jAy � bg and Hk ¼ fy 2 R2 jCky � pkg;

with A 2 Rn�2, b 2 Rn, C 2 Rnk�2 and pk 2 Rnk , where nk is the number of vertices

in Hk.

Then, Farkas’s lemma (Berkovitz 2001) implies that R and Hk do not intersect if

and only if there exists a vector wk 2 Rnþnk such that

wk � 0;
A

Ck

� �>
wk ¼ 0 and

b

pk

� �>
wk \ 0: ð4Þ

Hence, the polyhedra R and Hk do not collide as long as such a vector wk exists.

Please note that the matrix A and the vector b depend on the state of the moving

robot and thus these constraints are in fact nonlinear and time dependent. The

collision avoidance criterion is here expressed with algebraic relations, which is

very convenient. However, this criterion leads also to a kinodynamic planning

problem of a huge size since a vector wk must be found for each obstacle. Moreover,
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the non-uniqueness of wk may produce numerical difficulties. Please see Gerdts

et al. (2012), Landry et al. (2013) for more details on this formulation.

A second way to characterize the collision avoidance is to maintain a positive

distance between the robot and the obstacles. To this end, we use the signed distance

between two objects, which is negative if the objects intersect and non-negative

otherwise. The signed distance between intersecting polyhedra is defined as follows

Cameron and Culley (1986), Hart and Anitescu (2010), Kim et al. (2002):

dðR;HÞ ¼ �kwk2; ð5Þ

where d is the distance function and w is the smallest translational vector, so that

intðRþ wÞ \ H ¼ ;. An illustration is given in Fig. 1.

If the polyhedra are disjoint, then d is simply the Hausdorff distance. In

summary, the distance function between two convex compact polyhedra is given by

dðR;HkÞ ¼
� wkk 2; if R \ Hk 6¼ ;;
distðR;HkÞ; otherwise;

�

where dist is the Hausdorff distance.

The collision avoidance constraint is then obtained by imposing that the

minimum distance between the robot and the obstacles is larger than a safety

margin, that is

min
k¼1;...;K

dðR;HkÞ � e; ð6Þ

where e[ 0 is the safety margin.

In contrast to (4), the collision avoidance criterion leads to considerably fewer

constraints, since it contains only one inequality. However, the difficulty here is the

discontinuity of the derivative of d, which may cause problems when solving the

kinodynamic motion problem. Note that d is Lipschitz continuous only and we may

use subgradients at the points of non-differentiability.

As many authors Bobrow (1988), Gilbert and Johnson (1985), we prefer the

second approach with its small size, taking into account the nonsmoothness issues.

Therefore, combining (1), (2) with (6), we obtain the kinodynamic motion planning

problem between P0 and Pf

ðPÞ:min tf subject to the constraints:

� equations of motion: r0ðtÞ ¼ vðtÞ; a.e. in ½0; tf �;
v0ðtÞ ¼ aðtÞ; a.e. in ½0; tf �;
h0ðtÞ ¼ lðtÞ; a.e. in ½0; tf �;

� collision avoidance: mink¼1;...;K dðRðtÞ;HkÞ� e; a.e. in ½0; tf �;
� boundary conditions: rð0Þ ¼ P0; vð0Þ ¼ 0; hð0Þ ¼ 0;

rðtf Þ ¼ Pf ; vðtf Þ ¼ 0; hðtf Þ ¼ 0;

� box constraints: a� aðtÞ� a and l� lðtÞ� l; a.e. in ½0; tf �;

where a; a 2 R2 and l; l 2 R are given lower and upper bound values.
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The problem (P) is an optimal control problem where the state variables are the

position, r, the velocity, v, and the angle of rotation, h. The control variables are the
acceleration of the center of gravity, a, and the velocity of the rotation angle l. Let
us store the variables in the following vectors:

– the state variable: x ¼

x1
x2
x3
x4
x5

0
BBBB@

1
CCCCA ¼

r
v
h

0
@

1
A 2 Rnx ,

– the control variable: u ¼
u1
u2
u3

0
@

1
A ¼ a

l

� �
2 Rnu ,

with nx ¼ 5 and nu ¼ 3.

Other cost functions, such as minimizing the energy consumption, can be defined

in (P). Hence, the objective function is replaced by the more general formulation:

uðxð0Þ; xðtf Þ; tf Þ. In other words, the objective function depends on the initial state,

the final state and the travel time.

Since the matrix of vertices RðtÞ depends on rðtÞ and hðtÞ (compare (3)), the

distance function is rewritten in the form dðxðtÞ;HkÞ. Let us now define the

following functions:

– g:Rnx ! R s.t. gðxÞ ¼ min
k¼1;...;K

dðx;HkÞ,

– f:Rnx � Rnu ! Rnx s.t. fðx; uÞ ¼
x3
x4
u

0
@

1
A,

– c:Rnx � Rnx ! R2nx s.t. cðxð0Þ; xðtf ÞÞ ¼

rð0Þ � P0

vð0Þ
hð0Þ

rðtf Þ � Pf

vðtf Þ
hðtf Þ

0
BBBBBB@

1
CCCCCCA
.

Fig. 1 The polyhedra H and R
overlap. The vector w is the
smallest vector such that Rþ w
and H come into contact, where
Rþ w is the polyhedron R
translated by w
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With these new definitions and after transformation onto the fixed time interval

T :¼ ½0; 1�, the optimal control problem (P) to find the time-optimal kinodynamic

motion planning can be rewritten as follows

ðOCPcÞ min uðxð0Þ; xð1Þ; tf Þ
with respect to x 2 Wnx

1;1ðTÞ; u 2 Lnu1ðTÞ
s:t: x0ðtÞ � tf fðxðtÞ; uðtÞÞ ¼ 0; a:e: in T; ð7Þ

gðxðtÞÞ� e; a:e: in T; ð8Þ

cðxð0Þ; xð1ÞÞ ¼ 0; ð9Þ

uðtÞ 2 U; a:e: in T; ð10Þ

where U :¼ fu> ¼ ða>; lÞ 2 Rnu j a� a� a; l� l� lg:
As usual Lnu1ðTÞ denotes the Banach space of essentially bounded functions

mapping from T into Rnu and Wnx
1;1ðTÞ denotes the Banach space of absolutely

continuous functions with essentially bounded derivative that map from T into Rnx .

In ðOCPcÞ, the dynamic constraints are the dynamic laws (7) and the box

constraints (10). The state constraint (8) and the boundary conditions (9) define the

kinematic constraints. Moreover, let us observe that the constraint (8) is not

continuously differentiable because of the distance function d.

In the case of a three-dimensional robot, the kinodynamic planning problem

ðOCPcÞ would have the same structure. The changes are the meaning of the

variables and the definition of the function f in the ordinary differential equations.

Hence, the development in the next sections to solve ðOCPcÞ can also be applied in

the three-dimensional case.

2.2 Numerical method

Most of the methods which have been developed to solve ðOCPcÞ, first discretize
the state variable x and then look for a control that satisfies the dynamic constraints

and minimizes the cost functional (Bobrow 1988; Johnson and Gilbert 1985). Such

methods will never guarantee that the final solution leads to the optimal trajectory.

Since ðOCPcÞ contains state constraints and the dimension of the state variable is

small, we choose to use a direct method (Gerdts et al. 2012). But, in contrary to

Bobrow (1988), Johnson and Gilbert (1985), we discretize the control variable and

then utilize an explicit integration scheme to solve the ordinary differential

equations. The time discretization of ðOCPcÞ leads to a non-linear optimization

problem.

Let us consider a grid with a fixed step-size:

GN :¼ ftk ¼ k h j k ¼ 0; 1; . . .;Ng; with h ¼ tf=N:

As in Lin et al. (2014) the control variable is approximated with B-splines as

follows
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uhðt; u0; . . .; uNþr�2Þ :¼
XNþr�2

i¼0

BirðtÞ ui;

where Bir, i ¼ 0; . . .;N þ r � 2, are elementary B-splines of order r on GN and

ðu0; . . .; uNþr�2Þ> 2 RnuðNþr�1Þ is the vector of de Boor points. The choice of

B-splines is convenient since the elementary functions have a local support only.

For further details on B-Splines, see Quarteroni et al. (2007).

As the elementary B-splines of order r sum up to one for all t 2 T , the box

constraints uhðtÞ 2 U are satisfied, if

ui 2 U; i ¼ 0; . . .;N þ r � 2:

The ordinary differential equations (7) are integrated by an explicit one-step

method, such as Runge-Kutta method. According to (7), the integration

scheme depends on the initial value x0 ¼ ðP0; 0; 0; 0Þ 2 Rnx , the travel time tf and

the de Boor points ui, i ¼ 0; . . .;N þ r � 2. Let us store tf and the de Boor points in

the following vector

z> :¼ ðu>0 ; . . .; u>Nþr�2; tf Þ 2 Rnz ;

with nz ¼ ðN þ r � 1Þnu þ 1. Then, the one-step integration method with increment

function U leads to the state approximations

xkþ1ðzÞ ¼ xkðzÞ þ hUðtk; xkðzÞ; uhðtk; u0; . . .; uNþr�2Þ; tf ; hÞ with x0ðzÞ ¼ x0
and for k ¼ 0; . . .;N� 1;

ð11Þ

at the grid points tk, k ¼ 0; . . .;N.
Introducing both the control and state approximations into the optimal control

problem ðOCPcÞ leads to:

ðNLPÞ min
z

JðzÞ

s:t: cðx0; xNðzÞÞ ¼ 0;

gðxkðzÞÞ� e;

z 2 Z;

where JðzÞ :¼ uðx0; xNðzÞ; tf Þ, Z: ¼ fz 2 Rnz j z� z� zg with z> ¼ ða>; l; . . .; a>;
l; tÞ, z> ¼ ða>; l; . . .; a>; l; tÞ and t; t� 0 are given lower and upper bound

values.

A similar approach is described in Lin et al. (2014). The problem (NLP) is a finite

dimensional nonsmooth and non-convex optimization problem in z. Despite the

nonsmoothness of the problem we apply a sequential quadratic programming (SQP)

method with BFGS updates to (NLP). SQP methods are iterative methods (Barclay

et al. 1997;Diehl et al. 2010;Nocedal andWright 2006). At each iteration, a quadratic

programming (QP) sub-problem is being solved to find a search direction. The

objective function of the (QP) sub-problems is a local quadratic approximation of the
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Lagrange function. Since the Hessian matrix of the Lagrange function is not well

defined at the points of non-differentiability of g, we use BFGS update formulas (Betts

2001; Nocedal and Wright 2006) to replace it. The nonsmooth constraint with g is

being linearized by using an approximate subgradient of g, which we obtain

numerically by finite differences. More elaborate approaches to approximate a

subgradient of a convex function can be found in Shor (1985). This approach is

heuristic and up to now there is no mathematical proof which justifies that the BFGS

SQP method will converge to stationary points in the nonsmooth case; there are even

counterexamples. However, it was observed by many authors that the use of BFGS

updates often works well even in the nonsmooth case. This observation was

investigated in more detail in Lewis and Overton (2008, 2013). Our numerical

experiments support this observation and thus we decided to apply the BFGS SQP

method instead of smoothing the distance function as in Escande et al. (2014) or by

using bundle type algorithms, which are specifically designed for nonsmooth

problems, see, e.g., Schramm and Zowe (1992). Our numerical experience is just the

opposite to what one would expect from theory. The smooth formulation with the

constraints in (4) leads to a smooth but very large nonlinear nonconvex problem with

many additional (artificial) controlsw. This large dimensional problem turns out to be

much harder to solve (although it is smooth) than the nonsmooth approach with the

signed distance function in (NLP). A reason for thatmight be, that only few constraints

hidden in the function gðxÞ actually become active when passing an obstacle while

most of the constraints are not active. This can be seen as an implicit reduction of the

number of constraints and seems to lead to mild nonlinearity. Whereas in (4) there are

many constraints that have to be obeyed and the corresponding controls are in general

not unique. So, the degree of nonlinearity is much higher.

At each iteration ‘ of the SQP algorithm, an update zð‘Þ is obtained. From this vector,

a trajectory ðtk; rkðzð‘ÞÞÞk¼0;...;N is built by integrating the ordinary differential

equations as explained in (11), where xk>ðzð‘ÞÞ ¼ ðrk>ðzð‘ÞÞ; vk>ðzð‘ÞÞ; hkðzð‘ÞÞÞ.
Therefore, a sequence of trajectories is issued from the SQP method.

In order to achieve convergence from remote points, the SQP algorithm can be

augmented by a globalization strategy. See Powell (1978), Schittkowski (1983) for

line-search based methods and Fletcher and Leyffer (2002), Fletcher et al. (2002) for

filter methods. However, without a good initialization of the starting point zð0Þ, even
the globalized SQPmethod might not converge. The main focus of this paper is on the

specific construction of a sufficiently good initialization of zð0Þ for the robot motion

planning problem. Amethod to compute such an initialization for (NLP) is developed

in the next section. This method is based on the coupling of discrete and continuous

optimization.

3 Initialization

In kinodynamic planning, everyone agrees with the significance of a good initial

trajectory (Johnson and Gilbert 1985; Sprunk et al. 2011), but there is a lack of

research into the computation of such a trajectory. This trajectory must be close to
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the optimal trajectory and very often collision-free. Let us consider the example

depicted in Fig. 2a to illustrate this necessity. The workspace is a rectangle. The

black quadrilateral is an obstacle and is in contact with the boundary of the

workspace. We need to find a way to indicate in which direction the robot must

move to reach Pf . If z
ð0Þ were initialized such that the associated trajectory were the

segment ½P0;Pf �, the robot would move through the obstacle. The solver would then

attempt to drive the trajectory downwards in order to eliminate any collision. But,

no such trajectory can succeed since the robot cannot reach Pf by passing on the left

of the obstacle without moving outside the workspace. Here, a good initial direction

would be to go first upwards and then turn left.

In this section, we develop a two-step method to compute a starting point zð0Þ

such that the associated initial trajectory ðtk; rkðzð0ÞÞÞk¼0;...;N has a favorable shape.

First, a path-planning algorithm is used to find intermediate points. These points

indicate the robot the direction to reach Pf . In the second step, zð0Þ is computed, so

that the initial trajectory passes through the neighborhood of the intermediate points.

3.1 Computation of the intermediate points

Path-planning involves searching for a collision-free path in the workspace between

two given positions. Several techniques exist such as graph search algorithms, cell

decomposition, potential field method, probabilistic roadmap (PRM) or rapid

exploring random trees (RRT). See Goerzen et al. (2010), LaValle (2006) for an

exhaustive review. Here, we do not need to use sophisticated methods. We look for

a path that is collision-free, but not necessarily the shortest. In addition, the path

must have a small number of turns. If many changes of direction occur (Fig. 2a

illustrates such a case), then the second step, presented in the next subsection, could

misbehave. To find such a path, we use an adaptation of classical roadmap methods

such as Dijkstra’s algorithm.

(b)(a)

Fig. 2 a One possible path from P0 to Pf that uses the least amount of edges in the grid. b This path uses

the same amount of edges, i.e. has the same length, as the path in (a), but contains only two turns
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Let q be the radius of the smallest circle that contains the entire robot. Let cover

the workspace by a regular grid. Here, grid nodes only exist, if they do not

correspond to a coordinate lying on an obstacle or too close to an obstacle, i.e. the

distance between the robot and the obstacle is smaller than q. Hereby, it is crucial
that the discretization is chosen in such a way that the grid is fine enough so that

every connection in it represents a feasible collision-free motion of the robot.

For simplicity, we only allow horizontal and vertical movements and the distance

between two grid points is set to the constant d. Further, let s and s be the closest

grid points to P0 and Pf respectively. Since many turns may pose a problem, one

solution is to calculate the shortest s-s-path with the least amount of turns instead.

This is a concept which is a common approach in many path planning problems

(Bohlin 2002; Maheshwari et al. 1999). This can be modeled by using a large

enough turn cost M to penalize paths containing turns.

Unfortunately, even if M is chosen larger than the number of nodes in the grid, it

is not sufficient to modify Dijkstra’s algorithm to just add the corresponding turn

cost in the extension step: Dijkstra’s algorithm only keeps the shortest distance

corresponding to one subpath per node. In the turn cost setting, however, there

might be different subpaths and each leading to different turn costs depending on the

next arc. Therefore, the optimality would no longer be guaranteed.

The easiest way to deal with such turn minimal paths is a graph modification:

One original grid node is split up into four nodes, one for every possible direction.

These nodes are then connected in such a way, that edges corresponding to turns

have cost M and the other edges have cost 0. This blows up the size of graph by a

factor of four, but Dijkstra’s algorithm can still be used on this extended graph.

Another way of representing turn costs is by a so-called pseudo-dual graph G0. In
such a graph the edges of the original primal graph correspond to the nodes in G0.
The arcs connecting two nodes in G0 now correspond to the turns in the original

graph. We can now give the respective turn-costs for these arcs (Winter et al. 2002).

Figure 2b shows the result of such a turn-minimal computation.

By definition, all paths on the grid are feasible. All nodes that could possibly

conflict with any obstacle are not included in the graph. So far, we only performed

shortest path computations. Due to the nature of such paths, trajectories are often

favoured which pass by an obstacle as close as possible. However, these parts of the

path make it harder for the exact trajectory computation. In some situations it would

be much better to take a path that is slightly longer, but on the other hand keeps a

larger distance to the obstacles. This can be achieved by adding specific costs to the

nodes. These costs should depend on the distance of a node to its nearest obstacle

and should drastically decrease with increasing obstacle distance.

However, in this context it makes no longer sense to find the shortest path with

least turns. We want to explicitly allow some additional turns, if that helps to avoid

close obstacles. Thus, we introduce the concept of turn costs to penalize paths with a

higher amount of turns without forbidding them explicitly.

Shortest path with turn costs can be found using the presented graph

modifications and Dijkstra’s algorithm. Turn costs together with the distance

dependent node penalties now give us good options to alter the resulting path in
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such a way that it is balanced and will most probably also lead to a good starting

solution.

So far, the resulting path only contains right angles, which is also not very well

suited for further trajectory calculations. It is necessary to smoothen the path even

further. One approach, that showed significant improvements in practical experi-

ments, is the following: Starting in s we move along the so far calculated path and

check for each node vi on this path, whether the line segment svi�1 from the point

corresponding to s to the point corresponding to vi has a distance to all obstacles of

at least q and therefore can be used by the robot without any collisions. When we

reached a node vi where such a collision occurs, we make svi�1 the beginning of our

new smoothened path. We then continue along the original path further until we find

a node vj where vi�1vj is too close to an obstacle and add vi�1vj�1 to the smoothened

path. This procedure is continued until we have reached s. See Fig. 3b for an

example of such a smoothened path. The inner nodes vi in the smoothened path are

the intermediate points that will be used in the next sub-section.

Applying this smoothening process we no longer explicitly avoid trajectories

which are too close to the obstacles. However, by using the nodes of a shortest path

that takes this distance into account, we assure that at least the start and end nodes of

the line segments are farther away. This fact leads to sufficiently good trajectories.

To speed up the path computation process the grid is created dynamically: The

node obstacle penalties are only calculated when the specific node is visited for the

first time in the shortest path calculation. There is also no need to generate and store

the edges in advance, since they are implicitly given by the node coordinates.

The idea presented in this section represents an heuristic approach that leads to

good initial trajectories. All of its aspects, such as turn cost, obstacle clearance and

smoothening, are very reasonable as they represent properties of a good initial

solution.

(b)(a)

Fig. 3 a Path that avoids close obstacles without taking to many turns. However, his path is slightly
longer than the length of the shortest path in Fig. 2. b Smoothened version of the path in a
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3.2 Computation of the initial trajectory

In Sect. 3.1, the intermediate points were computed as the nodes of a smoothened

path between P0 and Pf . Let nI be the number of intermediate points and Pi be the

ith intermediate point.

We search for an initial value of zð0Þ. The initialization is such that the associated

initial trajectory is the fastest trajectory that passes through the neighborhood of the

intermediate points.

Let us start by recalling the definition of the unknown vector z:

zð0Þ;>: ¼ ðu0;>0 ; . . .; u0;>Nþr�2; t
0
f Þ:

The de Boor points u0i , i ¼ 1; . . .;N þ r � 2 and the initial travel time t0f are ini-

tialized by solving an optimal control problem, which is very similar to ðOCPcÞ. In
this new problem, no obstacle is considered. Instead, a penalty term that forces the

trajectory to pass through the neighborhood of the intermediate points is added in

the objective function. The penalty term is of the form kPi � rðtÞk2\er, where er is
a positive parameter. The penalty means that the center of gravity of the robot must

be, at time t, in the ball centered at Pi and of radius er. This condition must not be

applied at all t 2 ½0; t0f �, but only during a small time interval, included in ½0; t0f �.
Finding the time subinterval depends on the intermediate points and the number N

of grid points used in the time discretization of ðOCPcÞ. Naturally, the control grid
of ðOCPcÞ and of the new optimal control problem for the initialization, is the same.

In Sect. 2, the control grid GN was defined. In practice, the number N must be

determined. This number is chosen proportional to the length of the path computed

in the discrete search. Let dl define the distance travelled by the robot between two

time-steps of GN . The variable dl is a desired distance that is fixed at the beginning.

Let L be the length of the path starting from P0, passing through Pi, i ¼ 1; . . .; nI ,
and ending at PF , as illustrated in Fig. 3a. By definition, we have:

L: ¼
XnI
i¼0

Li ¼
XnI
i¼0

kPiPiþ1
���!k2; wherePnIþ1 ¼ PF:

Then, the number of grid points is defined as

N ¼

L

dl

� �
; if

L

dl
� L

dl

� �
� 0:5;

L

dl

� �
þ 1; otherwise;

8>>><
>>>:

where b�c is the floor function.

The initial trajectory ðtk; rkðz0ÞÞk¼0;...;N is such that the trajectory passes through a

neighborhood of the intermediate points Pi, i ¼ 1; . . .; nI , at certain time steps.

These time steps are chosen according to the distance travelled by the robot from the

initial position to the intermediate point. For each point Pi, we set the index of the

time steps, k(i), as follows:
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kðiÞ :¼
Pi

k¼0 Lk

L
N

$ %
þ 1; i ¼ 1; . . .; nI :

Finally, we check if there is always at least one time step between two intermediate

points, that is kðiþ 1Þ � kðiÞ[ 1. If this is not the case, a time step is added

between k(i) and kðiþ 1Þ. In other words, the index kðiþ 1Þ is moved forward from

one, that is kðiþ 1Þ :¼ kðiþ 1Þ þ 1. Similarly, the number of grid points is changed

into N ¼ N þ 2 to be sure that there is at least one time step between PnI and PF .

This trick yields to a better behaviour of the algorithm that computes the initial

trajectory.

The initial trajectory is the fastest trajectory which joins P0 to PF and passes

through the neighborhood of Pi at tkðiÞ, i ¼ 1; . . .; nI . To find this initial trajectory,

we solve an optimal control problem where the conditions at the intermediate points

are specified as a penalty term in the objective function. Therefore, the problem

reads

ðOCPIÞ min c1 tf þ c2

Z tf

0

pðtÞdt

s:t: x0ðtÞ � tffðxðtÞ; uðtÞÞ ¼ 0; a.e. in T;

cðxð0Þ; xð1ÞÞ ¼ 0;

uðtÞ 2 U; a:e: in T;

where

pðtÞ :¼ maxðkPi � rðtÞk2 � er; 0Þ2; if 9i 2 f1; . . .; nIgs:t:jt� tkðiÞj �
h

2
;

0; otherwise;

8<
:

where h is the fixed step size of GN and c1 and c2 are positive constants.

The penalty term p is positive when the position of the center of gravity during

½tkðiÞ � h
2
; tkðiÞ þ h

2
� is not located in the ball centered at Pi and of radius er . As soon as

the center of gravity of the robot is in the ball, the penalty term is equal to 0.

The constraints in ðOCPIÞ already appear in ðOCPcÞ. Indeed, only the collision

avoidance constraint in ðOCPcÞ was removed to define ðOCPIÞ. Thus, ðOCPIÞ has a
smaller size and does not contain non-differentiable constraints anymore.

To solve ðOCPIÞ, the same technique as for ðOCPcÞ is used. If u	I;i,

i ¼ 0; . . .;N þ r � 2, is the optimal control variable of ðOCPIÞ and if t	f ;I is the

optimal travel time of ðOCPIÞ, then the unknown vector zð0Þ is initialized as follows:

t0f ¼ t	f ;I and u0i ¼ u	I;i; i ¼ 0; . . .;Nþ r� 2:

Furthermore, the lower bound t and upper bound t, defined in Z, can be set as

follows: t ¼ 1
10
t0f and t ¼ 10 t0f .

Numerical examples are given in Figure 4. The workspace is a rectangle that

contains four obstacles (black quadrilateral). For each example, P0, Pf and the

intermediate points are represented by a black square. The grey line is the initial
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trajectory obtained by solving ðOCPIÞ, where the crosses indicate the center of

gravity of the robot at the time steps tk, k ¼ 0; . . .;N.
We can observe that all initial trajectories are good candidates since they pass

between the right obstacles to reach Pf . The optimal trajectory and the initial

trajectory are actually homotopic relative to their endpoints.

Since ðOCPIÞ does not take into consideration the obstacles, the initial trajectory

is not necessarily collision-free. However, in that case, the robot overlaps the

obstacles only slightly. The trajectory in Fig. 4b illustrates such a situation. The

slight collisions do not have any consequences on the solving algorithm of ðOCPcÞ,
as we will see in the next section.

For the examples defined in the workspace of Figure 4, the number of

intermediate points varies between 1 and 3. If there is no obstacle between P0

and Pf , no intermediate point is defined and the initial trajectory is a straight line.

Since no intermediate point exists and no collision can happen, ðOCPIÞ and ðOCPcÞ
are equivalent: the penalty term in ðOCPIÞ is equal to 0 and the state constraint in

ðOCPcÞ can be omitted. In this particular case, ðOCPIÞ gives the optimal solution.

Through these examples, we can see that a few number of intermediate points

suffices to compute the initial trajectory. If this number were large, or if the initial

path would have unnecessary turns, then the number of time steps N would become

large, since the path is longer and we require that at least one time step exists

between tkðiÞ and tkðiþ1Þ. It may then be more difficult to find a trajectory that passes

through the neighborhood of all the intermediate points and satisfies the dynamic

constraints.

4 Fastest collision-free trajectory

In the previous section, a two-step method was introduced to find an initial value for

the control variable zð0Þ in the local SQP algorithm. The initialization is such that
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Fig. 4 Examples of initial trajectories and their associated intermediate points which come from the path
planing algorithm
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zð0Þ satisfies the lower and upper bounds on z, i.e. zð0Þ 2 Z. Furthermore, the

associated initial trajectory ðtk; rðzð0ÞÞÞNk¼0 is homotopic to the optimal trajectory.

According to the local SQP algorithm, the Lagrange multipliers kð0Þ, fð0Þ and rð0Þ

must also be initialized. Let us remind that the constraints related to kð0Þ and fð0Þ

appear both in ðOCPIÞ and ðOCPcÞ. Consequently, these multipliers can be

initialized with the solution of ðOCPIÞ, that is:

kð0Þ ¼ k	I and fð0Þ ¼ f	I ;

where k	I and f	I are the multipliers issued from ðOCPIÞ.
The last multiplier, r ¼ ðr0; . . .; rNÞ, corresponds to the inequality constraints

defined in (NLP):

gðxkðzÞÞ � e; k ¼ 0; . . .;N:

These inequalities describe the collision avoidance between the robot and the

obstacles. The complementarity condition in the Karush-Kuhn-Tucker conditions

implies that rk is equal to 0 if the inequality constraint is inactive (Nocedal and

Wright 2006). This means that rk is zero when no collision occurs between the

robot and the obstacles at tk. Because the initial trajectory is almost collision-free,

we set r to 0.

With this initialization, ðOCPcÞ can be solved as described in Sect. 2. A sequence

of quadratic programming problems based on the linearization of the constraints is

built. However, since the state constraint is not continuously differentiable, the

solving algorithm might not converge. In this case, we observed that the state

constraint, the box constraints and the boundary conditions are fulfilled, but the

Karush–Kuhn–Tucker conditions of ðQP‘Þ remain unsatisfied. This is due to the

discontinuity of the gradient of g. When such a situation occurs and the number of

iterations in the SQP method is larger than a threshold I, the optimal solution will be

never found. However, the current trajectory is not so bad, since the robot does not

intersect the obstacles (the state constraint is satisfied). Hence, our idea is to stop the

SQP method and consider a new problem, where the collision avoidance is no more

written as a state constraint, but expressed as a penalty term. Here is the new model

ðOCPpÞ min a tf þ b
Z tf

0

minðgðxðtÞÞ � e; 0Þð Þ2 dt

s:t: x0ðtÞ � tf fðxðtÞ; uðtÞÞ ¼ 0; a:e:inT;

cðxð0Þ; xð1ÞÞ ¼ 0;

uðtÞ 2 U; a:e:inT;

where a and b are positive parameters.

This model is again an optimal control problem, but without any state constraint.

The penalty term in the objective function is equal to 0 if the trajectory is collision-

free. To solve ðOCPpÞ, the numerical method introduced in Section 2 is used.

The initial value of zð0Þ, kð0Þ, fð0Þ and rð0Þ are the last value of zð‘Þ, kð‘Þ, fð‘Þ and
rð‘Þ obtained in the SQP method to solve ðOCPcÞ. The corresponding initial
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trajectory is collision-free. Consequently, the penalty term is equal to 0. The term

becomes positive as soon as the robot approaches an obstacle, that is when the

distance between them is smaller than the safety margin e.
The goal of ðOCPpÞ is to minimize the travel time of a collision-free trajectory,

while preventing it from collision with the penalty term. The goal of ðOCPcÞ was
more to transform the initial trajectory into a collision-free one. If the initial

trajectory is already collision-free, that is if gðxkðzð0ÞÞÞ� e, k ¼ 0; . . .;N, then

ðOCPpÞ is solved directly. A summary of this strategy is presented in Fig. 5. First,

the intermediate points are computed by using a path planning algorithm. Then,

ðOCPIÞ is solved to find a good initial trajectory. If this trajectory intersects some

obstacles, then ðOCPcÞ is considered. If ðOCPcÞ does not succeed, but the

constraints are satisfied, then ðOCPpÞ is called. On the contrary, if the initial

trajectory is collision-free, then ðOCPpÞ is solved.

5 Numerical results

To solve ðOCPIÞ, ðOCPcÞ and ðOCPpÞ numerically, we use the package OCPID-

DAE1 (see Gerdts (2013) and http://www.optimal-control.de) developed by M.

Gerdts. The method introduced in Sect. 2 is implemented in this package. B-splines

of first order (r ¼ 1) are chosen to approximate the control variables. The classical

Runge-Kutta method is utilized to integrate the ordinary differential equations.

Two main approaches exist to compute dðR;HkÞ, the Hausdorff distance between
the robot R and an obstacle Hk. The first approach is Gilbert, Johnson and Keerthi’s

algorithm published in Gilbert et al. (1988) and referred as GJK. Gilbert et al.

established that the distance d is equivalent to the Hausdorff distance of the

Minkowski difference R� Hk from the origin O. If R and Hk are separated, then O

is outside R� Hk. In the case of a collision, O is inside R� Hk. Furthermore, the

Fig. 5 Scheme of the strategy to find the fastest collision-free trajectory of a robot between two given
positions
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Hausdorff distance is equal to the norm of the vector w that characterizes the

penetration depth (see (5)).

The second approach is Lin and Canny’s algorithm (Lin 1993; Lin and Canny

1991). This algorithm determines the closest pair of features between the polyhedra,

where the features of a polyhedron are its vertices, its edges and its faces located on

its boundary. The distance dðR;HkÞ is then equal to the distance between the

features of the closest pair. The approach is fast, easy to implement and perfectly

suited when polyhedra move slightly between two time steps. In that case, the

method is of order 1. However, the approach is not adapted for penetrating

polyhedra. Consequently, we apply Lin and Canny’s algorithm as long as R and Hk

are separated. Once dðR;HkÞ is smaller than e, GJK is used in order to get a signed

distance if R and Hk overlap.

Let us consider the two-dimensional example presented in Figure 6-(a). The

workspace is the rectangle ½0; 26� � ½0; 18�. The black quadrilaterals are the

obstacles. The robot is a square whose vertices in the body frame are

R0 ¼

�0:5 0:5

�0:5 � 0:5

0:5 � 0:5

0:5 0:5

0
BBB@

1
CCCA:

The bounds on the acceleration of the robot are a> ¼ ð1:0; 1:0Þ and a ¼ �a. The
bounds on the velocity of the rotation angle are l ¼ p

10
and l ¼ �l.

The points Vi, i ¼ 0; . . .; 6, in the workspace define possible starting and end

positions for the robot. We compute the fastest collision-free trajectory for any pair

ðP0;Pf Þ with P0 2 fV0; . . .;V6g and Pf 2 fV0; . . .;V6g n fP0g. For the numerical

computations, we set the safety margin e to 0.05, the distance dl to 0.6 and the

threshold I in ðOCPcÞ to 30. The parameters in the objective function in ðOCPIÞ are
chosen as follows: er ¼ 0:5 and c1 ¼ c2 ¼ 1

ð1þpIÞ2
, where pI is the maximum distance
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Fig. 6 a The workspace with four obstacles (quadrilaterals) and seven points V0 to V6 between which
the optimal trajectory is computed. b The optimal trajectory between V0 and V4 and between V5 and V6.
The black squares are the intermediate points, the light grey line is the initial trajectory and the dark grey
line is the optimal trajectory. The robot is indicated at several time steps by a white square
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between the intermediate points and the line passing through P0 and Pf . Finally, a
and b in ðOCPpÞ are respectively set to 1 and 104.

The numerical results are presented in Table 1. The starting and end positions of

the trajectory are indicated in the first two columns. In the third column, the number

of time steps for the discretization is shown. The columns ItI , Itc and Itp give the

number of iterations used in the SQP method to solve ðOCPIÞ, ðOCPcÞ and ðOCPpÞ
respectively. The columns D stand for the minimum distance between the robot and

the obstacles along the trajectory, that is:

D ¼ min
0� k�N

gðxkðzÞÞ:

This distance is given for the initial trajectory (fifth column) and the final trajectory

(tenth column). For ðOCPcÞ, we quantify the satisfaction of the constraints (CN) and
the Karush-Kuhn-Tucker conditions (KKT). More precisely, CN and KKT are

defined by

CN ¼ max max
1� i� nz

ð0; zci � ziÞ; max
1� i� nz

ð0; zi � zci Þ;
�

max
0� k�N

ð0; e� gðxkðzcÞÞÞ; kcðx0; xNðzcÞÞk1
�
;

KKT ¼ krzLðzc; kc; rc; fcÞk1;

where zc, kc, rc and fc are the outputs of ðOCPcÞ and L is the Lagrange function of

ðOCPcÞ. If ðOCPcÞ converges, then zc is the optimal solution and ðtk; rkðzcÞÞk¼0;...;N

is the fastest collision-free trajectory. Finally, the last column in Table 1 stands for

the computational time, which is given in second.

The sequence of the columns follows the strategy presented in Figure 5. This

means that ðOCPIÞ is solved first. If D is smaller than the safety margin e, then
ðOCPcÞ is considered. If ðOCPcÞ does not succeed after I ¼ 30 iterations, but the

constraints are satisfied (CN almost 0), then ðOCPpÞ is called. On the contrary, if D

is larger than e, then ðOCPpÞ is solved. In that case, the components for Itc, CN and

KKT in Table 1 are left blank. Similarly, a blank in Itp means that we do not need to

call ðOCPpÞ for solving the kinodynamic problem.

All the possible trajectories between the points V0 to V6 are computed

successfully. Moreover, the computational time is always a matter of few seconds.

The initial trajectories are mostly with collision. However, the penetration depth is

not large and ðOCPcÞ always succeeds in finding a collision-free trajectory (CN

close to 0). About half of the trajectories cannot be solved by ðOCPcÞ. This result is
expected since the collision avoidance constraint is not continuously differentiable.

In all these cases, the Karush-Kuhn-Tucker conditions are not satisfied due to the

gradient of the collision avoidance constraint (KKT larger than 10�3). But, the box

constraints, the boundary condition and the collision avoidance constraint are

fulfilled (CN small).

When there is no obstacle between P0 and Pf (as between V0 and V3 or between

V1 and V6), ðOCPIÞ finds the solution directly. Indeed, the distance D is positive
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Table 1 Numerical results for the trajectories between the points V0 to V6. N is the number of time steps

in the discretization

P0 Pf N ItI D Itc CN KKT Itp D CPU

V0 V1 38 182 -0.885 34 0.2E-05 0.5E-02 205 0.050 4.027

V0 V2 43 83 0.250 163 0.050 2.639

V0 V3 20 10 1.435 0 1.435 0.066

V0 V4 30 219 -0.597 31 0.1E-06 0.2E?00 159 0.050 2.696

V0 V5 28 22 -0.258 13 0.5E-14 0.2E-12 0.050 0.468

V0 V6 43 75 -0.763 38 0.1E-05 0.6E-02 323 0.050 6.932

V1 V0 37 173 -0.557 53 0.8E-06 0.5E-01 277 0.049 6.171

V1 V2 33 91 -0.175 31 0.3E-05 0.1E?00 124 0.057 2.520

V1 V3 36 125 -0.017 39 0.3E-05 0.4E?00 103 0.049 3.625

V1 V4 32 122 -0.339 30 0.8E-08 0.1E-02 221 0.050 3.347

V1 V5 30 55 -1.036 33 0.2E-05 0.4E?00 123 0.050 2.556

V1 V6 14 8 2.000 0 2.000 0.052

V2 V0 44 136 0.269 51 0.050 1.628

V2 V1 32 94 -0.461 32 0.5E-07 0.3E-02 59 0.050 1.760

V2 V3 29 21 0.240 12 0.158 0.225

V2 V4 47 200 -0.398 30 0.5E-06 0.1E-01 54 0.050 3.611

V2 V5 16 9 0.129 0 0.129 0.088

V2 V6 33 87 -0.543 37 0.9E-06 0.6E-02 193 0.050 2.987

V3 V0 20 10 1.532 0 1.532 0.066

V3 V1 38 164 -0.654 30 0.1E-05 0.2E-02 143 0.050 3.467

V3 V2 29 21 0.240 12 0.158 0.281

V3 V4 29 80 0.021 5 0.2E-10 0.2E-11 0.050 0.417

V3 V5 13 4 0.254 0 0.254 0.049

V3 V6 44 337 -0.515 32 0.7E-07 0.1E?00 163 0.049 5.807

V4 V0 31 174 0.042 33 0.1E-05 0.1E?00 140 0.050 2.577

V4 V1 34 204 -0.418 30 0.5E-06 0.2E-01 121 0.050 3.476

V4 V2 44 184 -0.092 30 0.5E-07 0.1E-01 127 0.050 3.885

V4 V3 29 136 0.080 18 0.102 0.518

V4 V5 29 25 -0.835 18 0.3E-10 0.3E-11 0.050 0.670

V4 V6 38 197 -0.537 46 0.1E-05 0.2E-02 113 0.050 4.659

V5 V0 27 7 -0.014 7 0.1E-11 0.9E-13 0.050 0.324

V5 V1 30 49 -1.076 31 0.4E-14 0.4E-12 0.050 1.068

V5 V2 16 9 0.108 0 0.108 0.104

V5 V3 13 4 0.254 0 0.254 0.046

V5 V4 30 58 -0.141 25 0.4E-14 0.5E-13 0.050 0.934

V5 V6 30 149 -1.088 17 0.2E-11 0.1E-12 0.050 0.882

V6 V0 43 257 -0.481 30 0.4E-05 0.7E-01 421 0.050 9.052

V6 V1 14 8 2.000 0 2.000 0.048

V6 V2 32 112 -0.541 43 0.9E-05 0.1E?00 177 0.050 3.098

V6 V3 42 153 -0.193 30 0.3E-06 0.3E-02 47 0.049 3.136

V6 V4 38 228 -0.558 41 0.5E-07 0.2E-01 119 0.050 4.005
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and Itp is equal to 0, meaning that the initial trajectory is optimal. For all the other

trajectories, ðOCPpÞ always succeeds in finding the optimal trajectory.

In Fig. 6b, the optimal trajectory between V0 and V4 and between V5 and V6 are

illustrated. The robot is the white square, that is shown for several time steps. The

small black squares are the intermediate points. The light grey trajectory is the

initial trajectory, whereas the final trajectory is dark grey. The markers on the curve

indicate the position of the center of gravity of the robot at the time steps tk,

k ¼ 0; . . .;N, of the discretization.

For both examples, the initial trajectory is good, in the sense that the trajectory

indicates between which obstacles the optimal trajectory must pass. Furthermore,

we can observe that the final trajectory is correct and fully satisfies the dynamic

constraints. Such trajectories cannot be found by interpolating the path planning

since the optimal trajectory can be removed from the points defining the path in

order to satisfy the dynamic constraints.

Finally, the time evolution of the control variable u> ¼ ðu1; u2; u3Þ ¼ ða>; lÞ for
the trajectories in Fig. 6b is given in Fig. 5. We can observe that the control variable

has not necessarily a bang-bang behaviour. This indicates that we should use a

direct method to solve the optimal control problems, and not look for the switching

points as developed in Bobrow et al. (1985).

Table 1 continued

P0 Pf N ItI D Itc CN KKT Itp D CPU

V6 V5 30 151 -0.797 30 0.7E-05 0.3E-01 180 0.081 2.733

ItI , Itc and Itp are the number of iterations in the SQP method for ðOCPIÞ, ðOCPcÞ and ðOCPpÞ
respectively. D is the minimum distance between the robot and the obstacles along the trajectory. CN is

the norm of the constraints and KKT is the maximum norm of the gradient of the Lagrange function for

ðOCPcÞ. CPU is the computational time (s) including the initial intermediate point computations
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Fig. 7 Time evolution of the control variable for the trajectory (a) between V0 and V4 and (b) between
V5 and V6
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6 Conclusion

A new approach to solve the kinodynamic motion planning problem was presented.

The method involves solving a sequence of optimal control problems. The same

direct method was utilized to solve the optimal control problems. The main focus

was on the computation of a good initial trajectory. For that purpose, a two-step

approach was developed. In the first step, a set of intermediate points was computed

with a graph search algorithm. The issuing path had to follow a good balance

between the number of turns and the distance to the obstacles. The second step

involved finding the fastest trajectory that passes through the neighborhood of the

intermediate points. The initial trajectory was obtained by solving an optimal

control problem.

This new approach was applied to a two-dimensional mobile robot. The

numerical results show the quality of the computed initial trajectory and the low

computational time to get the optimal trajectory. These results are promising for an

application of the strategy to 3D robot. The optimal control problems ðOCPIÞ,
ðOCPcÞ and ðOCPpÞ remains valid. Therefore, the solving technique is the same

direct method. The first difference is the meaning of the unknowns: in three

dimensions, the unknowns are no more the centre of gravity of the robot and the

rotation angle, but the joint angles that link the different bodies of the robot (Gerdts

et al. 2012; LaValle 2006). The second difference is the definition of the ordinary

differential equations.

The computation of the intermediate points for 3D robot is very similar to the

2D-case. The underlying grid for these 3D instance has one dimension per joint and

the arc weights correspond to the time needed to travel from one grid node to

another. Moving multiple joints at the same time is allowed so that also diagonal

edges are included in the grid. Now all the methods from 2D, such as turn costs and

obstacle distance, can be applied. Only the smoothening part gets more complicated

from an algorithmic point of view. It can no longer be calculated by line-polygon

intersection, since in 3D intersections of moving polyhedra need to be calculated.

Eventually, we outline possible improvements to our strategy. First, the

discontinuity in the derivative of the distance function can be better handled in

ðOCPcÞ by using some bundle methods (Schramm and Zowe 1992). Second, a better

determination of the time steps tkðiÞ for which a condition of the form kPi � rðtÞÞk2
is imposed in ðOCPIÞ, can be established. The idea would be to consider such time

steps as a free variable in ðOCPIÞ, as it is done in Example 1.2.1 in Gerdts (2012) or

in the paper Loxton et al. (2009).
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