
Zurich University
of Applied Sciences www.zhaw.ch/engineering Study

Bachelor Thesis Computer Science
Building an Accessible and Affordable
Drone Monitoring System Based on
Remote ID

Authors

 Sebastian Brunner
Fabia Müller

Main supervisor

 Marc Rennhard, ZHAW

Industrial partner

 Cyber-Defence Campus, Zollstrasse 62, CH-8005 Zurich

External supervisors

 Llorenç Roma, Cyber-Defence Campus
Bernhard Tellenbach, Cyber-Defence Campus

Date

 09.06.2023

http://www.zhaw.ch/engineering

 Fabia Müller / Sebastian Brunner

 2

DECLARATION OF ORIGINALITY
Bachelor’s Thesis at the School of Engineering

By submitting this Bachelor’s thesis, the undersigned student confirms that this thesis is his/her
own work and was written without the help of a third party. (Group works: the performance of the
other group members are not considered as third party).

The student declares that all sources in the text (including Internet pages) and appendices have
been correctly disclosed. This means that there has been no plagiarism, i.e. no sections of the
Bachelor thesis have been partially or wholly taken from other texts and represented as the
student’s own work or included without being correctly referenced.

Any misconduct will be dealt with according to paragraphs 39 and 40 of the General Academic
Regulations for Bachelor’s and Master’s Degree courses at the Zurich University of Applied
Sciences (Rahmenprüfungsordnung ZHAW (RPO)) and subject to the provisions for disciplinary
action stipulated in the University regulations.

City, Date: Name Student:

Zurich, 09.06.2023 Fabia Müller

Zurich, 09.06.2023 Sebastian Brunner

Introduction

 3

Zusammenfassung

Die Anzahl Drohnen in der Luft haben in den vergangenen Jahren immer mehr zugenommen. Aus

diesem Grund haben die EU und die USA jeweils ein neues Gesetz verabschiedet, welches

Drohnen unter anderem dazu verpflichtet deren geografischen Standort und Informationen zum

Piloten zu versenden. Diese Information wird Remote ID genannt. Ziel dieses Gesetzes und der

Remote ID ist es, die Überwachung von Sicherheitsbereichen und Einrichtungen (z.B. Flughäfen

oder Gefängnissen) zu erleichtern. Die Remote ID wird unverschlüsselt übermittelt und ist daher

für alle zugänglich. Durch die baldige Einführung dieser Gesetze wird ein System benötigt, welches

Drohnen anhand ihrer Remote ID überwachen kann. In dieser Bachelorarbeit wir die Übertragung

via Wi-Fi, das Empfangen und das Extrahieren der Remote ID-Daten analysiert. Zusätzlich wird

eine Lösung für ein funktionales Drohnen-Monitoring-System vorgeschlagen, entwickelt und

getestet.

In der Bachelorarbeit wurde als erstes ein bereits bestehendes, von DJI entwickeltes System

namens AeroScope, analysiert und dokumentiert. Danach wurde der aktuelle Stand der Remote ID

inkl. Übertragungsmethoden, verschiedene Formate und deren Inhalt analysiert. Basierend auf

diesen Erkenntnissen wurden die Anforderungen für ein besseres System abgeleitet. Dieses

System soll im Vergleich zu AeroScope zugänglicher, preislich attraktiver und erweiterbar sein.

Zuletzt wurde noch die Architektur sowie die Implementation des besseren Systems diskutiert,

vorgestellt und ausgewertet.

Zum aktuellen Zeitpunkt gibt es kein vergleichbares System, welches Drohnen überwachen kann

und verschiedene Remote ID-Formate und Drohnenhersteller unterstützt. Der Code wird zur freien

Benutzung für die Öffentlichkeit zugänglich gemacht, was zur Weiterentwicklung einlädt.

Vorgesehen ist die Installation des Systems auf einem Raspberry Pi und kann dann via Tablet oder

Laptop verwendet werden. Dadurch ist das System im Vergleich zu AeroScope klein, günstig und

zugänglicher. Zusätzlich überwiegt es AeroScope auch hinsichtlich Leistung und

Benutzerfreundlichkeit. Das System ist jedoch in der Überwachungsreichweite eingeschränkt und

enthält noch gewisse kleinere Unschönheiten. Hinzu kommt, dass die Remote ID bei

Fehlkonfiguration oder an bestimmten Orten nicht versendet wird, was dazu führt, dass die Drohne

vom System nicht erkannt werden kann. Da aber das Verwenden des Standards bald gesetzlich

vorgeschrieben ist und Drohnenpiloten sich daran halten müssen, kann das System für die

Überwachung von kleineren Umgebungen bis maximal 150 Drohnen verwendet werden und dient

als exzellente Grundlage für zukünftige Erweiterungen.

 Fabia Müller / Sebastian Brunner

 4

Abstract

With the number of drones constantly increasing, the EU and the US are imposing policies that

mandate drones to broadcast their geographical position and pilot information known as

Remote ID. The purpose of this is to facilitate law enforcement in identifying and monitoring drones

to protect restricted areas and facilities, such as airports or prisons, and enforce compliance with

regulations. As this information is broadcasted unencrypted, it is openly accessible to everyone to

monitor. With these policies soon taking effect, systems to monitor drones are needed. In this

Bachelor thesis, the transmission method via Wi-Fi as well as the capturing and parsing of the

Remote ID is analysed, a solution is proposed, and a working monitoring system is implemented

and evaluated.

In a first step, an evaluation of an already existing monitoring system developed by DJI, AeroScope,

is conducted and documented. Next, the current state of Remote ID including its transmission

methods, different formats and content is analysed. Based on this, requirements for a better

system, which is more accessible, lower-priced, and extensible, are defined. And finally, the

architecture and implementation of a better system are discussed, demonstrated, and evaluated.

The developed application is, at the time of writing, the only existing system capable of monitoring

drones in real-time supporting various Remote ID formats and manufacturers. The code will be

publicly available and is extensible, making it free to use and open for contribution and

customisation. Intended to be installed on a Raspberry Pi and accessed via a tablet or laptop, the

system is smaller in size, lower-priced, and more accessible than AeroScope while outperforming

it in terms of performance and user-friendliness. However, the system is limited in its effective range

and carries some minor issues. In addition, some drones currently only broadcast a Remote ID in

certain configurations and locations, which in some cases makes them undetectable with the

current solution. Nonetheless, as the standard becomes mandatory and drone operators must

comply with it, the system may be used to monitor areas on a smaller scale with up to 150 drones

and offers a great basis for future extensions.

Introduction

 5

Table of Contents

1 Introduction ... 7

1.1 Background .. 7

1.2 Motivation / Goal .. 7

1.3 Outline .. 8

2 Related Work .. 9

3 Analysis .. 10

3.1 AeroScope ... 10

3.2 Identification of Drones ... 13

3.2.1 Remote ID ... 13

3.2.2 Wi-Fi Beacon Frame .. 13

3.2.3 ASD-STAN Standard Format ... 15

3.2.4 DJI Format .. 16

3.3 Requirements for an Improved System... 18

4 Technology and Architecture .. 20

4.1 Accessible and Easy-To-Use System ... 20

4.2 Capturing Wi-Fi Beacon Frames .. 21

4.3 Storing Captured Tracking Information ... 23

4.4 Displaying Drones on a Map ... 25

4.5 Architecture Overview .. 26

5 Implementation ... 28

5.1 Backend ... 28

5.1.1 Structure .. 28

5.1.2 API .. 30

5.2 Frontend ... 31

5.2.1 Structure .. 31

5.2.2 User Interface and Usage .. 32

5.3 Installation .. 39

 Fabia Müller / Sebastian Brunner

 6

5.4 Drone Spoofer .. 40

5.5 Extending the Application – LTE Extension .. 42

5.6 Extending the Application – Spoofing Detection Mechanism .. 46

6 Testing and Evaluation ... 48

6.1 Testing With Drones ... 48

6.2 Compatibility Across Devices ... 50

6.3 User-Friendliness and Ease-of-Use .. 50

6.4 Performance ... 51

7 Conclusion .. 53

7.1 Results ... 53

7.2 Future Work ... 57

8 Lists .. 59

8.1 List of References .. 59

8.2 List of Figures ... 60

8.3 List of Tables .. 61

8.4 List of Equations ... 61

8.5 List of Algorithms .. 61

8.6 List of Abbreviations ... 61

9 Appendices ... 62

Appendix A Extract of ASTM F3411-19 .. 62

Appendix B Bachelor Thesis Assignment ... 63

Appendix C Project Management ... 66

Appendix D GitHub Repository Structure ... 67

Introduction

 7

1 Introduction

The purpose of this chapter is to give a quick overview of how the Bachelor thesis originated, the

scope of the assignment and what is expected of the final product, namely a drone monitoring

system. Lastly, an outline for each chapter is presented as a preview.

1.1 Background

In 2006 the first use case of a drone being utilized for commercial purposes was reported [1]. Since

then, the number of drones has significantly increased. Currently, the U.S. Federal Aviation

Administration registers around 345’000 commercial drones and 530’000 recreational drones [2].

Unfortunately, not only the number of drones increased, but so has the number of incidents where

drones were used to transport illegal products or fly over restricted areas. According to DroneSec,

a company providing drone threat intelligence solutions, the number of incidents in 2022 increased

by 60 % compared to 2021, specifically from 708 to 1116 incidents [3]. Remote identification

(Remote ID) for drones is, therefore, essential for security. It describes a drone's ability to transmit

identification and location data to third parties while in flight. Authorities may track flying drones

and determine who is controlling them by using Remote ID standards.

SZ DJI Technology Co., Ltd. (DJI), being one of the major companies in the commercial drone

industry, created its own Remote ID solution, which has been included in the DJI model Mavic since

July 2017 [4]. Moreover, DJI developed a portable drone monitoring system called DJI AeroScope

Mobile (AeroScope), which can detect nearby DJI drones that broadcast Remote ID. AeroScope

is designed to be used as an additional security measurement for airports, government sites,

prisons as well as other important facilities [5].

1.2 Motivation / Goal

The main goal of this Bachelor thesis is the task of developing a drone monitoring system similar

in functionality to AeroScope. The system must be able to receive and display drone Remote ID

data which is sent unencrypted over 802.11 (Wi-Fi) broadcast. The motivation for a new drone

monitoring system lies in the limited usability and excessive cost of AeroScope. The drone

monitoring system developed in this Bachelor thesis aims to improve those issues.

Remote ID will be a requirement when manufacturing drones in the near future. Therefore, the

system must be able to detect not only DJI drones but at least one more drone manufacturer.

Parrot Drone SAS (Parrot) was defined as the second drone manufacturer in the assignment (see

Appendix B), as it complies with the European regulations of the Remote ID [6].

In contrast to AeroScope, the drone monitoring system must be accessible to a variety of different

communities and thus must be easy to use, affordable to operate and portable. The software must

be open for reviews, extensions, and comments by the developing community in later stages. For

that reason, the system will be open source.

 Fabia Müller / Sebastian Brunner

 8

1.3 Outline

This section serves as a quick overview of all the following chapters and thus contains a short

outline for each chapter.

Chapter 2: Related Work consists of a brief introduction of previous work and studies done on this

topic.

In Chapter 3: Analysis, the features of DJI’s AeroScope are analysed and requirements for an

improved system are gathered. In addition, it explains how a drone can be identified by its

Remote ID.

In Chapter 4: Technology and Architecture, the design and architecture of the new drone

monitoring system is documented. This includes decisions on which programming languages,

technologies and libraries will be used to capture and translate the Remote ID, store the

information, and display it in the frontend.

The implementation of the system is summarised in Chapter 5: Implementation. This includes the

structure and API of the backend and the structure and UI of the frontend. In addition, it contains

instructions on how to install the system, how drones can be spoofed using a script, and how to

easily extend the system to meet individual needs.

In Chapter 6: Testing and Evaluation, the usability of the developed system is examined with real

drones. Furthermore, the system’s performance limits are tested with a spoofing script, ease-of-use

and compatibility across different browsers are evaluated.

In Chapter 7: Conclusion, the results are discussed, Remote ID is critically reviewed, and potential

future work is listed.

Related Work

 9

2 Related Work

In this chapter, the findings of prior research on Remote ID, its standards, and DJI's proprietary

solution are presented.

DJI’s proprietary Remote ID protocols, and their flaws, have first been studied and discussed in

2017 by Department 13 [4], an Australian drone technology company. The study shows that

everyone with access to Wi-Fi and some technical know-how may receive the Remote ID protocols

and track DJI drones. They spoofed the transmitted drone ID by hacking into the drone itself,

reverse engineered the protocol, and implemented a simple tracking solution with Python.

Further research by Schiller et al. [7] in 2023 analysed the entire communication and information

system of DJI drones. The research shows that “only a single DroneID packet is required to locate

both the drone and the pilot” [7]. Furthermore, the pilot’s location, which is transmitted by the

smartphone application, can be spoofed by simply changing the phone’s GPS coordinates, and

there is no consistency or plausibility check performed by the drone itself. It additionally states in

the research that a future standard is being drafted, which has been finalized at the time of writing

this Bachelor thesis. Implementations for parsing said standard exist on GitHub including an

Android application [8], [9]. This standard, however, is currently not implemented in all devices and

not by all manufacturers.

At the same time, Dall’Omo [10] implemented and used a spoofer for DJI and Parrot drones as well

as a tracking prototype for DJI drones to research Remote ID’s and AeroScope’s vulnerabilities for

drone-specific attacks. That research is the basis for this Bachelor thesis with the purpose to

develop a drone monitoring system as mentioned in Section 1.2.

 Fabia Müller / Sebastian Brunner

 10

3 Analysis

In this chapter, AeroScope and its features are summarised. This is followed by an introduction into

Remote ID and its structure. Lastly, functional and non-functional requirements for an improved

system are derived from AeroScope’s features and the Remote ID standard. This serves as a basis

for the development of the drone monitoring system.

3.1 AeroScope

AeroScope, as mentioned in Section 1.1, is a drone monitoring system in the form of a portable or

stationary device. This Bachelor thesis focuses solely on the portable version, which allows its user

to locate DJI drones and their pilots within a 5 km range [11] by means of DJI’s proprietary

Remote ID. It is not able to capture or parse other formats. As AeroScope supports not only Wi-Fi

but also OcuSync and Lightbridge, and Wi-Fi usually reaches only as far as 2 km, the actual range

of AeroScope for Wi-Fi monitoring is most likely lower [12]. With a size of 40.5 cm x 32.7 cm x

17.5 cm and a weight of 8.5 kg [11], AeroScope is rather large. Figure 1 shows the device and its

dimensions.

Figure 1: DJI AeroScope Mobile [11]

Its features are simple yet not easy to use. The device contains a screen running Android, as

displayed in Figure 2, which allows the user to interact with the software via a touchscreen. On the

bottom left of Figure 2 the display shows a button list, which lists all the detected drones when

clicked.

17.5 cm

Analysis

 11

Figure 2: Screen of the portable version of AeroScope displaying a drone flight path [13]

Figure 3 shows an example of a pop-up window with data of a selected drone. It displays drone

information such as the serial number, longitude, and latitude. The selected drone view also

contains an option to replay previous flights. In such a replay the drone icon on the screen moves

along the path of the previously flown route and leaves a line indicating the path travelled.

 Fabia Müller / Sebastian Brunner

 12

Figure 3: AeroScope displaying drone information of a specific selected drone on the left side [14]

To summarise, the key features of AeroScope are the following:

• Interactive map with locations of detected drones and optionally their pilots

• Display of a list of all detected DJI drones within a 5 km range

• Display of details of selected drone

• Display of flight path of a specific drone (history) on map

Although most mobile-native users can figure out the basic gestures required to use AeroScope,

the UI’s responsiveness and expressiveness needs improvement. Furthermore, when put under

stress (e.g., through a spoofing attack), the application’s performance suffers significantly,

according to Dall’Omo [10]. During a test, conducted by Dall’Omo [10], with the use of 120 spoofed

drones, the performance dropped continuously until a restart of the application was required to

make it work again.

The most significant drawback of AeroScope is the costly investment of 7,900 Swiss francs [15] in

hardware that customers are required to make despite drone information being broadcast over

radio, which is freely accessible with a compatible (and rather low-priced) Wi-Fi adapter.

Analysis

 13

3.2 Identification of Drones

To be able to implement a drone monitoring system, one must first understand what Remote ID is,

how it is transmitted, and how it is constructed. In this section these three subjects are discussed,

beginning with what Remote ID is, followed by the structure of a transmission method, 802.11 Wi-Fi

Beacon Management frame (Wi-Fi Beacon frame), and lastly the structure of the Remote ID.

3.2.1 Remote ID

Remote ID allows other parties to receive information about the identification of a drone in flight, its

location, altitude, velocity, the pilot’s location and more [16]. As of 16 September 2023, it will be

mandatory in the USA to have a Remote ID-compliant drone system [16]. On 13 July 2022, the

American Society for Testing and Materials (ASTM) published “Standard Specification for Remote

ID and Tracking” [17] which defines transmission methods and message formats, among other

things. On 1 February 2023, AeroSpace and Defence Industries Association of Europe -

Standardization (ASD-STAN) published their own adaptation on regulating the Remote ID within

the EU, which is compliant with the American standard to ensure interoperability [6], [18]. On

24 November 2022, it was decided that the EU drone regulation will also be adopted in Switzerland

and will enter into force with a transitional period from 1 September 2023 [19]. Therefore, drones

will have to comply with it.

The focus of this Bachelor thesis is on Wi-Fi as transmission method and will be discussed in

Section 3.2.2. Therefore, no other transmission methods that are supported by the standards are

discussed. The message format, however, is crucial for the development of the drone monitoring

system, since it must be able to parse captured Wi-Fi Beacon frames to Remote ID-objects.

While researching the broadcasted packets by Parrot and DJI, several different formats were

identified. Since these formats represent the transmitted Remote ID and need to be parsed by the

drone monitoring system, they will be further discussed below.

3.2.2 Wi-Fi Beacon Frame

Remote ID can be transmitted via two radio frequencies (i.e., Bluetooth or Wi-Fi) [6], [7]. For the

scope of this Bachelor thesis the main focus is on broadcasted messages via Wi-Fi.

Remote ID data sent via Wi-Fi is constructed in a pre-defined structure called Wi-Fi Beacon frame

[20]. Figure 4 shows said structure.

 Fabia Müller / Sebastian Brunner

 14

Figure 4: Structure of a Wi-Fi Beacon Frame including size in byte of each field (grey)

The identification of a Wi-Fi Beacon frame can be done by the Frame Control field value, which

contains the type and subtype of the frame [20]. The value for management is 0 and the

corresponding value for beacon is 8, which is displayed in Figure 4 [20]. These values are important

for the implementation.

As displayed in Figure 4, a Wi-Fi Beacon frame also contains multiple other fields, all of which,

apart from the Frame Body field, are of no significance for the Remote ID and are therefore not

further discussed.

The Frame Body, or more precisely the Vendor Specific element of the Frame Body, is what is

needed to access the Remote ID data. Therefore, all other elements of the Frame Body in Figure 4

are, again, not further discussed. The Vendor Specific element can be used by vendors to pack

non-standard vendor information into the Wi-Fi Beacon frame [20], [21]. Since this element is used

to transmit the Remote ID, it will be discussed more closely below.

Figure 5: Structure of Vendor Specific Element

Figure 5 shows the structure of the vendor specific element consisting of four fields [20]. The

Element ID contains the value 221 representing the type of the element, in this case a vendor

specific element, according to IEEE [20]. The Length field contains the size of the vendor specific

element, which consists of the combined length of the Organizationally Unique Identifier (OUI) and

the vendor specific content. The OUI is a value to uniquely identify vendors. The OUI field can be

used by vendors to transmit non-standardised data. To receive an OUI one must register with the

IEEE registration authorities [22]. The OUI is used by the drone monitoring system to distinguish

the drone providers as well as the applied standard to transmit the Remote ID. Table 1 lists the

OUIs relevant for this Bachelor thesis [23], [24].

Analysis

 15

Table 1: OUIs of DJI, Parrot and ASD-STAN

DJI Parrot ASD-STAN

48-1C-B9 90-3A-E6 FA-0B-BC

60-60-1F 00-12-1C

34-D2-62 90-03-B7

 A0-14-3D

 00-26-7E

Finally, the last field of the vendor specific element, namely the Vendor-specific content field,

contains the transmitted Remote ID.

3.2.3 ASD-STAN Standard Format

The ASD-STAN format, as previously mentioned, is based on the EU regulations, which are

compliant with the American standards published by ASTM [6]. It defines multiple message types

to transport different information. The message structure, as displayed in Figure 6, consists of a

message header of one byte and a message block of 24 bytes. This message structure applies to

all message types.

Figure 6: Message structure according to the ASTM and ASD-STAN standard

The message header contains the type of the message block and the protocol version. The

message types highlighted in red font in Figure 6 are mandatory by the standard. The other

message types are optional.

Figure 7 displays the structure of each mandatory message type. Multiple fields require a

transformation equation, which can be dependent on a flag, to extract the actual value from the

transmitted data. Figure 7 only lists the transformation equations which are not dependent on flags

and are therefore simple. All other transformation equations can be found in Appendix A [6], [17].

 Fabia Müller / Sebastian Brunner

 16

Figure 7: Structure of the four mandatory message types

The ASD-STAN standard requires the mandatory message types to be sent at least every three

seconds [6], [17]. ASD-STAN lists the range over which the Remote ID can be broadcasted via

Wi-Fi as 2 km (at best) [6]. However, they also mention that in reality, only half of this range can be

expected due to interference and obstructions.

3.2.4 DJI Format

As mentioned in Section 1.1, DJI created their own Remote ID solution before the release of the

standards provided by ASTM and ASD-STAN. Although DJI complies with the ASD-STAN

standard, older drone models with outdated firmware might still broadcast a deprecated Remote ID.

Thus, support for monitoring DJI’s proprietary Remote ID is still desirable. This version of the

Remote ID has been the subject of research by Department 13 [4], Dall’Omo [10] as well as by

Bender [25]. These studies have identified that three packets

• license,

• flight information version 1,

• flight information version 2

were broadcasted via Wi-Fi. The license packet is of no further relevance for this Bachelor thesis,

since it does not contain Remote ID information and will therefore not be discussed. The flight

information packets, versions 1 and 2, act as a message container for Remote ID information.

Figure 8 displays the structure for both versions as well as the size in bytes for each field and the

transformation equation for location values. The field sizes in byte according to Dall’Omo [10] differ

from the ones made by Bender [25]. After extensively analysing a captured DJI drone format

provided by the Cyber-Defence Campus (CYD) and comparing it with the information from the

Analysis

 17

studies of Dall’Omo [10] and Bender [25], the structure depicted in Figure 8 was composed.

Unfortunately, it was not possible to verify this structure on a DJI drone. This will be discussed

more closely in Section 6.1.

Figure 8: Comparison of Remote ID flight information packet version 1 (left) and version 2 (right)

Both versions contain the information required by the Remote ID standard [16]. Depending on the

version some fields may vary. For example, version 1 contains the fields Pitch Angle and

Roll Angle, whereas version 2 contains Pilot GPS Clock and Pilot Latitude and Pilot Longitude as

displayed in Figure 8.

The two different versions can be distinguished by the version number found in the header of the

Remote ID, which is important when implementing a parser for the different Remote ID versions.

Version 1 contains the value 0x1001 in the field “Packet Type” and version 2 contains the value

0x1002 [25].

 Fabia Müller / Sebastian Brunner

 18

The specific fields of each version are not crucial to understand DJI’s version of Remote ID.

However, the following paragraphs describe some of those fields and their transformation

equations. All information for those paragraphs is based on Bender [25].

The Model-byte is a value that can be mapped to a specific DJI drone model. The UUID is a 20-digit

string linking the drone to a unique DJI account.

As mentioned above, some fields require the use of a transformation equation. For instance, for

the location information (longitude and latitude) the following equation is applied:

location information (longitude or latitude) = (𝑑𝑟𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒/180) × 𝜋 × 107

Equation 1: Transformation equation applied on the coordinate (latitude and longitude) values

The conversion of the height value is as simple as to multiply the value by 10. Other values, such

as pitch, roll and yaw angle, require an algorithm to convert. The algorithm is displayed in

Algorithm 1.

if angle_value == 0:
 return angle_value
else if angle_value < 0 or angle_value >= 180:
 reutn angle_value + 180
else:
 return angle_value % 180

Algorithm 1: Transformation algorithm for the angle values of the drone

3.3 Requirements for an Improved System

The features of AeroScope are simple but cover the basic functional requirements for a drone

monitoring system, namely the live monitoring and replaying of previously captured drone flights.

Table 2 lists all functional requirements (mandatory and optional) for a new and improved system.

The optional functional requirements are provided by CYD as part of the assignment in Appendix B

or are a result of the research of this Bachelor thesis.

Table 2: Functional requirements

Identifier Requirement Additional Remarks / Measures

Mandatory requirements

REQ1 Support DJI’s proprietary and the ASD-STAN
Remote ID

Only via Wi-Fi

REQ2 Display all currently in-flight drones on a map

REQ3 Update the live position of currently in-flight drone upon
receiving an update

Update should be visible within 1 s of
receiving it

REQ4 Selectively display historic flight path, pilot, and home
location of drone

REQ5 Display a list of all drones that were ever captured

Analysis

 19

REQ6 Replay a flight of a previously captured drone The flight must be traversable with an
automatic play/pause button and a timeline to
seek through

REQ7 Details for a replayed or in-flight drone can selectively
be displayed

Details include all information available within
a Remote ID

Optional extensions

eREQ1 Read Remote IDs from captured pcap files Useful for development and debugging
purposes as well as analysing existing
captures

eREQ2 Support Remote IDs broadcasted via LTE

eREQ3 Detect spoofed Remote IDs E.g., through Wi-Fi signal direction
information

Of even higher importance for the usability of the drone monitoring system are the non-functional

requirements. As described in Section 3.1, AeroScope faces challenges in terms of performance,

reliability, and user-friendliness, along with a substantial price tag. Improving these factors and

making the system more accessible are the foundation for Table 3, which shows the non-functional

requirements for the new system. To measure whether the non-functional requirements are met,

sensible target metrics were derived from AeroScope or the ASD-STAN standard.

Table 3: Non-functional requirements

Identifier Requirement

NFR1 Continuously display at least 150 in-flight drones sending updates in 3 s intervals, as defined in the
ASD-STAN standard, without crashing

NFR2 Update in-flight drones with live data within 1 s upon receiving a Remote ID

NFR3 Keep hardware costs under 10% of the costs of AeroScope (≤ 790 Swiss francs)

NFR4 Monitor drones within a 500 m radius (given a line of sight / no obstacles)

NFR5 Keep the installation process simple; a user with basic IT knowledge (e.g., executing Linux
commands) must be able to install the software without specific training

NFR6 Make the usage of the application simple; a user without any IT knowledge or specific training must be
able to use all key features described in Table 2

NFR7 Keep the code open for extensions; especially parsing new formats and adding new sniffing sources
should be possible for a developer with coding experience

NFR8 Support all major devices, operating systems and/or browsers

To summarise, the system must replace at least all existing features of AeroScope and improve its

accessibility, reliability, performance, and user experience. Contrary to AeroScope, the developed

system is to remain open for extensions by the developing community and is intended to support

the ASD-STAN as well as DJI’s Remote ID.

 Fabia Müller / Sebastian Brunner

 20

4 Technology and Architecture

This chapter contains an outline of the analysis of potential solutions for various technical issues.

This includes trade-offs as well as the decisions taken along with their justifications.

The analysis identified the following technical issues that need to be adequately addressed while

designing the drone monitoring system:

• Capturing, parsing, and filtering Wi-Fi Beacon frames with drone-specific information

• Storing captured time-series information

• Displaying drones on an interactive map in an intuitive UI

• Making the usage (including installation) of the software as easy and simple as possible

The last point is important as, per NFR5 and NFR6, anyone, even without much technical

experience or training, must be able to set up and use the system. This restricts the list of viable

solutions drastically. Since this is a cross-cutting concern, it is addressed first, and each subchapter

reiterates on how and why this shaped the solution.

4.1 Accessible and Easy-To-Use System

To make the drone monitoring system more accessible to a wide variety of users, the need for

specific hardware must be reduced to as little as possible. While it is theoretically possible to run

such monitoring software on a laptop without requiring any specific hardware, it is simpler to install

and run the software on a Raspberry Pi (Raspi). This is because most integrated network interface

cards (NIC) as well as some operating systems (OS) are limited in their capabilities. The Raspi, on

the other hand, provides a controlled environment that guarantees that all prerequisites to capture

data regarding OS and hardware are met, with one exception. The limits of NIC and the exception

regarding the OS prerequisite will be discussed more closely in Section 4.2.

In addition, at a size of 10 cm x 6 cm x 2 cm and acquisition costs of 153 Swiss francs (on Galaxus

as of 8 June 2023), the Raspi is smaller and cheaper than most devices. Thus, improving portability

and accessibility. Figure 9 displays the size of the Raspi compared to an iPad Air 4th Generation.

Technology and Architecture

 21

Figure 9: Raspberry Pi 4 in comparison to iPad Air 4th Generation

Considering the above, the Raspi reduces the complexity of making multiple differing systems and

devices compliant (NFR8) while keeping the hardware costs low (NFR3).

Throughout this Bachelor thesis when a “Raspi” is mentioned, it refers to the Raspberry Pi 4, which

was used for research and testing purposes.

4.2 Capturing Wi-Fi Beacon Frames

To capture Wi-Fi Beacon frames, the application must access a Wi-Fi device in monitor mode and

parse incoming binary data into a format that can be filtered and processed. Most integrated NICs

do not support monitor mode including the built-in one of the Raspi. Therefore, the Raspi requires

an additional capable adapter. Some adapters require the installation of additional drivers to

support monitor mode, but the EDIMAX EW-7811Un adapter, shown in Figure 10, is natively

supported by the Linux kernel, small and rather low-priced (e.g., 14 Swiss francs on Galaxus as of

2 June 2023). According to the Wireshark Wiki “changing the 802.11 capture modes is very

platform/network adapter/driver/libpcap dependent, [sic!] and might not be possible at all” [26].

Further solidifying the decision to deliver the application on an external Raspi running Linux.

 Fabia Müller / Sebastian Brunner

 22

Figure 10: EDIMAX EW-7811Un Wi-Fi adapter used for testing [27]

The de facto standard for network packet capture is called “pcap” defined by the “libpcap” Unix

library [28] (under Windows also available via the “Npcap” library [29]) and thus represents the best

format for the drone monitoring system to monitor packets. Both “libpcap” and “Npcap” are written

in C but offer abstractions in different languages. This provides these solutions for packet capture

as displayed in Table 4:

Table 4: Advantages and disadvantages of different network capturing solutions

Library Advantages Disadvantages

Scapy
(Python)

• Massive popularity (8.5k stars on GitHub)
• Easy to use / install as pip library
• Supports most protocols (e.g., can replace 85 % of

nmap)
• Unlimited direct hardware access through native

libraries
• Easy installation on Linux / Raspi as Python is

preinstalled

• Python better suited for scripting than web
development

• Python is interpreted and slower than
compiled languages

• Only scripting knowledge in development
team, no web development experience in
Python

Pcap4J
(Java)

• Some popularity (1k stars on GitHub)
• Great performance with JVM
• Limited but extendable direct hardware access with

JNI
• Java was designed for web development, the

ecosystem is massive (e.g., Spring)
• Expert knowledge in development team

• Does not support all protocols by default
(e.g., Wi-Fi Beacon frames are missing)
but can be extended

• Java Runtime Environment must first be
installed on device

Libpcap
(C)

• Unlimited direct hardware access
• Best performance
• No installation required / simple executable
• Direct usage / no abstraction of libpcap (all features

are usable)

• Not great for web development
• Only basic knowledge in development

team
• Limited portability

Given that the library abstractions by Scapy and Pcap4J support most features, the performance

and direct hardware access benefits of C do not outweigh the lack of knowledge within the

development team. Therefore, C was not deemed a viable solution. Despite the development team

having more experience working with Java (which is always an important factor to consider) and

web development being more suited for the Java ecosystem with its vast number of frameworks,

Scapy and Python were the better choice for the following reasons: First, Scapy has a wider

community and supports more features, which makes its usage easier (NFR7). Second, Python is

Technology and Architecture

 23

preinstalled on Raspis and most Linux systems. In addition, it is interpreted and does not need to

be compiled beforehand, which makes the installation straightforward by just copying the project

files (NFR5). Third, most related work and especially the main basis for this thesis, Dall’Omo’s

research [10], have been done with Python, not only providing an existing code base but also

making future integrations or improvements easier. And lastly, although Python was not primarily

designed for web development, it has a large community with an enormous number of frameworks

and libraries that simplify web development and database integration, which reduces Java’s

advantage in that regard.

4.3 Storing Captured Tracking Information

As all captured data is time-stamped, the use of a time series database like InfluxDB, which would

index and optimize queries on the timestamp, could bring significant performance benefits.

However, the installation process and the constraint of running on a Raspi again shaped the

solution space. Hence, SQLite was chosen. SQLite only requires a runtime library, which is

available for Python and most other languages. Additionally, no installation process is required as

the database can be stored in a single file.

The main concern was restrictions on database or table size, which proved to be unfounded as

SQLite supports up to 281 terabyte databases and 264 rows per table [30]. As seen in Equation 2,

the limiting factor is the database size. At these dimensions, the storage device would most

certainly reach its limit well before the SQLite restrictions would set in. With sufficient storage

available, these limits would allow the simultaneous recording of 100 drones every 10 ms for almost

14 years straight, as shown in Equation 3.

𝑟𝑜𝑤𝐿𝑖𝑚𝑖𝑡 = 264 𝑟𝑜𝑤𝑠

𝑑𝑏𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 = 281 𝑇𝐵 = 281 ∗ 10244 𝐵𝑦𝑡𝑒𝑠

𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 = 68 𝐼𝑛𝑓𝑜 + 5 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 77 𝐵𝑦𝑡𝑒𝑠

𝑑𝑏𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡
𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒

=
281 ∗ 10244

77
≈ 242 < 264 = 𝑟𝑜𝑤𝐿𝑖𝑚𝑖𝑡

Equation 2: Rows vs database size limit comparison

𝑑𝑏𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 ≈ 242
100 𝐷𝑟𝑜𝑛𝑒𝑠 𝑒𝑣𝑒𝑟𝑦 10𝑚𝑠 = 10′000 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑒𝑣𝑒𝑟𝑦 𝑠

𝑑𝑏𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡
10′000 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ∗ 60 ∗ 60 ∗ 24 ∗ 365

 ≈ 14 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔

Equation 3: Theoretical recording limit

In practice, these limits are implausible to reach and therefore of no concern. With a storage

capacity of 28 GB, which is the remaining free space on a 32 GB SD card after a clean

Raspberry Pi OS installation, the recording with more realistic parameters (50 drones, every 3 s)

 Fabia Müller / Sebastian Brunner

 24

would last for about 271 days as shown in Equation 4. This is an acceptable limit. The packet size

was estimated based on the database schema shown in Figure 11.

𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 = 77 𝐵𝑦𝑡𝑒𝑠

50 𝐷𝑟𝑜𝑛𝑒𝑠 𝑒𝑣𝑒𝑟𝑦 3𝑠 = 1000 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑒𝑣𝑒𝑟𝑦 𝑚𝑖𝑛

𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 28 𝐺𝐵 = 28 ∗ 10243 𝐵𝑦𝑡𝑒𝑠
𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

1000 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ∗ 𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 ∗ 60 ∗ 24
 ≈ 271 days

Equation 4: Realistic recording limit

Concerns regarding database performance issues were not considered, as the system is intended

to run on a portable, local device and is not supposed to monitor a heavily protected facility where

hundreds of drones might simultaneously broadcast at a high frequency (see NFR1). While such

applications might make sense to consider in the future, components such as the database can

easily be replaced by a more scalable solution. Nonetheless, Section 6.4 evaluates and documents

the performance of the current solution.

Since the only information the application stores are captured Remote IDs, the database schema

is simple and oriented around the Remote ID standard. Figure 11 shows the only table in

the database schema, remoteid, with all its columns and their data types. Noteworthy is the id

column which is uniquely generated by the database itself whereas all other values are extracted

from the Remote ID packet.

Technology and Architecture

 25

Figure 11: Database schema

4.4 Displaying Drones on a Map

Once again, the key constraint is ease of use of the application, and it was decided to provide the

user interface (UI) as a web application served from a Raspi and accessed via a web browser over

the local network. This allows the Raspi, once set up, to simply be plugged in and booted up. The

application is then ready for use on any device with no further installation required on the client

side (NFR5, NFR6 and NFR8).

Displaying the drones raised two distinct questions regarding the implementation: First, how to

display an interactive map, or rather, which library to use, as coding this from scratch is unrealistic;

and second, which UI framework or library should be used to make the frontend interactive and

modular.

Google Maps is the most widely known web-based map library and was the best solution for the

drone monitoring system. Google Maps offers all the features the system needs, namely markers,

controls, and flight paths. Furthermore, it can be extensively customised and provides an up-to-date

interactive map out of the box. The only downside of Google Maps is that it currently requires an

 Fabia Müller / Sebastian Brunner

 26

API key to run, which in its free version is limited to 28,500 map loads per month [31]. With the

assumption of 20 working days per month and eight working hours per day, users with the same

API key are allowed a little over 178 maps loads per minute. This is a limit that would be hard to

reach in practice. Nonetheless, it adds complexity to securely store the API key and requires the

additional installation step of requesting a new API key from Google Cloud Platform.

The handling of real-time location updates of the drones makes the entire application more

complex. To structure the UI in a more modular fashion, the use of a component library was

unavoidable. This allows the code to be abstracted and modularised by specific behaviour, such

as displaying drones on a map or changing settings. Contrary to many commonly used component

frameworks such as Angular, React, and Svelte that must build the code ahead of time, Vue can

simply be integrated as a runtime library into a website and does not require any action during build

time. This simplifies the installation of the application to merely copying files, proving Vue to be the

sole viable option.

4.5 Architecture Overview

The architecture is composed of two main components: the sniffing service and the web UI. The

sniffing service is written in Python and is responsible for monitoring, capturing, and filtering

incoming Wi-Fi Beacon frames as well as checking whether the packets contain a valid Remote ID.

In case they do, the Remote ID is parsed and stored in a database. Furthermore, it pushes current

real-time data via WebSocket and provides stored data via HTTP to the web UI. The UI, written

with JavaScript and Vue, displays the captured data and allows some configuration of the backend

such as which Wi-Fi device to use. Figure 12 gives a visual overview of the entire system.

Figure 12: Architectural overview of the sniffing process

Technology and Architecture

 27

As visible in Figure 12, only the sniffing service, frontend source files and the database file are

located on the Raspi. All frontend libraries are loaded via content delivery network (CDN) to ensure

fast loading speeds and minimal storage space consumption on the Raspi. Only the sniffing service

runs on the Raspi itself. The UI, once loaded, is solely executed in the client’s browser.

 Fabia Müller / Sebastian Brunner

 28

5 Implementation

This chapter focuses on the implementation of the architecture previously defined in Section 4.5

on a more detailed, lower level. The structure of the backend is visualised using the example of the

lifecycle of a captured Remote ID. The API endpoints as well as the frontend code structure are

documented, and the different screens are described in form of a user manual. In addition, the

chapter contains instructions for the installation on a Raspi, how drones can be spoofed via a script,

and how the application can be extended. Extensions are demonstrated using LTE as a

transmission method for the Remote ID and spoofing detection as examples.

All referenced code or files are located inside the workspace folder of the repository. The repository

structure is explained in Appendix D. File, library, class, and component names are highlighted in

italic.

5.1 Backend

The backend, responsible for capturing and storing data as well as providing said data to clients

via an API, is written in Python. The library FastAPI [32] is used to specify the API and handle

WebSocket connections. Scapy captures network packets, which are then parsed, filtered, and

stored via SQLModel [33], an object-relational mapper, into the SQLite database. Both FastAPI

and SQLModel were chosen because they integrate well with each other, and models can be

reused for both API and database.

5.1.1 Structure

The backend code resides in the backend folder and is separated into the following files:

• models/daomodels.py: Defines Data Access Object (DAO) RemoteId, which contains all

database fields as defined in Section 3.2.

• models/dtomodels.py: Defines all Data Transfer Objects (DTO) used in the API.

• models/settings.py: Defines the structure of the settings and its validators.

• api.py: Defines and implements all API endpoints and handles WebSocket connections.

• info_handler.py: Sets up the database and manages newly captured and parsed data by

storing and sending it to connected clients.

• main.py: Entry point that parses arguments and bootstraps the entire application.

• parser_handler.py: Defines handlers for different formats that delegate the parsing of

incoming packets to the right parser if possible.

• parsers.py: Contains actual parser logic for different formats.

• settings.py: Provides methods to load and save current settings.

Implementation

 29

• sniffers.py: Manages sniffers for various sources such as Wi-Fi interfaces and pcap files.

• ws_manager.py: Manages WebSocket connections and handles broadcasts to all of them.

Furthermore, all unit tests, which validate that the key features work, are located in the tests

directory.

The logical structure is best explained with the sniffing and data processing process as visible in

Figure 13.

Figure 13: Structural overview of all components involved in the sniffing and data processing process

SnifferManager manages all sniffing processes from pcap files or actual Wi-Fi interfaces, by

creating, starting, stopping, and destroying new or existing sniffers. These sniffers run each in a

separate thread and, as shown in step 1 (marked with  in Figure 13), capture or read raw packets

from their respective source.

These packets are sent to handlers which try to extract a Remote ID. Since a Remote ID may have

different formats, as mentioned in Section 3.2, the handlers act as a chain where the first handler

checks if it can parse (accept) a packet and if so, it extracts its content itself. If the packet is

unknown to the handler, it gets forwarded to the next handler and so on until the chain is exhausted

and the packet is discarded. This pattern is commonly known as Chain of Responsibility and

illustrated in step 2.

 Fabia Müller / Sebastian Brunner

 30

The actual extraction of data is performed by specific parsers shown in step 3 by reading raw values

from the packet and applying conversions depending on the field. Since these parsers can get

bloated, the code was separated from the handlers to provide a better overview. This data is then

put into a RemoteId model and sent to step 4, the InfoHandler, which saves the model in the

database and broadcasts the data via WsManager (Ws for WebSocket) to all listening clients.

5.1.2 API

The API mostly provides the UI with information and allows the user to change the settings

dynamically. All data is sent as text in JSON format and the endpoints are defined in a RESTful

manner. The API is not secured in any way, as generally only the user physically in possession of

the Raspi has access to the data. Table 5 shows each endpoint with its purpose and expected

input/output formats.

Table 5: API Endpoints

Method / Endpoint
Purpose

Input / Parameters

Output

GET /

Redirects to /index.html which
contains the UI None Index.html file

GET /ws

Accepts new WebSocket connections
and handles them as long as they are
connected

None None

GET /api/drones/active

Returns a list of all drones that are
currently considered active (in flight) None. List of drones (DroneDto)

GET /api/drones/all

Returns a list of all drones that have
ever been captured (are currently in
the database)

None List of drones (DroneDto)

GET /api/drones/{serial_number}/history

Returns the current flight path for the
drone with the given serial number

serial_number (in URL): the serial
number of the drone

The flight path of the drone (a
list of HistoryDto)

GET /api/drones/{serial_number}/flights

Returns a list of flight dates for the
drone with the given serial number

serial_number (in URL): the serial
number of the drone

A list of timestamps (start
time) of all past flights of the
drone (a list of strings
formatted as UTC timestamps)

GET /api/drones/{serial_number}/flights/{flight}

Returns the flight path for the drone
with the given serial number for a
particular flight

serial_number (in URL): the serial
number of the drone
flight (in URL): the timestamp of the
flight (as returned by the flights endpoint)
formatted in UTC and URL-encoded

The flight path of the drone of
that particular flight (a list of
HistoryDto)

GET /api/settings

Returns the currently stored settings None Currently stored settings
(Settings)

Implementation

 31

GET /api/settings/interfaces

Returns a list of available network
interfaces. This includes all interface
(including Ethernet and loopback
interfaces, not just Wi-Fi)

None List of interface names as
strings

POST /api/settings

Update the current settings with new
ones HTTP Body: the new settings (Settings) The newly stored settings

(Settings)

5.2 Frontend

The frontend, which is written in JavaScript with Vue, is separated into various components. At the

core, each component is connected to a pinia [34] store, which centrally manages all data. To

explain the frontend more closely, the structure of the frontend will be explained in Section 5.2.1

alongside a section for each view in the UI.

5.2.1 Structure

All UI assets besides the index.html lie within a subfolder of the frontend directory separated by

asset classes (css, js, img). The JavaScript sources are further separated into the following files:

• Api.js: Provides all API calls as asynchronous functions.

• App.js: Bootstraps the entire application at one entry point.

• Components.js: Contains all reusable components namely ActiveDroneList, AllDroneList,

DroneInfo, DroneInfoPanel and Settings.

• Drone.js: Contains the Drone component which renders, animates, and moves each drone,

displays information, and triggers actions if a drone is clicked.

• MapView.js: Contains the MapView component and its child views MonitorView and

ReplayView that all display a map. MapView handles all interactions with Google Maps

such as centring the map, drawing controls, and rendering markers (such as the drones

and their flight paths).

• SetupView.js: This view is displayed before the application is set up correctly and only

shows a setup form.

• Store.js: This is the heart of the application where all data is requested, stored, and

transformed. Other components might request, subscribe to, and display different kinds of

data that are all stored here.

Of further significance is the index.html file, which not only includes and bootstraps App.js, but also

defines all dependencies in an import map. These import mappings enable the importing of

dependencies via the import keyword throughout the frontend code and tell the browser from which

source it must fetch said dependency. Even though the frontend only requires three direct

 Fabia Müller / Sebastian Brunner

 32

dependencies, vue, vue3-google-map and pinia, it further defines two indirect transitive

dependencies required to run pinia: vue-demi and @vue/devtools-api. Both of which are rather

small ( 1 kB).

While this setup is not optimal, as the import map must be maintained manually, it is necessary to

enable the usage of vue3-google-map [35], which simplifies the usage of the Google Maps API

with Vue significantly. The library is only available as an ES module and can only be imported like

this. Import maps are currently not fully supported by all browsers; only about 76% of browsers are,

according to caniuse.com [36]. Since testing with current versions of Chrome, Safari and Firefox

was successful, further explained in Section 6.2, and other browsers are adding support for

import maps soon, the downside seems tenable but noteworthy.

5.2.2 User Interface and Usage

The UI consists of two distinct views: SetupView and MapView. The former is only visible until

Google Maps has been configured. Afterwards, only the latter is visible. MapView has two

sub-views, one being MonitorView, which displays currently active drones, and ReplayView, which

replays a specific flight of a drone. MonitorView is the homepage and acts as a hub to ReplayView

via the selection of a drone flight to replay. The state diagram in Figure 14 shows when each view

is active and how to switch between them.

Figure 14: UI state diagram

5.2.2.1 Setup View

After a new installation of the software, the SetupView, visible in Figure 15, is displayed and asks

the user to enter their Google Maps API key. A Google Maps API key can be obtained via

Google Cloud Platform.

Implementation

 33

Figure 15: Setup view

5.2.2.2 Monitor View

Upon submission of the new setting, the view switches to the MapView, an example of which is

shown in Figure 16.

Figure 16: Monitor view with schematic map

At the heart of the MapView is, as the name suggests, the map, which stretches across the entire

screen. Markers and lines are drawn directly onto the map. Markers include drones, home, and

pilot locations. Lines are the flight paths and drone-pilot links. Control elements are all placed at

 Fabia Müller / Sebastian Brunner

 34

the edge of the screens, anchored to either one of the corners or midway points of the edges and

grow into the centre. Table 6 contains a list of all map control elements.

Table 6: List of map control buttons and their functionality

Symbol Description Side Note

Toggle full screen mode

Tilt the map

Zoom in on the map

Zoom out of the map

Centre map to browser’s current location Works only if application is accessed via

HTTPS or localhost due to security reasons

Figure 17 illustrates the two map options available to the user in the top left corner framed in

orange. On the left side is the by default selected, more abstract schematic map and on the right

side the more realistic satellite view. Either map style may provide a better overview of the flying

drones as the contrast between drones and the background, especially on the satellite map, highly

depends on the landscape underneath.

Implementation

 35

Figure 17: Monitor view with satellite map and the highlighted control elements

In the bottom left corner, framed red in Figure 17, all currently active drones are listed by

serial number alongside some controls and options. The UI uses a lot of emojis rather than textual

buttons to look leaner and more modern. The actual picture that is displayed depends on the

system and might differ slightly.

The target icon (), when clicked, centres the selected drone in the middle of the screen and tracks

its movement from then on. If the user moves the map, the tracking is stopped. A click on the

statistics icon () opens the drone details explained further below.

The checkboxes underneath the helicopter () toggle whether the historic flight path of that

particular drone should be displayed or not. It starts where the drone took off, called the home

location, and follows the drone’s flight path up to its current location. The paths are loaded lazily as

soon as they are visible and each one has a distinct colour. In Figure 17, flight paths for four drones

are displayed in blue, green, yellow, and purple. Due to the limited number of colours with sufficient

contrast, duplicate colours are possible. The checkboxes beneath the pilot () and home () icons

each toggle the visibility of the pilot and home location markers. The markers are red and contain

a single letter indicating the type of marker. “P” stands for pilot location and “H” for home location.

The pilot location is dynamic and may change as the pilot moves. It is connected to the drone with

a direct link in the same colour as the flight path to indicate which pilot controls which drone.

 Fabia Müller / Sebastian Brunner

 36

When a drone is selected, it is highlighted in the same colour as its path and its details are displayed

beneath its serial number, framed red in Figure 18. Meanwhile, other drones are made slightly

transparent to increase the contrast to the selected drone. After deselecting the drone, the details

and highlighting of the drone disappear and the other drones become completely opaque again.

Figure 18: Drone details panels (red and yellow) and AllDroneList (orange)

The red framed drone details display all information available to the sniffer. In the sample of

Figure 18, this includes the coordinates of the drone, the pilot and home location. As these are

spoofed drones, identifiable by their serial number, not all information is transmitted. If available,

altitude, height, speed in each direction, and the rotation would be displayed too. Furthermore, the

rotation would be applied to the drone as well, indicating in which direction it is heading. Below the

drone information are Actions and Options, which include the same controls as described in the list

of active drones.

The same information is displayed in the top right corner in a separate pane, framed yellow in

Figure 18, which is opened when the statistics icon () is clicked. Contrary to the red framed pane,

the yellow framed pane additionally displays a list of the respective drone’s past flights. The past

flights can be replayed by clicking on the replay icon () opening the ReplayView for the selected

flight, which is explained further in Section 5.2.2.4.

REDACTED

Implementation

 37

A list of all drones that were ever captured is located at the bottom centre of the screen, framed

orange in Figure 18. The list, which is collapsed by default, can be extended (and collapsed) by

clicking on its title. Clicking on a drone serial number in the list will display its details (yellow framed

pane in Figure 18).

5.2.2.3 Settings

To configure the application, a settings panel is provided. It is located on the top left corner of the

map. The collapsing and expanding of the panel can be toggled by clicking on the title. Figure 19

displays the expanded settings panel.

Figure 19: Expanded settings panel

The user may adjust the following settings:

• Google Maps API Key: The same API key that was set up in the SetupView.

• Activity Offset: The time delta in minutes that a drone is still considered active after its last

sent update. This is needed to differentiate between different flights of the same drone as

they do not send an update when they start or land. This means that if a drone lands and

immediately takes off again, the system will recognise this as one flight. Must be a value

between 1 and 60.

• Drone Size: A purely cosmetic option to adjust the size of drones on the map. The unit is

rem where 1 rem is the same size as an M on screen (commonly used in CSS styles).

Changing this setting immediately affects the UI but is not persisted unless saved. Note that

drones are always the same size on screen regardless of the map scale. Must be a value

between 1 and 10.

• Performance Mode: If enabled, the animated drones are replaced by a static, simpler

image. This reduces performance issues browsers face when multiple drones are rendered

REDACTED

 Fabia Müller / Sebastian Brunner

 38

simultaneously, allowing for more drones to be monitored in parallel. Changing this setting

immediately affects the UI but is not persisted unless saved.

• Wi-Fi Sniffing Interfaces: Displays a list of all detected network interfaces. If an interface

is checked and the settings are saved, the system sets the interface into monitoring mode

and starts sniffing on said interface. If unchecked and saved, the sniffing process is stopped,

and the interface is set back to managed mode. The system supports sniffing on multiple

interfaces simultaneously but might capture the same data multiple times, which may lead

to side effects. Note that all detected interfaces are listed but not all support monitor mode

(e.g., wlan0 in Figure 18) nor are all Wi-Fi interfaces (e.g., lo and eth0 in Figure 18). There

is currently no mechanism to detect which interfaces are usable by the system and it is up

to the user to know which interfaces to enable. On Raspberry Pi OS, Wi-Fi interfaces are

usually named wlanX with “X” being the index increasing from 0 on and wlan0 being the

on-chip interface, which does not support monitor mode.

The settings are only persisted once the user clicks the save button. They can also reset the

settings to the last persisted state by clicking the reset button.

5.2.2.4 Replay View

As mentioned in Section 5.2.2.2, upon replaying a flight, the application switches to the ReplayView

as shown in Figure 20. In this view only the replayed drone is displayed. Additionally,

ActiveDroneList and AllDroneList are replaced by the replay timeline at the bottom centre of the

screen, framed red in Figure 20. By default, path, pilot and home location are turned on and the

drone’s location, which was captured first, is centred.

Implementation

 39

Figure 20: Replay view with the path, home, and pilot location displayed

The timeline works just like a media timeline including a play/pause feature, which automatically

replays the history one captured Remote ID per second and allows the user to freely forward and

rewind through the flight. Closing the timeline with the red ❌ on the top right corner of the timeline

returns the user to the MonitorView.

5.3 Installation

The application requires the Raspi to be set up with the Lite version of Raspberry Pi OS (OS Lite).

The full version with desktop environment increases the CPU load and may cause the Raspi to

miss packets [37]. This issue is further explained in Section 6.1. The application code can simply

be cloned (or copied) onto the Raspi. As a second step, an installation script (install.sh) must be

run, which

• installs Python, pip, and the required Python dependencies,

• copies the files required to run the application to the /opt directory,

• sets up a system service,

• starts the system service.

 Fabia Müller / Sebastian Brunner

 40

This installation script must be executed with superuser privileges as, in order to sniff in monitor

mode, the service itself must also run with superuser privileges. The user may pass the port the

application should use with the parameter -p or --port. If not, port 80 will be used per default. Note

that this installation script requires a working internet connection until the dependencies are

installed. After this point, the Raspi does not require a working internet connection to run the

application.

After the installation is complete, the user must visit the web application by entering the Raspi’s

hostname into the browser. As mentioned in Section 5.2.2.1, the user must enter a

Google Map API key, which can be obtained from Google Cloud Platform. Afterwards, the

application is ready to use.

The system service set up by the installation script starts as soon as the Raspi reaches the network

target in its boot stage and restarts automatically on failure. This means that once the application

is successfully set up, the Raspi can simply be plugged in, and the application is ready to be used

within a few minutes.

5.4 Drone Spoofer

To be able to test the application without the use of a real drone, a script can be used to spoof one.

As described by Dall‘Omo [10], it is possible to spoof a drone’s Remote ID by simply sending forged

Wi-Fi Beacon frames. The script used by Dall‘Omo [10] is publicly available and was therefore used

as a basis for the spoofing script developed in this Bachelor thesis. Some functionality is added,

and the existing code is improved.

Just like the drone monitoring system uses Scapy to monitor Wi-Fi Beacon frames, the script uses

Scapy to send Wi-Fi Beacon frames. To do so, the script requires the input of an interface name

through which the Wi-Fi Beacon frames will be sent. The spoofing script will set the interface into

monitor mode, which requires superuser privileges, and sends the forged Wi-Fi Beacon frame

repeatedly in an interval of three seconds, as defined by ASD-STAN and mentioned in

Section 3.2.3.

Likewise, the structure of the forged Wi-Fi Beacon frame is designed in accordance with the

standards [6], [17]. The mandatory message types, mentioned in Section 3.2.3, are created by the

spoofing script, where the fields

• serial number,

• drone latitude,

• drone longitude

can be customised via arguments passed to the script.

Implementation

 41

Other fields, on the other hand, such as

• timestamp,

• operator latitude,

• operator longitude,

are set dynamically by the script and cannot be influenced. And lastly, all other fields in the

mandatory message types are hard coded into the script.

The script uses a function to calculate a location close to specific coordinates within a certain

radius. This function is used to calculate the starting location as well as the drone’s next location

prior to broadcasting. This intends to mimic the drone’s movement as well as to assure that not all

drones start at the same location when multiple drones are spoofed.

The starting location of the drone defaults to a location close to Kasernenareal in Zurich. As

mentioned above, the starting location can be influenced by passing an argument to the script. The

usage of the script arguments and their description are listed in Table 7.

Table 7: Arguments available to the spoofing script

Argument Flag Value Description

-i --interface Interface name Interface to use

-m --manual None Dynamically control drone movement with keyboard
Note: cannot be combined with -r argument

-r --random Number of drones
(defaults to one)

Define number of drones to be spoofed; drones move
randomly to mimic movement
Note: cannot be combined with -m argument

-s --serial Drone serial number
Define a custom serial number; only possible in manual
and default mode
(spoofing one random drone)

-n --interval Interval in seconds (defaults
to 3 seconds) Set interval how often Wi-Fi Beacon frames are sent

-l --location Latitude, longitude Set drone starting location

If no argument is passed to the spoofing script it will run in random mode and spoof one drone.

Figure 21 displays the behaviour and output of the script when it is started in manual mode. The

logs contain, among other things, the mode, the movement of the drone as well as a notification

the instant a Wi-Fi Beacon frame is sent.

 Fabia Müller / Sebastian Brunner

 42

user@ubuntu:~/DroneId-Monitoring/workspace$ sudo python3 spoof_drones.py -i wlx00c0ca916d -m
2023-06-02 18:27:04,123 INFO ########## STARTING DRONE SPOOFER ##########
2023-06-02 18:27:04,123 INFO Setting interface to: wlx00c0ca99160d
2023-06-02 18:27:04,123 INFO No location input detected. Using DEFAULT values.
2023-06-02 18:27:04,123 INFO Setting location to (473763399, 85312562).
2023-06-02 18:27:04,123 INFO Starting in MANUAL MODE - spoofing one user controlled drone.
2023-06-02 18:27:04,123 INFO Drone with SERIAL NUMBER b'Spoofed_Serial_10845' and LOCATION [LAT LNG] 473763399,
85312562 created.
2023-06-02 18:27:04,123 INFO Starting spoofing....
Use W, A, S, D to move the drone.
W (North)
A (West)
S (South)
D (East)
2023-06-02 18:27:04,479 INFO move NORTH
2023-06-02 18:27:04,980 INFO move NORTH
2023-06-02 18:27:06,512 INFO move WEST
2023-06-02 18:27:06,700 INFO move WEST
.
Sent 1 packets.
2023-06-02 18:27:07,944 INFO move SOUTH
2023-06-02 18:27:08,445 INFO move SOUTH
2023-06-02 18:27:08,805 INFO move EAST
2023-06-02 18:27:09,583 INFO move EAST
.
Sent 1 packets.

Figure 21: Terminal command and logs of the spoofing script started in manual mode with some drone movement

5.5 Extending the Application – LTE Extension

As defined in NFR7, the drone monitoring system must be designed in a way to be open for

extensions by the developing community. To support a new transmission method, a sniffer can be

added. To add a new Remote ID format, a new parser can be added.

In this section, the extension of the drone monitoring system is demonstrated using the example of

LTE as transmission method. LTE has been chosen as an example because an open-source code

example by Schiller et al. [7] already exists. This was advantageous because analysing and

implementing the LTE functionality from scratch would not have been feasible in the limited time

available. Furthermore, it is listed as an optional requirement (eREQ2).

Schiller et al. [7] analysed DJI’s proprietary Remote ID and implemented a decoder for the

DJI format version 2. The decoder can be used live or offline with pre-captured files. The live mode

of the decoder was neglected when it came to integrating it into the drone monitoring system.

Running the decoder in live mode not only requires an additional adapter but also a “quite powerful

machine” [38], which the Raspi is not. Thus, the decoder can only be used whenever the drone

monitoring system is started manually via a terminal and not in the UI.

Two DJI drone types, namely DJI Mavic Air 2 and DJI Mini 2, are used by Schiller et al. [7] to

capture the raw data of the Remote ID. A sample file of each drone type exists in the repository to

test the decoder [38]. The code in this repository was used as a basis. The files needed for the

extensions were placed into a new folder called lte to separate the additional feature. The new

modified project structure can be seen in Figure 22.

Implementation

 43

Figure 22: Project structure with LTE extension

The code was modified and adjusted where needed to be integrated into the drone monitoring

system. The file lte_sniffer.py in Figure 22 is the main script, which requires the other files in the

same folder to work properly. As the decoder works with DJI’s proprietary format version 2, which

is already integrated in the drone monitoring system, no additional parser must be added to the

code. However, since a new transmission method, LTE, is used, an additional sniffer is required.

A sniffer class must be added in the sniffers.py file. The implemented LteFileSniffer class is shown

in Figure 23.

 Fabia Müller / Sebastian Brunner

 44

Figure 23: Added sniffer class for adding LTE compatibility

The sniffer class requires the initialization of a thread in the initialization method, as well as a start

and stop function to properly start and stop the sniffer. The thread requires a target function to

initialize correctly. This function will then be called once the start of the thread is requested. In

Figure 23 the target function refers to lte_sniffer, which is the LTE sniffer’s main function.

Next, the LteFileSniffer class needs to be integrated into the main.py file. This step requires two

adjustments: First, a new argument needs to be added to the main.py file to be able to start the

script with LTE functionality. Second, the SnifferManager’s method parse_file in the sniffer.py file,

which handles file inputs, needs to be modified to handle LTE files alongside pcap files.

The argument, in this case -l or --lte, can simply be added to the main script via the in Python

built-in argparse library as shown in Figure 24.

Implementation

 45

Figure 24: Adding an argument to the main.py file with the help of the argparse library provided by Python

The action argument “store_true” defines, that if the flag is provided in the terminal command, then

the boolean value true is stored in the variable lte. If the flag is missing, then false will be saved by

default.

The lte variable must then be evaluated in the main function as shown in Figure 25.

Figure 25: Evaluating the newly added argument lte in the main function

And lastly, the method parse_file of the SnifferManager class needs to be adjusted. As mentioned

in Section 5.1.1 the SnifferManager, or more precisely, the parse_file method handles pcap files.

Therefore, this method can be reused since it already handles the filename input. The modified

method is depicted in Figure 26.

 Fabia Müller / Sebastian Brunner

 46

Figure 26: Integrated lte argument and LteFileSniffer class into SnifferManager's parse_file method

The LTE extension is now complete and can be used in the command line by simply using the --lte

flag in combination with the file flag as shown in Figure 27.

user@ubuntu:~/DroneId-Monitoring/workspace$ sudo python3 ./backend/dronesniffer/main.py -l -f resources/lte/mini2_sm

Figure 27: Terminal command to start the LTE extension with a specified file

5.6 Extending the Application – Spoofing Detection Mechanism

A spoofing detection mechanism, as mentioned in eREQ3, was implemented into the system. The

current logic is simple. It compares the drone’s and the pilot’s position. If the value of the distance

is greater than 15 km, the drone is marked with an exclamation mark as suspicious. Figure 28

displays such a scenario.

Figure 28: Example of a drone marked as possibly spoofed

Implementation

 47

The value of 15 km was set based on the maximum possible distance of the DJI Air 2S drone

(12 km) to the pilot according to the technical specifications [39]. However, this fixed value is

error-prone, as the maximum possible drone-pilot distance may vary depending on the drone

model.

Using the distance between the drone and the capturing device (i.e., the Raspi) was also

considered to improve the spoofing detection accuracy. However, to determine the location of the

Raspi, an additional GPS module is needed. It was no longer possible to organise such a module

in the time available and was therefore not pursued further.

 Fabia Müller / Sebastian Brunner

 48

6 Testing and Evaluation

The most important factor of a monitoring system is its ability to monitor its target objects,

particularly when the system is under stress. Thus, the system was tested and evaluated outdoors

in a realistic scenario, across different browsers and devices, and against a spoofing attack.

Furthermore, user experience tests for feedback on the installation and usage were conducted.

6.1 Testing With Drones

Testing the application with the Parrot Anafi Thermal drone bore some challenges, which are

mentioned below, but was successful. This shows that all mandatory functional requirements listed

in Table 2 are working with ASD-STAN’s Remote ID. The test, illustrated in Figure 29, was

conducted at Bullingerhof in Zurich with a Raspberry Pi 4 connected to an iPad Air 4th Generation

(iOS-Version 16.4.1 (a)) and the drone (Software-Version 1.8.2) controlled via the FreeFlight6 App

(version 6.7.5) by Parrot on an iPhone 11 Pro (iOS-Version 16.5).

Figure 29: Real Scenario of a detected and monitored Parrot Anafi Thermal drone

The first challenge involved the drone not reliably broadcasting its Remote ID. Most of the time it

did not broadcast anything at all and occasionally, it just sent a few initial packets after start-up and

then stopped. The root cause could not be identified. A suspected issue might be the start location

of the drone, as the testing location was in a restricted zone (no flying above 120 m). However, this

would not explain why it sometimes did broadcast a Remote ID. Another possibility could be a flaw

in the Parrot application or some sort of misconfiguration. None of the causes could be verified in

the time given.

Testing and Evaluation

 49

Second, with the full version of the Raspberry Pi OS installed, the Raspi was not able to process

most Remote ID packets because of the increased CPU load. While this could not be fully verified

either, installing OS Lite solved the issue and the application worked flawlessly. OS Lite does not

contain a desktop environment, but only essential tools. The OS Lite version does not bear any

disadvantage over the full version but requires Python and pip to be installed alongside the

application, as they do not come preinstalled like in the full OS version.

Despite the two issues, capturing the live drone was successful up to 30 meters (between drone

and capture device). Drone, pilot and home location, rotation, and height were all received, parsed,

and displayed by the application, as seen in Figure 29. This test verifies, that REQ1 (for

AST-STAN), REQ2, REQ3, REQ4 and NFR2 are met. Beyond 30 metres, no Wi-Fi Beacon frames

were received by either the Raspi or a laptop. A more powerful adapter with good antennas might

be able to extend the reach. This hypothesis could not be verified due to temporal constraints.

Therefore, NFR4 is currently not satisfied but could be achievable with the current software.

Upon completing the test flights, the requirements REQ5, REQ6 and REQ7, which all involved

replaying previous flights, were verified and are satisfied to the fullest.

DJI drones, on the other hand, prove to be more difficult to test than anticipated. The tests are

conducted with two different drones (i.e., DJI Mavic Air and DJI Air 2S). Neither DJI’s proprietary

Remote ID nor the ASD-STAN format could be captured from any of the drones with the application.

This results in REQ1 not being fully satisfied, as DJI’s Remote ID was only processed via pcap files

and not captured live. The root problem, however, does not lie with the application but with the

broadcast of the DJI drones. The following paragraphs describe the problems encountered and

how they were attempted to be overcome.

As mentioned in Section 3.2.4, DJI developed and implemented a proprietary solution before the

publication of the standards. The discontinued drone DJI Mavic Air is known to have the proprietary

Remote ID solution implemented in its firmware [25]. In addition, Wi-Fi Beacon frames of said drone

were successfully captured at CYD prior to this Bachelor thesis. Therefore, this drone was used to

test DJI’s proprietary solution.

An assumption, which could not be verified, for why no Wi-Fi Beacon frames from the DJI Mavic Air

drone are broadcasted may be due to incompatible versions of the smartphone application,

DJI GO 4, and the drone’s firmware. The smartphone application is required to control the drone.

For the drone to properly broadcast DJI’s proprietary Remote ID, the drone’s firmware must be

compatible with the version of the smartphone application. Otherwise, according to

TheDronestop.com [40] and Medhane [41], this may lead to no GPS signal. The GPS signal is

required to determine geolocation, without which the broadcasting of the Remote ID transmission

is pointless. No meaningful source was found for this statement, but it is based on logical

conclusion. The latest firmware version on the discontinued DJI Mavic Air is v1.0.1.0. This version

 Fabia Müller / Sebastian Brunner

 50

is, according to the DJI Mavic Air Release Notes [42], compatible with the DJI GO 4 application

version 4.2.5 for iOS. However, only the newest version of the DJI GO 4 application can be

downloaded in the (Apple) App Store, which is version 4.3.50. Downgrading the application on

Android worked, but the application broke when trying to connect to the drone. This incompatibility

of the versions may be the reason for the missing Remote ID broadcast.

To eliminate this in further testing, the successor of the DJI Mavic Air, namely DJI Air 2S, was

acquired. The DJI Air 2S supports the Remote ID standard according to its English version manual

[39] and is approved by the U.S. Department of Transportation [43]. However, according to the DJI

support, the Remote ID will only be broadcasted if the following requirements are met:

1. The drone is registered with the proper authorities [44]

2. The drone owner is resident in the US [44]

3. The drone flight is within US airspace [45]

4. The drone’s motors are spinning [45]

Three of those four requirements could not be met within the constraints of this Bachelor thesis,

and tests by spoofing the geolocation to within the US were unsuccessful. This shows that the first

and/or second requirements must be met for the drone to broadcast the Remote ID. Thus, the focus

was henceforth on testing the application with the Parrot Anafi Thermal drone.

6.2 Compatibility Across Devices

As stated in NFR8, compatibility with all major devices and systems is key to make the application

accessible. A useful advantage of installing the system on a Raspi is its portability. Once set up, it

can simply be plugged into most devices and is ready to go without requiring any client-side

installation. Unfortunately, not all devices can connect to the Raspi via the USB C cable, which also

delivers power to it. Devices not able to connect via cable, such as the Apple iPad, can be linked

to the Raspi via a Wi-Fi hotspot that both devices connect to. From then on, the Raspi can be

accessed via its hostname. Note that “.local” might need to be added to the hostname in case it

does not work.

While the sniffing service runs on the Raspi, the UI is executed on the client side and must thus

support a variety of different browsers. No breaking issues were detected on any of the tested

major browsers, Safari on iPad, Chrome, and Firefox. On Safari, however, the highlighting of the

drones in the same colour as the path does not work. Since this is a minor cosmetical issue, it was

not further investigated or fixed.

6.3 User-Friendliness and Ease-of-Use

To verify whether NFR6 and NFR7 are satisfied, user experience tests were carried out on

7 June 2023. One tester works in IT security and was tasked with installing and setting up the

Testing and Evaluation

 51

system with just the instructions in Section 5.3 given. While they did face challenges setting up the

Raspi itself with the correct configuration, which is not further explained in Section 5.3, installing

the system was successful [46].

Another tester, who works for the tax department and has no formal IT education, was given a

laptop with the system already running and displayed in a Google Chrome browser. They were

tasked to test the requirements of Table 2 without further instructions given. The overall reaction

was good, and the application looks “cool” [47]. However, the following issues and improvements

were pointed out:

• It is not clear whether the settings are saved or not, due to lack of feedback

• Emoji-buttons are very small

• An optional introduction tutorial or “?” button would be great

• The drone-pilot link and historic path look the same and can be confused, making it dashed

might help

• Resizing the map does not work, when the browser size is adjusted

The UI is currently designed for desktops and tablets first. Therefore, user-friendliness suffers on

a mobile device (e.g., iPhone 11 Pro and Fairphone 3). Most buttons are small, making them hard

to accurately click, and control panels start to overlap on smaller screen sizes. However, the issue

is negligible, since the system is not primarily designed for mobile devices, and work well on tablets.

According to the testers, both NFR6 and NFR7 are fulfilled.

6.4 Performance

While the developed monitoring system is still susceptible to spoofing, tests show that its

performance and responsiveness remain much longer intact compared to AeroScope, which

crashed while monitoring 120 drones.

The evaluation of the developed system started at 10 spoofed, randomly-moving drones each

sending updates in a 3 second interval. A single, manually-controlled drone with a 0.5 second

update cycle was used to verify the systems responsiveness. By increasing the number of

randomly-moving drones by increments of 10, the first slight delay occurred at 30 drones. This

delay was only noticeable on the manually controlled drone as it moved more frequently than the

others. The delay started to increase slightly after 80 spoofed drones, but the application was still

functioning properly. Figure 30 shows a screenshot of 60 spoofed drones. It illustrates the issue

that, with such a dense drone clustering, the UI becomes cluttered and individual drones are difficult

to track.

 Fabia Müller / Sebastian Brunner

 52

Figure 30: Satellite view of 60 spoofed drones

At 100 drones, the UI was struggling with updating the map and the drones with their paths and

animations. Switching to the schematic map and turning on performance mode, as seen in

Figure 31, helped immensely and allowed the system to comfortably handle up to 150 drones,

successfully satisfying NFR1. Note that the drones in Figure 31 spread over an area of around

20 km, at which point the drones would be out of reach for even AeroScope to detect.

Figure 31: Schematic view with performance mode and 100 spoofed drones

To get a better idea of the scale, Figure 32 shows 150 spoofed drones around Los Angeles

International Airport (LAX), which has an area of 14.77 km2 [48].

Conclusion

 53

Figure 32: 150 spoofed drones at Los Angeles International Airport (LAX)

A limit on the number of drones before the application stops working was detected at 500 spoofed

drones. The application still works at first, but the responsiveness decreases with every Remote ID

received until it stops working. At this point, the Raspi reboots itself. After a few seconds, the

application is available again.

The evaluation demonstrates that the application is functional, resilient and may be used

operationally. Most non-functional and functional requirements were met except for REQ1 and

NFR3. Both requirements could, however, be achievable with the same software and the

appropriate hardware but could not be verified within the remaining time.

7 Conclusion

In this chapter, results and the potential for future work are discussed. The system and the

associated Remote ID are critically reviewed, and their limitations are pointed out.

7.1 Results

The goal of this Bachelor thesis was to develop an improved and affordable drone monitoring

system with the aim to facilitate the monitoring of drones via the new Remote ID for authorities and

law enforcement, but also ordinary users.

All mandatory functional requirements listed in Table 2 were fulfilled and successfully tested for

the ASD-STAN format. The system successfully captures, parses and stores broadcasted

Remote IDs and displays them on an interactive map. Live updates are sent to the UI and drones

display their historic flight paths, pilot and home locations, and other details. The user can adjust

various settings and customise the UI. Furthermore, all captured drone flights can be replayed upon

request. Unfortunately, support for DJI’s proprietary Remote ID was implemented but could not be

 Fabia Müller / Sebastian Brunner

 54

verified in a real scenario. Thus, REQ1 (support for DJI and ASD-STAN Remote ID) is only partially

satisfied.

By design, the non-functional requirements NFR3 (hardware cost ≤ 10% of AeroScope) and

NFR7 (open for extension) were achieved. The usage of a Raspi in combination with a Wi-Fi

adapter and tablet or laptop makes the system significantly more affordable and accessible than

AeroScope. At below 200 Swiss francs, the hardware costs of the Raspi and the EDIMAX Wi-Fi

adapter meet the required maximum of 790 Swiss francs. Even a better Wi-Fi adapter with

increased sniffing range would be within budget. The code is open for extensions as shown in

Section 5.5. The evaluation of the system verified that NFR1 (handle ≥ 150 drones without

crashing), NFR2 (real-time updates within 1 s), and NFR8 (support all major devices) are all met.

Only NFR4 (range of 500 m) was not achieved. With the devices used in this Bachelor thesis, only

an effective range of 30 m was measured. This is significantly below the required 500 m but could

be improved by using an adapter with a good antenna.

Through user tests, NFR5 (simple installation process) and NFR6 (easy usage) were verified to be

met as well. Although the UI could be improved, no major issues were reported by the testers.

All optional extensions are at least partially addressed. The option to read and parse pcap files

(eREQ1) is available when starting the application via a command line. This is useful for

development purposes but not available to the end user. Support for LTE (eREQ2) was added

experimentally, but live capturing of LTE traffic is not supported. However, like pcap files, captured

raw data files can be loaded and parsed. A minimal anti-spoofing detection (eREQ3) was

implemented as well. While it does only check the bare minimum, the detection mechanism can be

extended in future versions.

The extension "Drone-mounted Remote ID spoofer", which is mentioned in the assignment in

Appendix B, was omitted altogether. A simple solution for this would be to tape a Raspi running the

spoofing script in random mode to a drone.

Conclusion

 55

To summarise the statements above, Table 8 lists all functional and non-functional requirements

alongside their completion state.

Table 8: Summary of all functional and non-functional requirements

Identifier Requirement State

Mandatory requirements

REQ1 Support DJI’s proprietary and the ASD-STAN
Remote ID

Support is implemented for both; only
ASD-STAN was verified with live drone

REQ2 Display all currently in-flight drones on a map Fulfilled

REQ3 Update the live position of currently in-flight drone upon
receiving an update

Fulfilled

REQ4 Selectively display historic flight path, pilot, and home
location of drone

Fulfilled

REQ5 Display a list of all drones that were ever captured Fulfilled

REQ6 Replay a flight of a previously captured drone Fulfilled

REQ7 Details for a replayed or in-flight drone can selectively
be displayed

Fulfilled

Optional extensions

eREQ1 Read Remote IDs from captured pcap files Only supported via command line; not
available to end users

eREQ2 Support Remote IDs broadcasted via LTE Only files supported via command line; no live
capture; not available to end users

eREQ3 Detect spoofed Remote IDs Only simple mechanism implemented; open
for extensions

Non-functional requirements

NFR1
Continuously display at least 150 in-flight drones
sending updates in 3 s intervals, as defined in the
ASD-STAN standard, without crashing

Fulfilled

NFR2 Update in-flight drones with live data within 1 s upon
receiving a Remote ID

Fulfilled

NFR3 Keep hardware costs under 10% of the costs of
AeroScope (≤ 790 Swiss francs)

Fulfilled

NFR4 Monitor drones within a 500 m radius (given a line of
sight / no obstacles)

Not fulfilled, only 30 m radius supported with
current hardware

NFR5
Keep the installation process simple; a user with basic
IT knowledge (e.g., executing Linux commands) must
be able to install the software without specific training

Fulfilled

NFR6
Make the usage of the application simple; a user
without any IT knowledge or specific training must be
able to use all key features described in Table 2

Fulfilled

NFR7
Keep the code open for extensions; especially parsing
new formats and adding new sniffing sources should
be possible for a developer with coding experience

Fulfilled

NFR8 Support all major devices, operating systems and/or
browsers

Fulfilled, minor issues on Safari

Overall, the goal of this Bachelor thesis was achieved. The result can be seen in Figure 33. It

contains a picture of the Raspi being powered by the iPad Air 4th Generation, and the application

running in the browser, detecting a spoofed drone.

 Fabia Müller / Sebastian Brunner

 56

Figure 33: Drone monitoring system running Raspi and displayed on iPad Air 4th Generation

The developed system has a more responsive and easier-to-use UI, can detect spoofed drones on

a simple level, and can monitor drones by different manufacturers. The last point is not only thanks

to the Remote ID standards, which unifies the protocol for sending the data, but also because the

system is designed to be easily extensible where needed.

Nonetheless, the system is not yet production ready for large scale drone surveillance. For

instance, even though the system does detect that a drone might be spoofed, it is not yet fully

protected against denial-of-service (DOS) attacks through drone spoofing. With a high tolerance

for the number of drones that can be displayed simultaneously, the application can safely be used

in smaller monitoring use cases.

Furthermore, the drone’s distance to the capturing device (i.e., Raspi) poses an additional

limitation. Depending on the surrounding, the Wi-Fi signal can be too weak to be caught by the

application with a simple Wi-Fi adapter or the target itself could be too far away to be monitored.

Additionally, because the system is dependent on the transmission of the Remote ID, it is directly

dependent on the drone owner, who must configure the drone correctly, and the manufacturers,

who implement the Remote ID support into their drones.

For instance, a drone owner can simply buy a new drone and manipulate the drone, unintentionally

through misconfiguration or maliciously, to no longer transmit the Remote ID. As a result, the drone

will no longer be detected by the drone monitoring system at all.

Conclusion

 57

The registration of the drone with the proper authorities poses a similar issue. Some drones will not

send a Remote ID until the drone is properly registered. If this is not done by the drone owner, the

drone cannot be detected by the system. This can be equated with a driving license check. By law,

a car driver is required to take and pass a test before the person is allowed to drive. However, a

person is not actively checked to see if they have a driving licence, neither when buying a car nor

before every journey. Occasionally, checks are carried out, but the basic principle is that drivers

are responsible for their own actions. This can also be applied to drones.

In addition, older drone models, that were built before Remote ID was introduced, can still be used.

These drones cannot be recognised by the system because no Remote ID is transmitted.

In summary, the developed system can monitor drones on a smaller scale. The system provides

an excellent foundation for further extension. It is user-friendly, easy-to-use, low-priced, and small

in size. Therefore, it is accessible to a large community, including people without much technical

know-how. It supports sniffing over Wi-Fi as well as parsing LTE files and can detect possibly

spoofed drones. However, due to the system’s limitations, it should not be used as the sole safety

measure but only as a supporting measure.

7.2 Future Work

Throughout development and especially during evaluation, many ideas for new features emerged

and some issues were discovered. Since software is never fully finished but time was limited, some

improvements were left for future work.

No breaking issues were discovered during evaluation. However, several minor issues remained

unfixed either because of a lack of importance compared to other issues or due to their complexity.

The following list, which is not ranked in any way, records said issues:

• When replaying a drone that is also currently active, location updates disrupt replay

(displace replaying drone)

• Occasionally, when the sniffing service is stopped, a background process does not

terminate correctly thus blocking the application from properly shutting down

• Titles in ActiveDroneList and AllDroneList disappear when scrolling and it is not clearly

visible when a list is scrollable

• All interfaces appear in Wi-Fi Sniffing interface setting (filter out non-Wi-Fi interfaces and

interfaces that do not support monitor mode)

• Setup view appears when Google Map key is deleted in settings even without saving

• Contrast between drones, paths, and terrain can be insufficient in some constellations

• Pilot and home location markers are indistinguishable between different drones (same icon)

 Fabia Müller / Sebastian Brunner

 58

• The map style preference (schematic or satellite) does not persist and reset upon page

refresh

• Whenever AllDroneList is empty, it would be more appropriate to display a “No drones

found” text instead of not expanding the list

• The UI is not very mobile friendly as the buttons are too small

• The drone icons sometimes overlap in the UI and hide other content

• The settings panel does not show that there are unsaved settings

• It is unclear to the user when the settings have successfully been saved (a success toast

could help there)

In addition to the minor issues listed above, the LTE extension could, unfortunately, not be tested

in a realistic setting and therefore might hide potential errors or inaccuracies. Thus, it is

recommended to test the LTE extension before it is fully integrated into the application and

advertised as functional. Furthermore, the spoofing detection currently only performs minimal

checks, which should be extended to increase detection accuracy.

Finally, a list of improvements or potential new features that were left out of scope is provided in

the following list:

• Replay of not just one drone but a timespan with multiple drones (e.g., all drones captured

the previous Thursday between 12:00 to 14:00)

• Directly upload and parse a pcap file via UI (currently only via command line supported)

• Display the logs of the service in the UI (significantly simplifies debugging)

• Do not process spoofed drones to prevent DOS attacks

• Add a help menu to explain the software and UI

Lists

 59

8 Lists

8.1 List of References

[1] J. Alkobi, “The Evolution of Drones: From Military to Hobby & Commercial,” 15 January 2019. [Online]. Available:

https://percepto.co/the-evolution-of-drones-from-military-to-hobby-commercial/. [Accessed 25 April 2023].
[2] Federal Aviation Administration, “Drones by the Numbers,” (n.d.). [Online]. Available:

https://www.faa.gov/node/54496. [Accessed 25 April 2023].
[3] DroneSec, “Weekly Threat Intelligence,” Notify, no. 160, p. 11, Jan. 2023.
[4] Department 13, “White Paper: Anatomy of DJI’s Drone Identification Implementation,” AUS., Manuka, 2017.
[5] DJI, “DJI AEROSCOPE,” (n.d.). [Online]. Available: https://www.dji.com/aeroscope. [Accessed 17 March 2023].
[6] ASD-STAN, Direct Remote ID Introduction to the Eruopean UAS Digital Remote ID Technical Standard, Brussels,

2021, p. 13.
[7] N. Schiller, M. Chlosta, M. Schloegel, N. Bars, T. Eisenhofer, T. Scharnowski, F. Domke, L. Schönherr and T.

Holz, “Drone Security and the Mysterious Case of DJI's DroneID,” 2023.
[8] Dronetag, “Drone Scanner,” (GitHub Repository), 15 March 2023. [Online]. Available:

https://github.com/dronetag/drone-scanner. [Accessed 17 March 2023].
[9] Open Drone ID, “OpenDroneID Android receiver application,” (GitHub Repository), 17 January 2023. [Online].

Available: https://github.com/opendroneid/receiver-android. [Accessed 17 March 2023].
[10] B. Dall'Omo, “Evaluation of practical attacks on drone monitoring device,” Armasuisse Science + Technology,

Thun, CH, 2023.
[11] copters.eu, “DJI Aeroscope Mobile Station,” (n.d.). [Online]. Available: https://www.copters.eu/remote-

controllers/1030-dji-aeroscope-mobile-station.html. [Accessed 5 June 2023].
[12] heliguy, “DJI Transmission Systems – Wi-Fi, OcuSync & Lightbridge,” 27 May 2022. [Online]. Available:

https://www.heliguy.com/blogs/posts/dji-transmission-systems-wi-fi-ocusync-lightbridge. [Accessed 8 June 2023].
[13] SkyLab, “Aeroscope and what it sees!,” SkyLab, 9 June 2022. [Online]. Available:

https://www.youtube.com/watch?v=eJhONTxUQ00. [Accessed 26 May 2023].
[14] HELIGUY.com, “DJI AeroScope Image,” 17 July 2019. [Online]. Available:

https://www.facebook.com/heliguydotcom/photos/a.146719441508/10159703105116509/?type=3&theater.
[Accessed 25 May 2023].

[15] L. Romà, private communication, June 2023.
[16] Federal Aviation Administration, “UAS Remote Identification,” 15 March 2023. [Online]. Available:

https://www.faa.gov/uas/getting_started/remote_id. [Accessed 17 March 2023].
[17] ASTM, “Standard Specification for Remote ID and Tracking (ASTM F3411-22a),” 13 July 2022. [Online].

Available: https://www.astm.org/f3411-22a.html. [Accessed 17 March 2023].
[18] ASD-STAN, “ASD-STAN prEN 4709-002 Corrigendum 1,” (n.d.). [Online]. Available: https://asd-

stan.org/downloads/pren-4709-002-corr/. [Accessed 6 June 2023].
[19] C. Hegner, “Ausnahmen von den Bestimmungen über den Betrieb von unbemannten Luftfahrzeugen,” 19

January 2023. [Online]. Available: https://www.fedlex.admin.ch/eli/fga/2023/96/de. [Accessed 6 June 2023].
[20] IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems -

Local and Metropolitan Area Networks--Specific Requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, IEE, New York, NY, 2021, pp. 212, 897, 945, 1059.

[21] V. Gupta and M. K. Rohil, “Information Embedding in IEEE 802.11 Beacon Frame,” IJCA, no. 3, pp. 12-16, Nov.
2012.

[22] IEEE, “IEEE Registration Authority,” (n.d.). [Online]. Available: https://standards.ieee.org/faqs/regauth/. [Accessed
18 March 2023].

[23] IEEE, “MAC Address Block Large - OUI,” (n.d.). [Online]. Available: https://standards-oui.ieee.org/. [Accessed 28
April 2023].

[24] IEEE, “Company ID - CID,” (n.d.). [Online]. Available: https://standards-oui.ieee.org/cid/cid.txt. [Accessed 28 April
2023].

[25] C. Bender, “DJI drone IDs are not encrypted,” The University of Tulsa, Tulsa, OK, 2022.
[26] Wireshark Foundation, “WLAN (IEEE 802.11) capture setup,” 11 August 2020. [Online]. Available:

https://wiki.wireshark.org/CaptureSetup/WLAN. [Accessed 2 June 2023].
[27] EDIMAX, “150 Mbit/s Wireless IEEE802.11b/g/n nano USB Adapter EW-7811Un,” (n.d.). [Online]. Available:

https://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/de/wireless_adapters_n150/ew-
7811un/. [Accessed 6 June 2023].

[28] The Tcpdump Group, “LIBPCAP 1.x.y by The Tcpdump Group,” (GitHub Repository), 18 May 2023. [Online].
Available: https://github.com/the-tcpdump-group/libpcap. [Accessed 18 May 2023].

 Fabia Müller / Sebastian Brunner

 60

[29] G. Lyon, “Npcap,” (n.d.). [Online]. Available: https://npcap.com/. [Accessed 18 May 2023].
[30] SQLite, “Limits In SQLite,” (n.d.). [Online]. Available: https://www.sqlite.org/limits.html. [Accessed 12 March

2023].
[31] Google, “Pricing that scales to fit your needs,” (n.d.). [Online]. Available:

https://mapsplatform.google.com/pricing/. [Accessed 6 June 2023].
[32] S. Ramírez, “FastAPI,” 16 May 2023. [Online]. Available: https://fastapi.tiangolo.com/. [Accessed 26 May 2023].
[33] S. Ramírez, “SQLModel,” 30 August 2022. [Online]. Available: https://sqlmodel.tiangolo.com/. [Accessed 26 May

2023].
[34] E. San Martin Morote, “Pinia,” 18 May 2023. [Online]. Available: https://pinia.vuejs.org/. [Accessed 26 May 2023].
[35] Inocan Group, “vue3-google-map,” (GitHub Repository), 3 September 2022. [Online]. Available:

https://github.com/inocan-group/vue3-google-map. [Accessed 25 March 2023].
[36] A. Deveria, “Can I use... Import maps,” (n.d.). [Online]. Available: https://caniuse.com/import-maps. [Accessed 25

March 2023].
[37] n. cAMel, “On Raspberry Pi WiFi monitor mode sniffing - not getting data packets,” StackOverflow, 26 January

2016. [Online]. Available: https://stackoverflow.com/a/35012796. [Accessed 30 May 2023].
[38] RUB-SysSec, “Drone-ID Receiver for DJI OcuSync 2.0,” (GitHub Repository), 10 March 2023. [Online]. Available:

https://github.com/RUB-SysSec/DroneSecurity. [Accessed 10 May 2023].
[39] DJI, “DJI AIR 2S - User Manual,” October 2022. [Online]. Available:

https://dl.djicdn.com/downloads/DJI_Air_2S/DJI_Air_2S_User_Manual_v1.2_en.pdf. [Accessed 2 May 2023].
[40] TheDronestop.com, “(FIXED) DRONE WON’T CONNECT TO GPS & GPS ERRORS. (WHY, HOW TO FIX),” 12

April 2022. [Online]. Available: https://thedronestop.com/drone-wont-connect-to-gps/. [Accessed 2 May 2023].
[41] s. medhane, “No GPS Signal on New Mavic Mini Drones,” 21 November 2021. [Online]. Available:

https://lccsdrone.com/no-gps-signal-on-new-mavic-mini/. [Accessed 2 May 2023].
[42] DJI, “Mavic Air Release Note,” 2018. [Online]. Available:

https://dl.djicdn.com/downloads/Mavic%20Air/Mavic_Air_Release_Notes_en.pdf. [Accessed 3 June 2023].
[43] U.S. Department of Transportation, “UAS Declaration of Compliance,” 7 September 2022. [Online]. Available:

https://uasdoc.faa.gov/listDocs/RID000000007. [Accessed 2 May 2023].
[44] Federal Aviation Administration, “How to Register Your Drone,” 11 April 2023. [Online]. Available:

https://www.faa.gov/uas/getting_started/register_drone. [Accessed 2 May 2023].
[45] DJI, “What are the conditions for a drone to start broadcasting Remote ID signals?,” 18 March 2023. [Online].

Available: https://forum.dji.com/forum.php?mod=viewthread&tid=286879&page=1#pid3003932. [Accessed 2 May
2023].

[46] A. Joss, private communication, June 2023.
[47] L. Mosimann, private communication, June 2023.
[48] Los Angeles International Airport, “Airport Basics,” LAWA, (n.d.). [Online]. Available: https://www.lawa.org/lawa-

our-lax/airport-basics. [Accessed 31 May 2023].

8.2 List of Figures

Figure 1: DJI AeroScope Mobile [11] .. 10
Figure 2: Screen of the portable version of AeroScope displaying a drone flight path [13] ... 11
Figure 3: AeroScope displaying drone information of a specific selected drone on the left side [14] 12
Figure 4: Structure of a Wi-Fi Beacon Frame including size in byte of each field (grey) ... 14
Figure 5: Structure of Vendor Specific Element .. 14
Figure 6: Message structure according to the ASTM and ASD-STAN standard ... 15
Figure 7: Structure of the four mandatory message types .. 16
Figure 8: Comparison of Remote ID flight information packet version 1 (left) and version 2 (right) 17
Figure 9: Raspberry Pi 4 in comparison to iPad Air 4th Generation .. 21
Figure 10: EDIMAX EW-7811Un Wi-Fi adapter used for testing [27] ... 22
Figure 11: Database schema .. 25
Figure 12: Architectural overview of the sniffing process .. 26
Figure 13: Structural overview of all components involved in the sniffing and data processing process 29
Figure 14: UI state diagram .. 32
Figure 15: Setup view ... 33
Figure 16: Monitor view with schematic map .. 33
Figure 17: Monitor view with satellite map and the highlighted control elements.. 35
Figure 18: Drone details panels (red and yellow) and AllDroneList (orange) .. 36
Figure 19: Expanded settings panel ... 37
Figure 20: Replay view with the path, home, and pilot location displayed .. 39
Figure 21: Terminal command and logs of the spoofing script started in manual mode with some drone movement 42

Lists

 61

Figure 22: Project structure with LTE extension ... 43
Figure 23: Added sniffer class for adding LTE compatibility ... 44
Figure 24: Adding an argument to the main.py file with the help of the argparse library provided by Python 45
Figure 25: Evaluating the newly added argument lte in the main function .. 45
Figure 26: Integrated lte argument and LteFileSniffer class into SnifferManager's parse_file method 46
Figure 27: Terminal command to start the LTE extension with a specified file ... 46
Figure 28: Example of a drone marked as possibly spoofed .. 46
Figure 29: Real Scenario of a detected and monitored Parrot Anafi Thermal drone .. 48
Figure 30: Satellite view of 60 spoofed drones ... 52
Figure 31: Schematic view with performance mode and 100 spoofed drones .. 52
Figure 32: 150 spoofed drones at Los Angeles International Airport (LAX) .. 53
Figure 33: Drone monitoring system running Raspi and displayed on iPad Air 4th Generation 56

8.3 List of Tables

Table 1: OUIs of DJI, Parrot and ASD-STAN ... 15
Table 2: Functional requirements ... 18
Table 3: Non-functional requirements ... 19
Table 4: Advantages and disadvantages of different network capturing solutions .. 22
Table 5: API Endpoints ... 30
Table 6: List of map control buttons and their functionality ... 34
Table 7: Arguments available to the spoofing script ... 41
Table 8: Summary of all functional and non-functional requirements ... 55

8.4 List of Equations

Equation 1: Transformation equation applied on the coordinate (latitude and longitude) values 18
Equation 2: Rows vs database size limit comparison ... 23
Equation 3: Theoretical recording limit ... 23
Equation 4: Realistic recording limit .. 24

8.5 List of Algorithms

Algorithm 1: Transformation algorithm for the angle values of the drone ... 18

8.6 List of Abbreviations

ASD-STAN AeroSpace and Defence Industries Association of Europe - Standardization

ASTM American Society for Testing and Materials

CDN Content Delivery Network

CYD Cyber-Defence Campus

GPS Global Positioning System

OUI Organizationally Unique Identifier

Raspi Raspberry Pi

UI User Interface

UUID Universally Unique Identifier

 62

9 Appendices

Appendix A Extract of ASTM F3411-19

 63

Appendix B Bachelor Thesis Assignment

Bachelor Thesis FS 2023

Students: Sebastian Brunner, Fabia Müller

Advisor: Prof. Dr. Marc Rennhard, Llorenc Roma (Cyber-Defence Campus)

Start: 13. February 2023 Credits: 12 ECTS

End: 9. June 2023

Drone Monitoring System

Background
With a massive rise in the number of commercial drones, the skies have become an increasingly dangerous
place, and drones' remote identification (RemoteID) is crucial for security. RemoteID is the ability of a
drone in flight to provide identification and location information that can be received by other parties.
RemoteID creates a common and consistent way for authorities to monitor airborne drones and identify
who is flying them.
As one of the main players in the commercial drone market, company DJI developed its own RemoteID
solution, and many DJI drones already implement this feature. In addition, DJI has also developed a system
called AeroScope, which can quickly identify all DJI drones with RemoteID implemented. AeroScope is
meant to be used as a protection mechanism for highly critical facilities, e.g., prisons, airports, and
governments. Moreover, this device was recently seen in use within the Ukraine-Russia conflict, where one
party used AeroScope to identify the other party's drone pilot’s position. At the same time, the Ukrainian
army claimed that their DJI AeroScope devices had been patched to NOT show the Russian drones (nor the
pilot’s positions).

Previous Work
Previous research investigated how the RemoteID feature is implemented in WiFi-based DJI drone models
and reversed engineered it. Based on this research, the Cyber-Defence Campus developed a simple
RemoteID spoofer software that could deceive Aeroscope successfully. Hence, such a spoofer could be
used as a countermeasure to DJI’s drone monitoring system AeroScope.

Appendix B – Bachelor Thesis Assignment

 64

In a second phase, the spoofer was evaluated further against AeroScope. This included spoofing multiple
drones on a location, spoofing random pilot locations, and spoofing drones in motion. At this point, it could
be confirmed that AeroScope does not have any protection against fake RemoteID information.

Goals and Task
The goal of this bachelor thesis is to develop a drone monitoring system that implements functionality
similar to AeroScope: receive and display drone RemoteID information. This is possible due to RemoteID
information not being encrypted and transmitted over 802.11 (WiFi) broadcast packets.

Despite AeroScope being focused on DJI drones, the RemoteID feature is also implemented by other
manufacturers such as Parrot. According to the USA, all the manufacturers will have to implement this
feature. Therefore, the developed drone monitoring system should be able to monitor drones of at least one
additional drone manufacturer, Parrot. The Parrot RemoteID version is to be compliant with European
regulations, and there exists software able to receive it, which can be used as a code reference.

Task Details
In the context of this bachelor thesis, the following main task should be completed:

• Familiarization with DJI RemoteID and Parrot RemoteID

• Study how the RemoteID is transmitted (data formats and fields).
• Study the 802.11 standard and how beacon packets are leveraged to transmit RemoteID

information.
• Identify AeroScope features

• Analyze AeroScope’s functionality as a basis to replicate it in the new drone monitoring
system.

• Software development

• Plan, design, implement and test an Aeroscope-like drone monitoring system. The software
should be capable of monitoring drones that transmit RemoteID information. It should display
information about each of the detected drones in real time and store it for showing and replaying
observed situations later (history time).

• Documentation

Depending on the progress and challenges encountered with the main task, there are several extensions for
the project to be considered. It is expected that at least one of them can be partially addressed during this
project.
• Support for DJI LTE RemoteID

• Develop functionality for receiving RemoteID information over LTE.
• Drone-mounted RemoteID spoofer

• Implementation of the RemoteID spoofer into a hardware board that can be mounted (taped) on
drones. This can be used as a countermeasure against AeroScope (and other drone monitoring
systems) by spoofing multiple drones around the real drone, making the real drone harder to
identify by AeroScope.

• Implement anti-spoofing detection mechanisms

• Survey and add/implement/test functionality that helps with detecting fake drones. For example,
compare position information with signal directional information (see, e.g., Wi-Fi Direction
Finding with Frequency-Scanned Antenna and Channel-Hopping Scheme, IEEE Sensors
Journal, Volume: 22, Issue: 6, March 2022).

Appendix B – Bachelor Thesis Assignment

 65

Deliverables
• All developed software components. The software should have a good quality level (good design, good

code quality, good readability) and be further usable, but it does not have to be production ready.

• The written report.

• A presentation of the work. The final presentation will be held in front of an external expert and the
advisors and takes place after the thesis submission deadline during the official exam weeks.

General Remarks
• Regular meetings are held with the advisors to discuss the progress of the work and open questions.

• After one week, the students must have prepared a project plan that contains the planned activities
throughout the project work, including the most important milestones. This plan is to be discussed with
the advisors.

• The written report must be in English and must include an abstract in both German and English. The
report must clearly and comprehensibly describe all steps and important decisions that were made
during the thesis and the results that were achieved. In addition, it must include this thesis assignment
document and the project plan in the appendix. The report must also be accompanied by a data carrier
or a data repository containing the report in source and PDF format and all developed software
components.

 66

Appendix C Project Management

Milestones Deadline In Charge Comment

Capture and filter Wi-Fi Beacon frames
(with Python or Pcap4J) - POC 4.3.2023 Sebastian

Analyse AeroScope features and derive features
(and improvements) for improved system 4.3.2023 Fabia

Define basic architecture and make basic setup
(repository, frameworks, language, modules,
database)

5.3.2023 Both Decision point, decide who does
what and how in the future

Sniff, filter, and parse packets and store the info
in database 26.3.2023 Fabia

Design and implement first UI version
(e.g., with Google Maps API, d3.js, etc.) 26.3.2023 Sebastian

Load and display data in UI
(replay up to current, no pushes) 2.4.2023 Sebastian

Real time pushes of drone updates to UI 16.4.2023 Sebastian

Fabia will analyse the captured
Parrot packet & Sebi will in time
try to get the Mavic Drone to
work (with older Android App)
Should we get a new DJI drone?

Package application running on Raspberry Pi 23.04.2023 Both

Research and decide for extension
(LTE, Wi-Fi direction info, on-drone spoofer) 30.4.2023 Both

Another decision point:
(LTE: https://github.com/RUB-
SysSec/DroneSecurity)

Develop extension(s) 28.5.2023 Both
 LTE file parsing and simple
spoofing detection will both be
implemented as extensions

Beautify documentation and prepare
presentation 9.6.2023 Both

 67

Appendix D GitHub Repository Structure

Repository Link:

https://github.com/cyber-defence-campus/2023_Mueller-Fabia_Brunner-Sebastian_DroneID-

Monitoring (might require access by CYD)

Tagged version (v1.0) at the date of submission:

https://github.com/cyber-defence-campus/2023_Mueller-Fabia_Brunner-Sebastian_DroneID-

Monitoring/releases/tag/v1.0

The repository structure was given by CYD. Most folder are empty. The important ones are:

• workspace: contains all code including install scripts, frontend and backend

o backend: all backend Python code

▪ dronesniffer: code for the drone sniffer

▪ tests: all unit tests for the backend

o frontend: all frontend source files

▪ css: CSS style sheets

▪ img: raw images

▪ js: Javascript source files

o dsniffer.service: template for the system service

o install.sh: install script

o spoof_drones.py: spoofing script

• report: contains this report in PDF and Word format

• presentation: will contain the presentation as soon as it is finished

https://github.com/cyber-defence-campus/2023_Mueller-Fabia_Brunner-Sebastian_DroneID-Monitoring
https://github.com/cyber-defence-campus/2023_Mueller-Fabia_Brunner-Sebastian_DroneID-Monitoring
https://github.com/cyber-defence-campus/2023_Mueller-Fabia_Brunner-Sebastian_DroneID-Monitoring/releases/tag/v1.0
https://github.com/cyber-defence-campus/2023_Mueller-Fabia_Brunner-Sebastian_DroneID-Monitoring/releases/tag/v1.0

