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Abstract

Today, hearing aids communicate with a wide variety of devices via wireless con-
nections. Like all networks, these connections are at risk of being compromised by
an attacker when left unprotected. Until now, the partner company of this thesis,
a large hearing instrument manufacturer, has used a proprietary security protocol
to secure the connection. However, this company’s new generation of hearing aids
will have more powerful hardware, which raises the question of using standardized
security protocols anew. This paper aims to contribute to the clarification of this
question. Since the bottleneck of communication overhead during data exchange
will remain, this work focuses on the optimization of standardized security pro-
tocols with respect to this overhead. In a first phase, the theoretical foundations
necessary for understanding the selected security protocols and overhead reduction
are established. The security protocols are then weighed against each other with re-
gard to a prototype, and TLS and TLS/QUIC are identified as the most promising.
The implementing libraries chosen are wolfSSL for TLS and TLS/QUIC and lwIP
for the underlying TCP/IP stack. Subsequently, the underlying transport frame-
work for the TLS variant is implemented in a prototype and wolfSSL is tested in a
client-server setup. The existing prototype, which also includes an interceptor task,
can be used as a basis for further investigations. The use of the wolfSSL library has
proven to be rather cumbersome, which is why its use in a further examination is
not recommended.
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Zusammenfassung

Heutzutage kommunizieren Hörgeräte mit den verschiedensten Geräten über draht-
lose Verbindungen. Ungeschützt stehen diese Verbindungen, wie alle Netzwerke, in
der Gefahr, von einem Angreifer kompromittiert zu werden. Bisher verwendete
das Partnerunternehmen dieser Arbeit, ein grosser Hörgerät-Produzent, ein propri-
etäres Sicherheitsprotokoll, um die Verbindung abzusichern. Die neue Hörgerät-
Generation dieser Firma wird aber über eine leistungsfähigere Hardware verfügen,
was die Frage nach dem Einsatz von standardisierten Sicherheitsprotokollen neu
aufwirft. Die vorliegende Arbeit will einen Beitrag dazu leisten, diese Frage zu
klären. Da das Nadelöhr des Kommunikations-Overheads während des Datenaus-
tauschs bestehen bleiben wird, fokussiert diese Arbeit auf die Optimierung stan-
dardisierter Sicherheitsprotokolle betreffs dieses Overheads. Dafür werden in einer
ersten Phase die theoretischen Grundlagen etabliert, die für das Verständnis der
ausgewählten Sicherheitsprotokolle und der Overhead-Reduktion nötig sind. Für
die Erstellung eines Prototyps werden dann die Sicherheitsprotokolle gegeneinan-
der abgewogen und TLS und TLS/QUIC als die vielversprechendsten identifiziert.
Als implementierende Bibliotheken werden wolfSSL für TLS und TLS/QUIC und
lwIP für den darunterliegenden TCP/IP-Stack gewählt. Anschliessend wird das un-
terliegende Transport-Gerüst für die TLS-Variante in einem Prototypen umgesetzt
und wolfSSL in einem Client-Server-Setup getestet. Der bestehende Prototyp, der
auch eine Vorrichtung zum Abfangen von Paketen umfasst, kann als Grundlage
für weitergehende Untersuchungen genutzt werden. Die Verwendung der wolfSSL-
Bibliothek hat sich als eher umständlich erwiesen, weshalb von einem weiteren Ein-
satz abgeraten wird.
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Chapter 1

Introduction

1.1 Background

The industrial partner of this thesis is an internationally active hearing instrument
manufacturer specializing in the development and production of hearing aids. The
possession of several brands makes the company one of the largest providers in the
hearing aid sector worldwide.

Nowadays, modern hearing aids are getting more and more connected. Besides hav-
ing the right and left component of the hearing aids connected in order to exchange
information, hearing aids are also able to communicate with other devices like PCs
and smartphones. This for instance allows an audiologist to calibrate and configure
the hearing aids to their patients’ needs or updating the device firmware. Users can
also use their own smartphone to change various settings on their hearing aid.

This connectivity makes the hearing aid a viable target for cyber attacks, and as such,
they are subject to various threats to all of the three elements of the Confidentiality -
Integrity - Availability triad:

– Confidentiality: A malicious actor might eavesdrop on integrated microphone
to gather valuable information or extracting health related data of the user.

– Integrity: A malicious actor might manipulate data that is exchanged between
the hearing aid and other devices to play loud sounds that could further dam-
age the user’s ears.

– Availability: A malicious actor might render the hearing aid non-functional
and therefore lower or completely hinder the user’s hearing ability.

As a consequence, our hearing instrument manufacturer decided to require authen-
tication over an end-to-end secured channel for very sensitive connection types. This
for example includes connections between the hearing aid and the audiologist’s de-
vice.

After evaluating various standardized security protocols regarding their message
overhead and computational overhead, it was found that the hardware constraints
that came with the current generation of hearing aids could not satisfy the require-
ments of those protocols. On these grounds, our industrial partner was forced to
implement their own proprietary security protocol.
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While they did a formal verification of their proprietary security protocol in collab-
oration with ETH Zürich [1], relying on a non-standard protocol always imposes a
higher risk. In contrast to standardized protocols, the implementation and protocol
details of the proprietary protocol are not publicly available and cannot be verified
by a wider audience, which increases the potential risk of implementation bugs and
protocol issues.

The next generation of hearing aids introduces significant enhancements in terms
of CPU processing power and memory capacity. This also reopens the discussion
of using standardized protocols as their requirements could now be satisfied by the
next generation’s hardware.

1.2 Goals

The goal of this bachelor thesis is to evaluate the potential of various standard se-
curity protocols on the basis of the new hardware to be used in the next generation
of hearing aids of our industrial partner. Security protocols that are particularly
promising include, but are not limited to, TLS, DTLS, and IPsec. Identification of
other possible protocols will be part of the research scope. The focus of attention
is to be placed on the communication overhead resulting from the data traffic and
on how to minimize it while retaining the security features, namely confidentiality,
integrity, and availability. If a trade-off has to be made, its implications on the secu-
rity level must be explored as well. Apart from this, the underlying protocol stack
should be taken into account concerning additional overhead caused by communi-
cation protocol headers. Throughout the protocol stack, standardized solutions are
to be preferred.

Following the evaluation, a simple prototype should be implemented that enables
the verification of one or multiple security protocols that were identified as aus-
picious on hardware that is similar to the actual hardware being used in the next
generation’s hearing aids. Based on the assessment of this experimental setup, espe-
cially regarding the communication overhead, we seek to work out the suitability of
a standardized security protocol for the hearing instrument manufacturer’s future
hearing aids.

1.3 Outline

This thesis is structured as follows: After having stated the problem and the goal
of this thesis in the introduction, a theoretical part follows in Chapter 2 where we
provide the bedrock for the subsequent sections: The target system, i.e. the hearing
aid of the next generation, and the prototype hardware and software simulating this
hearing aid for the purposes of this thesis are described, followed by an overview
of the five security protocols evaluated in this work. In the same chapter, we take a
closer look at the underlying internet and transport layers and some possibilities to
optimize their functionality for embedded applications. Chapter 2 is closed with a
survey of the cryptographic cipher suites supplied by the target system. In Chapter
3, we undertake an evaluation of the security protocols presented in Chapter 2 with
regard to their communication overhead and come to a decision which protocol will
be implemented in the prototype. Besides the protocols, implementation libraries
as well as cipher suites are also balanced against each other such that a conclusion
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can be drawn on which to use in the prototype implementation. In Chapter 4, we
describe the implementation of the prototype, how we designed its architecture and
made use of tools and libraries to build a small network with measurement capa-
bility. After that, the results of the implementation phase are depicted in Chapter 5.
Concluding this work, we discuss the findings of the previous chapter and give an
outlook on further research possibilities in Chapter 6.
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Chapter 2

Foundations

In this chapter, we lay the foundations needed for a thorough comprehension of the
matter, namely the specifications and constraints of hearing aids of our industrial
partner regarding their wireless connectivity plus the innovations introduced with
the next generation, the security protocols that could be optimized to work on em-
bedded devices as well as some compression technologies enabling reduction of the
overhead generated on the transport and the internet layer. In a last part, we present
an overview of the cipher suites that are offered by the target system.

2.1 Target System and Constraints

For the hearing aids of our industrial partner, like for many other technological assis-
tive tools, wireless connectivity is indispensable. It is used for establishing connec-
tions to a variety of endpoints: remote controls, fitting software of the audiologist,
smartphones for telephony and media, the cloud and more. Furthermore, state syn-
chronization and audio streaming between the left and the right hearing aid also
take place over a wireless connection.

For these purposes, the hearing aids employ a frequency band of 2.4 GHz which is
the standard that Bluetooth also uses. As a communication protocol, Bluetooth Low
Energy (BLE) is applied, which is optimized for low power target systems. For some
specific targets, other communication protocols are used but are not in the scope of
this thesis.

The next generation of our manufacturer’s hearing aids will come with a bundle
of new and/or enhanced features. While the general system structure remains the
same, there will be major changes in the electronics and in the embedded software.
The chip which handles wireless connections will be replaced by its newest edition.
The device hardware will thus allow for much more extensive computational oper-
ations whereas the frequency band for the BLE connections will stay the same. The
performance bottleneck therefore consists in the wireless connection and is even ex-
acerbated when multiple connection tasks run in parallel. Hence, optimization of
the power and memory consumption of the security protocols is subsidiary while
the principal focus lies on the reduction of the communication overhead.

The chips used in the subsequent hearing aids also impose some restrictions on the
security. The cryptographic hardware blocks are limited to ECC/RSA encryption for
asymmetric cryptography, AES-128/256 for symmetric cryptography, SHA-2/3 for
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hashing and TRNG for generating random numbers. The choice of the cipher suite
may impact the traffic overhead as well, which will be discussed in Chapter 2.5.

2.2 Prototype Hardware and Software

2.2.1 Evaluation Board

The prototype hardware that is provided for implementation and evaluation pur-
poses for this thesis is the MIMXRT685-EVK evaluation board by NXP, a microcon-
troller of the RT600 family [2]. It features an Arm Cortex-M33 processor which is
a next generation core based on the ARMv8-M architecture with low power con-
sumption and which can operate at frequencies of up to 300 MHz. Two hardware
co-processors enable hardware acceleration for cryptography. The RT600 provides
up to 4.5 MB of on-chip SRAM accessible by both CPUs. Two general purpose DMA
(direct memory access) engines can be configured to be used by a specific controller,
e.g. the M33 CPU. Several interfaces are available, including a FlexSPI flash inter-
face, a high-speed SPI interface, a I3C bus interface and eight configurable universal
serial interface modules. There is also a Cadence Xtensa HiFi 4 Audio DSP engine
which provides support for efficient audio and voice encoding/decoding execution
but which will not be used in the course of this research study.

2.2.2 Software Application

Together with the prototype hardware, a minimum viable software product was
delivered that builds and runs on the RT685-EVK board. Its directory structure is
shown below, with files not directly relevant for our case being left out. The individ-
ual components are described afterwards.

hd-sec-protocols
toolchain

armgcc.cmake
mvp-lib-embos

embOS_CortexM
embOS_Sim

mvp-servicehost
BoardSupport

RT685EVK
MCUXpresso
SEGGER
SetupBoard
SetupEmbOS
Startup

Source
ServiceHost.cpp

mvp-app-hello
Source

Application.cpp
CMakeLists.txt

toolchain. This folder contains information about how to compile and link the ap-
plication as well as how to download the application via the GDB J-Link server to the
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evaluation board. The armgcc.cmake file sets up the C/C++ and ASM compiler
depending on the compiling system, Linux or Windows. rt685evk_download.gdb
contains instructions for GDB about the GDB server location to download the exe-
cutable file to the board.

mvp-lib-embos. The mvp-lib-embos directory contains the embOS real-time op-
erating system (RTOS) from SEGGER [3] that comprises a configuration for Cortex-
M CPUs and for Windows, of which the former is relevant for our case. EmbOS, a
priority-controlled multitasking system, is optimized for high speed and low mem-
ory consumption. As an RTOS, it leverages preemptive scheduling for CPU time
distribution among tasks, i.e. the task with the highest priority runs as long as it is
not suspended either by calling a blocking function or by another task with higher
priority. On embOS, all tasks are threads, which means that all tasks can access the
same memory locations. In Section 4.1, we describe how we take advantage of the
embOS multitasking system to set up our client/server prototype pair.

mvp-servicehost. The ServiceHost contains the main function where the appli-
cation is started. Here, the operating system is initialized, the tasks are created and
the kernel is started. It also contains specific support functions depending on the tar-
get platform. For example, the printf function allows writing output to the serial
connection between the board and the developer’s host machine.

mvp-app-hello. Here resides the actual user program. For now, there is a single
"Hello World" function using the ServiceHost for printing the statement out to the
console.

CMake. CMake, the build tool used for this project, operates with compiler in-
dependent configuration files that enable the generation of environment-specific
Makefiles. In our case, CMake creates build files to run the Ninja build system.
These independent configuration files, called CMakeLists.txt, are organized in a
hierarchical structure depending on the directory structure of the project. Usually,
all libraries and executables have their own CMakeLists.txt file containing in-
structions regarding the build of this entity, as well as the root folder containing a
CMakeLists.txt that directs the configuration of the overall project and the inclu-
sion of subdirectories.

2.3 Security Protocols

Currently, numerous security protocols are available, although not all of them are
well-suited for use in embedded devices, which have limited RAM and memory
space, along with other constraints. In the following subsections, we will delve into
five security protocols that could be customized to function in embedded devices:
TLS, DTLS, IPsec, COSE, and WPA. Providing this context is essential to gain a bet-
ter understanding of the specific workings of these protocols as we compare their
suitability for our task later on.
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2.3.1 TLS

The Transport Layer Security protocol (TLS) [4], formerly known as Secure Socket
Layer protocol (SSL), is one of the most widely used protocols to protect the au-
thenticity, integrity, and confidentiality of data sent over the Internet. The standard
was proposed by the Internet Engineering Task Force (IETF) and is mainly used for
securing HTTP connections but has a variety of other applications. Different ver-
sions exist, most famously TLS 1.2 and TLS 1.3. While TLS 1.3 is considered more
secure due to its enhanced cryptographic suites and mechanisms, it has not suffered
considerably from performance decline [5][6]. Its communication overhead is also
remarkably smaller compared to TLS 1.2 because the initialization vector does not
have to be transmitted with every message anymore. This makes TLS 1.3 the version
of choice, and all information below refers to TLS 1.3.

As its name implies, the protocol is settled on the transport layer, although it does
not fit perfectly in the OSI model: It actually runs on top of a transport protocol,
however, applications use the TLS protocol as if it were a transport layer [7]. TLS
requires a reliable underlying transport protocol like TCP. The cryptographic means
applied in the data exchange between two endpoints are usually agreed upon in the
course of the TLS procedure. The TLS procedure consists of two phases, called the
TLS handshake and the TLS record layer, which are described in the sections below.

TLS Handshake. The TLS handshake enables authentication of the communica-
tion endpoints as well as the establishment of a symmetric key that is used later on
for encrypting the application data. The steps of the handshake process are shown
in Figure 2.1. In the following, we will look at this process in more detail and see
how the connection is thereby secured.

FIGURE 2.1: TLS handshake and TLS record protocol. The steps with
an asterisk are optional. [4]

The steps of the TLS handshake protocol can be grouped in three phases: Key ex-
change, server parameters, and authentication.

1. Key exchange. This phase comprises the ClientHello and the ServerHello
messages. In the ClientHello, the client initiates the connection to the server
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and, among other information, lists the cipher suites that it supports, preparing
the establishment of a shared secret. The server responds with a ServerHello
containing the selected cipher suite and other potential parameters relevant for
securing the connection, like keying material. In the case of session resump-
tion, the ClientHello and the ServerHello messages include information
about the pre-shared key instead of agreeing on a new cipher suite.

2. Server parameters. Following the ServerHello, the server sends another
message called EncryptedExtensions, containing responses to the Client-
Hello extensions that are not needed to establish a shared secret. This is
the first encrypted message – from here on, every message is encrypted with
the key derived from the shared secret. If client authentication is desired, the
server also sends a CertificateRequest to the client.

3. Authentication. Finally, the authentication phase begins by the server sending
its Certificate, followed by the CertificateVerify which consists of a
signature over the hash value of the entire conversation so far. After this, the
server concludes with the Finished message which transmits a MAC over
the hash value of the whole conversation (including the CertificateVerify).
Then the client sends its Certificate and CertificateVerify if it was
requested by the server before. When the server receives and accepts the
client’s Finished message, the handshake phase has successfully been com-
pleted.

TLS Record Layer. Now that the integrity, the authenticity and the confidentiality
of the the channel between the two endpoints has been established, the TLS record
layer is used for exchanging encrypted data. Since this thesis aims at reducing the
overhead particularly of the record layer, we will elaborate on its packet format in
more detail.

In general, the record layer protocol fragments data blocks into TLSPlaintext
records of 214 bytes or less and compresses it without loss. It adds a MAC for in-
tegrity, encrypts the data for confidentiality, and prepends the record header. The
resulting packet format is visualized in Figure 2.2.

The header of the packet is made up of three fields: the content type, the legacy
protocol version, and the fragment length. The content type signals the higher-level
protocol used to process the transmitted data. The legacy protocol version has its
only purpose in achieving backward compatibility with older TLS versions and must
always be set to a specific value signifying TLS 1.2 for TLS 1.3. Its content must be
ignored under all circumstances, however. The length field describes the length of
the following data fragment. In total, the header fields sum up to 5 bytes.

The tail consists of padding bytes in case of a block cipher and a mandatory au-
thentication tag with a default size of 16 bytes since TLS 1.3 only supports AEAD
(Authenticated Encryption with Associated Data) ciphers. It is possible, though not
common, to reduce or truncate the authentication tag to 4 bytes which leads to a
trade-off concerning integrity. Therefore, the tail contributes a minimum of 4 bytes
(when using a stream cipher and a maximally reduced authentication tag size) and
a maximum of 32 bytes (in case of full padding and a maximum authentication tag
size).
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FIGURE 2.2: TLS record layer packet format.

2.3.2 DTLS

The Datagram Transport Layer Security (DTLS) protocol is based on the TLS proto-
col, which was presented in Chapter 2.3.1. But in contrast to TLS, DTLS is able to
run on transport protocols which are not stream oriented like TCP. DTLS version 1.3
is standardized in RFC 9147 [8], which specifies the usage of DTLS over the UDP
transport protocol. However, DTLS is not limited to operate on UDP exclusively,
as there are RFCs which specifiy the usage on other non-stream oriented transport
protocols like SCTP. DTLS version 1.2 is based upon TLS 1.2 and version 1.3 on TLS
1.3.

TLS expects a reliable, stream-oriented underlying transport protocol which means
that DTLS adapts the TLS protocol to circumvent the following issues that come with
operating over protocols other than TCP:

1. TLS expects sequence numbering as well as the prevention of packet-loss which
is implicitly provided by TCP. DTLS therefore adds explicit sequence numbers
to the DTLS record layer and provides a re-transmission timer to handle packet
loss. Either communicating party has a timer which may expire upon sending
a message to the other party. If expired, the message is re-transmitted and the
other party knows that their packet was lost during transmission and performs
a re-transmission as well.

2. TLS does not allow re-ordering of packets. DTLS solves this by adding the be-
fore mentioned sequence numbers where the receiver can immediately check
if the received packet contains the expected sequence number.

3. As TLS handshake messages tend to get rather large, DTLS provides its own
fragmentation and reassembly functionality within handshake messages.

4. Datagram transport protocols are potentially vulnerable to Denial-of-Service
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(DoS) attacks. DTLS counters this by borrowing the stateless cookie technique
which is also used in the IKE protocol of IPSec (see Chapter 2.3.3). In short, the
server responds upon a ClientHello with a cookie, which the client then
uses to re-transmit the ClientHello message with the cookie included,
which the server then verifies.

DTLS also provides detection for record replay. However this feature is not manda-
tory since duplicate messages may also appear due to routing errors and not for
malicious purposes.

DTLS Handshake. DTLS leverages the TLS handshake flows and messages, as de-
scribed in Chapter 2.3.1, with some adaptations. Handshake message headers con-
tain additional fields to handle message loss, reordering, and fragmentation. The
aforementioned retransmission timers were introduced to handle packet loss, and a
new ACK message type was introduced, which allows for reliable delivery of hand-
shake messages.

DTLS Record Layer. Figure 2.3 illustrates the DTLSCiphertext structure of a
DTLS record layer message that follows after the DTLS handshake has been per-
formed. The DTLS 1.3 record layer structure generally provides more flexibility
compared to the DTLS 1.2 record layer which is the reason only version 1.3 is pre-
sented in this document.

FIGURE 2.3: Structure of a DTLS version 1.3 record layer message.

The structure first starts with three fixed bits that distinguish the record layer from
the previous version 1.2. The five following bits control different parts of the mes-
sage:

– C: Indicates the presence of the optional Connection ID. The connection ID
is an extension to the DTLS protocol which allows the receiver to select the
appropriate security association to correctly process the packet. If not used,
the security association is determined using the IP address and port of the
peer which could sometimes change due to network address translation (NAT)
procedures.



Chapter 2. Foundations 11

– S: Indicates the length of the sequence number, either 8 bit (0) or 16 bit (1).

– L: Indicates the presence of the optional length field. If the length field is omit-
ted, the data is consumed until the end of the underlying transport layer data-
gram.

– EE: Contain the least significant two bits of the connection epoch value.

Afterwards follows the variable length payload as well as the content type which has
a length of 1 byte. The ContentType field is used to distinguish the type of data that
is transmitted. For application data, the value 23 is used. In the best case, the header
would generate an overhead of 3 bytes excluding potential message authentication
codes. This would include the first header byte containing the bit flags, the 8 bit
sequence number and the 8 bit content type.

It should also be noted that, according to RFC 6347 section 1.3 [9] which specifies
DTLS 1.2, the use of stream cipher is banned. Therefore there will be additional
overhead generated by potential initialization vectors and padding.

2.3.3 IPsec

IPsec [10] is a suite of security network protocols consisting of following protocols:
Authentication Header (AH) protocol, Encapsulating Security Payload (ESP) proto-
col, and the Internet Key Exchange (IKE) protocol. While the ESP protocol provides
confidentiality, integrity and authentication, the AH protocol only provides integrity
and authentication, which makes the AH protocol not suitable for our use case and
is therefore not discussed further.

While most of the other protocols presented in this document operate on higher
layers within the OSI model, IPsec protocols operate on the internet layer and are
directly protecting IP packets. This provides more flexibility regarding the usage of
higher layer protocols. There are neither restrictions on what can be transported as
payload nor a tight coupling with other protocols.

An implementation of IPSec can either be provided directly by the operating sys-
tem’s IP stack or as "bump in the stack", where IPSec is added a as an additional
component within the OSI layer, operating independently and processing IP pack-
ets from the internet layer [11].

IKE Protocol. The IKE protocol, which is specified in RFC 7296 [12], is used to
establish and maintain Security Associations (SAs) between two connecting hosts
and perform mutual authentication. A Security Association is an agreement between
two hosts on how to apply IPSecs security mechanisms for IP packets that travel in
one direction. It for instance contains the algorithms that should be used to encrypt
the payload as well as the necessary keys to do so. Security Associations are saved
and maintained in a Security Association Database (SAD).

There exist two versions of the IKE protocol, version 1 and 2. Version 2 was devel-
oped by the IETF in 2005 and version 1 was marked obsolete. Reasons for the new
version were the low performance of IKEv1, missing protection against DoS attacks
due to the exchange of stateful information and the overall complexity, as the first
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version was spread over several RFCs. IKEv2 is now only specified in one RFC and
is able to perform a exchange within just 4 messages.

When a host A wants to send a packet to host B, it first checks the Security Policy
Database (SPD) if sending packets to host B requires IPSec protection. If yes, the
database would contain a Security Policy (SP) which also includes the SA that should
be used. If no, the IKE protocol will be used to establish the SA for sending packets
from host A to host B.

The IKEv2 protocol consists of two phases: Phase one generally establishes com-
mon parameters between host A and B and phase two establishes the specific SA
to exchange messages using either the ESP or AH protocol. The initiator (host A)
therefore starts with an IKE_SA_INIT message that contains proposals for the en-
cryption algorithms to be used as well as a Diffie-Hellman parameter and a cryp-
tographic nonce. The responder (host B) then chooses one of the proposals and
responds with their decision as well as its Diffie-Hellman parameter and crypto-
graphic nonce. Now both parties calculate their respective keys. Host A then re-
sponds with with a IKE_AUTH message which is already protected by the previ-
ously calculated keys and authenticates itself to host B. Additionally, A also already
provides proposals on how A wants to communicate with B (ESP or AH) and the
algorithms to use. B verifies this, authenticates itself as well, and responds with the
chosen proposal. During phase 2, the mutual security parameter index (SPI) that
together with the IP address uniquely identifies the used SA on both sides, is trans-
mitted as well [13] [14].

ESP Protocol. The ESP protocol [15] can be used to apply integrity, confidential-
ity and authentication to all IP packets that are transferred over an IPsec protected
channel. ESP requires a symmetric cipher for encryption and all packets that are
transferred should contain all relevant information to correctly decrypt the trans-
ferred data. To achieve this, ESP adds the ESP header and trailer to each outgoing
IP packet as illustrated in Figure 2.4. The receiver of an ESP packet then uses this
information to correctly decrypt/check a received packet and passes it up to higher
layers.

FIGURE 2.4: ESP header and trailer format.
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The receiver will use the value that is transmitted within the Security Parameter In-
dex (SPI) field to find the Security Assocation (SA) to determine the algorithms and
keys that are needed to process the incoming ESP packet. Since IPsec operates on
the IP layer where there is no guarantee that packets are arriving in the same or-
der intended by the sender, the header also contains a sequence number which is
used to avoid replay attacks. The sequence number is maintained for an SA and is
incremented for each packet until the value reaches its maximum size of 32 bits. Af-
terwards, a new SA has to be established that starts the counter again at zero. Next
follows the actual payload with an optional initialization vector in front in case a
block cipher is used, which would also mean that the optional padding field is used
to fill up the block. The Next Header field is used to mark which header immedi-
ately follows the ESP header. Finally, the integrity check value (ICV) guarantees the
authenticity of the received packet and is added after the payload.

Transport Modes. IPsec can operate in two distinct modes: Transport and tunnel
mode. In transport mode, as illustrated in Figure 2.5, the ESP header is inserted
between the IP header and the subsequent header. The overhead in this mode would
be 9 bytes without an integrity check value which always varies depending on the
chosen algorithm. Of course, the initialization vector and potential padding also
need to be considered but these two values could be omitted entirely by using stream
ciphers instead of block ciphers.

FIGURE 2.5: Processing of a IP packet by IPsec in transport mode.

In tunnel mode, as illustrated in Figure 2.6, a completely new IP header is created
and positioned in front of ESP header while the ESP header is positioned in front of
the original IP header. This also means that the complete original IP packet including
the original header is now subject to IPSec’s protection mechanisms. For this reason,
this mode is extensively used by VPN services as this also hides the sender and
receiver of the IP packet. This, of course, increases the overhead by the length of the
respective IP protocol version, 40 bytes in case of IPv6 or 20 bytes in case of IPv4,
which results in a total overhead of at least 49 and 29 bytes, respectively.

FIGURE 2.6: Processing of a IP packet by IPsec in tunnel mode.
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2.3.4 QUIC

QUIC is not solely a security protocol but, more specifically, a transport protocol
tightly coupled with the TLS protocol (see Chapter 2.3.1) and specified in RFC 9000
[16]. It usually comes with HTTP/3 on the application layer, which is specified in
RFC 9114. The primary motivation to create a completely new transport protocol
were the problems with the TCP protocol that is currently used as a transport proto-
col to transmit HTTP/2 traffic [17]. HTTP/2 is the next version of the HTTP protocol,
and is specified in RFC 7540. One of the main enhancements of HTTP/2 is the in-
troduction of multiplexed connections that make use of the same TCP connection to
perform multiple requests. While this improved the overall performance and expe-
rience as there is no need anymore for each request to finish until the next request
can go out, this introduced the same so-called "head of line blocking" problem but
on the transport instead of the application layer.

TCP Head of Line Block. TCP is a reliable transport protocol. This means that
packets which are transmitted between two connecting endpoints are guaranteed to
be delivered in the correct order. If one of the packets is lost, the whole transmission
process is being halted and every packet that directly follows has to wait. In cases of
networks with high packet loss, HTTP/1 would even outperform HTTP/2 as more
physical TCP connections exist compared to the latter. QUIC addresses this problem
by introducing virtual streams that independently operate on one physical reliable
connection between to parties.

QUIC Protocol Stack. Illustrated in Figure 2.7 is a comparison between the HTTP/2
and QUIC stack. The blue parts indicate elements that belong to the QUIC stack.

FIGURE 2.7: QUIC compared to HTTP/2 protocol stack.

The TLS protocol is deeply integrated into the QUIC protocol, which means that
QUIC messages are always transmitted in a secure way. Whenever a QUIC hand-
shake is negotiated between two endpoints, a TLS handshake is performed as well.
QUIC also specifically requires TLS 1.3 and cannot operate on lower versions. UDP
is used as the actual underlying transmission protocol. Every QUIC message frame
is transmitted over a regular UDP packet. This ensures the best possible hardware
compatibility as the introduction of an actual standalone transport protocol would
mean huge efforts to update all network components that may sit between two con-
necting hosts.

QUIC Handshake. In principle, QUIC makes use of the TLS handshake as de-
scribed in Chapter 2.3.1. However, QUIC brings down the number of round trips to
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one or zero, depending on the handshake type. This is achieved mainly by allowing
multiple packets within the same UDP packet. QUIC also takes responsibility for
transporting the handshake messages with their own CRYPTO frame, and therefor
adapts the TLS handshake protocol.

– 1-RTT handshake. This type is used when a new connection between two end-
points is established and is visualized in Figure 2.8 as an example. Every line
represents a QUIC packet. The cryptographic parameters are negotiated using
the INITIAL packet, that contains CRYPTO frames. The STREAM frame trans-
port encrypted data, which takes place at the earliest on the last line in the
server response in Figure 2.8, making it a potential 0.5-RTT handshake.

– 0-RTT handshake. This type of handshake is used when a connection has pre-
viously been established and is resumed. The packets that are sent are identi-
cal to the ones in the 1-RTT handshake, but instead of waiting for the server to
respond, the client can already send data along with the initial packet.

FIGURE 2.8: Example of a QUIC 1-RTT handshake. [16]

QUIC Record Layer. The QUIC standard defines a version independent short and
long header in RFC 8999 [18]. RFC 9000, which specifies the usage of QUIC over
the UDP protocol, specifies that data has to be transmitted using QUIC packets. An
UDP packet may contain one or more QUIC packets. Each packet either uses a long
or a short header. Long headers are used during connection establishment and short
headers afterwards. The 1-RTT packet is the only packet that uses the short header
format and is used after the version and 1-RTT keys were negotiated. As 1-RTT
packets omit the packet length within the header, they can only be transmitted in
one UDP packet. If transmitted together with other packets, they have to be at the
end of the packet chain.

QUIC packets contain one or more different types of frames. Frames are used to
actually transport protocol relevant data. User data is transmitted using STREAM
frames. Illustrated in Figure 2.9 is the complete structure of a QUIC 1-RTT packet
that contains one STREAM frame to transmit data but would not be necessarily lim-
ited to just one frame. The green parts show the 1-RTT packet header and the blue
parts the header of the STREAM frame.

– HF (Header Form): Indicates which header type is used. In case of the 1-RTT
packet this bit is always set to 0 which stands for the short header format.

– FB (Fixed Bit): Fixed bit that is always set to 1.
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FIGURE 2.9: Structure of a 1-RTT QUIC packet containing a STREAM
frame.

– SB (Spin Bit): Optional feature that allows on-path observers to measure the
time between the spinning of this bit.

– RB (Reserved Bits): Two bits that are reserved but serve no further purpose.

– KP (Key Phase): Can be set in case a key rotation occurs.

– PNL (Packet Number Length): Indicates the length of the packet number field
in bytes + 1. For instance, the binary value of 0b11 would indicate that the
packet number field has a length of 4 bytes.

– Destination Connection ID: Optional field that could be used to mitigate changes
on lower protocol layers and to ensure that the packet still arrives at the in-
tended location. For instance, if the packet is changed due to network address
translation (NAT) procedures, a receiver may still recognize the package.

– Packet Number: Number that identifies the packet and is used to acknowledge
packets.

– Stream Type: The 6-bit stream type always contains the binary value 00001
representing the STREAM frame type.

– OFF: Indicates if the offset field is present or not. If missing, transmitted data
is considered as payload starting from offset 0.

– LEN: Indicates if the length field is present or not. In case the length field is
omitted, the payload is read until the end of the packet containing packet.

– FIN: Indicates if the frame marks the end of a virtual stream.
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– Stream ID: Identifies the stream this data belongs to. There may exist multiple
streams which are transmitted over a physical QUIC connection. A stream
may either be unidirectional or bidirectional.

– Offset: Byte offset within the payload of the STREAM frame.

– Length: Byte length of the STREAM frames payload.

The Destination Connection ID, Stream ID, Offset and Length fields are all encoded
using QUICs variable length integer encoding. This encoding is used in most fields
that contain integer values to avoid the presence of additional fields indicating the
length of the integer field.

2MSB Length Usable Bits Maximum
00 1 6 26 − 1
01 2 14 214 − 1
10 4 30 230 − 1
11 8 62 262 − 1

TABLE 2.1: All four possible integer lengths with their encoding.

The two most significant bits indicate how long the integer value actually is. For
instance, if the binary value 0b00 is used, the field has a total length of 8 bits. Ex-
cluding the two most significant bits, 6 bits are usable for the integer value itself
which allows for a range of 0 to 26 − 1.

This means that in the best possible case, STREAM frames have a total overhead of 4
bytes which would include the first byte which contains the header flags, the 8 bit
packet number, the byte indicating the stream type and the 8 bit long stream id. This
excludes potential message authentication codes.

2.3.5 COSE

COSE [19][20] stands for CBOR Object Signing and Encryption and is a relatively
young security solution with its first RFC publication dating from 2017 [21]. CBOR
(Concise Binary Object Representation) is a standard that extends the JSON format
to allow for binary data and other formats to be encoded and is well suited as a
message encoding format for IoT purposes. COSE makes use of CBOR for serializing
the data to be encrypted and sent.

COSE Message Structure. In contrast to the other security protocols discussed
here, COSE operates on the Application Layer on a per-message basis. Each mes-
sage has the same structure:

– Protected header (as a CBOR "bstr" type)

– Unprotected header (as a CBOR "map" type)

– Payload

The protected header is used for parameters that need to be cryptographically pro-
tected. The presence of both buckets is required in every message. If one bucket is
empty, it has to be encoded as a zero-length string or map.
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COSE Header Structure. The header parameters are not fixed but there exist some
common COSE header parameters that are used in a majority of all messages. These
parameters are introduced below:

– alg. Designated cryptographic algorithm to use.

– crit. Critical header parameters that must be understood by the receiving ap-
plication.

– content type of payload.

– kid. The key identifier describes a piece of data that can be used as input to
find the needed cryptographic key.

– IV. Full Initialization Vector.

– Partial IV. This field is used to carry a value that causes the IV to be changed
for each message.

The first two parameters are placed in the protected header bucket whereas the latter
three belong in the unprotected header bucket.

COSE Message Types. COSE messages use a layer concept to differentiate crypto-
graphic concepts such as encryption and signing. There are (at least) seven message
types:

– Encrypt0. Encrypted structure with a single recipient. Key is implicitly known.

– Encrypt. Encrypted structure with (potentially) multiple recipients.

– MAC0. MAC authentication structure with a single recipient.

– MAC. MAC authentication structure with (potentially) multiple recipients.

– Sign1. Signed message with a single signature.

– Sign. Message signed by multiple entities.

– COSE_Key/COSE_KeySet. Structure for establishing a common secret and/or
further specifications of how to apply a cryptographic algorithm.

These message structures can be nested to achieve confidentiality, integrity as well
as authenticity of the messages at the same time.

2.3.6 WPA

As its name suggests, Wi-Fi Protected Access (WPA) was developed for securing
Wi-Fi connections [22]. It is the successor of WEP (Wired Equivalent Privacy) and
has evolved from WPA over WPA2 to its most recent version WPA3, which came
with some improvements concerning security. Earlier versions used the Temporal
Key Integrity Protocol (TKIP) to encrypt data but starting from WPA2, TKIP was
exchanged for the more secure Advanced Encryption Standard (AES). WPA operates
in two modes: personal mode, which uses a pre-shared key for authentication, and
enterprise mode, which works with an authentication server [23].
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WPA was designed specifically for wireless computer networks. Since the con-
nection to the hearing aid runs on Bluetooth Low Energy, WPA would have to be
adapted for our case. Our research has not yielded any results regarding a BLE im-
plementation of WPA, hence we discard this option and exclude WPA from further
investigation.

2.4 Transport and Internet Layer

Most of the protocols that were discussed in Chapter 2.3 expect the IP protocol on
the internet layer and the User Diagram Protocol (UDP) or the Transmission Control
Protocol (TCP) on the transport layer. While some of them do not technically require
these protocols, libraries that implement security protocols are usually tightly cou-
pled with IP and TCP/UDP protocols. After an overview of the internet protocol
IPv6 and the transport protocols TCP and UDP, this chapter discusses possibilities
of reducing the overhead that stems from these protocols. Furthermore, Chapter
2.4.5 presents the possibilities of transmitting IP packets over Bluetooth low Energy
networks, which is currently being used as wireless transmitting technology for the
hearing aids.

2.4.1 IPv6

The Internet Protocol version 6 (IPv6) is the latest version of the IP protocol and
specified in RFC 8200 [24]. One of the main advantages of IPv6 compared to IPv4 is
the much larger IP address space. Instead of just 232 possible addresses, IPv6 allows
the creation of 2128 addresses. The larger address space makes it highly suitable for
utilization in the IoT sector where it is also subject in many standards. IP compres-
sion methodologies described in Chapter 2.4.4 and the operation of the IP protocol
over BLE described in Chapter 2.4.5 both require IPv6.

IPv6 Header. The IPv6 header was slightly modified compared to the IPv4 header.
Fields were removed or renamed and new fields were added.

FIGURE 2.10: IPv6 header layout.
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As to be seen in Figure 2.10 the IPv6 header has a total length of 40 bytes and consists
of following fields:

– Version: Static field that always contains the binary value of 6.

– Traffic Class: Can be used by the network to perform traffic management.

– Flow Label: Allows the identification of a single flow of packets between a
sender and receiver and is specified in RFC 6437.

– Payload Length: The length of the payload without the header. Extension
header that may follow are also considered as payload.

– Next Header: The next header field allows to specification of a next header
that immediately follows the IPv6 header. The value corresponds to a protocol
number as specified by the IANA organization.

– Hop Limit: Is decremented by one if the packet passes through a node (router).
Once the value reaches zero, the packet is discarded.

– Source and Destination Address: The 128 bit source and destination address.
Detailed specification for the addressing architecture is specified in RFC 4291.

2.4.2 TCP

The Transmission Control Protocol (TCP), defined in RFC 9293 [25], is a transport-
layer protocol responsible for establishing and maintaining a connection between
two hosts over a network [26]. As such, it serves the same purpose as the UDP pro-
tocol, but ensures that no packet is lost during transmission, maintains the order of
arrival and provides error check mechanisms. This makes it suitable for many ap-
plications, for example HTTP and HTTPS connections. TCP divides the data stream
into packets and passes them to the IP protocol layer after it has equipped each
packet with a header containing relevant information about the sender, receiver and
connection. The format of the TCP header is shown in Figure 2.11 with its fields
being explained hereinafter.

FIGURE 2.11: TCP header layout.

– Source and Destination Port. 16-bit numbers denoting the sender and the
receiver port, respectively.
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– Sequence Number. Each byte of data that is sent over a TCP connection has
a unique sequence number. This field carries the sequence number of the first
data byte in this packet.

– Acknowledgement Number. This field acknowledges the reception of a spe-
cific data quantity by containing the sequence number expected next.

– Data Offset. Indicates where the data begins.

– Control Bits. Flags that control the use of some header fields.

– Window. Number of data bytes that the sender is willing to accept.

– Checksum. The checksum is used to control errors and ensure the integrity of
the sent data.

– Urgent Pointer. This field indicates which of the data bytes in the payload are
urgent. It is to be interpreted as an offset from the sequence number. This field
is only sent when the URG flag is set. It is not advisable anymore to use this
mechanism whatsoever [25].

2.4.3 UDP

The User Datagram Protocol (UDP) is, in contrast to TCP, an unreliable and connec-
tionless protocol and therefore requires no prior handshake. This makes it suitable
for performance critical applications such as voice or video transmission where occa-
sional packet loss is usually accepted. Illustrated in Figure 2.12 is the header format
for a single UDP packet.

FIGURE 2.12: UDP header layout.

– Source and Destination Port. Port number of the sender and receiver of this
UDP packet.

– Payload Length. Indicates the length of the payload in bytes which directly
follows the header.

– Checksum. If used, the checksum field provides the possibility to perform
error checking of the received payload. If unused, it is filled with zeros.

2.4.4 Header Compression

Header compression allows the reduction of the overhead that is created by the pro-
tocol headers. This chapter presents some of these compression methodologies.

Robust Header Compression. Robust Header Compression (ROHC) is a efficient
compression scheme for UDP/IP and ESP/IP headers as defined in RFC 3095 [27].
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It was developed specifically with situations in mind where packets get lost or dam-
aged easily and should provide robust compression even under those aggravated
circumstances. The fundamental idea is to only transmit information that has changed
since the previous packet. This leaves only five fields that cannot be compressed
away completely, and one of the remaining ones only needs to be transmitted oc-
casionally, and two of them – IP ID and RTP timestamp – can be predicted by the
sequence number. Therefore, the sequence number and the UDP checksum have to
be transmitted at all times, and functions have to be established that predict the IP
ID and the RTP timestamp from the sequence number. These functions need to be
updated once in a while to ensure the correct prediction of the fields. Unfortunately,
ROHC is computationally too complex and still generates too much traffic overhead
for embedded devices [28] which erases it as a compression option for our case.

LOWPAN_IPHC 6LoWPAN was a working group of the Internet Engineering Task-
force (IETF) that defined multiple standards to operate the IPv6 protocol over low-
rate wireless personal area networks (LR-WPAN). LR-WPAN networks are defined
by the technical standard IEEE 802.15.4 [29] which specifies the physical layer and
the media access control sublayer of such networks. LR-WPAN networks focus on
low-data-rate for resource constrained devices with no battery or very limited bat-
tery consumption. The MTU (maximum transfer unit) is reduced to just 127 bytes
which leads to only 80 bytes of payload data on the MAC sub-layer. As a conse-
quence, it is required to optimize the overhead generated by IPv6 headers. There-
fore, stateless header compression was first standardized in RFC 4944 [30] using the
LOWPAN_HC1 (header compression 1) encoding format that is used to compress
IPv6 headers and the optional LOWPAN_HC2 (header compression 2) encoding
format, which allows compressing some transport layer protocols like UDP [28]. As
these compression methods are stateless, the receiver has to be able to derive all IPv6
header fields from the data which is present in the received frame. This makes the
LOWPAN_HC1 and LOWPAN_HC2 encoding formats insufficient in most practical
use cases of IPv6 over LR-WPAN networks.

For this reason, a new stateful header compression encoding format LOWPAN_IPHC
(IP header compression) was standardized in RFC 6282 [31], as illustrated in Figure
2.13.

FIGURE 2.13: LOWPAN_IPHC encoding.

Instead of transmitting the full IPv6 header, it is replaced with the 2 byte long encod-
ing format followed by the IPv6 header fields either compressed or uncompressed
depending on which bits are set in the encoding scheme. In any case, the header
fields have the same order as they do in the IPv6 header format [24]. The version
and payload length fields are always fully elided, as the former is a static value
that never changes and the latter can be derived from lower layers such as the IEEE
802.15.4 header.

The encoding starts with a dispatch value to indicate the presence of a IPv6 header
that was compressed using the LOWPAN_IPHC encoding format, and is followed
by bit flags that define how certain IPv6 header fields are compressed:
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– TF (Traffic Class, Flow Label): Defines how the traffic class and flow label
fields are compressed.

– NH (Next Header): Indicates if the next header field is either not compressed
and fully carried in line or compressed using the LOWPAN_NHC encoding
discussed in Section 2.4.4.

– HLIM (Hop Limit): Indicates if the hop limit field is either carried fully in-line
or the field is elided and takes one of the predefined values of 1, 64 or 255.

– CID (Context Identfier Extension): Indicates if the context identifier extension
is used. If used, an additional 8 bit context identifier extension field follows the
DAM field.

– SAC (Source Address Compression): If set to 0, stateless compression is used
for the source address. If set to 1, sateful context-based compression is used.

– SAM (Source Address Mode): Defines, together with the SAC flag, how the
source address should be compressed.

– M (Multicast Compression): Indicates if the destination address is a multicast
address or not.

– DAC (Destination Address Compression): If set to 0, stateless compression is
used for the destination address. If set to 1, stateful context-based compression
is used.

– DAM (Destination Address Mode): Defines together with the M and SAC
flag, how the destination address is compressed.

If the CID flag is set to 1, the 8 bit context identifier extension is added after the DAM
field. The extension encoding is illustrated in Figure 2.14.

FIGURE 2.14: Context Identifier Extension encoding.

The specification expects that a context was shared between the sender and receiver.
The extension field contains two context identifiers: One for the source address (SCI
or source context identifier) and one for the destination address (DCI or destination
context identifier). These contexts are then used to compress and decompress either
of the source and destination address fields. The specification however does not
specify how these contexts should be shared and maintained nor the content of such
contexts.

LOWPAN_NHC If the NH bit within the previously discussed LOWPAN_IPHC
encoding scheme is set to 1, the next header is compressed using the LOWPAN_NHC
encoding format. The next header field within the IPv6 header is also omitted, as the
type of next header can now be determined with the NHC ID. The NHC ID is a vari-
able length bit pattern that identifies the type of header that is compressed. Together
with the remaining bits to control the compression, the LOWPAN_NHC encoding
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format is formed with a size of one byte. Following this byte are the fields of the
next header, either compressed, uncompressed or completely elided depending on
the bit settings. They have the same order as they would in their original header
structure.

One requirement to use the LOWPAN_NHC encoding format is that each preced-
ing header is compressed using either the the LOWPAN_IPHC or LOWPAN_NHC
encoding format. The standard therefoer specifies two specific encoding formats to
compress a selected set of IPv6 extension headers and the UDP header. The encoding
for IPv6 next headers is illustrated in Figure 2.15.

FIGURE 2.15: LOWPAN_NHC encoding.

The type of IPv6 next header that is compressed is encoded in the 3 bit long EID
field. If the NH bit is set to 1 again, the following header is compressed using LOW-
PAN_NHC again. IPv6 extension headers are mostly carried unchanged after the
LOWPAN_NHC encoding byte. The main reason to encode IPv6 extension headers
is to allow their usage with the UDP compression format discussed next. Two excep-
tions exist: If the NH bit is set to 1, the next header field is fully elided because it can
be derived from the LOWPAN_NHC byte that follows the currently compressed
next header. Furthermore, in contrast to an uncompressed extension header, the
length field indicates the number of bytes that immediately follow the length field
instead of indicating the size in units of 8 bytes. This reduces unnecessary wasted
space within the header.

The standard furthermore defines the compression of UDP headers as illustrated in
Figure 2.16. This byte is again follows by the compressed or uncompressed UDP
header fields depending on the bit settings.

FIGURE 2.16: LOWPAN_NHC UDP encoding.

– C (Checksum): Indicates if all 16 bits of the checksum value are carried in-line
or the checksum is fully omitted. Elding the checksum requires some sort of
other verification, either provided by the lower 6LoWPAN layer or by other
protocols such as IPSec.

– P (Ports): Either the full 16 bits for both port numbers are carried in-line or for
either the destination or the source port the first 8 bit are set to the fixed value
of 0xf0 and the remaining 8 bits are carried in-line. Finally, it is also possible to
set the first 6 bits of source and destination port to the fixed value of 0xf0b and
only the remaining 4 bits are carried in-line.

IPSec Header Compression. Shahid Raza et al. [32] presented a 6LoWPAN IPSec
extension for the header compression methodologies standardized in RFC 6282 [31].
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RFC 6282 currently specifies two types of header compression methods based on
the LOWPAN_NHC encoding format described in previous Chapter 2.4.4. This in-
cludes the compression of IPv6 headers where the EID field describes the type of
next header that is compressed but without the IPSec ESP and AH headers. Cur-
rently, binary value 0b101 and 0b110 are reserved and therefor unused. The paper
proposes three ways to use the two free slots to compress IPSec headers:

1. One of the two reserved slots is used to indicate that the following header is ei-
ther an AH or ESP header that is encoded using the LOWPAN_NHC encoding
format. The type is determined by the NHC ID within the encoding.

2. Use both slots to differentiate between either AH and ESP header encoding.
This would allow omitting the NHC ID in the following header but this would
go against the specification in RFC 6282.

3. Define a third IPSec header LOWPAN_NHC encoding format which would
take up one more byte but would allow to differentiate how upper layers are
compressed.

As the AH protocol is irrelevant in the context of this document, only the ESP LOW-
PAN_NHC encoding is illustrated in Figure 2.17.

FIGURE 2.17: LOWPAN_NHC ESP encoding.

– SPI: If set to zero, the SPI field is omitted and a default pre-defined value is
used instead.

– SN: If set to zero, the sequence number field length is reduced from 32 to 16
bits.

– NH: Indicates if the following header again is compressed using the LOW-
PAN_NHC encoding format.

In the best case scenario, this reduces the overhead by 6 bytes. However, if the ESP
format is used, upper layer protocols such as UDP cannot be compressed as the
6LoWPAN gateway has no possibility to expand the UDP header as it is encrypted.
This would require the definition of a algorithm for ESP that could handle both,
compression and encryption of UDP headers. This also hinders the leverage of the
third proposal of introducing a third IPSec header LOWPAN_NHC encoding format,
to allow more flexibility regarding compression of upper layer protocols. Due to
encryption, the same compression features would need to be implemented in the
ESP module and this option is therefore also excluded from further discussion.

Another draft standard proposed by S. Raza et al. [33] presents yet another LOW-
PAN_NHC format illustrated in Figure 2.18 for AH and ESP headers and allows the
reduction of one more byte.

Here, the SPI and SN fields control what is carried in-line for their respective fields.
The SPI field is either completely elided and a default value is used or only the least
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FIGURE 2.18: LOWPAN_NHC ESP encoding.

significant 8 or 16 bits are transmitted. In case the flag is set to 0b11, all 32 bits of the
SPI field are carried in-line. The SN flag indicates four different lengths: 8, 16, 24 or
32 bits of the sequence number are carried in-line. Using this encoding, in the best
case scenario, the overhead would be reduced by 7 bytes.

TCP/IP Header Compression The TCP/IP header compression was suggested in
1990 by Van Jacobson (therefore also called Van Jacobson compression) and specified
in RFC 1144 [34]. The basic idea behind it is not to send information that does not
change but to store it instead – and if it changes, only send the difference to the most
recently stored value. This results in a TCP/IP header of three bytes in the best case
(see Figure 2.19).

FIGURE 2.19: Compressed TCP/IP header. [35]

As it can be seen in Figure 2.19, the compressed header consists of a change mask
(byte 0) and 2 bytes of TCP checksum, the only information that cannot be omit-
ted under any circumstances. Sometimes, the transmission of additional fields is
required, which is signaled in the change mask. The remaining header fields are
explained in the following.

– Change Mask. Every bit (except the first) in the change mask signifies if a
specific field in the header is present or absent. The meaning of the letters can
be determined by the letters in brackets in the fields below.

– Connection Number. Information on where the last saved copy of an uncom-
pressed packet is stored that can be used for (re-)synchronization.
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– Window, Ack, Sequence. These fields only contain the difference to the last
value, if needed at all.

– IP ID. This is the ID of the packet. Unlike the other fields, when the flag in the
change mask is not set, the ID is automatically assumed to be incremented by
one.

An implementation of the Van Jacobson header compression can be found in the
Point-to-Point Protocol, which is a data link layer protocol.

2.4.5 IPv6 over BLE

Bluetooth Low Energy (BLE) has many similar characteristics to the link layer of
IEEE 802.15.4 networks. RFC 7668 [36] therefore makes use of the IPv6 optimizations
specified by the Lo6WPAN working group like the header compression methologies
presented in Section 2.4.4 and applies it to the BLE stack.

Protocol Stack. Figure 2.20 illustrates the protocol stack that is used to operate
IPv6 over BLE networks. Green parts indicate existing components that stem from
the Bluetooth standard and blue parts indicate new parts.

FIGURE 2.20: Bluetooth Low Energy (BLE) stack with IPv6 support.

For IPv6 operation over BLE networks, the standard relies on Bluetooth version 4.1
and the Internet Protocol Support Profile (IPSP) version 1.0. IPSP includes the Inter-
net Protocol Support Service (IPSS), which allows the discovery IP-enabled devices.
This means the IPv6 stack works in parallel to the GATT stack which enables the
discovery of nodes that support IPSS. Between IPv6 and L2CAP sits the 6LoWPAN
Bluetooth LE layer which applies optimizations to the IPv6 protocol. The L2CAP
layer provides functionalities such as multiplexing, fragmentation and reassambly
of packets and communicates with lower layers using the host control interface,
which separates higher layers that are usually operated on the host with lower layers
that are usually operated on the Bluetooth controller. As the L2CAP layer already
provides fragmentation and reassembly functionality, the optimizations specified in
the 6LoWPAN standard regarding fragmentation are not used and the full 1280 bytes
are transmitted. It is recommended, however, to not exceed 1280 bytes to avoid path
MTU discovery procedures.

Topology and Roles. Contrary to IEEE 802.15.4 networks, BLE networks only sup-
ports star topologies and no mesh topologies. The BLE standard currently defines
two roles which are relevant for IPv6 to operate over BLE: The BLE central role and
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the BLE peripheral role. A BLE central and BLE peripheral role can either be a 6LoW-
PAN Border Router (6LBR) or a 6LoWPAN Node (6LN) according to the 6LoWPAN
specification. Illustrated in Figure 2.21 are two scenarios how the BLE network can
operate. In the scenario on the left, the network is connected to the internet. In case
a 6LN wants to send or receive data from the internet, the traffic needs to be routed
over the 6LBR component which acts as a router. In other scenarios, the network
may be operated completely isolated, as illustrated on the right. In any case, com-
munication between two 6LN components need to be routed over the 6LBR compo-
nent.

FIGURE 2.21: Possible network topologies for Bluetooth LE networks.
[36]

IPv6 Stateless Address Autoconfiguration. Each Bluetooth device is identified by
a 48-bit device address. The Bluetooth standard specifies different address types
for which the RFC recommends to use the private address type. Using this device
address, a 64-bit interface identifier (IID) is generated by inserting 0xFF and 0xFE in
the middle of the device address. The IID is then prepended by fe80::/64 to form the
link-local IPv6 address for this Bluetooth device.

Header Compression. Header compression is required for all IPv6 traffic that trav-
els over BLE networks. The specification differentiates between stateless and stateful
header compression using the LOWPAN_IPHC encoding format. For link-local ad-
dresses, stateless header compression can be used and source and destination must
be completely elided, meaning the SAC flag is set to 0 and the SAM flag to 0b11.

In case source or destination address are non-link-local addresses, the standard re-
quires the use of stateful header compression. This is accomplished with a Address
Registration Option (ARO) where either a 6LN or 6BLN component must share their
their respective non-link-local address with each other using a Neighbor Advertise-
ment (NA) message. If the source or destination address is the latest address, which
was communicated using ARO, source or destination addresses must be completely
elided.

2.5 Cipher Suites

Cipher suites are a set of cryptographic algorithms that secure a connection over a
network between two endpoints [37]. Thus, they make up the beating heart of net-
work security and their choice is of crucial importance because a cryptographically
broken algorithm can jeopardize the CIA triad. A cipher suite usually comprises a
key exchange algorithm, an encryption algorithm, and a MAC algorithm, with the
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first two covering confidentiality and authenticity and the last one providing for
integrity.

As already mentioned in Chapter 2.1, the cipher suites that can be used on the target
system are limited due to hardware constraints. We are therefore going to focus on
those cipher suites that are supported by our target system and will shortly explain
how they work and what their implications on the communication overhead are.

2.5.1 ECC/RSA

These algorithms come under asymmetric cryptography (also called public-key cryp-
tography). Asymmetric cryptography is used for exchanging keys and thereby es-
tablishing a common secret as well as for signing data and the verification of this
signature. The mechanism of asymmetric cryptography relies on a key pair of which
one key is public and the other one private to the specific host. The keys are match-
ing insofar that only the private key can be used to decrypt something that was
encrypted with the public key. For establishing a common secret with this host, a
client will use the host’s public key for encryption so that only the host possessing
the corresponding private key can decrypt it.

RSA (Rivest–Shamir–Adleman) is one of the oldest asymmetric cryptographic al-
gorithms [38]. It rests upon the factorization of large prime numbers and the now-a-
day standard uses 2048-bit keys. ECC (Elliptic Curve Cryptography), on the other
hand, is based on elliptic curves over finite fields and one of the more recent inven-
tions in asymmetric cryptography. It is much more efficient than RSA in terms of key
size and computational power, as a greater cryptographic strength can be achieved
with a shorter key. For example, a 256-bit ECC key attains equivalent security as a
3072-bit RSA key [39]. None of their properties affect the communication overhead,
though, because the key exchange usually takes place only once in a client-server
session (or even fewer in case of session resumption using pre-shared keys).

As of today, RSA and ECC algorithms are considered to be secure, even when taking
into account quantum computers. Nevertheless, both RSA and ECC rely on the
factorization principle that can theoretically be cracked by the Shor algorithm, which
implies that some day, quantum computers might become powerful enough to solve
the factorization problem even for 2048-bit keys [40][41].

2.5.2 AES-128 and AES-256

AES (Advanced Encryption Standard) [42] is a symmetric cryptography algorithm
where the same key is used for encrypting and decrypting the data. It succeeded
DES (Data Encryption Standard) which was first broken in 1997. AES is FIST-approved
[43] and considered one of the most secure crypto algorithms today. As of 2023, it
is believed that it is even quantum resistant [44]. Its protection varies with the key
length, however, which can be 128, 192, or 256 bits and is appended to its name. In
security protocols, they serve as a means to encrypt the data that is to be exchanged
between two endpoints as soon as a shared secret is established by the use of an
asymmetric cipher.

AES is a block cipher algorithm that operates on data chunks of 128 bits [45]. These
chunks are separately converted into cipher-text chunks and then joined back to-
gether. Instead of using the same key for every encryption, a key schedule algorithm
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will compute round keys from the initial key that are then used for encrypting the
data in the specific round. Depending on its mode of operation, AES might require
padding and/or an initialization vector which would lead to a larger communica-
tion overhead. Some of these modes allow for authentication besides encryption,
e.g. GCM (Galois-Counter-Mode) and CCM (Counter with Cipher Block Chaining-
Message Authentication Code), which are also AEAD (Authenticated encryption
with associated data) schemes that provide for integrity and authenticity not only
of the payload but also of the (plain-text) header [46]. Because of their enhanced
security, AEAD ciphers are preferred by TLS, and they also have a faster execution
time than algorithm pairs implementing encryption and authentication separately
[47]. That’s why we focus only on AEAD modes of AES here, namely GCM and
CCM.

GCM and CCM are both based on counter mode (CTR), which means that they use
one or multiple counters for encryption that are steadily incremented by one. In TLS
1.3, both modes derive the initialization vector from the cryptographic context es-
tablished during the handshake phase and then XOR it with the sequence number
of the specific packet, thus guaranteeing its uniqueness for each message [48]. This
prevents the need to send the initialization vector with every message during the
record phase, as it was still the case in TLS 1.2 [49][50]. Despite their commonali-
ties, the internal workings of the modes differ markedly. We will not go into any
details here and will only mention two differences that are relevant for the goal of
our thesis. First, GCM encrypts the messages before it computes and adds a MAC,
as opposed to CCM, which adds the MAC before it encrypts the message [51]. Sec-
ondly, while CCM uses CMAC as a MAC algorithm, GCM makes use of the GHASH
hash function [52]. These differences will be reconsidered and evaluated in Chapter
3.3.1.

2.5.3 SHA-2 and SHA-3

As its name implies, SHA (Secure Hashing Algorithm) is a family of functions used
for hashing data and thereby providing integrity. A hash function takes some data
as input and outputs a fixed-sized string that has no inherent relation to the origi-
nal input. In that sense, hash functions are one way as it is virtually impossible to
derive the original data from its hash value. Security protocols use hash functions
to calculate a unique MAC value, thus ensuring the integrity and authenticity of the
data, as well as to derive random secret keys from a shared secret [53].

Hash functions can be evaluated on the basis of three cryptographic characteris-
tics: pre-image resistance, second pre-image resistance, and collision resistance [54].
Pre-image resistance denotes the difficulty to find an original input when given a
hash digest value. If a hash algorithm is pre-image resistant, it means that it is hard
even for a high-performance computer to succeed with a brute-force attack. Sec-
ond pre-image resistance means the difficulty to find a (different) message with the
same hash value as a given message. Lastly, collision resistance is an even stronger
property, demanding that it is hard to find any two different messages that output
the same hash value. These characteristics are achieved when the hash function’s
output values are all equally likely to be produced (uniformly distributed), when
a small change in the input data results in a large change in the digest value, and
when the output value has a reasonable size (default size in TLS 1.3 AEAD MACs:
16 bytes). This output value has to be transmitted with every hashed message for
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verification purposes, thus contributing to the communication overhead. The impli-
cations of a hash value size reduction are discussed in Chapter 3.3.2. As for the gen-
eral collision resistance, SHA-2 algorithms are commonly considered to be in a good
position because they are designed according to the Merkle-Damgard construction,
which aims exactly at enhancing this property [55]. Hash functions of the Merkle-
Damgard construction design are vulnerable to freestart collision attacks, however
[56]. Since these attacks are hardly feasible due to the requirement of selectable ini-
tialization vectors, though, they do not pose an actual threat. SHA-3 algorithms, on
the other hand, are designed according to sponge construction. Since SHA-3 is rela-
tively new, finalized only in 2019, and differs drastically from SHA-2 in its internal
workings, it has not been studied as well as SHA-2 yet. But findings so far show that
SHA-3 is about as collision-resistant as SHA-2 [56].
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Chapter 3

Evaluation

Having laid the foundation, we will conduct an evaluation of the security proto-
cols presented in the previous chapter and of the libraries implementing them. This
concerns implementations of the security protocols itself but also of the underlying
transport protocol. Subsequently, the implications of a chosen cipher suite and op-
eration mode will be discussed. According to the goal of this thesis – minimization
of the overhead in hearing aid communication – the evaluation primarily takes into
account how the traffic overhead can be reduced by using suitable protocols and
implementations.

3.1 Security Protocols

As we have seen in Chapter 2.3, different security protocols come with different
conceptual approaches that have differing effects on the performance of a commu-
nication channel. An overview of the communication overhead that is generated by
the security protocols evaluated in this thesis can be found in Table 3.1.

The rows in Table 3.1 represent the security protocols, with QUIC as some kind of ex-
ception, as it can be treated as a security protocol as well as a transport protocol. The
column "Protocol Overhead" denotes the overhead generated by the security proto-
col itself whereas the two columns to the left designate the underlying layers which
contribute additional overhead. Except for TLS over TCP, the "Transport Protocol"
column always indicates the UDP overhead since all the other security protocols run
on top of UDP. The column "Total Overhead" shows the minimal overhead of all the
layers added together, that is, the expectable overhead on the communication chan-
nel in the very best case (note that the application layer is not included here). We
will now explain how the overhead of every security protocol comes about, starting
with a preliminary remark on the composition of the IPv6 overhead.

Internet Layer (IPv6). We specifically chose the IPv6 as protocol on the internet
layer, as RFC 7668 described in Chapter 2.4.5 currently only allows IP version 6.
The real absolute worst case scenario would of course be 40 bytes which would re-
late to the size of the IPv6 header described in Chapter 2.4.1. But as the operation of
IPv6 over BLE always requires header compression, we consider the worst case with
6LoWPAN header compression in mind. As the version field and payload length are
always elided the worst case for the compressed IP packet is 37 bytes including the
2 bytes from the LOWPAN_IPHC encoding format. Contrary, if every field is com-
pressed using the best possible method, eliding Version, Traffic Class, Flow Control,



Chapter 3. Evaluation 33

Protocol
Name

Internet Layer
(IPv6)

Transport
Layer
(UDP/TCP)

Protocol Over-
head

Total
Overhead

IPsec

Best case:
2/3 bytes
Worst case:
37 bytes

-

Uncompressed:
13 bytes
Compressed:
8 bytes

Best case:
10 bytes

TLS over
TCP

Best case:
3 bytes
Worst case:
37 bytes

Uncompressed:
20 bytes
Compressed:
3-5 bytes

Standard:
9 bytes
Best case:
7 bytes

Best case:
10 bytes

TLS over
QUIC

Best case:
2 bytes
Worst case:
37 bytes

Uncompressed:
8 bytes
Compressed:
2 bytes

Best case:
8 bytes

Best case:
12 bytes

DTLS

Best case:
2 bytes
Worst case:
37 bytes

Uncompressed:
8 bytes
Compressed:
2 bytes

Best case:
7 bytes

Best case:
11 bytes

COSE

Best case:
2 bytes
Worst case:
37 bytes

Uncompressed:
8 bytes
Compressed:
2 bytes

Best case:
10 bytes

Best case:
14 bytes

TABLE 3.1: Overhead of security protocols.

PayLoad Length, Hop Limit, Next Header and both Source and Destination Ad-
dress, the IPv6 header generally has a total length of 2 bytes which consists of just
the LOWPAN_IPHC encoding format.

IPsec. IPSec has two values for the best case for the internet layer column. It is
not specified, which transport protocol is used since IPSec sits below the transport
layer and could therefor transport any kind of payload without using a transport
protocol. In case the UDP protocol would not be used, the NH bit would be set to 0
as only the next header will not be compressed using the LOWPAN_NHC encoding
format. This also means that the Next Header field has to be carried in-line after the
LOWPAN_IPHC, which would add the additional overhead of 1 byte resulting in 3
bytes of overhead. Chapter 2.4.4 describes non-standardized ways to compress IPv6
headers. In the best case, this could reduce the ESP header overhead by 7 bytes, as
the Security Parameter Index (SPI) field is fully elided and the Sequence Number
(SN) field is reduced to 1 byte. Combining this with the 1 byte long IPv6 next header
LOWPAN_NHC encoding and the 1 byte long ESP LOWPAN_NHC encoding, the
actual reduction would be 5 bytes. Assuming a 4 byte long ICV value (of which
the implications are discussed in Chapter 3.3.2) and a stream cipher with which the
Initialization Vector (IV) and the necessary Padding could be avoided, the overhead
results in 8 bytes instead of the uncompressed 13 bytes. If the ESP LOWPAN_NHC
encoding is used, the IPv6 could again set the NH bit to 1 and the next header field
could be elided, which would mean that the total overhead results in 10 bytes. Also
note that using the ESP LOWPAN_NHC compression would mean, that the UDP
LOWPAN_NHC compression cannot be used as the compressed UDP packet cannot
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be expanded as it will be encrypted.

TLS over TCP. The default size of the TLS protocol overhead is composed of 5
header bytes and 4 bytes of authentication tag (see Chapter 2.3.1). The legacy pro-
tocol version field, which covers 2 bytes, could be omitted as it does not carry any
information accessed in the course of the TLS connection. Therefore, an optimized
TLS header would consist of 3 bytes, resulting in a protocol overhead of 7 bytes.
On the IPv6 layer, the NHC cannot be applied, as there is no specification which
defines how TCP headers are compressed using the LOWPAN_NHC, thus extend-
ing the best case to 3 bytes. The TCP layer, if uncompressed, adds another 20 bytes
of header but could be reduced to 3-5 bytes with Jacobson compression – compris-
ing the whole TCP/IP header. The best case of 3 bytes would be given if also the
sequence number and the acknowledge number, together with the other optional
fields mentioned in Chapter 2.4.4, were completely omitted. The best case of the
entire overhead would therefore be 3 bytes (TCP/IP) plus 7 bytes (TLS) = 10 bytes.

TLS over QUIC. When the TLS protocol is used together with QUIC, the protocol
overhead is not the same as with TLS over TCP because TLS is not used on top of
QUIC. The overhead resulting from QUIC header is 4 bytes, the short header for data
transmission contributing 2 bytes and the STREAM frame another 2 bytes. Together
with the potential message authentication code (MAC) of 4 bytes, the best case over-
head for the QUIC protocol is 8 bytes. On the UDP layer, 8 bytes are appended
when using an uncompressed header, and 2 bytes when the header is compressed
with LOWPAN_NHC encoding format. This leads to the optimal case of 12 over-
head bytes in total.

DTLS. In case of the DTLS protocol, the DTLS header generates an overhead of 3
bytes in the best case. The total overhead of 7 bytes is result of the additional mes-
sage authentication tag (MAC) overhead of 4 bytes. When using LOWPAN_NHC
compression, the overhead generated on the UDP layer can also be limited to 2 bytes.
This sums up to the total overhead to 11 bytes.

COSE. When assuming the CIA triad, every COSE message has to be wrapped in 3
message layers: one for encryption (Encrypt message type), one for authentication
(Signmessage type), and one for integrity (MACmessage type). Every message layer
has its own header buckets, which even make up at least two bytes in the case of an
empty bucket because the encoding of a zero-length string or map already takes one
byte. For three message layers, this results in 6 header bytes plus 4 bytes of authenti-
cation tag. As with DTLS, NHC can be used on the IPv6 layer and LOWPAN_NHC
on the UDP layer, either layer generating 2 bytes of overhead in the best case.

Conclusion. On the basis of these circumstances, several observations concerning
the suitability of the evaluated security protocols for our case can be made. Firstly,
the IPsec protocol, though showing one of the lowest overall overhead in the table,
does not meet our requirement of standardization throughout the protocol stack if
compression is applied on the IPsec header. If the header is not compressed at all,
the resulting overhead of 16 bytes exceeds all the other protocols by far. A similar
situation is given with COSE, whose overhead even in the best case surpasses all the
other protocols. This eliminates IPsec and COSE from our range of potential security
protocols generating a minimal overhead.
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So, we are left with TLS over TCP, TLS with QUIC, and DTLS. Their overhead is
almost identical in size. Nevertheless, their workings differ significantly. DTLS as-
sumes an unreliable connection lying underneath. It can be assumed, that the under-
lying transport protocol on the target device will be reliable so there is no reason, to
accept the cryptographic disadvantages, that come with DTLS. This disadvantages
may require additional effort which would not be needed when using a security pro-
tocol, that expects a reliable transport protocol. Therefore, the winner is TLS which
not only exposes a relatively small overhead but is also more easily integrated with
the target system preconditions. Using TLS over QUIC also poses an interesting
option though, as the protocol provides flexibility regarding header size and is not
dependent on a reliable transport protocol at all, as QUIC is transport and security
protocol in one. Furthermore, QUIC allows the transportation of multiple packets
over the same UDP packet which may increase the throughput. For this reason, it is
planned to also verify the QUIC protocol on the evaluation board.

3.2 Implementation Libraries

In this chapter, we inspect several libraries implementing two different layers in the
protocol stack: First, five libraries implementing TLS are evaluated, and in a second
part, we assess three libraries for the TCP/IP stack. Each evaluation is concluded
with a decision on a specific library that will be used in the prototype.

3.2.1 TLS/QUIC Implementations

When implementing TLS as a security protocol, several existing libraries are eligible.
Since the library must be suitable for embedded devices, the selection of potential
libraries is narrowed down to a handful of libraries that are promoted to be particu-
larly space- and/or power-saving. The libraries that we identified as promising are
listed and compared in Table 3.2. All other TLS libraries like openSSL were excluded
from further research due to their large code footprint. quant, another library that
was brought up for the sake of its support of embedded systems, was discarded
because it is still in research and not ready for production use.

As it can be seen in Table 3.2, most of the libraries offer their source code for free,
expect in the case of emSSL [57], where it is only available once a license has been
purchased by SEGGER. However, SEGGER provides evaluation packs with the pre-
compiled source code under their friendly license agreement to explore the libraries
features. EmSSL and wolfSSL [58] both have restrictions on their use which becomes
apparent from their licensing system: While wolfSSL requires disclosing the source
code unless a commercial license is purchased, emSSL demands acquiring a license
as soon as it is used for commercial purposes. The other libraries have no such
restrictions.

The most popular library in our sample is mbed TLS [59], followed by wolfSSL, at
least when deeming GitHub stars a measure for popularity. WolfSSL, picoTLS [60],
and picoquic [61] support TLS 1.3 whereas mbed TLS and emSSL only support up to
TLS version 1.2. However, mbed TLS states in their roadmap, that they start with the
implementation of TLS version 1.3 in 2023 CQ3 [62]. SEGGER on the other hand told
us upon request, that they are also working on a TLS version 1.3 which is about to
be completed within this year. As a bonus, wolfSSL also has support for QUIC. The
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code footprint of the libraries is rather small, as this was a criterion to be evaluated
at all, except for picoquic which is based on openSSL via picoTLS.

Documentation is available for all of the evaluated libraries, but to different extents.
While picoTLS and picoquic are yet rather poorly documented, wolfSSL, mbed TLS
and emSSL come with extensive manuals and examples.

When it comes to hardware acceleration, wolfSSL, mbed TLS, and emSSL explicitly
state in their documentation that they support hardware cryptography whereas no
such information was found in the documentations of picoTLS and picoquic. Hard-
ware cryptography support is a relevant feature for our case since the hearing aid of
our manufacturer is capable of accelerating computationally intensive cryptographic
operations and thereby contributing significantly to a better performance.

Finally, to be able to test both TCP and QUIC as transport protocols, we require a
library that offers some freedom regarding the transport protocol stack. Ideally, it
supports TCP as well as QUIC, which is only the case with wolfSSL and picoTLS.
Mbed TLS and emSSL do not have a statement about their support of QUIC, leading
us to the assumption that they only support TCP to date. Picoquic, on the other
hand, is a QUIC (only) implementation – as its name implies –, leaving no room for
TCP aspirations.

Conclusion. These considerations make it clear that all of the libraries have their
benefits and their drawbacks. EmSSL puts itself forward by its vendor, whose prod-
ucts have been used by our hearing instrument manufacturer before. Nonetheless,
emSSL does not offer TLS 1.3 support yet, which is likely to surpass the lower TLS
versions in persistence and might still be relevant by the time the next hearing aid
generation is released. This constraint excludes emSSL, mbed TLS as well as pico-
quic, the latter not being appropriate anyway due to its rather big code footprint.
Eventually, wolfSSL was favoured over picoTLS because of the availability of com-
prehensive documentation. However, wolfSSL comes with a license model that is
less convenient for our hearing instrument manufacturer since it either requires the
publication of source code or the chargeable acquisition of the license.
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wolfSSL mbed TLS emSSL picoTLS picoquic
Company wolfSSL - SEGGER - -
Source Code
Available

Yes (GitHub) Yes (GitHub) No Yes (GitHub) Yes (GitHub)

License

GNU General
Public License
v2.0 / Com-
mercial License

Apache License
2.0

SEGGER Soft-
ware License
/ Friendly Li-
cense

MIT / BSD-2-
Clause License

MIT

Popularity
(GitHub Stars)

1.9k 4.1k - 460 416

Supported Ver-
sions

TLS v1.0-1.3;
DTLS v1.1-1.3;
QUIC

TLS v1.0-1.2;
DTLS v1.0-1.2

TLS v1.0-1.2 TLS v1.3

QUIC based on
picoTLS which
implements
TLS v1.3

Code Footprint
Small size: 20-
100kB

Rather small
code footprint

Low footprint

OpenSSL /
"minicrypto"
with smaller
footprint

OpenSSL on pi-
coTLS – rather
big footprint

Documentation
Available

Manual, exam-
ples, tutorials

Documentation
Wiki, docu-
mentation

GitHub wiki
only

Not much doc-
umentation yet

Hardware Cryp-
tography Sup-
port

Yes Yes Yes
Not stated in
documentation

Not stated in
documentation

Lower Protocol
Flexibility

TCP/QUIC TCP only TCP only TCP/QUIC QUIC only

TABLE 3.2: Comparison of TLS libaries.
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3.2.2 TCP/IP Implementations

Since the decision on the security protocol stated in Chapter 3.1 favoured two alter-
natives featuring different underlying transport protocols, a prototype allowing for
testing these two options will require the implementation of the transport protocol
as well. What’s more, we are interested in the overall communication overhead gen-
erated by the transport protocol as well as by the security protocol. Therefore, we
conduct a rudimentary evaluation of three libraries implementing the TCP/IP stack
in this chapter. Table 3.3 gives an overview over the TCP/IP libraries picoTCP [63],
lwIP [64], and emNet [65]. All of the libraries evaluated here claim to be optimized
for resource-constrained embedded systems, which is why all of them are expected
to have a low code footprint and are not assessed on this feature in Table 3.3.

picoTCP lwIP emNet

Company
Intelligent Sys-
tems / Altran

- SEGGER

Source Code
Available

Yes (GitHub) Yes (GitHub) No

License
GLP license for
free use

BSD License
Licenses for com-
mercial and non-
commercial use

Documentation Wiki
Wiki and Docu-
mentation

Wiki and Docu-
mentation

Lower Layer
Flexibility

Yes Yes Yes

Compression
Support

Yes Yes No

Up-to-date
Last commit in
2019

Last commit last
week

Actively main-
tained by SEG-
GER

TABLE 3.3: Comparison of TCP/IP libaries.

While picoTCP and emNet are maintained and promoted by a company, lwIP com-
pletely relies on a network of committed developers. The source code of picoTCP
and lwIP is freely accessible on GitHub and can also be used for free as the corre-
sponding licenses are permissive. SEGGER, on the other hand, only provides emNet
in the form of a pre-compiled library and on request when using it for free for non-
commercial purposes. Its license model is less permissive when using emNet for
commercial use. Documentation is available for all of the three libraries, with lwIP
[66] and emNet [67] documentations being more extensive than picoTCP’s [68].

With regard to lower layer flexibility, all of the three libraries allow to implement
one’s own driver, which makes them all convenient for our intention of putting an
abstraction between our prototype and the real physical layer. However, compres-
sion support using 6LoWPAN is only supplied by picoTCP and lwIP, emNet does
not mention 6LoWPAN in the whole of its documentation. At the same time, pi-
coTCP does not seem to be maintained actively at the time being as the last commit
to their GitHub repository dates back to 2019.
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Conclusion. With these considerations in mind, we chose lwIP as our underlying
transport protocol because it fulfills all of our demands regarding availability, flex-
ibility, maintenance, and documentation. EmNet is kept as a backup option in case
lwIP causes any problems.

3.3 Cipher Suite

In contrast to the security protocol and the implementation library, the evaluation
of a cipher suite is not part of this thesis. Nevertheless, for the implementation of
a prototype, a specific cipher suite has to be chosen. That’s why some elementary
properties of the available ciphers are taken into consideration here, forming the
basis for a preliminary choice of a cipher suite. In a second step, we balance security
against performance, reflecting on the security implications when the authentication
tag of the MAC algorithm is reduced in size.

3.3.1 Choice of ciphers

As mentioned in Chapter 2.5, the ciphers provided by the target system are RSA/ECC
as asymmetric crypto ciphers, AES-128 and AES-256 as symmetric crypto ciphers,
and SHA-2 and SHA-3 as MAC algorithms. Since the handshake process is not part
of the evaluation in this thesis, the asymmetric crypto ciphers will be excluded from
our considerations, as they belong to the handshake phase.

We have defined five criteria that either contribute to the security of a connection, or
have an impact on the performance of a (embedded) system, or that are required by
our project-specific context. The latter is reflected in the first two criteria, TLS 1.3 and
authentication tag size, while the others represent more general security concerns.

– TLS 1.3. As other TLS versions have been discarded, we look for a cipher suite
supported by TLS 1.3. This does not rule out any of our algorithms of interest
per se, but excludes some flavors of them: For instance, some AES modes of
operation have been dropped by TLS 1.3, e. g. AES-CBC mode, since TLS 1.3
concentrates on AEAD algorithms. TLS 1.3 has also dropped RSA as a means
for establishing a shared secret due to its security risks [69]. The five cipher
suites generally supported by TLS 1.3 are (with asymmetric crypto algorithms
removed from the suite) [70]:

– TLS_AES_256_GCM_SHA384

– TLS_CHACHA20_POLY1305_SHA256

– TLS_AES_128_GCM_SHA256

– TLS_AES_128_CCM_8_SHA256

– TLS_AES_128_CCM_SHA256

– Authentication tag size. The authentication tag that is attached to every data
packet on the record layer should be no longer than 4 bytes, which is the min-
imum size allowed in TLS 1.3. This was stipulated by the hearing instrument
manufacturer in order to minimize the communication overhead on the record
layer. The trade-off between security and overhead reduction is worked out
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in Chapter 3.3.2. AEAD ciphers usually add a tag of 16 bytes, and some of
them do not allow shorter tags by standard, e.g. ChaCha20-Poly1305. AES
modes with AEAD do not inherently inhibit authentication tag size reduction,
basically allowing sizes between 4 and 16 bytes[71].

– Security vs. performance. Usually, the longer the cryptographic key and the
hash digest output, the less feasible a security breach and the stronger the pro-
tection of the data. At the same time, the longer the key and the hash digest,
the longer it takes to compute the output, in general. What does that mean
regarding the AES and SHA algorithms? AES-128 takes a 128-bit secret key,
which is obviously more vulnerable to brute force attacks than AES-256 with
its 256-bit key. Still, even a 128-bit key is secure against attacks by state-of-the-
art technology, including quantum computing [72]. That’s why it is of little use
to employ AES-256 in embedded devices where computational resources are
limited.
A similar situation emerges with SHA-256/SHA-384/SHA-512 (SHA-2 algo-
rithms of different digest sizes) and their SHA-3 counterparts. While algo-
rithms with larger digest size provide stronger collision resistance, even SHA-
256 offers enough integrity protection whilst requiring less power and memory
[73]. Therefore, from a security point of view, AES-128 with SHA-256 would
be sufficient for our purposes.

– Operation mode. As of today, GCM is the state-of-the-art block cipher mode
and usually preferred over CCM because it is Encrypt-then-MAC (EtM) whereas
CCM is MAC-then-Encrypt (MtE), EtM generally being considered as the more
secure approach than MtE [74] (even though this does not really hold true for
CCM [51]). Additionally, GCM is faster than CCM: While CCM takes 2 AES op-
erations per block, GCM only takes one, and GCM can also be parallelized, but
CCM cannot [75]. CCM, on the other hand, is implemented in hardware more
easily and efficiently, as CCM only takes one AES block as opposed to two
blocks for GCM. Moreover, the hash function implemented in GCM, GHASH,
has known weaknesses that enables attacks faster than brute force [76]. This
makes the use of GCM with short authentication tags inadvisable. CCM has
no such known weaknesses, leaving brute-force attacks as the best method to
crack it. However, in May 2023, an RFC draft has been released, called "Galois
Counter Mode with Secure Short Tags" [77]. It suggests using AES-GCM with
another hash function which would bypass the weaknesses of GHASH.

Conclusion. After having considered the points outlined above, we opted for the
TLS-AES128-GCM-SHA256 cipher suite. This was mainly due to the reasons stated
under "Security vs. performance" and GCM being the AES operation mode most
widely deployed. In its current state, GCM has some significant flaws which does
not make it suitable for use in a real-world scenario. Nevertheless, we suppose that
these flaws are going to be eradicated sometime in the near future. For the consider-
ations concerning the authentication tag reduction in the next subsection, we assume
a close-to-ideal MAC algorithm with brute force being the fastest attack.

3.3.2 Implications of Authentication Tag Reduction

This sub-chapter examines the effects of a reduced authentication tag size on the in-
tegrity of a message. We make two main observations here, namely how often the
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key should be changed, and how the collision resistance (more precisely: the sec-
ond pre-image resistance) is impaired when using an authentication tag of 4 bytes.
Other influences as key size or the specific hash function in use are not considered
here since they have no direct relation with the problems analyzed in this thesis
(i.e. communication overhead) and, as such, can easily be replaced or adapted when
needed. In addition, the key size is assumed to be the default size of AES-128, there-
fore this feature should not cause any deviation from official research findings in our
setup.

Key Usage. For AEAD algorithms, RFC 5116 [78] determines the size of the au-
thentication tag that ensures the integrity of the data and is appended to every
packet on the record layer. This size is fixed to 16 bytes (128 bits) in the case of
our chosen algorithm, AES-128 with Galois-Counter mode. This means that there is
no version of TLS that supports the reduction of the authentication tag by standard
and the reduction will result in an altered version of TLS. Nonetheless, NIST has is-
sued a paper containing recommendations on the use of GCM including the optimal
usage of authentication tags shorter than 16 bytes [71]. These recommendations im-
ply, among others, that the GCM key should be re-generated frequently and that the
size of the ciphertext should be as small as possible. Table 3.1 shows the maximum
number of times a given key should be used for decryption of a ciphertext of a given
length (including Addidional Authenticated Data (AAD)) when operating with a 32-
bit authentication tag. (It has to be noted, though, that these NIST recommendations
have been challenged because of missing explanations on the security level they are
supposed to induce, among other criticism [77].) When assuming 10 bytes of AAD
(overhead of TLS over TCP, see Chapter 3.1) and 128 bits of ciphertext, as AES-128
operates on 128-bit blocks, the combined length would result in 26 < 25 bytes, thus
enabling the usage of the same key for 222 = 4.194.304 times at most. What does this
mean specifically for our TLS secured connection running on top of BLE? (We focus
on the throughput of the connection here because a packet has to be sent before it
can be decrypted and the process of transmitting takes considerably more time than
the decryption itself.) We assume a BLE throughput of about 0.3 Mbps [79] and a
packet size of about 30 bytes. Thus, the number n of packets sent every second is:

n ≈
0.3 Mb

s
30 · 8 bit

= 1250
packets

s

And the maximal usage period t of one key is:

t =
4194304 packets

1250 packets
s

≈ 3355 s ≈ 56 min

If 1250 packets are sent every second, the key will have to be changed approximately
once an hour.

Second Pre-Image Resistance. For prevention of feasible attacks on an existing
BLE connection between a hearing aid and a client, we are interested in second pre-
image resistance (also called weak collision resistance), which means the resistance
against finding a second message with an identical digest value as a given message.
For brute-force attacks, the time complexity of this task is O(2n), with n being the bit
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FIGURE 3.1: Maximum key usage with regard to ciphertext plus AAD
size when using 32-bit auth tag. [71]

length of the authentication tag [80]. The average cycle rate that it takes to process
1 byte with AES-GCM is assumed to be 100 cycles/byte. The processing of a packet
of 30 bytes would then cost 3000 cycles, which means one try takes around 1 µs
on a 3.0 GHz CPU. An authentication tag length of 32 bit implies that there are 232

possibilities how this tag might look like. How long does it take an attacker, then, to
try all of these possibilities on the CPU mentioned above?

1
1 · 10−6s

· x = 232

x ≈ 4295s ≈ 1.2h

After 1.2 hours, an attacker would have found a different message producing the
same digest value with a probability of about 100%. However, a TLS connection can
still be integrity-secured with a tag size of 32 bit if appropriate measures are taken.
For example, one could set the connection inactivity timeout to less than one hour,
such that a packet will only be received within a shorter time span than it would
take to check all 232 possibilities.
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Chapter 4

Prototype Implementation

In this chapter, we describe the process of the implementation phase of our work.
First, an overview of our vision regarding the architecture of the prototype is given,
followed by two chapters on the integration of the external libraries lwIP and wolf-
SSL into our project and their adaptations according to our project-specific needs.
Lastly, we will mention the tools that we worked with and have proven to be very
useful in the debugging and monitoring process.

4.1 Architecture

Figure 4.1 illustrates the high-level architecture of the prototype and the interaction
between each component.

FIGURE 4.1: Target architecture of the prototype.

The prototype consists of three embOS tasks which all run on the same board. The
design has a close resemblance to a virtual loopback interface with the main differ-
ence that the traffic is led over an implemented network interface which, instead of
leading the packets on a real physical layer, leads it onto an embOS queue that is
used to send packets between the tasks.
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– Client embOS Task: Represents the active client that is communicating with
the server task. In a real world scenario, this could for instance be a smart-
phone or a computer with the hearing aid calibration software that wants to
communicate with the hearing aid.

– Server embOS Task: The server represents the passive hearing aid that waits
for new arriving client connections and should handle them accordingly.

– Interceptor embOS Task: As the name suggests, the interceptor task intercepts
the raw IP traffic that travels between the client and server task. It therefore
waits in a blocked state until new packets are written to the embOS queue.
Once a packet arrives in the queue and neither the server or the client need
to perform further operations, the interceptor removes the packet from the
queue and starts analyzing the packet. After all analyzing work is done, the
interceptor calls the input function of the network interface to signalize the
TCP/IP stack that a new packet has arrived which causes the packet to travel
back up the network stack.

4.2 IP/TCP Implementation: lwIP

lwIP [81] is an implementation of the TCP/IP stack in C that is targeted at embedded
systems. Its goal is to reduce resource usage but still providing a full implementation
of the TCP/IP stack. Furthermore, an implementation of the well-known socket
interface is provided, which is required to run the wolfSSL library. Besides the IP
and TCP implementation, other network protocols are supported as well such as
UDP, DHCP, and DNS, to name a few.

We start by describing how lwIP was integrated into our project and more specifi-
cally with our operating system embOS. After that, our implementation of the queue
network driver is presented, followed by the initialization of lwIP.

4.2.1 Integration into MVP Project

The source code of lwIP is available on GitHub. The repository was cloned and
the stable release tag STABLE-2_1_3_RELEASE was checked out and the contents
of the src folder were copied to the new mvp-lib-lwip folder in the root of
the project. This folder was then included in the CMake build process in the root
CMakeLists.txt file:

1 add_subdirectory("mvp-lib-lwip")
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Illustrated below is the folder structure of the lwIP project.

mvp-lib-lwip
src

api
apps
core

ipv4
ipv6

include
netif

CMakeLists.txt

The api folder contains the raw, sequential and socket API to interact with the the
library and its component. apps contains various service implementations like an
HTTP server that are irrelevant for our context. Within the core folder lies the
heart of the implementation as well as implementations for both the IPv4 and IPv6
protocol. include contains all header files of the library, and finally, the netif
folder contains implementations for network interfaces and also functionalities for
the 6LoWPAN standard discussed in Chapter 2.4.4.

All relevant C source files are referenced in the CMakeLists.txt file which causes
them to be compiled during the build process. Not all files were included, for ex-
ample all files regarding the Point-To-Point protocol were excluded, as they are not
required for our prototype.

4.2.2 Integration with embOS

lwIP can operate in two modes which are controlled via the NO_SYS pre-processor
flag [82]. Operating with the NO_SYS flag set to 1 disables the sequential and socket
API and only the raw API may be used as the former APIs rely on OS features such
as semaphores, mailboxes and threads while the latter instead works with callback
functions. As our chosen TLS/QUIC implementation relies on the socket API, using
lwIP in this mode is not feasible which required the integration with embOS.

Following files had to be defined or implemented for this purpose:

– lwipopts.h General settings file that has to be defined in any case. All settings
are based on the opt.h header file and are also documented and can be over-
written with the lwipopts.h header file. In our case this is mainly used to
set the NO_SYS flag to 0 and disable irrelevant lwIP components to reduce the
code overhead.

– sys_arch.c All functions that lwIP uses to talk with the underlying operating
system. The functions are defined in the sys.h header file within the include
directory and there their purpose is documented as well.

– sys_arch.h Header file for the previously mentioned sys_arch.c file. Is in-
cluded before the OS integration function definitions in the sys.h header file
so the implementations in sys_arch.c are taken instead.

– cc.h Describes the compiler and processor to lwIP. This includes in typedef
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definitions for the signed and unsigned integer data types of 8, 16 and 32-
bit size as well as printf formatters that should be used for these types. Also
included are macros to forward debug output to the board specific printf
function to allow displaying debugging output from the lwIP library which is
described in Chapter 4.2.2.

Debug Output. lwIP provides an extensive printf/build-in debug functionality.
This for instance prints the IPv4 or TCP headers in a readable structured format
which is useful to investigate issues.

As the board provides a custom printf function, all debug output from lwIP had
to be routed to this function. To achieve this, a new C function has been created in
ServiceHost.cpp called lwip_debug which additionally adds the name of the
currently executing embOS task and delegates the output to BoardSupport::Vpr-
intf. Furthermore within the cc.h header file, the LWIP_PLATFORM_DIAG and
LWIP_PLATFORM_ASSERT macro had to be overridden so that they instead call the
lwip_debug function instead of the standard printf function.

Debuggers can be enabled or disabled on a component basis with their respective
XXX_DEBUG. For instance, if only debug statements related to the socket interface
should be enabled the IP_REASS_DEBUG flag has to be set to LWIP_DBG_ON.

4.2.3 Queue Network Driver

lwIP allows the creation of custom network driver to integrate the stack with your
own hardware [83]. This means in our case, that the outgoing IP packet should
be written on the embOS queue and there should be an input method that allows
passing an incoming packet back up the stack.

lwIP requires the implementation of three functions for each network interface: my-
if_init to initialize the network interface, myif_link_output to transmit raw
packets on to the link layer without modifying their content and myif_output to
add link headers that may be needed in order to pass the packet on to the link layer.
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Initialization Function. The initialization function receives a pointer to the netif
struct that should be initialized. The netif struct is used to represent network
interfaces within lwIP.

1 err_t osqueueif_init(struct netif *netif) {
2 netif->name[0] = ’q’;
3 netif->name[1] = ’d’;
4

5 netif->output = osqueueif_output;
6 netif->linkoutput = osqueueif_link_output;
7 netif->mtu = 1500;
8 netif->flags |= NETIF_FLAG_LINK_UP;
9

10 netif->hwaddr[0] = 0x11;
11 netif->hwaddr[1] = 0x22;
12 netif->hwaddr[2] = 0x33;
13 netif->hwaddr[3] = 0x44;
14 netif->hwaddr[4] = 0x55;
15 netif->hwaddr[5] = 0x66;
16 netif->hwaddr_len = 6;
17

18 return ERR_OK;
19 }

lwIP requires that each network interface receives its own identifier which in our
case was set to "qd" which stands for queue driver. Next the pointers to the respec-
tive output functions are set, the MTU is set and the corresponding bit that indicates
the NETIF_FLAG_LINK_UP state is set. lwIP checks this flag and only sends IP
packet once the flag was set to this state. Lastly, the hardware address of the in-
terface is set. In our case, this is not a real address as we just want to imitate the
presence of a real network driver.

Output Functions. The osqueueif_output function straight away calls the os-
queueif_link_output function since there is no need to add link layer headers.

1 err_t osqueueif_output(struct netif *netif, struct pbuf *p, const
ip_addr_t *ipaddr) {

2 return osqueueif_link_output(netif, p);
3 }

The osqueueif_link_output functions calls the OS_QUEUE_Put function of em-
bOS which copies the contents of the packets payload to the queue. The pbuf struct
is the representation of a packet within lwIP.

1 err_t osqueueif_link_output(struct netif *netif, struct pbuf *p) {
2 OS_QUEUE_Put(getQueuePtr(), p->payload, p->len);
3 return ERR_OK;
4 }
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Input Method. Contrary to the other functions, the input method is responsible for
calling the lwIP input function that is set on the netif struct. The input function is
set during lwIP initialization phase (see Chapter 4.2.4) and allows to notify lwIP of
an incoming packet.

1 void osqueueif_input(void* pData, int pDataLength) {
2 struct pbuf* pPbuf = pbuf_alloc(PBUF_RAW, (u16_t) pDataLength,

PBUF_RAM);
3 memcpy(pPbuf->payload, pData, pDataLength);
4 pPbuf->len = (u16_t) pDataLength;
5

6 struct netif* pNetIf = getNetifPtr();
7 pNetIf->input(pPbuf, pNetIf);
8 }

The osqueueif_input function is called by the interceptor task. The intercep-
tor directly passes the received payload that was read from the queue to the input
function as well as the payloads length. Here the data is converted back to a pbuf
struct and together with the netif struct passed to the input function-pointer on
the netif struct.

4.2.4 Initialization of lwIP

lwIP can either be initialized by using the dynamic host configuration protocol (DHCP)
or by directly passing a static network definition.

1 static struct netif queuenetif;
2 static ip4_addr_t ipaddr, netmask, gw;
3 ...
4 IP_ADDR4(&ipaddr, 192, 168, 1, 100);
5 IP_ADDR4(&netmask, 255, 255, 255, 0);
6 IP_ADDR4(&gw, 192, 168, 1, 1);
7 netif_add(&queuenetif, &ipaddr, &netmask, &gw, NULL, osqueueif_init,

ip4_input);
8 netif_set_up(&queuenetif);
9 netif_set_default(&queuenetif);

10 tcpip_init(NULL, NULL);

In our case we defined a static 192.168.1.0/24 network. The netif_add function
lets lwIP know about the network interface. The function receives a pointer to the
memory location of the netif struct and information about the network interface.
The IP address 192.168.1.100 is assigned to the network interface. Finally, the pointer
tot he init function of the network interface is passed as well as the input function
that should set on the netif struct.

4.3 TLS/QUIC Implementation: WolfSSL

For our prototype, we chose wolfSSL [58] as a TLS implementation library (see
Chapter 3.2.1). WolfSSL is written in ANSI C and comes with a bunch of features
that can be easily customized using pre-processor macros. The centerpiece of the
library is the integrated wolfCrypt library [84], which is responsible for the cryp-
tographic processes like encryption and signing. WolfCrypt has been FIPS 140-2
validated by the NIST (National Institute of Standards and Technology), ensuring
that the library meets the cryptographic standard issued by the U.S. government
[85]. WolfSSL is at the cutting-edge of cryptographic development, not only offering
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support for progressive ciphers like ChaCha20 but also experimenting with post-
quantum cryptography. These use cases, of course, go far beyond our thesis. To
thrive in the cyber-security business, however, it is crucial for a company to have
its finger on the pulse of the time, guaranteeing the adherence of its products to the
most current security requirements.

In the first three subsections, we will describe the workings of the wolfSSL library,
that is, how the library is structured, how a secure TLS connection is established, and
how messages are sent and received. Following the more theoretical parts, we will
give account of our hands-on experience when using the library: We begin by depict-
ing how a simple client-server pair using AES-GCM as a cipher can be implemented
with wolfSSL. After that, the integration of the wolfSSL library with our project-
specific setup and prerequisites will be addressed, and eventually, we will describe
how we approached the topic of callback functions for customizing the record layer.

4.3.1 Library Structure

Below, the tree of the most important directories inside the wolfSSL library is de-
picted. At first, it can be a little bit confusing due to the re-use of names. The rest
of the folders either contain examples, tests, or context-specific support files (e.g.
Docker).

wolfssl
src // source code files of the library

ssl.c
...

wolfcrypt
src // source code files of the crypto library

aes.c
...

wolfssl // header files of the library
wolfcrypt // header files of the crypto library

4.3.2 Establishing a Connection

The wolfSSL library encapsulates the TLS elements (and processes) like the TLS-
CipherText or even the Handshake struct well in its objects and functions, which
is very convenient when setting up a standard TLS connection as described here.
The central wolfSSL objects are the WOLFSSL_CTX struct on the one hand and the
WOLFSSL struct on the other hand. The WOLFSSL_CTX forms the context of the
wolfSSL connection and encapsulates information about the certificates, the keys
and the cipher suite to be used, and more. Its initialization is shown below.

1 /* Create and initialize WOLFSSL_CTX */
2 WOLFSSL_CTX * wolfSSL_CTX_new( WOLFSSL_METHOD * )
3 // e.g. WOLFSSL_METHOD = wolfTLSv1_3_client_method()

To feed the context object with the certificate(s) and the key(s), several functions are
at disposal, depending on the format of the aforementioned components. One can
either read them from a file or, what is more reasonable in our case with a prototype
without a file system, from a char buffer. For example, the certificate can be read
from a pem file with the function wolfSSL_CTX_use_certificate_file() or
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from a buffer with wolfSSL_CTX_use_certificate_buffer(). The cipher suite
can be set with wolfSSL_CTX_ set_cipher_list.

In the meantime, the WOLFSSL object is responsible for the TLS connection itself and
the communication with the opposite endpoint. It receives a pointer to the WOLF-
SSL_CTX and thus has access to the properties set on it before. The following code
snippet shows the initialization and usage of the WOLFSSL object.

1 /* Create a WOLFSSL object */
2 WOLFSSL * wolfSSL_new( WOLFSSL_CTX * )
3

4 /* Attach wolfSSL to a socket initialized before */
5 wolfSSL_set_fd(ssl, sockfd);
6

7 /* Client only: connect to wolfSSL on the server side */
8 int wolfSSL_connect( WOLFSSL * ssl )
9

10 /* Server only: accept a client TLS connection */
11 int wolfSSL_accept( WOLFSSL * )

The wolfSSL_connect() function on the client side initiates a TLS handshake
between the client and the server. The prerequisite for this function call is an al-
ready established underlying transport connection between the client and the server.
When the server accepts this connection in wolfSSL_accept(), a secure TLS con-
nection with the defined parameters has successfully been established and the client
can start transmitting data to the server.

4.3.3 Sending and Receiving Messages

There exist several functions for sending and receiving messages in wolfSSL. The
most common ones are are listed below:

1 /*read sz bytes from the connection into the data buffer */
2 int wolfSSL_read( WOLFSSL * ssl, void * data, int sz )
3

4 /* write sz bytes from the data buffer to the connection */
5 int wolfSSL_write( WOLFSSL * ssl, const void * data, int sz )

These functions can be used on either end of the connection. The return values
of wolfSSL_read() and wolfSSL_write() state the number of bytes of data
that were successfully received or sent, respectively. This means that they can also
indicate a partial transmission success.

More options in the context of receiving messages are provided by the following
functions:

– wolfSSL_pending(): Returns the amount of bytes that are waiting in the
data buffer to be read.

– wolfSSL_peek(): This function can be used as a read function that does not
modify or delete the data buffer which contains the data to be read.

– wolfSSL_recv(): This function does the same as wolfSSL_read() but en-
ables the use of specified flags for this operation.
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4.3.4 Running a Client-Server Pair with AES-GCM

The wolfSSL library offers a multitude of examples, each of which demonstrates the
implementation and behaviour of a specific wolfSSL feature. Examples that were
relevant for this thesis are stored in the following places:
wolfssl

examples
client // client example with config options
server // server example with config options

IDE
GCC-ARM // client-server example using ECDHE-ECDSA and custom
transport
INTIME-RTOS // client-server example with threads

wolfcrypt
test // huge file with many example usages configurable
by macros

A separate repository exists on GitHub that purely demonstrates use cases of the
wolfssl library [86]. The tree below shows the applications that were useful for our
purpose:
wolfssl-examples

tls
client-tls13.c // simple client example with TLS 1.3
server-tls13.c // simple server example with TLS 1.3
client-tls-ecdhe.c // client example using specific cipher
suite
server-tls-ecdhe.c // server example using specific cipher
suite

crypto
aes

aesgcm-file-encrypt.c // example on how to use AES-GCM
encryption

The crucial act consists in choosing the optimal example to start from. We started
by getting a simple client-server pair using AES-GCM up and running on Ubuntu,
for which we made small adjustments to the wolfSSL TLS 1.3 client-server pair
[87][88]. The code including our adaptations can be found in our GitHub repos-
itory. In order to enable the use of the AES-GCM cipher suite, the pre-processor
macro HAVE_AESGCM has to be defined.

Principally, this client-server pair running on Ubuntu could be transferred as is onto
our prototype after the integration described in Chapter 4.3.5 had taken place. The
only major adaptation consisted in using the buffer functions instead of the file func-
tions when loading the keys and certificates as embOS does not provide a file system.

4.3.5 Integration into MVP Project

In order to use the wolfSSL library in the MVP project, the library must be integrated
into the project generally and, in a second step, made compatible with lwIP. For our
project, we used wolfSSL’s stable version 5.6.0.
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General Integration. WolfSSL includes a pre-configured CMakeLists file, which
facilitates the integration into our project (see Chapter 2.2 for the architectural condi-
tions of our project). The CMakeLists file does not only define which subdirectories
to link (depending on the preprocessor macros that are set) but also conducts checks
on the system variables available and runs test and benchmark cases per default.
As the wolfSSL is a stand-alone library, we tried to avoid making changes to any
of its source code even for integration. Instead, we inserted definitions relevant for
wolfSSL into a separate CMakeLists.txt file. In a first step, this concerned the
configuration of several macros. To exclude the examples and the crypto tests from
the build, we added the following lines:

1 set(WOLFSSL_EXAMPLES "no")
2 set(WOLFSSL_CRYPT_TESTS "no")

Since our target system does not allow the use of pthreads, we also defined the fol-
lowing macro to make wolfssl run in a single thread:

1 set(WOLFSSL_SINGLE_THREADED "yes")

Furthermore, the nature of our embedded target system required the explicit dis-
abling of shared libraries.

1 set(BUILD_SHARED_LIBS "no")

Finally, we tried to exclude wolfSSL’s options.h file that is generated automati-
cally by running CMake with the command below. An explanation for the motiva-
tion behind this step will be given later, as well as an alternative to avoid the errors
resulting from the inclusion of options.h, as the command below did not work.

1 set(BUILD_DISTRO "yes")

Another measure that has to be taken is adding __clang__ as a compile definition.
This is necessary to align wolfSSL’s configuration with the one of embOS, which
pretends to have the GNU compiler run in Clang mode.

Last but not least, the location of the header files from wolfSSL and the ones to be
included from embOS – wolfSSL uses RTOS.h – must be declared:

1 target_include_directories(wolfssl PUBLIC
2 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../
3 mvp-lib-embos/embOS_CortexM/Inc>
4 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/Include>
5 )
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Beside the additional CMakeLists.txt file, we also created a header file with our
project specific compile definitions, under mvp-lib-wolfssl/Include/user_se
ttings.h. The central part of the content of this file is echoed below.

1 #undef WOLFSSL_EMBOS
2 #define WOLFSSL_EMBOS
3

4 #undef NO_RC4
5

6 #undef WOLFSSL_TLS13
7 #define WOLFSSL_TLS13
8

9 #undef WOLFSSL_AESGCM
10 #define WOLFSSL_AESGCM
11

12 #undef USE_CERT_BUFFERS_1024
13 #define USE_CERT_BUFFERS_1024

The un-definition of NO_RC4 must be made because the flag is automatically set by
options.h, which would result in a redefinition error. As stated above, we did
not manage to exclude options.h from the build by setting a suitable flag. And
unfortunately, we also did not succeed in including the user_settings.h file by
adding the macro WOLFSSL_USER_SETTINGS in the CMakeLists.txt file even
though this is the procedure described in the wolfSSL documentation.

Then, the directory of wolfSSL can be incorporated into the project with the add_sub-
directory() command in the root CMakeLists.txt file.

After all of the steps outlined above, one will realize a redefinition error arising from
the types.h file where XMALLOC, XFREE, and XREALLOC, previously defined
in settings.h when using the embOS macro, are defined again. From our point
of view, this is not an expected behaviour, and we could only solve it by meddling
with the wolfSSL source code: On line 514 in types.h, we now also check for the
definition of WOLFSSL_EMBOS before entering the elif block.

Finally, to use wolfSSL in the ServiceHost, wolfSSL must be included in the target-
_link_ libraries() statement in the CMakeLists.txt file of mvp-service-
host.

Integration with lwIP. First, some statements need to be included in order to make
known that wolfSSL uses lwIP. This concerns the new CMakeLists.txt file for
wolfSSL as well as the user_settings.h file:

1 /* mvp-lib-wolfssl/CMakeLists.txt */
2 target_include_directories(wolfssl PUBLIC
3 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/
4 mvp-lib-lwip/src/include>)
5

6 /* mvp-lib-wolfssl/Include/user_settings.h */
7 #undef WOLFSSL_LWIP
8 #define WOLFSSL_LWIP

When attempting to integrate the wolfSSL and the lwIP libraries into the same project
and to include them in the same file, we ran into several redefinition errors that are
outlined below, together with the solutions that we applied to eradicate them.
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• timeval. WolfSSL uses the time header file provided by the system which
includes a definition for timevalwhereas lwIP uses a custom timeval struct
in sockets.h. As suggested in the comment on lines 515ff in sockets.h,
we set LWIP_TIMEVAL_PRIVATE to 0 and included sys/time.h in cc.h to
force the use of the system time header file for lwIP sockets.

• BYTE_ORDER. The byte order is defined by the system as well as by the lwIP
library. Since both of them declare the byte order to be little endian, we added a
#ifndef BYTE_ORDER check before the definition of BYTE_ORDER in cc.h.

• Several components from errno.h. This happened because we worked with
the lwIP errno.h previous to the integration of wolfSSL, which is not a neces-
sity. So we simply added #ifndef EDEADLK before the definition of LWIP-
_PROVIDE_ERRNO in lwipopts.h to prevent the use of lwIP’s errno.hwhen
the EDEADLK struct stemming from errno.h has been defined before.

After that, our project could be compiled without any errors left. However, when
trying to run the client-server example as described in Chapter 4.3.4, we ran into a
major error that blocked the whole system, inhibiting even the launching of the oper-
ating system. This only happened when calling the certificate/key buffer functions.
The Ozone debugger eventually revealed that a Cortex-M HardFault exception was
thrown. Before the code freeze of this thesis, it did not become clear what this fault
was caused by. One hint may be given by the memory consumption that rockets
when the concerning functions are included in the code.

4.3.6 Callbacks on Record Layer

The wolfSSL library provides a functionality to customize the handling of packets
sent on the record layer. It is called "Atomic Record Processing callbacks", imple-
menting the idea to deploy callback functions that take care of encryption/decryp-
tion and MACing/verification of the messages. Since the goal of this thesis is the re-
duction of the communication overhead, this functionality could be used to shorten
the authentication tag size that is 16 bytes per default. Maybe further adaptations
could be undertaken in these callback functions but this was not examined in this
work for time reasons.

The prototype callback functions that are mentioned in the wolfSSL documentation
[89] are listed below.

1 typedef int (*CallbackMacEncrypt)(WOLFSSL* ssl,
2 unsigned char* macOut,const unsigned char* macIn,
3 unsigned int macInSz,int macContent, int macVerify,
4 unsigned char* encOut, const unsigned char* encIn,
5 unsigned int encSz,void* ctx);
6

7 typedef int (*CallbackDecryptVerify)(WOLFSSL* ssl,
8 unsigned char* decOut, const unsigned char* decIn,
9 unsigned int decSz, int content, int verify,

10 unsigned int* padSz, void* ctx);

It took a while until we found out that these functions and also the example that
is provided in test.h are assumably not applicable to our case because the cipher
suite that we chose – AES-GCM – is Encrypt-then-MAC (EtM) while the mentioned
callback function is MAC-then-Encrypt (MtE). Moreover, the only example uses
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AES-CBC as a cipher, which works differently from AEAD algorithms, especially
since it does not involve an authentication tag but a regular MAC (HMAC in the
example). The callback functions for EtM are named CallbackEncryptMac and
CallbackVerifyDecrypt, the latter taking identical parameters like Callback-
DecryptVerify, which is why only the former – that also differs only in two argu-
ments from its counterpart – is listed below:

1 typedef int (*CallbackEncryptMac)
2 (WOLFSSL* ssl, unsigned char* macOut, int content,
3 int macVerify, unsigned char* encOut,
4 const unsigned char* encIn,
5 unsigned int encSz, void* ctx);

One can see that the difference to CallbackMacEncrypt consists in the missing
arguments macIn and macInSz. (The definitions of all types associated with these
callbacks can be found in ssl.h, starting from line 3149.)

Having found out which callback function to use, we faced another difficulty: The
use of the EtM functions is documented nowhere. Due to this lack of documenta-
tion, it also does not clearly emerge why two different callback function types (MtE
vs. EtM) exist at all, given their similarity in the function signature. Some hints re-
garding the purpose of the function arguments are given by the documentation of
wolfSSL_CTX_SetMacEncryptCb that sets the MtE callback function to a context
object: The encIn buffer contains the plaintext to be encrypted while the encOut
buffer should hold the ciphertext after encryption. It seems that the macOut buffer
should be used for storing the generated MAC, which would be the authentication
tag with AES-GCM. We can only assume that the parameters of the EtM functions
have comparable purposes.

It was then our main concern where to come by the authentication tag in the MAC-
decryption function. The documentation of the wc_AesGcmDecrypt function that
is called inside CallbackVerifyDecrypt states that the parameter authTag should
already contain the authentication tag so that it can be compared with the result of
the MAC operation. However, the callback function does not provide an argument
that would look anything like an authentication tag. The only other option that we
could conceive of was to use the macOut argument on the encryption-MAC side.
Unfortunately, though, the macOut buffer is a pointer of type byte, which means it
is only 8 bytes. This would not suffice for an authentication tag of default size 16
bytes. Using it in the wc_AesGcmEncrypt function then led to error -173 indicating
the passing of a malformed argument. When not passed as a parameter, the buffer
is still affected by the wc_AesGcmEncrypt function and is filled with numbers that
also appear in the ciphertext, which would make sense because macOut is defined
as pointing to an index close to the output message address (see tls13.c line 3176).
We then manually verified that using it as authentication tag in the decrypt function
does not result in matching authentication tags. It is therefore clear that the macOut
buffer does not contain the authentication tag we are looking for. It has to be noted,
though, that these experiments were conducted with the MtE callback functions.
This may have contributed its own share to the unsatisfying results.

To be able to test the EtM callback function in the first place, some further mea-
sures need to be taken as it seems that some implementations are missing in the
wolfSSL source code. In the file tls13.c, which, among others, is responsible
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for preparing the messages to be sent over TLS 1.3, only the case of MtE is han-
dled (lines 3175–3182) with an analogous EtM case missing. There exists an imple-
mentation of EtM but only when using TLS 1.2 (internal.c, lines 20.968–20.976).
We then tried to implement the case of EtM for TLS 1.3 by creating an else if
(ssl->ctx->EncryptMacCb) case in the tls13.c file, however, this caused a
segmentation fault in the context object on the server side when running the pro-
gram. This is most probably an indicator of a flawed parameter passing in tls13.c
on our part which would have to be investigated further.

After all these struggles with gaining a more profound comprehension of wolfSSL’s
record layer callbacks, we had to accept that using them in our prototype would
blow the time frame of our Bachelor thesis.
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4.4 Debug and Monitoring Tools

4.4.1 embOSView

embOSView is a product by SEGGER, which is tightly integrated with embOS and
allows insights into the currently running operating system. Especially useful is
the overview of all tasks which are currently running with their assigned priority.
Due to the nature of a RTOS, a task may only run if all other tasks are currently
suspended which could also result into a deadlock situation if no task is able to run.
embOSView provides information why a task is currently suspended which is useful
when trying to diagnose a deadlock situation.

Illustrated in Figure 4.2 are the settings to be configured in order to connect to the
running operating system. In our case, the connection runs via the USB port. De-
pending on the state of the operating system, it may not be possible to connect. This
is a strong indicator that the embOS kernel did not start at all or is in a faulty state.

FIGURE 4.2: Settings for our prototype.

4.4.2 Ozone Debugger

The Ozone Debugger is another product by SEGGER which allows debugging pro-
grams by using the J-Link debug probes. It includes various features which are usu-
ally included in a debugger for embedded systems such as the code view to check
where the program is currently running at, a memory view to glimpse at the mem-
ory’s contents at all times, a disassembly view to inspect the assembly code that was
created by the C or C++ instructions, viewing of all CPU registers as well as setting
debug breakpoints and guards that react if a variable changes. As our NXP board
runs a J-Link debug probe that is also used by the GDB J-Link debug interface, it is
easily possible to debug applications using the Ozone Debugger tool.

Once the tool starts, the target device to be debugged has to be selected, which
in our case is MIMXRT685S_M33. For the connection settings, the target interface
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should be set to SWD with a target speed of 2 MHz. The host interface should be
USB. If USB is selected, the list which shows the emulators that are connected via
USB should list an entry J-Link LXPpresso V2 which can then be selected. As
a next step, the program file should be selected, which in our case is in the build
output folder build_gcc_rt685evk in the mvp-app-hello folder. There, the
mvp-app-hello file has to be picked out. Optional settings should be left un-
changed. Once done, the green button can be clicked to download and reset the
program.

FIGURE 4.3: Ozone Debugger with our prototype with the programm
haltet at the entry point main function.
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Chapter 5

Results

After having gained a lot of knowledge in the theoretical part (see section 2) and
plenty of experience in the practical part, we present the results of our work in this
chapter. First, we will re-examine the goal of our thesis and the steps necessary
to achieve it, followed by an overview of the project schedule aligning these tasks
on a timeline. After the description of the targeted progress, we will present the
actual outcome, i.e., what thereof has been achieved and which points are still open.
Finally, we will describe the impediments we faced during the process of this thesis,
which may explain why not all of the tasks mentioned in 5.1.1 could be completed
within the given time frame.

5.1 Roadmap

5.1.1 Goal and Tasks

The overall goal of this thesis was to examine standardized security protocols for
their utility in embedded systems, namely hearing aids. This included the following
steps – some of them only crystallized out in the process and after consultation with
the company representative:

– Research on available security protocols and their communication overhead.

– Agreement on one or more security protocols that seem promising for a prac-
tical evaluation.

– Research and choice of a library implementing this/these protocol(s).

– Implementation of a prototype demonstrating the behaviour of the security
protocol on the communication level:

– Implementation of the transport layer.

– Implementation of the security protocol.

– Define metrics and measure the behaviour of the prototype, especially with
regard to the communication overhead, but also to security and other param-
eters.

– Fine-tuning of the prototype in order to optimize the communication over-
head.
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– Documentation of insights and writing of the actual thesis.

5.1.2 Schedule

Figure D.1 in the appendix shows the tasks of our project on a time line. The kick-off
for the project was in February, which was followed by a phase of intense research
on the existing security protocols available for embedded devices. While sketchily
recording the results of our research on Confluence, we would simultaneously start
commissioning the MIMXRT685-EVK evaluation board that would serve as a pro-
totype hardware. As soon as the research would yield fruit and point in a specific
direction regarding the choice of the security protocol, we would begin researching
appropriate implementation libraries. This should happen around half-time at the
latest.

In parallel with the library research, we would lay the foundation for our practical
part by implementing a transport protocol on which to run the TLS connection. This
should take about two weeks. Afterwards, we could proceed with implementing the
TLS protocol using wolfSSL. First, we would tackle TLS over TCP, and in a second
step, TLS over QUIC, so that we could compare these two settings later on.

At the same time as the implementation takes place, we would begin writing the
actual thesis and complement it as we gather more and more insights. A first draft
had to be handed in three weeks before the final deadline. By that time, our gain of
knowledge should ideally have come to an end such that the content of the thesis
could be more or less finalized, and we would just have to fill in missing pieces
and elaborate our notes taken before. The last three weeks would thus be dedicated
to concluding the evaluation of the prototype implementation and completing the
written thesis.

5.2 Achievements

5.2.1 Research

The results from the research phase have already been stated in Chapter 3 but will
shortly be summarized here. The two most suitable (security) protocols for our pur-
poses were TLS 1.3 over TCP and (TLS with) QUIC, both of them due to their rela-
tively small communication overhead, and TLS over TCP possessing the additional
advantage of fitting with our hearing instrument manufacturer’s present protocol
stack. As a library implementing TLS, we chose wolfSSL because it seemed suffi-
ciently documented and, what is more, was the only library in our selection that
already supported TLS 1.3 as of May 2023. On the TCP layer, we opted for lwIP
because of its up-to-date maintenance and documentation as well as the source code
availability.

5.2.2 Prototype

Transport Protocol Layer. We implemented two tasks, a client and a server task,
each of them attached to a customized driver that is able to send and receive packets
over a TCP connection. A third task, called interceptor, serves as an intermediary
that intercepts the raw IP traffic between the server and the client task. Each task is
encapsulated in its own file and can easily be adapted or replaced. The program is
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functioning properly on the evaluation board. However, the transport layer for the
TLS over QUIC scenario, which requires UDP, is still missing.

Security Protocol Layer. At the same time, we implemented a client-server pair on
Ubuntu that establishes a TLS-secured connection and successfully transmits mes-
sages from one endpoint to the other. We integrated this setup into our prototype so
that it compiles without errors. A part of the wolfSSL functions can be called on the
evaluation board, but unfortunately, we did not manage to flash the whole client-
server pair on the board without errors during the duration of the project and were
therefore not able to assess its behaviour concerning the communication overhead
and other metrics. Likewise, the fine-tuning of the TLS client-server pair with the
goal of reducing the communication overhead could not be terminated. However,
we discovered that omitting the protocol version on the record layer is not intended
by wolfSSL and could not easily be accomplished, if possible at all.

The final project structure looks like the following (in excerpts, new files and folders
highlighted in blue):

hd-sec-protocols
toolchain
mvp-lib-embos
mvp-servicehost
mvp-app-hello

Source
ClientTask.cpp
InterceptorTask.cpp
ServerTask.cpp

mvp-lib-lwip
mvp-lib-wolfssl
wolfssl-hosts-ubuntu

Client.c
Server.c
ClientCallback.c
ServerCallback.c

assets
putty.png

The client, server, and interceptor task files are included in the build and will exe-
cute when flashed onto the evaluation board. The wolfSSL functions that throw the
HardFault are present but commented out.

The folders wolfssl-hosts-ubuntu and assets are not included in the project
build. In the directory wolfssl-hosts-ubuntu, one can find the files that com-
pile on a Ubuntu system when the corresponding wolfSSL library is built with the
configure file, accompanied by the macro --enable-aesgcm (and --enable-
atomicuser, in the case of the callback functions). The Client.c and Server.c
form a ready-to-run client-server pair while the ClientCallback.c and Server-
Callback.c contain the callback functions and their activation functions that are
not fully working yet. The examples uploaded on GitHub contain the MAC-then-
Encrypt version, as adaptations to the wolfSSL source code would have to be made
in order to force the use of the callback functions when using Encrypt-then-MAC
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and TLS 1.3.

The assets folder comprises a screenshot of the putty setup that can be used to
observe the execution of the flashed program on the board. The serial line may
depend on the computer and can be seen under ports in the Device Manager.

As a bonus, we developed some metrics that could be used for a future assessment
of a completely implemented prototype. They can be found in the Appendix B.

5.3 Impediments

In general, the research part went well and generated many insights that helped us
get familiar with security protocols and the world of embedded systems. Never-
theless, it took a long time to collect a comprehensive understanding of the matter
until we were able to agree on a security protocol and a library for the prototype
implementation.

In the implementation phase, we had to cope with several issues. First, the setup
of the TCP/IP framework was distinctly more complex and took more time than
expected. This was owed to the fact that the documentation was sometimes not
up-to-date which required us to understand the library with the source code. Fur-
thermore we had to create an abstraction layer for embOS, which took more time
than expected, especially due to the lack of experience with embOS. That led to a
considerable delay and forced us to review our schedule, where some tasks had to
be moved backwards or be omitted completely. Second, the only embedded library
supporting TLS 1.3 was wolfSSL, which left little scope regarding the choice of a
library. Third, the engagement in the topic of wolfSSL callback functions was cum-
bersome and yielded few results due to sparse documentation. This cost a consid-
erable amount of time without a practical benefit for our prototype. Moreover, the
integration of wolfSSL into our project worked out relatively smoothly at the begin-
ning but resulted in a major fault on the prototype evaluation board when trying to
use certificates. This could not be solved within the given time frame anymore. And
finally, being unfamiliar with CMake posed some problems when integrating the ex-
ternal libraries into the project, especially at the beginning. However, we climbed up
the learning curve relatively fast and eventually managed to integrate new libraries
without external help.

Having stated the missing points in our prototype as well as the hindrances that
were met in the process, it might be interesting to learn how our prototype solution
can still contribute to the examination of the performance of standardized security
protocols. This will be explained in the last chapter, together with some recommen-
dations for sequel projects.
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Chapter 6

Discussion and Outlook

The goal of this work was to examine the suitability of standardized security proto-
cols for the use in hearing aids. On a theoretical level, we succeeded in identifying
promising candidates, namely TLS over TCP and TLS over QUIC. On a practical
level, though, some steps still have to be taken until a final judgement can be deliv-
ered. Our prototype could be used as a starting point in the future process of gain-
ing a deeper understanding of the behaviour of the mentioned security protocols in
an embedded setting. It already supplies a robust foundation for running a client-
server pair with a secure connection on top by implementing the TCP protocol and
providing custom drivers. Furthermore, the interceptor task at hand facilitates the
analysis of packets on the TCP level. The modular setup allows for a quick exchange
of components and even libraries.

However, we would not recommend working with wolfSSL as a TLS implemen-
tation library any longer. First, it is not clear if the error arising from the use of
certificates can be solved in a reasonable time span as the evidence so far suggests
that calling the buffer functions demands a considerable part of the memory space. If
wolfSSL stayed in use, it would presumably have to be optimized vigorously accord-
ing to the requirements of an embedded system, e.g. by reducing the stack size and
excluding all unused files from the build, which should both be achievable by defin-
ing the corresponding preprocessor macros. Second, the documentation of wolfSSL
is rather poor when it comes to cases stretching beyond the basic client-server setup,
especially for callback functions on the record layer. Third, as far as we have seen,
there is no option to omit the protocol version from the record layer packet. It would
be the subject of further investigations if other libraries offer such an option, which
may well not be the case as this is not a feature of standard TLS. Fourth, the wolfSSL
commercial license poses some restrictions concerning the use of open source code
that can be circumvented by using a library with a more permissive license. It would
therefore be advisable to wait until emSSL offers TLS 1.3 support, since emSSL also
naturally integrates with embOS.

When approaching the technology stack provided by SEGGER, it would sound rea-
sonable to also implement emNet on the transport layer instead of lwIP. However,
lwIP offers some non-negligible advantages over emNet despite its alienness to the
SEGGER products. It has more features than emNet, especially worth mentioning
here is the compression method 6loWPAN that is already integrated. Concerning
the lwIP integration, the only thing we would retrospectively do differently is the
usage of a git submodule rather than directly copying the code into the project. This
would facilitate tracking the dependency and updating to newer versions. In this
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work, though, this would only have been possible if we had possessed the knowl-
edge about CMake from the beginning. The same could have been done with wolf-
SSL, however, the library would first have to be adjusted to accept the user-defined
settings file.

An alternative to our current setup would be the usage of a physical connection be-
tween the evaluation board and a computer that runs over a UART interface instead
of faking two endpoints running on the same device. This would facilitate the sim-
ulation of the real use case but may introduce other issues like how to decompress
the 6loWPAN packet on the host machine if the corresponding mechanism is used
on the board.

Reconsidering the impediments that we encountered in the course of our thesis, we
would recommend heralding the start of the practical part earlier, as there are often
more unforeseen twists to be expected from the implementation phase than from the
research phase, like in our case. It would also have been beneficial to make use of
the Ozone debugger right from the beginning of the implementation process – this
would have been a valuable support when debugging the TCP/IP stack.

What this all amounts to is that in a future work, our prototype could be used as a
foundational setup providing a client-server-interceptor structure operating on the
TCP level that then could be complemented with a library implementing the TLS
protocol that enables secure communication between the client and the server task.
In a second step, the same setup could be built for TLS over QUIC, and in a third
step, the two setups could be compared regarding their communication overhead
and further metrics, finally establishing whether standardized security protocols are
suitable to secure the hearing aids of the next generation.
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Appendix A

Code Listings

LISTING A.1: ServiceHost.cpp
1 #include "BoardSupport.hpp"
2 #include "RTOS.h"
3

4 #include "ServiceHost.hpp"
5 #include "ServiceHost.h"
6

7 #include "netif/osqueuedriver.h"
8 #include "lwip/netif.h"
9 #include "lwip/ip4_addr.h"

10 #include "lwip/tcpip.h"
11 #include "lwip/ip4.h"
12 #include "lwip/def.h"
13

14 #include <stdlib.h>
15 #include <cstdarg>
16

17 extern "C" void OS_DeInitHW(void);
18

19 namespace ServiceHost
20 {
21

22 // buffer and context for embOS
23 #define BUFFER_SIZE (256u)
24 static OS_U8 Buffer[BUFFER_SIZE]; // buffer for main stack copy
25 static OS_MAIN_CONTEXT MainContext;
26

27 // task control block and task stacks
28 static OS_STACKPTR int ServerTcbStack[1024];
29 static OS_TASK ServerTcb;
30 static OS_STACKPTR int ClientTcbStack[1024];
31 static OS_TASK ClientTcb;
32 static OS_STACKPTR int InterceptorTcbStack[1024];
33 static OS_TASK InterceptorTcb;
34

35 // os queue used by network driver
36 #define MESSAGE_ALIGNMENT (4u)
37 #define MESSAGE_SIZE_PAYLOAD (500u + OS_Q_SIZEOF_HEADER +

MESSAGE_ALIGNMENT)
38 #define QUEUE_SIZE (MESSAGE_SIZE_PAYLOAD)
39 static OS_QUEUE DataQueue;
40 static char DataQueueBuffer[QUEUE_SIZE];
41

42 // lwip network driver
43 static struct netif queuenetif;
44 static ip4_addr_t ipaddr, netmask, gw;
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45

46 // used to save the ending char of the lwip debug message
47 static char LastEndingChar;
48

49 int main(void)
50 {
51 BoardSupport::Init();
52 BoardSupport::Printf("\r\n");
53 BoardSupport::Printf("\r\n");
54 BoardSupport::Printf("--- ServiceHost built for " BUILD_TARGET " with

compiler " BUILD_COMPILER " initialized.\r\n");
55

56 OS_Init();
57 OS_InitHW();
58

59 // setup lwIP
60 IP_ADDR4(&ipaddr, 192, 168, 1, 100);
61 IP_ADDR4(&netmask, 255, 255, 255, 0);
62 IP_ADDR4(&gw, 192, 168, 1, 1);
63 // currently using ip4_input which appears to restrict input to only

ipv4 packets
64 netif_add(&queuenetif, &ipaddr, &netmask, &gw, NULL, osqueueif_init,

ip4_input);
65 netif_set_up(&queuenetif);
66 netif_set_default(&queuenetif);
67 tcpip_init(NULL, NULL);
68

69 // create queue
70 OS_QUEUE_Create(&DataQueue, &DataQueueBuffer, sizeof(DataQueueBuffer))

;
71

72 // create application tasks
73 BoardSupport::Printf("Create Interceptor Task Control Block.\r\n");
74 OS_TASK_CREATE(&InterceptorTcb, "Interceptor Task", 1, InterceptorTask

, InterceptorTcbStack);
75

76 BoardSupport::Printf("Create Client Task Control Block.\r\n");
77 OS_TASK_CREATE(&ClientTcb, "Client Task", 2, ClientTask,

ClientTcbStack);
78

79 BoardSupport::Printf("Create Server Task Control Block.\r\n");
80 OS_TASK_CREATE(&ServerTcb, "Server Task", 3, ServerTask,

ServerTcbStack);
81

82 // start embOS
83 BoardSupport::Printf("Start embOS.\r\n");
84 OS_ConfigStop(&MainContext, Buffer, BUFFER_SIZE);
85 OS_Start();
86

87 // terminate OS (only reached if no OS task is running anymore or
OS_Stop() is called)

88 OS_DeInitHW();
89 OS_DeInit();
90 BoardSupport::Printf("OS Terminated.\r\n");
91 BoardSupport::Terminate();
92

93 return 0;
94 }
95

96 int Printf(const char *fmt_s, ...)
97 {
98 va_list ap;
99 int result = 0;
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100

101 const char* taskName = OS_TASK_GetName(OS_TASK_GetID());
102 BoardSupport::Printf("[[%s]] ", taskName);
103

104 va_start(ap, fmt_s);
105 result = BoardSupport::Vprintf(fmt_s, ap);
106 va_end(ap);
107

108 return result;
109 }
110

111 }
112

113 int main()
114 {
115 return ServiceHost::main();
116 }
117

118 void lwip_debug(const char *m, ...) {
119 va_list ap;
120 va_start(ap, m);
121

122 if (ServiceHost::LastEndingChar == ’\n’) {
123 const char* taskName = OS_TASK_GetName(OS_TASK_GetID());
124 BoardSupport::Printf("[[%s]] ", taskName);
125 }
126

127 BoardSupport::Vprintf(m, ap);
128

129 va_end(ap);
130 }
131

132 OS_QUEUE* getQueuePtr() {
133 return &ServiceHost::DataQueue;
134 }
135

136 struct netif* getNetifPtr() {
137 return &ServiceHost::queuenetif;
138 }

LISTING A.2: ClientTask.cpp
1 #include "RTOS.h"
2 #include "ServiceHost.hpp"
3 #include "BoardSupport.hpp"
4 #include "lwip/sockets.h"
5

6 void ClientTask(void) {
7

8 OS_TASK_Delay(1000);
9 ServiceHost::Printf("Start client task.\r\n");

10

11 char readBuffer[20] = { 0 };
12 char* clientMsg = "client hello";
13

14 struct sockaddr_in serv_addr;
15 serv_addr.sin_family = AF_INET;
16 serv_addr.sin_port = htons(8080);
17

18 if (inet_pton(AF_INET, "192.168.1.100", &serv_addr.sin_addr) <= 0) {
19 ServiceHost::Printf("ERROR: Invalid address. Address not supported

\r\n");
20 abort();
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21 }
22

23 while (1) {
24 BoardSupport::Printf("\r\n");
25 BoardSupport::Printf("\r\n");
26 BoardSupport::Printf("\r\n");
27

28 int client_fd;
29 if ((client_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
30 ServiceHost::Printf("ERROR: Socket creation error.\r\n");
31 abort();
32 }
33

34 int connection_status;
35 ServiceHost::Printf("Trying to connect to server.\r\n");
36 if ((connection_status = connect(client_fd, (struct sockaddr*) &

serv_addr, sizeof(serv_addr))) < 0) {
37 ServiceHost::Printf("ERROR: Connection failed.\r\n");
38 abort();
39 }
40 ServiceHost::Printf("Connection to server successful!\r\n");
41

42 send(client_fd, clientMsg, strlen(clientMsg), 0);
43 ServiceHost::Printf("Client has sent message to server.\r\n");
44

45 int read_status = read(client_fd, readBuffer, 20);
46 ServiceHost::Printf("Received message from server: %s\r\n",

readBuffer);
47

48 ServiceHost::Printf("Closing client socket.\r\n");
49 close(client_fd);
50

51 OS_TASK_Delay(5000);
52 }
53

54 }

LISTING A.3: InterceptorTask.cpp
1 #include "RTOS.h"
2 #include "ServiceHost.hpp"
3 #include "ServiceHost.h"
4 #include "netif/osqueuedriver.h"
5

6 void InterceptorTask(void) {
7

8 ServiceHost::Printf("Start interceptor task.\r\n");
9

10 while (1) {
11 void* pData;
12 int pDataLength = OS_QUEUE_GetPtrBlocked(getQueuePtr(), &pData);
13 if (pDataLength == 0) {
14 ServiceHost::Printf("ERROR: Message length is zero.\r\n");
15 abort();
16 }
17

18 osqueueif_input(pData, pDataLength);
19 OS_QUEUE_Purge(getQueuePtr());
20 }
21

22 }

LISTING A.4: ServerTask.cpp
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1 #include "RTOS.h"
2 #include "ServiceHost.hpp"
3 #include "lwip/sockets.h"
4

5 void ServerTask(void) {
6

7 ServiceHost::Printf("Start server task.\r\n");
8

9 char readBuffer[20] = { 0 };
10 char* serverMsg = "server hello";
11

12 int server_fd;
13 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
14 ServiceHost::Printf("ERROR: Socket creation error.\r\n");
15 abort();
16 }
17

18 struct sockaddr_in address;
19 int addrlen = sizeof(address);
20 address.sin_family = AF_INET;
21 address.sin_addr.s_addr = INADDR_ANY;
22 address.sin_port = htons(8080);
23

24 if (bind(server_fd, (struct sockaddr*) &address, sizeof(address)) < 0)
{

25 ServiceHost::Printf("ERROR: Binding socket failed.\r\n");
26 abort();
27 }
28

29 if (listen(server_fd, 3) < 0) {
30 ServiceHost::Printf("ERROR: Failed to create listening socket.\r\n

");
31 abort();
32 }
33

34 while (1) {
35

36 int new_socket;
37 ServiceHost::Printf("Waiting for new connections.\r\n");
38 if ((new_socket = accept(server_fd, (struct sockaddr*)&address, (

socklen_t*)&addrlen)) < 0) {
39 ServiceHost::Printf("ERROR: Failed to accept new connection.\r

\n");
40 abort();
41 }
42 ServiceHost::Printf("New client connected!\r\n");
43

44 read(new_socket, readBuffer, 20);
45 ServiceHost::Printf("Received message from client: %s\r\n",

readBuffer);
46

47 send(new_socket, serverMsg, strlen(serverMsg), 0);
48 ServiceHost::Printf("Server has sent response message to client.\r

\n");
49

50 ServiceHost::Printf("Closing client socket.\r\n");
51 close(new_socket);
52

53 }
54

55 shutdown(server_fd, SHUT_RDWR);
56

57 }
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Appendix B

Metrics for Assessment

Characteristic Metric

Performance

Communication overhead:
• throughput (data/unit time) [bytes]
• latency (time to send packet) [s]

Performance

Computational overhead:
• CPU utilization (%)
• latency (time to encrypt/decrypt) [s]

Storage memory usage [bytes]

Security
• number of adaptations made to protocol
• number of deviations from RFC standard

Security

confidentiality:
• asymmetric crypto:

– private key size [bytes]
– security of cipher according to litera-

ture
• symmetric crypto:

– perfect forward secrecy (yes/no)
– shared secret key size [bytes]
– security of cipher and operation mode

according to literature

Security

integrity:
• MAC digest size [bytes]
• secret key size used for MAC [bytes]

Security authenticity: signature, key size [bytes]?

TABLE B.1: Security of prototype implementation.
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Appendix C

Project Description

C.1 Übersicht

Moderne Hörgeräte werden immer vernetzter. Neben der kabellosen Kommunika-
tion zwischen rechtem und linkem Hörgerät erfolgt zusätzlich eine Bluetooth-Kom
-munikation mit Geräten wie Smartphones und PCs. Über diese Geräte können
Hörgeräte zum Beispiel Firmware-Updates aus der Cloud empfangen. Meist wer-
den von Patienten jedoch Mobiltelefone zur Konfiguration, Steuerung und Überwachung
ihrer Hörgeräte verwendet. In ähnlicher Weise verbinden Hörgeräteakustiker ihre
PCs mit den Hörgeräten, um diese an den Hörverlust des Patienten anzupassen.

Die Absicherung dieser Verbindungen gegen Cyberangriffe ist von großer Bedeu-
tung. Ein Angreifer könnte in der Lage sein, Kontrolle über das Hörgerät zu erlan-
gen und beispielsweise einen sehr lauten Ton abspielen, welcher das Gehör der Be-
troffenen (noch mehr) schädigt. Weiter könnten die Mikrofone des Hörgeräts dazu
verwendet werden, Nutzer abzuhören. Bluetooth bietet zwar von Haus aus sichere
Verbindungen auf der Basis von Pairing, jedoch ist das erreichbare Sicherheitsniveau
begrenzt, da Hörgeräte aufgrund ihrer eingeschränkten Benutzeroberfläche keine
authentifizierten Pairings ermöglichen.

Um dieses Problem zu lösen, hat ein Hörgerät-Produzent ein proprietäres Sicher-
heitsprotokoll auf Anwendungsebene entwickelt, welches einen authentifizierten,
sicheren End-to-End-Kanal vom Hörgerät zu einer Applikation auf PC / Mobiltele-
fon oder in der Cloud bereitstellt. Ein proprietäres Protokoll war notwendig, weil
bestehende Sicherheitsprotokolle aufgrund der extremen Hardware-Ressourcen-
beschränkungen in Hörgeräten nicht verwendet werden konnten. Proprietäre Sicher-
heitsprotokolle haben jedoch den Nachteil, dass sie weniger von Fachleuten geprüft
und getestet werden als standardisierte Protokolle und daher als weniger sicher gel-
ten.

Glücklicherweise wird die nächste Generation der Hardware-Plattform dieses Pro-
duzenten über mehr Speicher und CPU-Leistung verfügen. Dies könnte die Umstel-
lung auf ein standardisiertes Sicherheitsprotokoll ermöglichen. Es ist jedoch nicht
zu erwarten, dass die Geschwindigkeit der Bluetooth-Verbindung in gleichem Mass
zunehmen wird, so dass dies die grösste Hürde darstellt. Das Sicherheitsprotokoll
muss so wenig Overhead wie möglich verursachen, um ressourcenschonend zu sein.

Ziel dieser Arbeit ist herauszufinden, inwiefern es möglich ist, für die Hörgeräte
ein standardisiertes Sicherheitsprotokoll (z.B. IPsec, TLS, DTLS) zu verwenden und
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gleichzeitig einen minimalen Kommunikations-Overhead durch dieses Protokoll zu
gewährleisten. Aufgaben

Die Bachelorarbeit umfasst die folgenden Teilaufgaben:

• Einarbeitung ins Thema:

– standardisierte/verbreitete Security-Protokolle (z.B. IPsec, TLS, DTLS)

– Protokoll-Varianten und -Konfigurationen (z.B. header compression)

– Übersicht über verfügbare C/C++ Implementationen davon

• Inbetriebnahme der Prototypen-Hardware (MIMXRT685-EVK Boards)

• Implementation eines Prototyps in C++ mit folgenden Eigenschaften:

– Test-Applikation, welche eine sichere Verbindung aufbaut und Test-Daten
(z.B. mit verschiedenen Paketgrössen) verschickt/empfängt.

– Modulare Implementation der sicheren Verbindung, sodass verschiedene
Protokolle/Implementationen einfach und schnell ausgetauscht/getestet
werden können.

– Test-Infrastruktur, welche den Kommunikations-Overhead für die sichere
Verbindung messen kann.

• Research:

– Für jedes Protokoll: Vornehmen von Feinabstimmungen der Protokol-
lkonfiguration und ev. Durchführung kleinerer Anpassungen an einem
solchen Protokoll, mit dem Ziel, möglichst wenig Kommunikations-Overhead
zu generieren.

• Evaluation für jeden Test:

– Was ist der resultierende Overhead?

– Welche Anpassungen an die Protokoll-Konfiguration oder die Implemen-
tation wurden dafür gemacht?

– Einschätzung zur Sicherheit dieser Lösung, basierend auf:

* Wie gut ist die Protokoll-Implementation/Konfiguration verbreitet/getestet
weltweit?

* Möglicher negativer Einfluss der Modifikation darauf?

• Wahrnehmen der Projektleitung insbesondere Erstellen von Projektplan und
Protokollieren von Besprechungen.

• Dokumentation der Arbeit: Erstellen eines Berichtes über die Arbeit.
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C.2 Organisatorisches

• In der Regel findet eine wöchentliche Besprechung mit den Betreuern (InES,
Hörgerät-Produzent) statt.

• On-site Arbeit oder Workshops beim Hörgerät-Produzenten bei Bedarf

• Zusätzlich zu den generellen Vorgaben soll die Dokumentation folgende Punkte
enthalten

– Dokumentation der Konzepte und Lösungen: Aus welchen Komponen-
ten besteht das System und wie funktioniert es?

– Verbesserungsvorschläge bzgl. Schlüsseleigenschaften bzw. Dokumenta-
tion von Herausforderungen und Schwierigkeiten

– Vollständige Informationen für den Nachbau des Systems - Begründun-
gen zur Nachvollziehbarkeit von Design Entscheidungen

• Das Schreiben der Dokumentation soll parallel zur Umsetzung erfolgen. Die
Planung soll Meilensteine für die Dokumentation enthalten. Drei Wochen vor
dem Abgabetermin der Arbeit soll ein erster Entwurf abgegeben werden.

C.3 Allgemeine Rahmenbedingungen

• Ausgabe der Arbeit: Montag, 13.02.2023

• Abgabe der Arbeit: Freitag, 09.06.2023

• Umfang: 12 Credits. Dies entspricht einer Arbeitsbelastung von etwa 360h.

• Die Bewertung erfolgt anhand des vorgegebenen Rasters. Projektverlauf, Leis-
tung, Arbeitsverhalten 1/3; Qualität der Ergebnisse 1/3; Form und Inhalt des
Berichts und der Präsentation 1/3

• Beachten Sie die Anforderungen der Hochschule auf dem Intranet und in den
Emails des Studiengangsekretariates.
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Appendix D

Project Plan

See the project plan on the following page.
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FIGURE D.1: Project time table.
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