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Abstract

Artificial intelligence (AI) has become a valuable tool in skin cancer classification.

However, its widespread adoption is limited by concerns about trustworthiness and

its black-box nature. One promising approach to increasing trust is to improve

the explainability of AI systems. This thesis explores the potential of using algo-

rithms from the AIX360 library to achieve this goal. The algorithms - ProtoDash,

DIP-VAE, LIME, SHAP and CEM - were evaluated for their runtime, simplicity,

explainability/interpretability and stability in the context of skin cancer classifica-

tion. The results suggest that each algorithm offers unique insights, but none can be

considered universally superior. In particular, LIME and SHAP showed a promising

balance between interpretability and stability, making them strong candidates. Fur-

ther work is needed to identify the optimal combination of algorithms to increase

confidence and to adapt these algorithms to handle complex data sets. This work is

a step towards developing AI models that are not only effective, but also transparent

and accountable, furthering the quest for trustworthy AI in healthcare.

Keywords: Machine Learning, Artificial Intelligence, Explainable AI, AIX360, Skin

Cancer Detection, Image Classification.
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1. Introduction

Artificial intelligence (AI) has entered many critical sectors, including healthcare,

demonstrating its potential to transform processes, enhance decision-making capa-

bilities and improve overall operational efficiency. As AI systems evolve, maintaining

their trustworthiness, reliability and transparency remains essential [1]. This is par-

ticularly important in healthcare, a sector where the accuracy of diagnoses can have

a profound impact on the course of a patient’s life. [2]

AI systems, when given access to high quality data and built using appropriate

models, are proving effective in diagnosing diseases such as skin cancer. In fact,

under specific and highly artificial and controlled conditions, these systems have been

able to match, and in some cases surpass, the diagnostic expertise of experienced

professionals [3]. A notable example is the use of AI in the diagnosis of skin cancer,

the most common form of cancer worldwide [4]. Early detection in such cases can

greatly improve a patient’s chances of recovery, underlining the critical importance

of AI in this area.

However, the wider acceptance and application of AI systems is challenged by their

black-box nature. The complexity of AI systems can make their decision-making

processes unclear and difficult to understand. Improving the explainability of AI

systems is therefore crucial to enable users, developers and domain experts to develop

trust and use AI systems effectively. For example, in a medical setting, explainable

AI (XAI) could clarify diagnoses, help clinicians justify treatment decisions, and

promote more effective patient-clinician dialogue. [5]
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1.1. State of the Art

XAI has emerged as a vibrant area of research in response to the increasingly complex

nature of AI systems and the challenges this complexity poses to their transparency

and trustworthiness. Various tools and techniques are being developed to increase

the transparency of AI systems, a notable example being IBM’s AIX360 library [6].

This library provides a set of algorithms specifically designed to effectively interpret

the predictions of machine learning (ML) models.

This progress has been recognised at a regulatory level, with bodies such as the

European Commission proposing guidelines for the ethical and responsible use of AI.

However, a standardised approach that defines how AI systems should be designed to

ensure reliable and trustworthy predictions is currently lacking [7]. This highlights

the need for research into practical applications and evaluations of existing XAI

tools such as the AIX360 library.

Furthermore, the need for explainability in AI is particularly strong in critical do-

mains such as healthcare. Recent research has explored the interpretability of con-

volutional neural networks (CNNs), particularly in the field of dermatology. For

example, one study aimed to ’open the black box’ of CNNs by visualising and ex-

amining their learned feature maps in the context of skin conditions. The researchers

found that the CNNs focused on features similar to those used by dermatologists in

their diagnoses, suggesting a promising way to improve the explainability of these

AI systems. [8]

Another study applied deep learning techniques to dermoscopic images for melanoma

detection and achieved high accuracy in their model predictions. The authors used

local interpretability methods, namely Gradient-weighted Class Activation Mapping

(Grad-CAM) and Kernel SHAP, to understand the reasoning behind these predic-

tions. Despite the high accuracy of their models, they found that they occasionally

assigned importance to irrelevant features, and different models with similar accu-

racy produced different explanations. [9]

These findings highlight both the potential and the challenges of explainability in

AI. They highlight the ability of AI systems to focus on relevant features and make

accurate predictions, but also point to their tendency to occasionally assign impor-

2
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tance to irrelevant aspects.

Moreover, the observed variance in explanations between models underscores the

complexity of these systems and the need for standardised methods for interpreting

their results. Further research is therefore needed to optimise the use of XAI tools,

such as the AIX360 library, to improve the transparency and accountability of AI

systems, particularly in critical applications such as skin cancer classification.

1.2. Research Objectives

The primary objective of this thesis is to investigate the potential of the AIX360

library for enhancing the trustworthiness of AI systems, using a skin cancer classi-

fication system as a case study.

The thesis proceeds by first providing a detailed exploration of the theoretical back-

ground necessary for this thesis. It then discusses the methods used to develop the

AI system, along with a comprehensive review of potential approaches to improve

explainability. The thesis then turns its attention to evaluating the results obtained,

reflecting on the lessons learned, and considering potential future directions in the

field.

The overall aim of this thesis is to develop an AI system that is not only capable

of accurately classifying skin lesions, but also capable of providing comprehensi-

ble explanations for its predictions. This is expected to contribute to making AI

more transparent and trustworthy, thereby encouraging its wider acceptance and

application.

Specifically, this thesis focuses on improving the explainability of AI systems in

the context of skin cancer classification. Using IBM’s AIX360 library, it aims to

design and implement a classification model that can effectively distinguish between

different skin lesions.

This thesis is guided by several key questions: it explores the feasibility of achieving

sufficient explainability for the AI system using algorithms from the AIX360 library,

seeks the optimal combination of these algorithms to increase trustworthiness, and

aims to identify which algorithms are particularly well suited to the context of
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skin cancer classification. These questions drive the quest for AI models that are

not only functionally effective, but also more transparent and accountable in their

predictions.
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2. Theoretical Background

The following chapter presents the theoretical background necessary to understand

the topics of machine learning, artificial intelligence, and explainable AI.

2.1. Machine Learning Concepts

ML, a subfield of AI, uses algorithms to recognise patterns in data and refine deci-

sions over time, constantly improving the capabilities of computer systems.

Deep learning, an evolution of ML, uses large neural networks to analyse data and

make predictions independent of human intervention. ML’s widespread applications

range from pattern recognition and computer vision to finance and medicine. [10]

The following subsections provide a brief overview of important ML concepts.

2.1.1. Convolutional Neural Networks

Figure 2.1.: Schematic representation of a CNN architecture with the composition of
two convolutional and corresponding pooling layers, followed by a fully
connected layer and an output layer, specifically designed for image
processing tasks. [11]

5
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CNNs are specialised neural networks designed for image processing. Their ability

to learn and recognise patterns and features in images, even when these patterns

are not immediately obvious to the human eye, makes them particularly suitable

for image and audio identification, recognition and processing tasks. Able to handle

large amounts of data, CNNs scale effectively to handle complex tasks. [12]

In CNNs, several types of layers work together, each with different properties, as

shown in Figure 2.1, without the flatten layer [13], [14]:

• Convolutional Layer (Conv2D): This layer learns local features of an image

through kernels or filters, creating feature maps.

• Pooling Layer (MaxPooling2D): By reducing the spatial size of the feature

maps, this layer controls the number of parameters and computational cost,

and helps prevent overfitting.

• Flatten Layer: This layer transforms the two-dimensional feature maps into

a one-dimensional vector to be used as input for the fully connected layers.

• Fully Connected Layer (Dense): This layer connects each neuron in one

layer to every neuron in the next, allowing learning from distributed feature

data. This layer can also be used as the final output layer when paired with an

appropriate activation function, such as softmax for multi-class classification

or sigmoid for binary classification tasks.

• Dropout Layer: To prevent overfitting and provide a form of model averag-

ing, this layer temporarily removes random neurons during training.

2.1.2. Evaluation Metrics

Evaluation metrics are crucial in determining the performance of a ML model. There

is a wide variety of these metrics, each suitable for different application needs. The

type of classifier used for the model also plays a critical role in choosing the right

metric.

6
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Classifiers can differ in the number of labels or classes into which they can divide

the data [15]:

• Binary classifiers are used to categorise data into one of two unique classes.

For example, an image showing a skin lesion could be classified as either benign

or malignant, a binary yes/no case.

• Multiclass classifiers are used when data needs to be categorised into more

than two classes. For example, an image of a skin lesion can be classified into

one of seven possible skin lesion types.

• Multilabel classifiers come into play when data is labelled with multiple

descriptors. For example, an image of a skin lesion might have multiple labels

indicating the location, the type of disease, and the gender and age of the

patient.

The metrics described in this section are primarily used in the context of binary

classifiers. However, the same metrics can be applied in a multiclass context where

each class is evaluated separately.

Figure 2.2.: Diagram showing the structure of a confusion matrix for binary classi-
fication, showcasing the distribution of True Positives (TP), True Neg-
atives (TN), False Positives (FP), and False Negatives (FN). [16]

First, a confusion matrix is created, similar to the one shown in Figure 2.2. This

matrix illustrates the relationship between the predicted and actual classes. True

Positives (TP) and True Negatives (TN) represent cases that were correctly pre-

dicted, while False Positives (FP) and False Negatives (FN) represent cases that

were incorrectly predicted by the model.

7
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From this, several key metrics can be calculated [15]:

• Precision is a measure of the proportion of positive predictions that are

actually correct:
TP

TP + FP

• Recall is a measure of the proportion of actual positive cases that were cor-

rectly predicted:
TP

TP + FN

• Accuracy is a measure of how often the model makes correct predictions:

TP + TN

TP + FN + TN + FP

• F1-score is a combination of precision and recall, and is calculated as the

harmonic mean of precision and recall:

2TP

2TP + FP + FN

Choosing the right metric is critical, as it depends heavily on the type of data and

the specific problem at hand. Inappropriate metrics can lead to incorrect results. In

certain contexts, precision or recall may be more important, and so models should

be trained to perform better on one or the other.

For example, in the medical sector, models should prioritise high recall over preci-

sion. While false positive predictions may be somewhat tolerable, a high number

of false negatives is unacceptable. The primary goal in healthcare is to identify all

individuals with a particular condition, so it is vital to optimise the model for high

recall. [17]

8
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2.2. Artificial Intelligence Concepts

AI is at the forefront of technological advancement, embodying machine capabilities

that mimic human intelligence. It uses data analysis to influence modern technology,

including smart devices and voice assistants. Techniques such as natural language

processing and computer vision are fundamental to AI, speeding up decision-making

and automating tasks. [10]

The following sections provide an overview of some important concepts in AI.

2.2.1. Definitions

The following subsection defines key terms frequently used in the field of XAI, focus-

ing in particular on the concepts of interpretability, explainability and transparency.

[18], [19]

2.2.1.1. Interpretability

Interpretability refers to the ability to make the outputs or decisions of an AI system

understandable and meaningful to human users. Rather than delving into the techni-

cal details of the system, interpretability emphasises the communication of essential

and actionable insights derived from the AI’s decisions. It involves translating the

results of the AI system into concepts that are understandable and relevant to the

human user, helping them to make informed decisions.

2.2.1.2. Explainability

Explainability encompasses the methods and techniques used to present and explain

the decisions or actions of an AI system. It involves demonstrating the specific

processes and factors that led to a decision, typically in a detailed and technical

manner. It may involve outlining the steps of an algorithm, illustrating the impact of

different parameters, or revealing the significance of different input characteristics. It

is often aimed at making the operation of the AI system understandable to technical

practitioners, who can use this insight to analyse and improve the system.

9
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2.2.1.3. Transparency

Transparency refers to the degree to which the inner workings of an AI system are

open to observation. It involves providing insight into the underlying mechanisms

of the AI, including data inputs, algorithms and decision-making processes. Trans-

parency focuses on revealing how the AI system works, without necessarily simpli-

fying or contextualising it for non-expert users. It aims to promote accountability

and trust by ensuring that nothing in the AI system is hidden or mysterious.

2.2.2. Explainable AI

XAI represents an important shift in the field of AI. XAI is designed to provide

clear and understandable explanations of its decision-making process. This feature

is combined with a set of specialised tools and frameworks that help users to interpret

and understand the predictions made by their ML models. The importance of XAI

is particularly evident in areas such as healthcare, where decisions made by AI can

have a huge impact on patient outcomes.

The key difference of XAI is its ability to bring explainability, interpretability and

transparency to AI systems. It provides users with a deeper understanding of the

decision-making process of these systems, making AI less of a black box and more

accessible. It allows users to understand how and why an AI system reaches con-

clusions or predictions, building a sense of trust among experts, developers and end

users.

In addition, the use of XAI supports better decision making. The ability to assess

the validity of AI-generated results enables users to make more informed decisions,

adding another layer of trust to the AI system’s predictions. The transparency and

clarity provided by XAI helps identify and correct potential errors or biases in the

AI system or its data. This benefit is key to building more reliable and transparent

models.

As AI continues to expand across industries, explainability, interpretability and

transparency have become not only ethical but also regulatory requirements. XAI

meets this need by providing clear insight into how AI systems operate, helping or-

10
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ganisations to remain compliant and reduce the risk of legal or ethical complications.

[20]
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2.3. XAI Concepts

This section explains the taxonomy required for XAI and also provides a comprehen-

sive overview of the available AIX360 algorithms, both those that are implemented

in the course of this thesis and those that are not.

2.3.1. Taxonomy

Figure 2.3 provides a visual representation of the XAI algorithm taxonomy presented

in this chapter. This tree diagram serves as a guide to help users navigate through

the AIX360 algorithms.

Each decision point in the tree asks a question that corresponds to different expla-

nations, allowing users to find an XAI algorithm that suits their specific needs and

applications. Some algorithms are applicable to models working with tabular, image

and text data, and some are specified for only one type of data.

Figure 2.3.: A visual representation of the taxonomy of AI Explainability 360 (AIX
360) algorithms that serves as a user guide to navigate through different
explanations and select the most suitable XAI algorithm. [21]

12
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The taxonomy uses several definitions for clarity [6]:

• Static explanations remain unchanged after user feedback, while interac-

tive explanations adapt to the user’s queries.

• Local explanations focus on a single prediction, while global explanations

provide an overview of the model’s behaviour.

• Directly interpretable models are inherently understandable, whereas post-

hoc explanations require an helper method after training. Self-explaining

models generate local explanations but may not be directly interpretable.

• A surrogate model is an interpretable model that approximates a more

complex model, while visualisations are not complete models themselves,

but highlight specific aspects.

While the taxonomy is not intended to be perfect or complete, it aims to provide

a simple, comprehensive guide to AIX 360 algorithms that is suitable for different

users. Algorithms that are not currently represented in the toolkit are marked with

a question mark.

2.3.2. XAI Algorithms

This section provides a brief overview of the existing XAI algorithms. However, it’s

important to note that not all of these algorithms will be used for implementation.

The suitability of an algorithm depends very much on the specific characteristics of

the data and the model. Careful consideration must therefore be given to selecting

the most appropriate algorithm for each particular application. The latest version

of the AIX 360 toolkit contains or links to the following algorithms [6], [22]:

ProtoDash ProtoDash [23] is an interpretability technique that selects represen-

tative and diverse samples to summarise a data set or explain a particular test

instance. This algorithm also learns non-negative importance weights for each of

the selected samples, further helping to understand the structure of the data set

and the reasoning behind certain predictions.

13
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DIP-VAE The Disentangled Inferred Prior Variational Autoencoder (DIP-VAE)

[24] is a model that learns high-level independent features from images that may

carry semantic interpretation. The strength of this model lies in its ability to iso-

late and represent complex features, contributing to a better understanding and

explanation of image analysis.

LIME Local Interpretable Model-agnostic Explanations (LIME) [25] is a widely

used interpretability algorithm that provides local explanations of model predic-

tions. LIME generates explanations by locally approximating the model’s decision

boundary and explaining the factors that contribute positively or negatively to a

given prediction.

SHAP SHAP (SHapley Additive exPlanations) [26] is an interpretable algorithm

that assigns each feature an importance value for a given prediction. It does this

by using game theory principles, specifically Shapley values, which provide a unified

measure of feature importance.

CEM The Contrastive Explanations Method (CEM) [27] generates local explana-

tions by identifying what is minimally sufficient to maintain the original classifica-

tion, and what should necessarily be absent. It helps to generate easily interpretable

insights, thereby improving the understanding of model predictions.

TED Training data set-based Explanation (TED) [28] is an explainability frame-

work that uses domain-relevant explanations from the training data set to predict

both labels and explanations for new instances. Its implementation, known as the

Cartesian product, is the most basic version of TED. This approach facilitates a

coherent understanding of new predictions based on past data, increasing the trans-

parency and interpretability of the AI system. TED was not used due to a lack of

documentation on its implementation.

BRCG Boolean Decision Rules via Column Generation (BRCG) [29] is a algo-

rithm for learning small, interpretable Boolean rules in disjunctive normal form for

14
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binary classification tasks. This approach facilitates comprehensible decision rules

and promotes greater transparency in model predictions. This algorithm is not

implemented as it is specified for tabular data.

GLRM Generalised Linear Rule Models (GLRM) [30] are powerful regression

models that learn a linear combination of constraints through a generalised lin-

ear model (GLM) link function. GLRM supports a range of link functions such

as identity and logit, making it a versatile tool for modelling and understanding

real-valued data. GLRM is not implemented as it is specified for tabular data.

ProfWeight ProfWeight [31] is an algorithm that adjusts the weights of the train-

ing set, based on a given interpretable model and a high-performing complex neural

network. By retraining the interpretable model on this reweighted training set,

ProfWeight can improve the performance of the interpretable model, providing bet-

ter predictions while maintaining interpretability. This algorithm was not used due

to incompatibilities with the implemented model.

2.3.3. XAI Metrics

Recognising the need for effective evaluation tools, the AIX 360 toolkit includes

two notable metrics designed to evaluate the performance of selected algorithms.

These metrics not only allow users to quantify the efficiency of an algorithm, but

also provide valuable insights that can be used to further refine and enhance the

underlying models. [32]

Faithfullness The faithfulness metric [33] is designed to assess the relationship

between the importance of an attribute, as determined by the interpretability algo-

rithm, and the impact of that attribute on the overall performance of the predictive

model. Ideally, an attribute assigned a higher importance would have a proportion-

ately higher impact on model performance and vice versa. This evaluation is done

by progressively eliminating attributes that are marked as important and observ-

ing the subsequent effect on model performance. The final step is to calculate the
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correlation between the importance (weights) assigned to the attributes and their

respective impact on model performance.

Monotonicity The monotonicity metric [34] quantifies the impact of individual

attributes on the performance of the predictive model by progressively including

each attribute according to its order of importance. As each attribute is added,

a corresponding increase in model performance should be observed, resulting in a

monotonic increase in performance. In essence, this metric monitors the evolution of

model performance as more influential attributes are introduced, thereby assessing

the effectiveness of the model’s feature prioritisation.
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2.4. Skin Cancer Use Case

This section aims to provide comprehensive details of the skin cancer use case. The

knowledge provided here will form the basis for understanding and further building

a skin cancer classifier.

2.4.1. Conventional Skin Cancer Diagnosis

Conventional skin cancer diagnosis revolves around visual inspection techniques.

The Skin Cancer Foundation’s recommendations emphasise the importance of monthly

self-examinations coupled with annual professional examinations to detect potential

skin cancers [35].

If a healthcare professional identifies an area of concern during these checks, a more

detailed examination will follow. During this assessment, the dermatologist will

look at various characteristics of the suspicious spot, such as its size, shape, colour

and texture, as well as any signs of bleeding or scaling. The examination may also

include nearby lymph nodes, which will be examined for any abnormal enlargement.

A key tool often used by dermatologists is a dermatoscope, a hand-held magnifying

device that allows detailed examination of the epidermis and underlying layers. If

areas of concern are found, a biopsy may be performed, where a sample of the

suspicious skin lesion is taken and sent to a laboratory for further analysis. If a

biopsy confirms the presence of skin cancer, the dermatologist will discuss the type

of cancer and possible treatment options with the patient.

Overall, the current paradigm in skin cancer diagnosis places a strong emphasis on

early detection in order to minimise the cost and extent of treatment and maximise

the chances of a successful outcome. While effective, this traditional approach may

benefit from improvements or innovations in diagnostic technology such as AI. [36]

2.4.2. Skin Cancer Types

Figure 2.4 shows a visual representation of the diverse types of skin lesions, with

each class depicted by a randomly selected image from the data set.
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Figure 2.4.: Exemplary illustration of seven classes of skin cancer, each represented
by a randomly selected image, showing the variety of appearance and
characteristics of different types of skin cancer.

The following provides an overview of the different types of skin lesions relevant to

the skin cancer use case and the data set that was later implemented [37]:

• Actinic Keratoses and Intraepithelial Carcinoma / Bowen’s Disease

(akiec): Actinic keratoses are scaly, rough patches on sun-exposed skin that

can progress to invasive squamous cell carcinoma. Intraepithelial carcinoma,

also known as Bowen’s disease, is a non-invasive variant of squamous cell

carcinoma characterised by red, scaly patches. Both lesions can be caused

by exposure to UV light or human papillomavirus infection, and both have

pigmented variants.

• Basal cell carcinoma (bcc): BCC is a common type of epithelial skin cancer

that rarely metastasises but is destructive if left untreated. It occurs in several

morphological variants, including flat, nodular, pigmented and cystic.

• Benign keratosis-like lesions (bkl): These lesions include seborrhoeic ker-

atoses, solar lentigo and lichen planus-like keratoses. They are biologically

similar and can have a varied dermoscopic appearance. Lichen planus-like

keratoses are particularly challenging as they can have morphological features

that mimic melanoma.

• Dermatofibroma (df): Dermatofibromas are benign skin lesions that occur

either as a result of benign proliferation or as an inflammatory response to

minimal trauma. They are characterised by peripheral reticulation with a

central white patch indicating fibrosis.

• Melanoma (mel): Melanoma is a malignant neoplasm derived from melanocytes

and can occur in a variety of forms. They are often chaotic in appearance and

some melanoma-specific criteria depend on the anatomical site.
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• Melanocytic nevi (nv): Commonly known as moles, these are benign neo-

plasms of melanocytes that occur in many variants. They are usually sym-

metrical in colour and structure.

• Vascular lesions (vasc): This category includes a variety of conditions in-

cluding cherry angiomas, angiokeratomas, pyogenic granulomas and haemor-

rhages. Angiomas are characterised on dermoscopy by red or purple colour

and solid, well-circumscribed structures known as red clots or lacunes.

Understanding the differences between different skin lesions is critical because mis-

classification by AI models can lead to inaccurate diagnoses and inappropriate treat-

ment plans. By recognising the unique characteristics of each lesion type, model

performance can be better evaluated, potential areas of confusion can be identified

and algorithms can be refined to improve diagnostic accuracy, ultimately ensuring

more effective patient care.

2.4.3. AI Skin Cancer Diagnosis

AI is making progress in the field of skin cancer diagnosis, with several research

papers demonstrating its effectiveness and potential for real-world applications.

One study, published in Nature, describes how AI-based algorithms for classifying

suspicious skin lesions were implemented in a mobile health (mHealth) app. In 2019,

a large Dutch health insurer offered 2.2 million adults free access to this mHealth app

for skin cancer detection, and the impact on dermatological healthcare consumption

was retrospectively examined. This study reported that users of the mHealth app

had more claims for (pre)malignant skin lesions than controls (6.0% vs 4.6%). There

was also more than three times the risk of claims for benign skin tumours and nevi

for mHealth users compared to controls (5.9% vs 1.7%). [38]

In addition, researchers at MIT have developed an AI system that uses deep con-

volutional neural networks (DCNNs) to improve early detection of melanoma, a

type of skin cancer responsible for over 70% of all skin cancer-related deaths. The

system uses wide-field photography, common in most smartphones, to quickly and

effectively identify suspicious pigmented lesions (SPLs), an early sign of skin cancer.

The AI system was trained on a large data set of wide-field images and achieved over
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90.3% sensitivity in distinguishing SPLs from non-suspicious lesions, skin and com-

plex backgrounds. This AI tool demonstrates the potential of computer vision and

deep neural networks to achieve accuracy comparable to expert dermatologists, pro-

moting more efficient dermatological screening in primary care and enabling earlier

treatment of melanoma. [39], [40]

2.4.4. Imaging Technologies

Effective use of AI in medicine and healthcare, particularly in dermatology, requires

accurate handling of medical data. Depending on the specific type of image or der-

matological use case, the AI model needs to be developed and fine-tuned accordingly.

Some of the commonly used medical images in dermatology and broader medical

contexts include the following [41]:

• Digital images are taken with digital cameras or scanners and stored digi-

tally. In dermatological imaging, these images often document skin conditions

or other external parts of the body. When combined with other imaging tech-

niques such as ultrasound, they can also provide images of internal organs or

structures.

• X-rays use radiation to create images inside the body. Common applica-

tions include visualising bones and fractures and screening for certain types of

cancer, such as lung cancer.

• Magnetic Resonance Imaging (MRI) uses strong magnetic fields and ra-

dio waves to produce detailed images of the body’s internal structures. MRI is

particularly useful for imaging soft tissues such as the brain, spinal cord and

joints.

• Computed Tomography (CT) scans use X-rays and computer technology

to produce detailed 3D images of the body’s internal structures. CT scans are

usually used to help diagnose injuries and diseases of the head, chest, abdomen

and pelvis.

• Positron emission tomography (PET) scans use radioactive tracers to

produce images of the body’s metabolic activity. They are often used to detect
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and monitor the progression of cancer and to diagnose conditions such as

Alzheimer’s disease.

• Ultrasound uses high-frequency sound waves to create images inside the

body. Typical applications include monitoring foetuses during pregnancy and

diagnosing conditions such as heart disease and blood clots.

A particular feature of medical data, such as images or videos, is the metadata

used to identify the patient and the examination in which the data was generated.

Metadata in medical images provides important contextual information about the

image and the patient, including patient identification, imaging parameters, clinical

context, quality assurance, and privacy and security information. This information is

essential for proper interpretation of the image, ensuring patient safety and privacy,

and maintaining image quality and consistency over time. [42]
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3. Methods

The methodology of this thesis is divided into three primary segments: implementing

the skin cancer classification model, implementing the XAI algorithm, and evaluat-

ing.

Firstly, the implementation of the skin lesion classification model is described, in-

cluding an analysis of the data used, its selection and pre-processing, the architecture

of the model, its training process and the model evaluation.

Secondly, the implementation of the selected XAI algorithms is presented. This

includes both data and model explanation algorithms, focusing on specific imple-

mentations such as ProtoDash, DIP-VAE for data explanation and LIME, SHAP

and CEM for model explanation.

Finally, the evaluation procedures for these implementations are described, focusing

on criteria such as runtime, simplicity, interpretability/explainability, and stability.

These distinct but connected segments provide a comprehensive insight into the

research process, each contributing to the overall goal of improving the explanatory

power of AI in skin cancer classification.

3.1. Implementation of the skin lesion

classification model

This chapter discusses the methodology used to develop an AI model for skin cancer

classification. The approach includes analysis of available data, selection of ap-

propriate data sets, data pre-processing, and model implementation. Methods to

evaluate and validate the performance of the model, such as performance metrics,
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are also considered.

3.1.1. Data

A high-quality data set is an important foundation for any ML model. The quality

of a data set determines both the effectiveness of model training and the accuracy

of its predictions for new cases. Given the sheer volume of freely available data sets,

it is crucial to evaluate and test them before committing to a data set.

Data sets can vary greatly in terms of data volume and classifier types. In the

context of skin cancer, binary classifiers distinguish between malignant and benign

lesions, while multi-class classifiers distinguish between different types of malignant

or benign skin lesions.

The two data sets used in the implemented models were selected based on an analysis

of the International Skin Imaging Collaboration (ISIC) image data sets [43]. This

study evaluates different data sets by comparing factors such as duplicate images,

data enhancement and number of images.

Duplicate images can lead to misleading results, as the presence of identical images

in both the training and test sets can inflate the accuracy. The primary goal should

be to learn patterns from one image and apply them to new images.

In an attempt to create a more comprehensive training set, data sets with a diverse

representation of patient images of different skin colours were examined. Unfortu-

nately, the data sets found were lacking in both quality and quantity. A notable

example is the Diverse Dermatology Images (DDI) data set curated by Stanford

AIMI [44]. However, this data set contains a mere 656 images, making it unsuitable

for the purpose. This decision, although difficult, was made in order to mitigate po-

tential bias arising from an inadequate number of images. It’s worth acknowledging

that this choice could lead to a bias towards lighter skin tones, potentially limiting

the universal applicability of the developed solution to all skin types.

23



3.1. Implementation of the skin lesion classification model Celina Homa

3.1.1.1. ISIC 2019 Data Set

The ISIC 2019 data set comprises 25,331 dermoscopic images covering nine differ-

ent diagnostic categories, namely actinic keratosis, basal cell carcinoma, dermatofi-

broma, melanoma, melanocytic nevus, benign keratosis, squamous cell carcinoma,

vascular lesions and none of the others. [45]

Figure 3.1.: Distribution of disease types in the ISIC 2019 data set. The vertical
axis represents the number of cases, while the horizontal axis shows the
labels. The graph provides insights into the prevalence of each disease
type, with ’nev’ being by far the most common, followed by ’mel’, ’bcc’
and ’bkl’.

Figure 3.1 shows the distribution of these diagnostic categories within the ISIC 2019

data set. The variety of conditions represented in the data allows for a comprehensive

analysis of different skin diseases. This will aid in the development and validation

of robust diagnostic models that can handle a wide range of skin conditions. [46],

[47]

3.1.1.2. HAM10000 Data Set

The HAM10000 (Human Against Machine with 10000 training images) data set was

collected over a period of 20 years and includes dermoscopic images from Austria
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and Australia. In addition to cell type, the data set includes patient information

such as gender, age and location of the pigmented lesion. Although these details do

not directly affect the performance of the model, they provide valuable insight into

the quality of the data set. [37]

(a) Age distribution of pa-
tients, showing a notable
prevalence in the 40-50
years bracket.

(b) Gender distribution in
the data set, indicating a
higher representation of
males.

(c) Image acquisition loca-
tion distribution, reveal-
ing a dominance of back
and lower extremities.

Figure 3.2.: Visual representations of the demographics of the HAM10000 data set,
including distributions of age, gender and image capture location.

The data set contains seven initial classes: actinic keratosis, basal cell carcinoma,

benign keratosis, dermatofibroma, melanocytic nevi, melanoma and vascular skin

lesions. The age, sex and location distribution of these classes is shown in Figure

3.2 and the original distribution is shown in Figure 3.3a. The characteristics of each

class are discussed in the subsection 2.4.2.

It was originally presented in the ISIC 2018 Challenge [43]. However, for the sake of

clarity and consistency, it will be referred to exclusively as HAM10000 rather than

ISIC 2018 throughout this thesis.

3.1.1.3. Data Set Selection

For the purposes of this thesis, a conscious decision was made to use the HAM10000

data set over the ISIC 2019 data set. Both data sets provide valuable resources for

understanding and classifying skin lesions. However, given the specific requirements

of this thesis, the HAM10000 data set proved to be a more appropriate choice.
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One of the most compelling reasons for this choice is the diversity and quality of the

HAM10000 data set. This compilation consists of a wide range of dermatoscopic

images of skin lesions obtained from a variety of institutions including hospitals,

clinics and private practices. The broad representation in this data set reflects

the diversity encountered in real-world scenarios, enhancing the practicality and

relevance of the developed model.

Another key benefit of the HAM10000 data set is the thorough pre-processing and

curation it has undergone. This careful preparation has effectively weeded out du-

plicate and poor quality images. This care ensures that the data set used to train

the model is free from potential sources of error, providing a more accurate rep-

resentation of the data distribution, which in turn increases the reliability of the

resulting model.

A notable advantage of the HAM10000 data set that influenced the selection is the

availability of the data in a CSV file format containing the pixel values of the im-

ages. This format significantly reduces computation time, which is important given

the scope of this thesis, which involves the processing and analysis of large amounts

of data. The practical benefits of this accelerated computation are numerous, con-

tributing not only to the efficiency of the research process, but also to the timely

delivery of our results.

3.1.2. Preprocessing

Imbalanced data is a common problem in many real-world scenarios. Although

such distributions often accurately reflect the actual distribution, they can pose a

challenge to models that aim to learn patterns across different classes. In particular,

for extreme imbalances, classes with fewer samples run the risk of being treated as

noise, potentially leading to inaccurate predictions. [48]

This challenge is present in the HAM10000 data set, where there is a significant class

imbalance between different disease types, as illustrated in Figure 3.3a. For example,

the melanocytic nevus (nv) class contains 6,705 images, representing approximately

two-thirds of the entire data set. To mitigate this imbalance, the technique of

oversampling was used with the primary aim of preserving the data and maximising
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(a) Initial distribution of disease types show-
ing a clear predominance of the ’nv’
class.

(b) Disease type distribution after oversam-
pling, showing an equal number of sam-
ples across all classes.

Figure 3.3.: Comparison of disease type distributions before and after applying over-
sampling to address class imbalance.

the use of the limited data set size. As the HAM10000 data set is not particularly

large, oversampling allows the model to utilise the full data set, thereby increasing

its learning capacity and improving its performance over a wider range of data.

Oversampling essentially involves duplicating the instances of underrepresented classes

until they equal the size of the largest class, ensuring a more balanced distribution.

It essentially acts as a countermeasure against the model overlooking or misclassi-

fying these underrepresented classes during the learning process. The distribution

of disease types after oversampling can be seen in Figure 3.3b.

3.1.3. Model

A CNN was developed to classify skin lesion images into seven different classes. This

chapter describes the architecture, training and evaluation of the model. The code

implemented to build this model is in the Appendix A.2.1.
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3.1.3.1. Model Architecture

Figure 3.4.: Visual representation of the implemented model architecture. The
model is composed of four Conv2D and MaxPooling layers, one Flatten
and Dropout layer, and two Dense layers. Visualisation generated with
VisualKeras [49].

The CNN used in this thesis is shown in Figure 3.4. This model follows a sequential

architecture, i.e. it consists of a linear stack of layers. Each layer receives the

transformed input from the previous layer and performs additional transformations.

The architecture of the model in focus can be structured as a sequence of several

core layers, including Convolutional layers (Conv2D), MaxPooling layers (MaxPool-

ing2D), a Flattening layer (Flatten), Dense layers, and a Dropout layer. These layers

are organised into a cascade that transforms and refines the input image through

multiple stages, ultimately leading to the classification output.

Convolutional and MaxPooling Layers The model starts with a Conv2D

layer, which acts as a convolutional layer with 64 filters and a kernel size of 3x3.

Each filter processes a specific portion of the input image, applying a transforma-

tion determined by the weights of the kernel filter. This transformation produces

a feature map that captures the filtered aspects of the original image. This layer

is followed by a MaxPooling2D layer, which reduces the spatial dimensions of the

feature map, thereby reducing the computational complexity of the model. This

pooling layer works by sliding a 2x2 filter over the feature map and extracting the

maximum element from the area under consideration.

This pair of layers (Conv2D and MaxPooling2D) is repeated, but the Conv2D layer

is extended to include 128 filters. This modification allows the model to recognise
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more complex patterns within the data. Similar to its predecessor, this Conv2D layer

is followed by a MaxPooling2D layer, which further reduces the spatial dimensions

of the feature map.

Two further iterations of the Conv2D and MaxPooling2D pair follow, each time

increasing the number of filters within the Conv2D layer (first to 256, then to 512).

These increases allow the model to recognise even more complex patterns. Each is

followed by a MaxPooling2D layer to limit the spatial size of the feature map.

Flattening, Dense, and Dropout Layers Upon completion of the Convolution

and Pooling layers, the architecture applies a Flatten layer. This layer restructures

the 2D matrix data into a column vector and prepares the processed features for the

subsequent Dense layer.

The first Dense layer, a fully connected layer of 1024 units, performs the task of clas-

sifying the extracted features. Before the final layer, a Dropout layer is introduced

as a form of regularisation. It helps to prevent overfitting by randomly dropping a

fraction of the input units during each update in the training phase.

The final layer in the architecture is another Dense layer, this one with seven units.

Each unit corresponds to one of the seven output classes.

3.1.3.2. Model Compilation and Training

The data was split into training and test sets using the train test split function,

with an 80:20 split, meaning the training data is 80% and the test data is 20% of the

original data. This ratio was chosen to ensure that a significant amount of data was

used to learn the underlying patterns, while still leaving enough data for testing. To

maintain reproducibility of results over multiple runs, the random state parameter

was set to 1.

During training, the model used an exponential decay learning rate strategy. Start-

ing with an initial learning rate of 0.0001, it systematically decreases the learning

rate at a decay rate of 0.9 every 1000 steps. This adaptive learning rate strategy pro-

motes an efficient optimisation process, allowing faster convergence at the beginning

of training when learning rates are higher, and promoting stability towards the end
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of training by lowering the learning rate, thereby improving the overall performance

of the model.

The Adam optimiser, known for its efficiency and balance between speed and qual-

ity of convergence, was selected for training. It was set with a clipvalue of 1.0, a

measure introduced to limit the size of the gradient values and prevent the com-

mon problem of gradient explosion, which could potentially destabilise the learning

process.

The model incorporated L2 regularisation, a popular technique used to prevent

overfitting by adding a penalty proportional to the square of the size of the weights.

This encourages the model to favour smaller and more distributed weight values,

allowing the model to learn simpler, more generalisable patterns from the data.

A ModelCheckpoint callback was defined to continuously monitor the model’s perfor-

mance on the validation data during training. This mechanism, set to save the model

with the highest validation accuracy, ensures that the best model observed during

training is retained, providing an additional level of assurance against overfitting.

For the actual training, the fit function was used with the input set to the training

data and corresponding targets. The model was trained for 20 epochs, each epoch

representing a complete pass through the entire training data set. The weights of

the model were updated after each batch of 64 samples, a size chosen to strike a

balance between computational efficiency and accuracy of gradient estimation.

A crucial aspect of the training strategy was the inclusion of a validation split of

0.2. This means that 20% of the training data was set aside, unseen during training,

and used solely to track the model’s performance on non-training data, thus aiding

in the early detection of overfitting and the tuning of model parameters.

The model has a significant learning capacity, with a total of 2,083,463 parameters.

This large parameter space demonstrates the model’s ability to learn and capture

complex patterns in the data.
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(a) The training (blue) and validation (or-
ange) accuracy of the model, showing a
consistent increase over 20 epochs.

(b) The training (blue) and validation (or-
ange) loss of the model, showing a
steady decrease over 20 epochs.

Figure 3.5.: Evolution of model accuracy and loss over 20 epochs, indicating effective
learning without significant overfitting or underfitting.

3.1.3.3. Model Evaluation

The generalisability of the model, i.e. its ability to perform well on unseen data,

was assessed on the validation set. This gave a relatively low loss of 0.4520 and

an high accuracy of 0.9595. The validation performance metrics are shown as the

orange lines in Figures 3.5a and 3.5b. In contrast, the performance on the training

set is represented by the blue lines in the same figures.

The model’s high accuracy and relatively low loss suggest successful learning and

reliable prediction of the different classes. The generalisation ability of the model,

as demonstrated by its performance on the validation set, suggests its potential to

provide reliable and interpretable explanations when subjected to XAI algorithms.

Therefore, this model provides a robust foundation for future efforts aimed at im-

proving the interpretability of AI models in the context of skin cancer classification.

The performance of the model is further highlighted by the confusion matrix shown

in Figure 3.6, where the diagonal elements represent correct predictions for each

class, demonstrating the efficiency of the model in classifying different types of

lesions. It is worth noting that classes 0, 1, 3 and 5 were predicted with no misclas-

sifications.

Classes 2 and 4 have a handful of misclassifications, especially with each other and
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Figure 3.6.: Confusion matrix illustrating the model’s predictions. The diagonal
cells correspond to correctly predicted cases for each class, indicating a
good prediction performance by the model.

with class 6. Although class 6 has the highest number of misclassifications with

class 4, the overall performance of the model remains solid.

The classification report shown in Figure 3.7 further confirms the strong performance

of the model.

The precision, recall and F1-score metrics are consistently high across all classes.

The model achieves near perfect precision and recall for classes 0, 1, 3 and 5, each

accompanied by an F1-score of at least 0.99. Classes 2 and 6 also show relatively

good results, with F1-scores of 0.93 and 0.94 respectively. Despite the slightly lower

F1-score of 0.89 for Class 4, the overall performance is still remarkable.

This consistent and high performance across different classes strengthens the case

for the model’s effectiveness and confirms its suitability for testing different XAI

algorithms, demonstrating reliable predictions across different disease classifications.
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Figure 3.7.: Classification report showing the model’s performance metrics - recall,
precision, and F1-score for each class. The depicted results reflect the
model’s effective performance across different classes.

The visualisation in Figure 3.8 shows a randomly selected sample of 25 predictions

made by the model, all of which were correctly classified. Each cell in the grid

represents a single prediction, with the associated image, predicted and true class.

This figure provides a concrete visual understanding of the model’s performance,

illustrating its accuracy and ability to correctly classify instances.
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Figure 3.8.: Grid display of the model’s predictions for 25 randomly selected images
from the test data set. The model accurately predicted the correct class
for every single image, demonstrating its strong performance on diverse
instances.

3.2. Implementation of existing XAI Algorithms

The following subsections detail the implementation of XAI algorithms provided by

the AIX360 toolkit. These algorithms cover both data and model explanation.

3.2.1. Data Explanation

This section shows the implementation of two XAI algorithms, ProtoDash and DIP-

VAE, to gain insight into the data set and its images.
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3.2.1.1. ProtoDash Implementation

The ProtoDash implementation (Appendix A.2.2) allows the identification of influ-

ential prototype instances for each class within the data set. The process starts with

data preparation, where the data set is read and split into features and labels. The

feature data is then normalised using sklearn’s StandardScaler for more effective

interpretation by the ProtoDash Explainer.

The next step is to select instances. The core of the ProtoDash approach is to

iterate through each unique class label in the data set. For each unique label, the

corresponding instances are isolated and stored in a variable called label data . A

representative instance for the current class label is selected from label data . This

instance is transformed and stored in instance to explain .

After selecting the instance, a ProtoDash explainer is initialised. This is done using

the ProtodashExplainer() constructor. The explainer’s explain function is called,

which in turn identifies the top ten ( m=10 ) prototype instances from label data .

These instances have the highest weights in terms of instance to explain .

The process continues by mapping the indices of the selected prototypes within

label data back to their original positions in the whole data set. This mapping

results in a variable called selected indices . This is an essential step in maintaining

the context and traceability of the prototypes within the original data set.

In the data collection phase, each set of selected indices is collected into a tuple

along with their respective weights and current labels. This tuple is then appended

to the list of label prototype indices . This sequence is repeated for each of the

seven unique label within the data set.

Finally, the identified influential prototypes for each class are visualised. The images,

labels and weights of selected prototypes are retrieved and a grid structure is created

to display each prototype, its associated class, ID and weight.

3.2.1.2. DIP-VAE Implementation

The DIP-VAE implementation (Appendix A.2.3) starts with the preparation of the

HAM10000 skin cancer dataset. The ISICDataset object, which encapsulates the
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skin cancer data and its dimensions, is instantiated with the necessary arguments,

including root images path , file path labels and batch size .

A dictionary is created for setting up the model hyperparameters for both the DIP-

VAE and the baseline VAE models. Attributes such as activation type , num filters ,

latent dim , num channels , image size and step size , among others, are defined

within these dictionaries.

In the case of the DIP-VAE, the hyperparameters lambda diag factor and lambda offdiag

are carefully set; these control the regularisation of the DIP-VAE, while for the base-

line VAE they are set to zero, resulting in a less constrained latent space.

The next step is to load the pre-trained model parameters. The function load trained model

is used to create the path from which the pre-trained model parameters are loaded,

using the previously defined model hyperparameters.

Using the loaded models and the ISICDataset object that loads the HAM10000 data

set, DIPVAEExplainer instances are then instantiated for both the DIP-VAE and VAE

models. These explainers perform model reconstructions and latent traversals for

individual instances in the data set, visualising the behaviour of the model.

In the next step, the extract latens function is used to derive the latent representa-

tions from the DIP-VAE model. Each of these latent representations, together with

its corresponding label, forms a class-specific distribution of latent values.

Finally, the process of identifying influential features for each class in the dataset is

carried out. This is achieved by examining the distribution of latent values of each

class, which is visualised to show the separation or overlap of classes in latent space.

These distributions, along with the corresponding labels, are stored in a structured

format for further analysis.

It was decided to work with the original high-resolution images from the HAM10000

data set, rather than the pixel values from the CSV file, which gives a better insight

into the characteristics of the different types of skin cancer represented in the data

set. However, this is only the case for the DIP-VAE algorithm as it is designed to

work with image data.
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3.2.2. Model Explanation

This section demonstrates the implementation of three XAI algorithms, namely

LIME, SHAP and CEM, to gain insight into the model’s decision-making process.

Each of these algorithms provides a different perspective on the model output, con-

tributing to a comprehensive understanding of how the model works.

3.2.2.1. LIME Implementation

The first step in the implementation (Appendix A.2.4) is to create an instance of

LimeImageExplainer() . This object is used to explain the predictions made by the

model on the test images.

Next, a specific test image is selected for the explanation process. This is done by

indexing the X test array which contains all the test images. The index of the image

to be explained is set to 0, i.e. the first image in the test set is selected, but this

index can be changed to any image in the range of the test data.

Then the actual label of the selected test image is retrieved from Y test and stored

in the variable actual label . The predicted label is obtained by applying the

predict fn function (which represents the prediction model) to the test image . The

output of this function is a probability distribution over all the classes, and np.argmax

is used to select the index of the maximum value corresponding to the most likely

class according to the model’s prediction.

Finally, the explain instance function of the explainer object is called to gener-

ate the explanation for the test image . The function takes several arguments: the

test image , the prediction function ( predict fn ), the number of top labels to con-

sider in the explanation ( num classes ), which is seven), a colour to hide in the

explanation ( hide colour ), and the number of samples to use to generate the ex-

planation ( num samples ). The generated explanation is stored in the explanation

variable and will be visualised later.
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3.2.2.2. SHAP Implementation

In the implementation of the SHAP algorithm (Appendix A.2.5), a set of background

examples is selected from the training data, X train . These examples, stored in

background , are randomly selected without replacement and serve as the basis for

the expectation calculation.

The DeepExplainer is then constructed using the trained model and the selected

background instances as inputs. This DeepExplainer , stored in e , is used to explain

the model’s predictions using SHAP values.

To compute the SHAP values for a particular test image , the shap values function

of e is called. This function returns the SHAP values for test image that describe

the contribution of each feature to the prediction. Finally, the images are visualised.

This implementation of SHAP allows the predictions of the model to be interpreted

at an instance level, providing insight into the individual contributions of features.

3.2.2.3. CEM Implementation

The implementation of the CEM algorithm (Appendix A.2.6) begins by selecting

a particular test image to explain, in a similar way to the previous explanation

algorithms.

The first step in the CEM algorithm is to create an instance of the CEM explainer

object. This instance, stored in cem , is initialised with the trained prediction model

( model ), the desired output shape ( shape ), and the number of possible classes

( num classes ).

Next, the prediction of the model for test image is calculated using the predict fn

function and the result is stored in predicted label . This is the label that will be

used as the target for the CEM explanation.

Then the explain function of the cem object is called, with the test image and the

predicted label as inputs. The function also takes a number of optional parame-

ters, such as num samples , which controls the number of counterfactual samples to

generate, beta , which determines the strength of the L1 regularisation term, and

max iterations , which sets a limit on the number of optimisation steps to take. The
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generated explanation, which includes both the counterfactual and the perturbation,

is stored in the variable explanation .
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3.3. Evaluation

This section comprehensively covers the evaluation methodology adopted in this

thesis, starting with the specific criteria identified for assessing the performance of

the implemented XAI algorithm.

3.3.1. Evaluation Procedure

The evaluation procedure for the XAI algorithms implemented in this thesis involves

testing and analysis using four different evaluation criteria. These criteria have been

carefully selected to provide a comprehensive assessment of the effectiveness and

reliability of each XAI algorithm. They cover a wide range of aspects including

runtime, simplicity, interpretability/explainability (local vs. global) and stability.

However, not all evaluation criteria are equally applicable or measurable for every

XAI algorithm. The suitability of each criterion may depend on several factors,

including the nature of the algorithm, the specific design goals it was intended to

achieve, and the problem context in which it is used.

It is important to clarify that the faithfulness and monotonicity metrics from the

AIX360 toolkit were not used in the evaluation process. Despite being potentially

valuable metrics, their application to the skin cancer classifiers proved challenging

due to insufficient documentation. Attempts to apply these metrics encountered

difficulties, resulting in unreliable results. Therefore, to ensure the reliability and

accuracy of the evaluation, emphasis was placed on other metrics that could be more

confidently applied and measured.

3.3.2. Evaluation Criteria

This subsection provides a detailed explanation of each of the evaluation criteria

used in this thesis. The selection and design of these measures aim to ensure a

comprehensive assessment of the XAI algorithms under evaluation.
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3.3.2.1. Runtime

Evaluating the runtime of each XAI algorithm is an essential aspect of understanding

its performance and efficiency.

This is done using Python’s built-in time module, specifically its perf counter()

function [50]. This function provides a performance counter defined as a clock with

the highest resolution available to measure a short duration.

Each algorithms explain function is run a hundred times to record a series of runtime

measurements. From this series, the minimum, maximum, average and standard

deviation of the runtimes are calculated. This provides a thorough understanding

of the runtime behaviour of each algorithm, capturing the potential variability in

their execution times and ultimately allowing a comparison of their performance

efficiency.

3.3.2.2. Simplicity

In real-world scenarios, the simplicity of an XAI algorithm is critical, as complexity

can potentially hinder usability and practical deployment. To evaluate simplicity,

two key factors are considered.

The first is hyperparameter tuning, as algorithms that require fewer hyperparame-

ters to be adjusted generally embody a greater degree of simplicity. The process of

tuning a large set of hyperparameters can be both complex and time consuming.

The second factor is the complexity of the integration. The simplicity of an XAI

algorithm can also be measured by the ease with which it can be integrated into

existing models. Those algorithms that require minimal changes to the structure or

training process of a model are considered simpler.

3.3.2.3. Interpretability/Explainability

Interpretability and explainability, as defined in Section 2.2.1.1 and 2.2.1.2, are criti-

cal metrics for measuring the understandability of explanations generated by an XAI

algorithm. It is intended for a variety of audiences, including developers, domain
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experts, i.e. dermatologists, and end users, and assesses the clarity, comprehensi-

bility and relevance of the explanations. However, while interpretability may be

more useful to a user, explainability is also very valuable to domain experts and

developers.

The evaluation involves an in-depth analysis of the explanations provided by the

XAI algorithm using sample outputs. The interpretability of these explanations is

measured by the ability to understand the outputs. Explainability is measured by

the way in which it helps to understand the model’s decisions.

In addition to general interpretability, the type of interpretability - local versus

global - is also assessed. Local interpretability refers to detailed insights for indi-

vidual cases that shed light on specific data points. Global interpretability aims to

provide an overarching understanding of the overall patterns or structures of the

data set.

These aspects of interpretability and explainability are measured by analysing the

explanations provided by the XAI algorithms output.

3.3.2.4. Stability

Figure 3.9.: A randomly selected image to illustrate the data augmentation tech-
niques used to generate new images with subtle adjustments to noise,
brightness and contrast.

Stability is a key attribute for any XAI algorithm, reflecting its reliability and consis-

tency in generating explanations even when exposed to small variations in the input.

To assess stability, subtle changes are made to an image, such as slight changes in

brightness and contrast, or the addition of minimal noise. An illustration of such

image augmentation, achieved using the imgaug library [51], is shown in Figure 3.9.
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For each of these altered images, explanations are produced using the XAI algorithm

under investigation. These explanations are then compared with those generated

for the original unmodified image. A high degree of consistency in the explana-

tions, despite the minor changes to the image, indicates robust stability for the XAI

algorithm. This feature is particularly important to ensure the reliability of the ex-

planations, especially in dynamic environments where the input data may undergo

small disturbances or changes.

For algorithms that support it, quantitative measures such as percentage agreement,

mean absolute difference (MAD) or correlation were calculated over a period of 20

runs. The choice of measures depended on the data provided by each algorithm,

allowing a more specific and tailored assessment of their stability.
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4. Results

This chapter presents the results obtained from the evaluation of the implemented

XAI algorithms on the basis of the defined metrics, and also provides a brief sum-

mary.

4.1. Evaluation of the XAI Algorithms

The following sections evaluate the performance of each of the XAI algorithms,

namely ProtoDash, DIP-VAE, LIME, SHAP and CEM. The evaluation will focus

on the previously outlined metrics to provide a comprehensive assessment of each

algorithm’s performance.

4.1.1. ProtoDash Evaluation

Runtime As shown in Table 4.1, the runtime results demonstrate the compu-

tational efficiency of the ProtoDash algorithm over a number of iterations. The

algorithm shows its usefulness with an average runtime of 0.3031 seconds. The

recorded maximum and minimum times, 0.9356 seconds and 0.1335 seconds re-

spectively, provide an insight into the variation of the algorithm’s performance over

different runs. A standard deviation of 0.2649 seconds, although relatively high con-

sidering the magnitude of the runtimes, indicates a moderate level of consistency

in the algorithm’s execution time across iterations. The ProtoDash algorithm thus

exhibits a blend of speed and consistency, which enhances its usability in real-world

applications.
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Measure Runtime (seconds)
Average 0.3031
Maximum 0.9356
Minimum 0.1335
Standard Deviation 0.2649

Table 4.1.: Runtime measurements for the ProtoDash algorithm over 100 iterations.

Simplicity The first factor considered, hyperparameter tuning, assesses the sim-

plicity of an algorithm based on the number and complexity of hyperparameters

that need to be tuned. ProtoDash scores remarkably well in this respect, as it only

requires the tuning of a single hyperparameter, m . This parameter, which deter-

mines the number of prototypes to be returned, can be easily adjusted according to

the specific needs of the use case, contributing significantly to the overall simplicity

of the ProtoDash algorithm.

The second factor, integration complexity, reflects the ease with which an algorithm

can be integrated into existing models. In this context, ProtoDash demonstrates an

excellent level of simplicity. The implementation of the algorithm does not require

extensive modifications to the existing model framework or training pipeline. On

the contrary, it can be seamlessly applied to the model post hoc, operating primarily

on the input data and predictions. This, combined with the straightforward data

preparation process involving normalisation and the simple use of the algorithm

itself, underlines the simplicity and ease of integration of ProtoDash.

Interpretability/Explainability The ProtoDash algorithm, with its emphasis

on interpretability, is able to generate understandable explanations for a wide range

of audiences, from developers to domain experts to end users.

As shown in Figure 4.1, the algorithm identifies ten prototype images for each class,

which are distinguished by a spectrum of different attributes such as shape, size and

colour. This diverse representation is indicative of ProtoDash’s superior local inter-

pretability. In essence, it provides detailed insights for individual cases, improving

understanding at a granular level, which is an essential facet of interpretability.

This detailed output is valuable to domain experts such as dermatologists, allowing

them to identify patterns and anomalies in a practical context. Similarly, developers
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Figure 4.1.: Top ten images determined by ProtoDash weights for each class. The
ID and corresponding weight for each image is shown below each image.

can use this detailed interpretability to improve models or algorithms by focusing

on the most important features. In addition, end users without extensive techni-

cal knowledge can benefit from ProtoDash’s visually appealing prototype images,

which help them to understand the underlying logic behind certain decisions or

classifications.

However, it’s important to remember that ProtoDash is primarily designed for local

interpretation. Although it is adept at revealing the specifics of individual data
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points, it may not be as good at providing insight into global patterns or overarching

data structures. Therefore, caution should be taken when extrapolating broad trends

from these individual prototypes.

In addition, ProtoDash’s weighting system contributes significantly to its inter-

pretability. By comparing images with high and low weights, it is possible to identify

the features that the model considers important, thereby clarifying the decision-

making process. In addition, these weights provide an insight into class diversity,

where a wider range of weights may indicate diverse prototypes within a class, while

a narrower range may indicate more homogeneous characteristics.

Stability Figure 4.2 shows the application of the ProtoDash algorithm to each

modified image. The algorithm identifies the images with the highest weights and

uses them as explanations. Remarkably, ProtoDash selects the same images as the

most significant explanations for both the original image and its brightness-adjusted

counterpart, suggesting a degree of stability in response to brightness variations.

Figure 4.2.: Different iterations of a reference image, including the augmented im-
ages and their corresponding ProtoDash explanations, showing the high-
est similarity between the original and the brightened images.
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However, when the image is subjected to other changes, such as random noise or

contrast changes, ProtoDash presents a different set of images as explanations. This

pattern, seen across several test images, suggests that while ProtoDash has some

stability in response to brightness changes, its consistency is somewhat compromised

when dealing with other types of image transformations.

In particular, the image with the highest weight in the last row after contrast ad-

justment is not even the original image, as that was the case for the noise-added and

brightness-adjusted images, indicating the different effects these transformations can

have on the ProtoDash explainer.

4.1.2. DIP-VAE Evaluation

Runtime The runtime results shown in Table 4.2 encapsulate the efficiency of the

DIP-VAE algorithm as measured over multiple iterations. The average runtime of

212.6028 seconds indicates that the algorithm’s performance requires a significant

amount of time, while the maximum and minimum times of 214.3217 seconds and

210.5328 seconds respectively show the range of variation. The standard deviation

of 1.2460 seconds shows the consistency of the running time over several iterations.

Measure Runtime (seconds)
Average 212.6028
Maximum 214.3217
Minimum 210.5328
Standard Deviation 1.2460

Table 4.2.: Runtime measurements for the DIP-VAE algorithm over 100 iterations.

Simplicity The simplicity of the DIP-VAE algorithm was evaluated based on its

implementation and configuration.

In terms of hyperparameters, DIP-VAE has several that need to be defined and

possibly tuned. These include the number of latent variables, the type of encoder and

decoder networks, and the lambda coefficients used to enforce the disentanglement

of the latent variables. This list is supplemented by parameters such as model args ,
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data set , net and cuda available , which must be initialised when creating a DIP-

VAE explainer. When performing latent space edits on images, parameters such as

input images , edit dim id , edit dim value and edit z sample must also be provided.

Although DIP-VAE offers great flexibility, this multitude of hyperparameters can

complicate the tuning process, which can affect the simplicity of the algorithm.

In terms of integration complexity, DIP-VAE is designed with a certain degree of

flexibility. Its structure, consisting mainly of an encoder and decoder network,

allows it to be integrated with different types of generative models. In addition,

DIP-VAE is implemented separately from the model to be explained, keeping the

explanation process separate from the model’s operations. When using GPUs, the

cuda available parameter can be set to true to take advantage of the computational

efficiency of GPU acceleration. While these features increase compatibility with

various use cases, the need for specific components such as the encoder and decoder

networks in the generative model may require certain changes to the model structure,

potentially complicating the integration process.

Interpretability/Explainability In terms of global interpretability, DIP-VAE

excels at providing detailed insight into individual data points through latent traver-

sals, as shown in Figure 4.3. This process involves varying a single latent at a time

while keeping others fixed, which helps to understand the relationship between dif-

ferent generative factors and the output.

The ability of DIP-VAE to uniquely capture important skin lesion characteristics,

such as ’diameter’ in the fifth dimension, ’border’ in the zeroth dimension, and

’asymmetry’ in the first dimension, is evident in these latent traversals. This very

nuanced understanding allows domain experts, such as dermatologists, to make gran-

ular observations and interpretations about skin lesion characteristics.

In addition, this level of global interpretability helps developers refine their models

or algorithms to focus on these significant features. By focusing on these critical

features, they can improve the predictive accuracy and performance of their models,

thereby increasing the utility of DIP-VAE in skin cancer diagnosis.
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Figure 4.3.: DIP-VAE latent traversal derived from the decoder’s output.

Figure 4.4 illustrates the global interpretability of DIP-VAE, using box plots to

highlight recognisable patterns of latents across different skin lesion classes. Each

vertical line represents a dimension, like the y-axis in Figure 4.3. For example, the

first dimension, which seems to capture the ’asymmetry’ trait, shows that classes

such as ’mel’ and ’bcc’ show lower activation, whereas classes such as ’akiec’ and

’bkl’ show higher average activation, suggesting a greater sense of asymmetry.

These visualisations and interpretations can help end users, who may not be im-

mersed in the technical intricacies, to gain a holistic understanding of the different

lesion classes. Therefore, these insights enhance the interpretability of DIP-VAE

and promote a more comprehensive understanding of the model’s decisions in skin

cancer diagnosis.
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Figure 4.4.: Patterns of latents across classes visualised using DIP-VAE.

When considering metrics of interpretability/explainability, DIP-VAE excels in pro-

viding clear, pertinent and meaningful explanations. The relevance of these insights,

aligned with the understanding of each stakeholder - developers, domain experts and

end users - not only makes the explanations understandable, but also validates the

interpretability/explainability of DIP-VAE in the context of skin cancer diagnosis.

Stability In the context of this thesis, a stability assessment for DIP-VAE was not

undertaken. As the DIP-VAE model was used primarily for its global interpretability

capabilities, a measure of stability is not readily applicable or particularly meaning-

ful. Therefore, an assessment of stability, which typically involves the generation of

explanations for subtly modified versions of the original images, was not performed

for DIP-VAE within the context of this thesis.

4.1.3. LIME Evaluation

Runtime The Table 4.3 presents the measures of the runtime of the LIME al-

gorithm, which provides an insight into its computational efficiency over different

iterations. An average runtime of 0.9887 seconds indicates a commendable speed of

operation, demonstrating its effectiveness in delivering timely results. The recorded

maximum and minimum runtimes are 1.1476 seconds and 0.9223 seconds respec-

tively, indicating the range of its performance in terms of speed across different

executions. With a standard deviation of 0.0505 seconds, the algorithm shows a re-

markable consistency in its running time, which reinforces its reliability in delivering

timely results over multiple runs.
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Measure Runtime (seconds)
Average 0.9887
Maximum 1.1476
Minimum 0.9223
Standard Deviation 0.0505

Table 4.3.: Runtime measurements for the LIME algorithm over 100 iterations.

Simplicity The simplicity of the LIME algorithm was evaluated by observing its

implementation and configuration.

In terms of hyperparameter tuning, LIME presents a simple interface with only two

primary hyperparameters to adjust: num samples and num features . The num samples

parameter dictates the number of samples to be used to build the local surrogate

model, while num features controls the number of interpretable features to be pre-

sented in the explanation. Both parameters can be easily adjusted to match the

complexity of the model and the level of detail required for the explanation, con-

tributing to the overall simplicity of the algorithm.

In terms of integration complexity, LIME has a high degree of simplicity due to its

model agnostic nature. It can be seamlessly integrated into any ML model without

requiring changes to the model architecture or training procedures. As shown in the

provided implementation, LIME is applied directly to the prediction function of the

trained model ( model.predict ), keeping the explanation generation process separate

from the model’s own operations. This separation facilitates the easy integration

of LIME, thereby increasing its overall simplicity. Thus, LIME stands out as an

accessible and adaptable tool in the field of XAI.

Interpretability/Explainability The utility and effectiveness of the LIME al-

gorithm lies in its ability to provide interpretable and explainable results. For devel-

opers, domain experts and end users alike, understanding the reasoning behind the

model’s decisions is paramount. LIME addresses this need through its visually ori-

ented local interpretability, as shown in Figure 4.5. Each image dissects the model’s

responses to specific inputs, highlighting influential areas within the image that led

to a particular classification.
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(a) LIME explanation for an instance with congruent true and predicted classes
of 3. The highlighted regions indicate class-relevant areas, demonstrating the
local interpretability of LIME.

(b) LIME explanation for an instance with both true and predicted classes as 4.
The explanation distributes the areas of influence evenly across two classes,
demonstrating LIME’s ability to handle nuanced scenarios.

(c) LIME explanation for an instance where the true and predicted class are 2.
The presentation of both positive and negative class contributions illustrates
LIME’s ability to distinguish between influential and non-influential regions.

(d) LIME explanation for an instance with a true class of 6 and a predicted class
of 4. Equally marked classes suggest a closely contested decision, providing
insight into why the wrong class was chosen.

Figure 4.5.: Various examples of LIME explanations showing its diversity. The high-
lighted red and green areas represent positive and negative contributions
respectively, demonstrating how different regions of the input influence
the prediction.

This local interpretability provides an valuable perspective for domain experts such

as dermatologists, enabling them to examine individual cases, patterns and potential

anomalies within skin lesions. The feature-wise explanations provided by LIME can

also guide developers in refining their models or algorithms, allowing them to place

more emphasis on certain influential regions. At the same time, for non-technical

end users, the visual highlighting of significant image regions will enhance their

understanding of the rationale behind certain predictions.
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The various LIME explanations in Figure 4.5 also highlight the adaptability of the

algorithm in dealing with different prediction scenarios. For example, Figure 4.5a

shows how LIME skilfully illuminates influential areas when the true and predicted

classes match. On the other hand, Figure 4.5b shows a situation where the model

considers two different classes equally, demonstrating LIME’s ability to capture such

nuances. Furthermore, Figure 4.5c illustrates LIME’s ability to distinguish between

influential and non-influential regions within the same image, regardless of class.

Figure 4.5d shows a LIME explanation for a case where the actual class is 6, but the

predicted class is 4. Despite the discrepancy in classification, LIME’s explanation

shows that the decision for the incorrect class was equivalent to the correct one, as

both classes are equally emphasised in the image. This demonstrates LIME’s ability

to provide insight into cases of incorrect predictions, proving to be a useful tool for

debugging models and understanding misclassifications.

However, while LIME excels at providing detailed local interpretations, it is not

explicitly designed to provide global interpretations, i.e. broader trends or patterns

across the data set. It is important to interpret these local explanations with caution

when attempting to infer global trends or generalised behaviour of the model.

In terms of interpretability and explainability, LIME excels at making the AI’s

decision-making process more transparent and relatable. Its local interpretability

and explainability are critical in scenarios where understanding and trusting the

decisions of the AI system are paramount.

Stability The stability of LIME’s explanations is assessed by applying it to var-

ious modifications of a single image, as shown in Figure 4.6. This includes the

original image and its modified versions subjected to noise, brightness and contrast

adjustments. Remarkably, all of these images were accurately classified as Class 4.

The consistency of LIME’s explanations across the image transformations was as-

sessed using binary masks. In these masks, each pixel was assigned a binary value

of either 1 or -1. Pixels labelled ’1’ represented significance in the class prediction

as determined by LIME, while ’-1’ represented insignificance.

The percentages given represent the degree of agreement between the original im-
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(a) Original image with its LIME explanation.

(b) Noise image and corresponding LIME explanation.

(c) Brightness-adjusted image and corresponding LIME explanation.

(d) Contrast-adjusted image and corresponding LIME explanation.

Figure 4.6.: Different iterations of an image and their respective LIME explanations,
showing the highest similarity between the original and the noise cor-
rected images.

age and its modified versions. These were calculated over 20 iterations and pro-

vide a snapshot of the stability of the explanation, although more extensive testing

could provide a fuller understanding. The percent match for the original and noise-

adjusted image was 85.02%, 83.02% for the brightness-adjusted image, and 83.62%

for the contrast-adjusted image.

This measure was chosen instead of correlation coefficients because the binary nature

of the masks (consisting only of -1 and 1) made the calculation of correlations

impractical. Instead, the match percentage serves as an indicator of the degree

of agreement between the pixel importance assigned by LIME in the original and

modified images.
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4.1.4. SHAP Evaluation

Runtime The runtime performance of the SHAP algorithm is shown in Table 4.4.

Over multiple iterations, the algorithm produced an average runtime of 3.6854 sec-

onds, reflecting its reasonably efficient computational performance. The observed

maximum and minimum runtimes are 8.2580 and 3.3072 seconds respectively, indi-

cating potential variation in execution time across instances. A standard deviation

of 0.5357 seconds underscores this variability, highlighting the presence of a degree

of inconsistency in execution time across successive iterations. This suggests that

the performance of the SHAP algorithm may vary somewhat depending on specific

input characteristics or computational circumstances.

Measure Runtime (seconds)
Average 3.6854
Maximum 8.2580
Minimum 3.3072
Standard Deviation 0.5357

Table 4.4.: Runtime measurements for the SHAP algorithm over 100 iterations.

Simplicity When it comes to hyperparameter tuning, SHAP stands out for its

simplicity, with only a minimal set of user-defined parameters. The most impor-

tant configuration step is the selection of a set of background samples from which

to compute expectations. This is done by passing a subset of training samples to

the DeepExplainer constructor. In the given implementation, this subset was ran-

domly selected from the training set. The rest of the SHAP procedure, including

the generation of explanations for specific instances, does not require any additional

hyperparameter tuning. This feature makes SHAP a user-friendly explanation gen-

eration tool, especially for users who may not be highly skilled in hyperparameter

optimisation.

In terms of integration complexity, SHAP shines with its inherent simplicity, largely

due to its model-agnostic design. SHAP can be seamlessly integrated into any ML

model, avoiding the need to adapt the model’s architecture or training process.

In the demonstrated implementation, the DeepExplainer is initialised with the pre-

trained model and a set of background examples. An explanation for a given test
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image is generated by calling the shap values function on the explainer object,

effectively bypassing any interaction with the model’s internal operations. This

separation between the explanation process and the model’s mechanics enhances

SHAP’s ease of integration and contributes to its overall simplicity.

In addition, SHAP includes a user-friendly visualisation function, shap.image plot ,

which simplifies the interpretation of the generated explanations. This function

deftly manages the intricacies of visualising feature contributions, adding another

layer of ease to the use of SHAP.

Interpretability/Explainability The interpretability and explainability metrics,

which are central to assessing the effectiveness of any XAI algorithm, measure the

level of understanding associated with the algorithm’s explanations. Aimed at a va-

riety of stakeholders, including developers, domain experts such as dermatologists,

and end users, these metrics emphasise the clarity, comprehensibility and relevance

of the explanations.

SHAP stands out as an XAI algorithm that provides clear and understandable ex-

planations, as shown in Figure 4.7. Each visual representation explains the model’s

decisions by highlighting specific regions of the image that influence the predicted

class. This algorithm is visible in the colour coding scheme, where red indicates a

positive contribution, pushing the model output towards the predicted class, while

blue indicates a negative influence.

This detailed, colour-coded mapping provides a balanced blend of local and global

interpretability. It provides nuanced insight into individual cases, helping domain

experts such as dermatologists to identify patterns or anomalies in skin lesions.

At the same time, it provides an overview of the general behaviour of the model,

which developers can use to prioritise influential features when optimising models

or algorithms. The visual representation also simplifies the logic behind the model’s

decisions for end users.

The range of SHAP explanations shown in Figure 4.7 underlines the adaptability of

the algorithm to different prediction scenarios. Figure 4.7a shows SHAP’s ability to

highlight areas of influence when the true and predicted classes match. In contrast,

Figure 4.7b demonstrates SHAP’s ability to handle complex situations where the
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(a) A SHAP explanation showing an instance where the true and predicted classes
align as 3. This visualisation conveys a compelling and clear influence from a
specific class, highlighting the transparency of SHAP in local interpretability.

(b) A SHAP explanation for an instance where the true and predicted classes
are both 2. Despite the congruent class, the explanation unravels compara-
ble influence from different classes, demonstrating SHAP’s ability to handle
nuanced situations and balance between local and global interpretability.

(c) A SHAP explanation for an instance where both the true and predicted class
are 0. This visualisation highlights the positive and negative contributions of
each class, signifying SHAP’s ability to quantify the impact of features on the
model’s decision process.

(d) A SHAP explanation for an instance where the true class is 2, but the pre-
dicted class is 4. The visualisation outlines the similarities between the two
classes, providing insight into why the model incorrectly predicted the class.

Figure 4.7.: Various examples of SHAP explanations showing its diversity. The
color-coded regions, with red indicating positive SHAP values and blue
representing negative SHAP values, depict how distinct regions of the
input contribute differently to the model’s prediction.
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model considers two different classes equally. In addition, Figure 4.7c highlights

SHAP’s unique ability to quantify the impact of features, showing both positive

(red) and negative (blue) contributions to each class.

Figure 4.7d provides a SHAP explanation for a case where the model misclassifies

the true class as 4 instead of 2. Despite this misclassification, SHAP insightfully

reveals the closely contested decision between the two classes, providing valuable

understanding for troubleshooting such misclassifications.

Unlike LIME, which primarily provides localised interpretability, SHAP excels at

providing a more comprehensive view. It can provide aggregate interpretations, giv-

ing a broad perspective on how features collectively affect the model across multiple

instances. However, it’s important to avoid over-generalising these insights.

In terms of interpretability and explainability, SHAP makes a significant contribu-

tion to making AI decision making more transparent, which is helpful in contexts

where understanding and building trust in AI systems is essential.

Stability The stability of the SHAP algorithm’s explanations was assessed across

a series of modifications applied to a single image, as shown in Figure 4.8. This

analysis included the original image and its variants that underwent modifications

such as the addition of noise, brightness adjustment and contrast modification.

The Mean Absolute Difference (MAD) and correlations were used as key metrics to

measure the stability of the SHAP explanations amidst these image transformations.

These metrics were calculated over 20 iterations using the SHAP values derived from

the SHAP algorithm. While this provides an initial understanding of the stability of

the SHAP explanations, a larger number of iterations may provide a more complete

perspective.

The choice of MAD as a metric stems from its ability to effectively measure the

average size of the differences between two numerical collections, in this case the

pixel-level explanation values across the original and transformed images. Correla-

tion, on the other hand, represents the strength and direction of the relationship

between these pixel-level explanations.

For the noise corrected images, the MAD was 0.000158 with correlations ranging
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(a) Original image with its SHAP explanation.

(b) Noise image and corresponding SHAP explanation.

(c) Brightness-adjusted image and corresponding SHAP explanation.

(d) Contrast-adjusted image and corresponding SHAP explanation.

Figure 4.8.: Different iterations of an image and their respective SHAP explanations,
showing the highest similarity between the original and the contrast-
adjusted images.

from 0.836 to 0.947. Brightness-adjusted images had a higher MAD of 0.002088,

with correlations ranging from 0.517 to 0.926. Contrast-adjusted images, however,

showed the lowest MAD at 0.000119 and correlations ranging from 0.799 to 0.978,

indicating a remarkable degree of stability in the explanations of SHAP.
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4.1.5. CEM Evaluation

Runtime Table 4.5 shows the runtime results of the CEM algorithm for both

Pertinent Positive (PP) and Pertinent Negative (PN) over several iterations.

For the PP function, it shows an average runtime of 361.51 seconds, indicating a high

computational cost. The maximum and minimum times recorded are 923.53 seconds

and 292.22 seconds respectively, indicating a high degree of variability in the perfor-

mance of the algorithm over different runs. A standard deviation of 132.50 seconds

further illustrates this variability, implying significant inconsistency in running time

across iterations.

Measure PP Runtime (seconds) PN Runtime (seconds)
Average 361.5100 356.3295
Maximum 923.5313 869.1436
Minimum 292.2203 289.3256
Standard Deviation 132.4979 126.3662

Table 4.5.: Runtime measurements for the CEM algorithm (PP and PN) over 100
iterations.

The PN function shows similar results with an average run time of 356.33 seconds.

The maximum and minimum runtimes for PN are 869.14 seconds and 289.33 seconds

respectively. The standard deviation of 126.37 seconds indicates a similar level of

variation in run time to the PP function.

These results indicate that the CEM algorithm, both PP and PN, require signifi-

cant computational resources and that there is considerable variability in run time

performance between different instances.

Simplicity The simplicity of the CEM was investigated by evaluating its config-

uration and implementation process.

In terms of hyperparameter tuning, CEM requires a more complex setup. It in-

volves a considerable number of hyperparameters, including arg mode , arg max iter ,

arg init const , arg b , arg kappa , arg beta , arg gamma , arg alpha , arg threshold and

arg offset . Each of these hyperparameters controls a specific aspect of the expla-

nation generation process. While this large set of hyperparameters allows for a high
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degree of customisation and flexibility, it also makes the tuning process challenging

and potentially time-consuming. Furthermore, fine-tuning these parameters requires

an understanding of their respective roles in the CEM algorithm, adding another

layer of complexity.

In addition to these hyperparameters, CEM also includes an optional component

where an autoencoder can be trained to further refine the explanation process. Al-

though this option increases the adaptability of the algorithm, it may increase the

complexity of the preparation phase, as it requires separate training and optimisa-

tion.

In terms of integration complexity, CEM shows moderate simplicity due to its de-

sign, which operates separately from the original model. It does not require any

changes to the structure of the model or the training process. As a result, CEM can

be integrated with any pre-existing model without changing the model’s architec-

ture. This separation of the explanation generation process from the model’s own

operations ensures a straightforward and manageable integration process.

Interpretability/Explainability In the case of the CEM algorithm applied to

the skin cancer data set, the generation of meaningful explanations was unsuccessful,

as shown in Figure 4.9. The PP should have provided the minimum set of pixels

present in the image to classify it as class 4, and the PN should have shown the

pixels whose presence would change the classification of the original image to class

2. This lack of comprehensible explanations undermined the local interpretability

of the algorithm, as critical aspects such as clarity and task relevance could not be

properly defined.

Figure 4.9.: An instance of an unsuccessful CEM explanation.

This inability of CEM to produce individual, localized explanations also adversely
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affected its global interpretability. Without sufficient understanding of individual

cases, discerning overarching patterns or structures within the data set became

challenging. Thus, the overall behavior of the data, from a global perspective,

remained unclear.

The unsuccessful generation of explanations by CEM could be attributed to several

factors. The complexity of the skin cancer data set and model, the need for fine-

tuning the CEM hyperparameters, and possible inherent limitations of the CEM

algorithm when applied to this specific context could all contribute to this outcome.

Repeated attempts to adjust the hyperparameters failed to yield valuable explana-

tions from the CEM algorithm, thus limiting its interpretability and explainability

in this context. Consequently, with regards to the skin cancer data set, the CEM’s

performance in terms of interpretability and explainability was limited.

Stability In the case of the CEM algorithm used in this thesis, stability could not

be effectively evaluated due to the lack of meaningful explanations for the original

skin cancer images. Without a reference point in the form of an understandable

explanation for an original image, there was no baseline to compare with possible

explanations for slightly modified images. Therefore, the stability of the CEM in

response to small variations such as noise, brightness and contrast adjustments could

not be adequately assessed.

This limitation highlights the importance of generating meaningful explanations as

a prerequisite for assessing other characteristics of an XAI algorithm, such as stabil-

ity. Without an explanation for the original, unmodified image, assessing how this

explanation might change with small variations in the input becomes a challenging

task.
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4.2. Summary

This thesis evaluated five XAI algorithms, ProtoDash, DIP-VAE, LIME, SHAP,

and the CEM algorithm on four key metrics: runtime, simplicity, interpretability/-

explainability and stability.

ProtoDash showed high efficiency with an average run time of 0.3031 seconds. It

excelled in simplicity due to a single hyperparameter for tuning and easy model

integration. Although ProtoDash had excellent interpretability/explainability and

stability against brightness changes, it struggled with other image transformations.

DIP-VAE required significantly more computational resources, as reflected in its

average run time of 212.6028 seconds. While multiple hyperparameters added com-

plexity, it retained flexibility for integration. The interpretability/explainability of

DIP-VAE was robust, providing both local and global insights. However, its stability

was not assessed.

LIME demonstrated efficiency with an average runtime of 0.9887 seconds, and sim-

plicity through its minimal hyperparameters and model-agnostic nature. Its inter-

pretability/explainability was strong, producing detailed, visual and localised expla-

nations. LIME also showed good stability over different image transformations.

SHAP offered efficient computation with an average running time of 3.68 seconds. Its

simplicity was evidenced by minimal user-defined hyperparameters and easy model

integration. SHAP’s interpretability/explainability was robust, balancing local and

global insights. It also showed high stability, especially for contrast-adjusted images.

CEM, on the other hand, had long runtimes, averaging 361.51 seconds for PP and

356.33 seconds for PN. Despite its complex setup with multiple hyperparameters, it

was easy to integrate. However, CEM’s interpretability/explainability was limited as

it failed to generate meaningful explanations, which further limited the assessment

of its stability.
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5. Discussion and Outlook

The central aim of this thesis was to investigate the ability of the algorithms in

the AIX360 library to provide explainability for AI systems, with a particular focus

on the unique and complex use case of skin cancer classification. The aim was to

identify the optimal combination of these algorithms for improved explainability and

to identify specific techniques that are ideally suited to the intricacies of skin cancer

classification tasks.

In line with these objectives, it was found that each algorithm - ProtoDash, DIP-

VAE, LIME, SHAP and CEM - has unique strengths and weaknesses that can

significantly affect their suitability for skin cancer classification and other specific

applications.

ProtoDash proved to be an efficient, user-friendly algorithm with robust local inter-

pretability/explainability, making it a potential candidate for providing individual

case insights in skin cancer. However, it failed to capture global trends and its sen-

sitivity to various image transformations highlights the need for further algorithm

refinement to improve stability, as the images used were taken in circumstances

where small changes can occur.

DIP-VAE, despite its longer runtime and complexity, provided comprehensive inter-

pretability/explanability, highly useful in skin cancer cases where deep and detailed

understanding is critical. While its complexity of setup may be a challenge, its com-

patibility with different generative models extends its applicability in different skin

cancer classification models.

LIME stood out for its simplicity, runtime, interpretability/explanability and sta-

bility. Its localised interpretability may prove beneficial in medical imaging, partic-

ularly in skin cancer detection, where specific regions of the image are of interest.
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However, care should be taken not to extrapolate these localised findings to broader

conclusions.

SHAP proved to be an efficient, robust and versatile tool. Its balance between

global and local interpretability is a unique strength, making it very valuable for

skin cancer classification tasks where understanding individual cases and overall

patterns is crucial.

CEM faced significant challenges when applied to the complex skin cancer data

set. In particular, it fell short in terms of computational efficiency and weak inter-

pretability/explainability. However, its model-independent nature implies potential

in various applications, including skin cancer classification, after further refinement.

From a broader perspective, this analysis highlights that the selection of XAI al-

gorithms should consider not only their theoretical properties, but also practical

aspects such as data complexity, model structure and computational resources. In

terms of finding the optimal combination of algorithms to improve explanatory

power, this remains a complex matter and opens opportunities for future research.

It can be concluded that the ProtoDash, DIP-VAE, LIME and SHAP algorithms

from the AIX360 library show promising potential to provide sufficient explanatory

power for the challenging task of skin cancer classification. However, each algorithm

has shown unique strengths and weaknesses, suggesting that there is no single al-

gorithm that can make these systems completely trustworthy, but rather that the

combination of these algorithms greatly improves this aspect for all stakeholders.

In conclusion, while this work has shed light on the applicability of different XAI al-

gorithms for skin cancer classification, there is still a way to go to achieve AI models

that are not only effective, but also transparent and trustworthy. Future work should

focus on refining these XAI algorithms to better handle complex data sets such as

skin cancer, balancing simplicity, interpretability/explainability and stability. Ex-

ploring a wider range of algorithms and toolkits could open up new opportunities

to improve the trustworthiness of AI systems even further, particularly tailored to

the unique requirements of each use case, such as skin cancer classification.
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A. Appendix

A.1. Project management

A.1.1. Project assignment

• Type of Work: Bachelor’s Thesis

• Title: Evaluating XAI Algorithms in Skin Cancer Classification: A Path

towards Trustworthy AI Systems

• Description: In the forthcoming year, an EU regulation is expected to be

enacted that will require certification from an independent body for AI systems

used in safety functions. Existing approaches to developing and testing AI

systems have primarily revolved around questionnaires for certifiers. The next

step should therefore be to enable certification on a technical basis, to which

this work makes a contribution. This work can be carried out as follows:

1. Familiarisation with the topic of certification of AI systems.

2. Derivation of the necessary measures for a secure AI system.

3. Implementation of an AI system (alternatively: adaptation of an existing

system) taking into account the given development methods.

4. Planning of the testing of the system.

5. Testing of the system using existing tools.

– From this, the aspects that are not yet covered by the existing tools

can be derived, which can be used as an entry point for an optional

continuation of the work, in which suitable methods and/or a tool can
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then be implemented in order to then close these gaps.

• Prerequisites: Basic knowledge in Machine Learning, Interest in the inter-

play between implementation and related processes, methods, tools

• Agreement: Continuation of the PA

• Thesis Advisor: Monika Ulrike Reif

• Primary Supervisor: Monika Ulrike Reif

• Primary Subject Area: Machine Learning

• Additional Subject Areas: Data Analysis

• Degree Program: Computer Science

• Institute / Centers: Institute for Applied Mathematics and Physics (IAMP)

• Internal Partners: None

• English: Yes

A.1.2. Project plan

The following time schedule illustrates roughly the sequence and duration of each

phase of work during the development of this thesis. It provides an overview of the

project’s progression, from the initial preparation and research stages, through the

coding, writing and correction phases, to the final submission.
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Results
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5. Correction phase
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Check formatting
6. Submission phase
Export to PDF
Submit to Complesis
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