
Zurich University of Applied Sciences

Bachelors Thesis

A New Code Generation Tool for
Rapid Application Development
CodeFlow: A developer-friendly code
generator for rapid development of

maintainable web applications

Patrick Egli, Karim Ibrahim

supervised by
Dr. Michael Wahler

June 9, 2023

DECLARATION OF ORIGINALITY

Bachelors Thesis at the School of Engineering

By submitting this Bachelor’s thesis, the undersigned student con�rms that this
thesis is his/her own work and was written without the help of a third party.
(Group works: the performance of the other group members are not considered as
third party).

The student declares that all sources in the text (including Internet pages) and
appendices have been correctly disclosed. This means that there has been no
plagiarism, i.e. no sections of the Bachelor thesis have been partially or wholly
taken from other texts and represented as the student’s own work or included
without being correctly referenced.

Any misconduct will be dealt with according to paragraphs 39 and 40 of the General
Academic Regulations for Bachelor’s and Master’s Degree courses at the Zurich
University of Applied Sciences (Rahmenprüfungsordnung ZHAW (RPO)) and subject
to the provisions for disciplinary action stipulated in the University regulations.

City, Date: Name Student:

Gockhausen, June 9, 2023 Karim Ibrahim

Aadorf, June 9, 2023 Patrick Egli

1

Contents

1 Introduction 5
1.1 Background and Motivation . 6
1.2 Objectives and research questions . 7
1.3 Scope . 8
1.4 Outline of the thesis . 9

2 Background 10
2.1 Low Code Software Development . 11

2.1.1 Low Code Software Development . 11
2.1.2 Low Code Platforms . 11
2.1.3 Low Code Platforms & Software Engineering 11

2.2 Existing Comparisons . 13
2.3 Developer Experience . 14

3 Methodology 15
3.1 Evaluation criteria . 16

3.1.1 Maintainability . 16
3.1.2 Performance . 16
3.1.3 Scalability . 16
3.1.4 Version Control . 17
3.1.5 Reusability . 17
3.1.6 Extendability . 18
3.1.7 Documentation . 18
3.1.8 Vendor Lock-in . 18
3.1.9 Deployment . 18
3.1.10 Frontend Integration . 19
3.1.11 Time to Market . 19

3.2 Evaluation methods . 20
3.2.1 Evaluation of tools . 20
3.2.2 How we compare the tools . 20

4 Evaluation of existing tools and platforms 22
4.1 Overview of existing platforms . 23
4.2 Evaluating Existing Platforms on Key Software Development Metrics . . 24

4.2.1 Evaluation of JHipster . 24
4.2.2 Evaluation of OutSystems . 25
4.2.3 Evaluation of Mendix . 25
4.2.4 Conclusion . 26

4.3 Limitations of Existing Platforms and the Need for a New Tool 27

5 Design and Implementation 28
5.1 Advantages of Code Generation Tools in Software Development 29
5.2 Design . 31

5.2.1 Objectives . 31
5.2.2 Overview . 31

5.3 Frameworks and libraries . 32
5.3.1 Remix . 32

2

CONTENTS

5.3.2 React . 32
5.3.3 Prisma . 32
5.3.4 Tailwind CSS . 32
5.3.5 Storybook . 32
5.3.6 TypeScript . 32
5.3.7 NX Workspace . 33
5.3.8 Docker . 33
5.3.9 GitHub Work�ows . 33

5.4 Architecture and features . 34
5.4.1 Libraries . 35
5.4.2 Pre-built Applications . 37
5.4.3 Deployment Application . 38
5.4.4 CLI Application . 38

5.5 Usage of CodeFlow . 40
5.5.1 Cloning the CodeFlow Repository . 40
5.5.2 Setting up the Development Environment 40
5.5.3 Root Workspace and Target Workspace 41
5.5.4 Generating the Target Workspace . 41
5.5.5 UI Component Libraries . 43
5.5.6 Spinning up the Database . 45
5.5.7 Extending the Model . 46
5.5.8 Creating Schemas for Input Validation 49
5.5.9 Creating Business Logic . 50
5.5.10 Creating a new UI component . 53
5.5.11 Combining the business logic with the frontend code 55

6 Results 60
6.1 Addressed Challenges . 62

6.1.1 Maintainability . 62
6.1.2 Performance . 62
6.1.3 Scalability . 63
6.1.4 Version Control . 63
6.1.5 Reusability . 63
6.1.6 Developer Experience . 64
6.1.7 Extendability . 64
6.1.8 Documentation . 65
6.1.9 Vendor Lock-in . 65
6.1.10 Deployment . 66
6.1.11 Frontend Integration . 66
6.1.12 Time to Market . 66

6.2 Practical Results . 68
6.2.1 JHipster . 68
6.2.2 OutSystems . 70
6.2.3 Mendix . 72
6.2.4 CodeFlow . 74
6.2.5 Comparison . 76
6.2.6 Sample Application . 76
6.2.7 Comparing the �nal Applications . 77

6.3 Interpretation of the results . 80
6.4 Suggestions . 81

7 Conclusion 82
7.1 Summary of the research questions and objectives 83
7.2 Contributions of the study . 84
7.3 Limitations of the study . 85
7.4 Future Work . 86

3

A New Code Generation Tool for Rapid Application
Development

A Comparative Analysis of CodeFlow and other Tools and Platforms.

Karim Ibrahim, Patrick Egli

Abstract

In recent years, there has been a paradigm shift in the realm of software develop-
ment, primarily induced by the advent of low code / no code platforms. These plat-
forms have introduced an intuitive, user-friendly medium for both developers and
non-technical users to build applications, eliminating the need to write code from
scratch.

Despite the advantages presented by this approach, the current state of low code / no
code platforms exhibits certain constraints. These limitations include vendor-lock
in, limited maintainability, reusability, extendability, performance and scalability.
The objective of this research is to probe this void, through a comparative analy-
sis of current low code / no code platforms, emphasizing their respective strengths
and weaknesses and subsequently proposing a new tool. This proposed tool seeks to
circumvent some of the prevalent limitations while capitalizing on their strengths.
The goal is to develop a developer experience (DX)-friendly tool that generates code
while allowing full access to the codebase. This simpli�es application customization
without the need to write code from scratch.
In order to achieve this, an in-depth examination of existing low code platforms and
code generators, such as OutSystems, Mendix and JHipster, will be conducted to dis-
cern their strengths and weaknesses. This analysis will serve as a foundation for the
development of our tool, targeting a more �exible and customizable development
environment speci�cally catered towards DX-friendly low code projects.
The concluding portion of this research will delve into the implementation of our
proposed tool, including a detailed description of its architecture, features and us-
ability. Furthermore, the potential applications of this tool and its utility in creating
DX-friendly low code projects that meet the modern software development requisites
will also be discussed.

In summary, this research aims to augment the ongoing evolution of low code by
introducing a new approach that acknowledges the advantages and limitations of
existing platforms. Through the creation of a more �exible and customizable code
generator tool, it is envisaged to simplify the process for developers to create appli-
cations that meet their unique needs and speci�cations.

4

Chapter 1

Introduction

This thesis explores the emerging �eld of code generators and low-code platforms,
which are increasingly being used to develop software applications quickly and ef-
�ciently. The thesis compares and evaluates existing tools and frameworks and pro-
poses a new tool that aims to address some of the weaknesses of these existing solu-
tions. The research is motivated by the need for more developer-friendly code gen-
erator tools that allow users to de�ne their own models and generate code automat-
ically.

The introductory chapter provides an overview of the thesis and introduces the main
themes and topics that will be covered in the subsequent chapters. This includes a
discussion of the background and motivation for the research, the objectives and re-
search questions, the scope and limitations of the study and an outline of the thesis
structure. By the end of this chapter, the reader should have a clear understand-
ing of the purpose and scope of the research and how the subsequent chapters are
organized to address the research questions.

5

CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

As experienced software developers, we have worked on a variety of projects over
the years, both individually and in small teams. In our experience, project owners
frequently seek rapid results, placing a signi�cant amount of pressure on develop-
ers to deliver within tight deadlines, particularly when new requirements or tech-
nologies are involved. Backend development typically involves a notable amount of
repetitive code, such as the creation of controllers that interact with services and
repositories to retrieve or modify data. Considering front-end development which
also involves repetitive code, such as the creation of basic components such as but-
tons, tables and other UI components. These tasks can include the creation of reusable
components and the establishment of a cohesive code base.

In many cases, developers may not have a full understanding of the project require-
ments during the initial stages of development, leading to the creation of unneces-
sary or poorly-designed code. This can result in increased development time and
costs. To mitigate these issues, the use of a code generator capable of creating boiler-
plate code for both backend and frontend development could signi�cantly improve
development e�ciency and quality.

The need for high-quality, reusable code is particularly critical in modern software
development, where rapid iteration and collaboration are essential components of
the development process. A code generator capable of creating well-designed and
tested code that is reusable across multiple projects could signi�cantly enhance pro-
ductivity and reduce the time required for development. Moreover, such a tool would
likely facilitate collaboration between developers, as it would provide a standardized
codebase and reduce the likelihood of errors or redundancies.

In light of the aforementioned challenges and opportunities, this thesis seeks to ex-
plore the current landscape of code generators and low-code platforms and evalu-
ate their suitability for addressing the challenges outlined above. By identifying the
strengths and weaknesses of these platforms, this thesis aims to develop a new tool
that provides a more developer-friendly, e�cient and e�ective approach to rapid
application development.

6

CHAPTER 1. INTRODUCTION

1.2 Objectives and research questions

The objectives and research questions of this thesis are aimed at addressing the chal-
lenges associated with rapid software development and evaluating the suitability of
current code generators and low-code platforms in addressing these challenges. By
developing a new tool that generates high-quality, reusable code for both backend
and frontend development, this thesis aims to enhance development e�ciency and
reduce the time and cost associated with creating software. The research questions
that will be addressed in this thesis include the key challenges associated with rapid
software development, the design and implementation of the new tool and the ad-
vantages and disadvantages of the tool in comparison to existing code generators and
low-code platforms. The results of this research will contribute to the �eld of soft-
ware development and provide insights into the potential of software development
tools for addressing the challenges associated with rapid software development.

The objectives of this thesis are to:

1. Evaluate the current state of code generators and low-code development plat-
forms and assess their suitability for addressing the challenges associated with
rapid software development.

2. Develop a new tool that generates high-quality, reusable code for both backend
and frontend development, with a particular focus on reducing repetitive code
and enhancing developer experience.

3. Assess the usability and e�ectiveness of the new tool in comparison to existing
code generators and low-code platforms.

To achieve these objectives, the following research questions will be addressed in
this thesis:

1. What are the key challenges associated with rapid software development and
how do current code generators and low-code platforms address these chal-
lenges?

2. How can a new code generator tool be designed and implemented to generate
high-quality, reusable code for both backend and frontend development?

3. What are the advantages and disadvantages of the new tool in comparison to ex-
isting code generators and low-code platforms and how can these be addressed
to optimize its usability and e�ectiveness?

By addressing these research questions, this thesis aims to make a contribution to
the �eld of software development, particularly with regard to enhancing develop-
ment e�ciency and reducing the time and cost associated with creating high-quality,
reusable code.

7

CHAPTER 1. INTRODUCTION

1.3 Scope

The scope of this thesis is to propose a new code generation tool speci�cally designed
for developing full-stack web applications. The tool primarily focuses on the Type-
Script programming language and generates an NX workspace that includes a com-
prehensive set of libraries and application templates. These resources enable devel-
opers to create modern and user-friendly web applications more e�ciently.

In terms of data management, the proposed tool integrates the Prisma ORM, which
not only handles the database schema but also manages database migrations. Prisma
automatically generates a client library based on the provided schema, allowing de-
velopers to interact with the database in a type-safe manner. This approach enhances
the developer experience and streamlines the database integration process.

For the frontend development, the tool generates a Remix application that utilizes
React as the rendering library. Remix is a modern web framework that o�ers an ex-
cellent developer experience by providing robust data loaders and data mutations
within a single framework. This integration simpli�es the communication between
the frontend and backend, resulting in faster and more intuitive web application de-
velopment.

To enhance the styling capabilities, the proposed tool incorporates Tailwind CSS, a
utility-�rst CSS framework. Tailwind CSS provides a comprehensive set of pre-built
components and o�ers high customization options, allowing developers to create a
unique design system for their application. The default con�guration of Tailwind CSS
is optimized for various use cases, enabling developers to leverage its capabilities out
of the box.

To ensure a scalable and maintainable codebase, the entire project is organized within
an NX workspace. NX provides a solid foundation for managing large-scale projects,
o�ering e�cient code structuring and maintenance.

By encompassing these features, the proposed tool aims to facilitate the development
of full-stack web applications by o�ering a comprehensive set of tools, libraries and
frameworks that enhance productivity, maintainability and overall developer expe-
rience.

8

CHAPTER 1. INTRODUCTION

1.4 Outline of the thesis

In Introduction, we provide an overview of the structure of this thesis and summa-
rize the content of each subsequent chapter.

Delving into the topic, the Background chapter explores existing literature and re-
lated work in the �eld of low code and code generation, shedding light on various
approaches and available tools.

Moving on to the Methodology chapter, we delve into the intricate details of our eval-
uation process for both existing tools and platforms as well as our proposed solution.
We carefully outline the evaluation criteria used to assess the e�ectiveness and suit-
ability of each tool and platform.

A crucial chapter in this thesis, the Evaluation of existing tools and platforms o�ers
an in-depth analysis and assessment of di�erent code generators and low-code plat-
forms by applying the evaluation criteria outlined in the previous chapter.

The Design and Implementation chapter delves into the intricacies of designing and
implementing the proposed tool, o�ering a thorough insight into its structure and
functionality. Furthermore, we demonstrate the practical application of the tool by
showcasing its ability to generate a sample project.

Subsequently, the Results chapter presents the outcomes of our evaluation of the
proposed tool, comparing it with existing code generators and low-code platforms.
Moreover, we analyze and elaborate on the signi�cance of these �ndings, o�ering
valuable insights and recommendations for developers.

Finally, the Conclusion consolidates our �ndings and contributions, summarizing the
key takeaways of this thesis. Furthermore, we provide valuable insights into future
work and potential enhancements for the proposed tool.

9

Chapter 2

Background

This chapter serves as a comprehensive review of the existing literature and related
work, encompassing various sources and dimensions of software development. Its
primary objective is to conduct a critical evaluation of the literature and related
work, with a particular focus on fundamental principles in software engineering.

To begin, we aim to illuminate the concept of low-code and its signi�cance in the
realm of software engineering. By exploring the de�nition, characteristics and ap-
plications of low-code platforms, we establish a solid understanding of this emerging
paradigm.

Furthermore, we address the existing limitations and gaps within the literature con-
cerning low-code platforms. Through a thorough examination of research papers
and industry publications, we identify areas where the current knowledge base may
fall short, thereby highlighting opportunities for further research and improvement.

Additionally, we delve into the topic of developer experience (DX) and its paramount
importance in the �eld of software engineering. By exploring the role of DX in en-
hancing productivity, code quality and overall user satisfaction, we underscore the
signi�cance of prioritizing the developer experience in software development en-
deavors.

By thoroughly examining and analyzing this body of knowledge, this chapter estab-
lishes a robust foundation for the subsequent developments and advancements in
our tool. Readers will gain a comprehensive understanding of the low-code concept,
recognize the existing gaps in the literature and appreciate the signi�cance of devel-
oper experience in driving successful software engineering practices.

10

CHAPTER 2. BACKGROUND

2.1 Low Code Software Development

This section delves into the concept of low-code software development and explores
the landscape of low-code platforms. We provide an in-depth analysis of the key
principles and characteristics of low-code development, highlighting its signi�cance
in the �eld of software engineering.

2.1.1 Low Code Software Development
Low Code Software Development (LCSD) is a software development paradigm that
aims to reduce the amount of code that developers need to write in order to build
software applications. The term low-code originated from a market research �rm in
2014 and is used by the industry as a way to describe platforms and development
environments that enable the creation of applications with minimal hand-coding.
LCSD involves the use of tools and platforms that allow developers to build applica-
tions without writing a lot of code. The term gained traction in the industry and has
since been used to describe the growing ecosystem of platforms that simplify and
streamline the software development process. Recent results show that LCSD has a
strong relation to model driven engineering (MDE) and can be de�ned as methods
and tools that support the development of software applications by using models as
a basis for the development process [1].

2.1.2 Low Code Platforms
Low code platforms or low code application platforms are tools which assist the pro-
cess of LCSD. In contrast to traditional software development, low code platforms
aim to reduce the amount of code that developers need to write in order to build
software applications. Low code platforms provide visual design tools and pre-built
components and claim to help developers and non-developers create applications
more quickly and easily than traditional coding methods. Typically, a low code plat-
form consist of a graphical user interface (GUI) that allows users to perform a variety
of tasks, such as creating and editing models, generating code and deploying appli-
cations. They are often o�ered as a PaaS (Platform as a Service) or SaaS (Software
as a Service) solution, where developers can use the platform to build applications
without having to install or con�gure any software. While providing a high level of
abstraction, enabling users to create applications without prior coding knowledge,
low code platforms also provide a low level of control, since developers cannot mod-
ify the generated code. Low code platforms are often criticized for their lack of sup-
port for software engineering principles, such as maintainability, performance, scal-
ability, version control, reusability, extendability, documentation, vendor lock-in and
deployment. These quality attributes are essential for the long-term operation of a
software application and are often neglected by low-code platforms [2].

2.1.3 Low Code Platforms & Software Engineering
Low code platforms are designed to simplify the development process for individu-
als without programming knowledge. On the other hand, software development is
a complex process that requires not only coding expertise but also knowledge of in-
frastructure, security, performance and many other factors. Both approaches have
their advantages and limitations.

While low code platforms are designed to simplify the development process and re-
duce costs and time-to-market, software engineering is a complex process that re-
quires a broader skill set and o�ers more �exibility and control over the develop-
ment process. Interesting in this context is the work of [3] who propose a few prin-
ciples on how low code platforms should evolve and adapt software engineering
principles. While the term low code refers to the reduced amount of code that de-
velopers have to write when using low-code platforms, it is important to recognize

11

CHAPTER 2. BACKGROUND

that the overall code generated by these platforms may still be substantial. There-
fore, it is crucial to emphasize the signi�cance of maintaining a well-designed and
manageable codebase, even when leveraging low-code solutions. Ensuring the main-
tainability and quality of the generated code becomes an important consideration, as
it directly impacts the long-term success and scalability of the application.

E�ective documentation plays a crucial role in enabling developers to e�ciently gain
knowledge about the low-code platform being used. Additionally, adhering to the
principle of separation of concerns facilitates the creation of reusable and maintain-
able code, which aligns with fundamental concerns in software engineering.

However, when it comes to open standards and interoperability, certain low-code
platforms like OutSystems and Mendix exhibit limitations due to their reliance on
proprietary technologies and the potential for vendor lock-in.

Furthermore, the importance of developer experience cannot be understated, as it
directly impacts the productivity and motivation of developers. When developers
can e�ectively utilize development tools and �nd satisfaction in their usage, it can
signi�cantly enhance the overall development process.

Interestingly, low-code platforms and software engineering are not mutually exclu-
sive. In fact, they can be utilized in tandem to leverage the advantages of both ap-
proaches. While it remains unclear whether these principles alone can fully enable
proper software engineering practices, it presents an interesting research topic that
could expand the scope of this thesis.

12

CHAPTER 2. BACKGROUND

2.2 Existing Comparisons

At the time of writing this thesis, the existing literature on low-code platforms and
web application frameworks is limited and often focuses on outlining the advantages
of speci�c tools rather than providing a comprehensive comparison. However, there
are notable studies and e�orts in this area that contribute to our understanding.

One signi�cant challenge in evaluating low-code platforms is the lack of a universally
accepted framework for comparison. While some attempts have been made to pro-
pose such frameworks, they are often limited in scope, focusing on a speci�c set of
low-code platforms that share common functionality and services [4]. Additionally,
market research �rms such as Gartner and Forrester have published reports and
comparisons on low-code platforms, but these reports tend to emphasize the busi-
ness perspective rather than a comprehensive evaluation of technical aspects. Since
these reports are not publicly available, they will not be discussed in this thesis.

To summarize the existing literature, we have identi�ed two key points that are rel-
evant to our thesis:

• The comparison of low-code platforms is often limited to a speci�c set of plat-
forms that share common functionality and services.

• There is currently no widely adopted and democratized framework that de�nes
how to compare low-code platforms comprehensively.

These points highlight the need for further research and investigation in the �eld
of low-code platforms to establish a more comprehensive framework for evaluation
and comparison.

13

CHAPTER 2. BACKGROUND

2.3 Developer Experience

This section will explore the concept of Developer Experience (DX) and its in�uence
on the development of applications, drawing on current research in the �eld.

The term Developer Experience has been introduced in 2012 by Munch & Falgerhom
and has been identi�ed by Lethbridge as a key subtopic of the user experience in
software engineering today [5]. DX is a broad term that encompasses all aspects of
a developer’s experience, from the tools and technologies they use to the quality of
the documentation and support available to them. For example considering inte-
grated development environments (IDE) features such as syntax highlighting, com-
mand suggestion and inline documentation help developers to build new software.
When considering the quality of the documentation and support, the availability of
tutorials, forums and documentation is important.

DX has become an increasingly important consideration in software development as
the demand for user-friendly and e�cient tools continues to grow. When develop-
ers have a positive experience, they are more likely to be productive, engaged and
innovative, which ultimately leads to better software products [6]. In the context of
low code / no code development, DX is especially important because these platforms
are designed to make app development accessible to a wider range of users. A the-
sis by Dahlberg has found out that more productivity and focus on the task leads to
a positive DX while poor documentation, unsafe and suboptimal collaboration fea-
tures and limitations in contrast to traditional development lead to a negative DX [7].

When considering the interests of a software developer, many low code platforms
miss fundamental software engineering concerns. For example, automated testing,
version control and separation of concerns are key concepts which help to extend
and maintain software.

Literature research has shown that the term DX is ambiguous. Munch & Falgerhom
describe DX on a meta level based on cognition, conation and e�ect. Lethbridge on
the other hand describes DX as a combination of the user experience and the soft-
ware engineering experience. To clarify the term DX, we will use the de�nition of
Lethbridge and de�ne DX as a combination of the user experience and the software
engineering experience.

Therefore we will de�ne that a positive DX is a combination of a positive user expe-
rience and a positive software engineering experience. A positive user experience is
de�ned as a positive experience of the user interface and the user interaction with
the software. Moreover, a positive software engineering experience is de�ned as a
positive experience of the software engineering process and the tools used to build
the software. The software engineering experience is positively in�uenced by the
ability to use the tools to build software, the ability to extend and maintain the soft-
ware as well as the tools being used.

On the other hand, a negative DX is a combination of a negative user experience and
a negative software engineering experience. A negative user experience is de�ned
as a negative experience of the user interface and the user interaction with the soft-
ware. Similarly, a negative software engineering experience is de�ned as a negative
experience of the software engineering process and the tools used to build the soft-
ware.

14

Chapter 3

Methodology

In this chapter, we present the evaluation criteria and methodology used to assess
the software development platforms and tools examined in this thesis. The chosen
evaluation criteria are derived from the fundamental principles of software engi-
neering, ensuring a systematic and well-grounded approach to our analysis.

The methodology section outlines the speci�c procedures adopted for evaluating both
the prototype under investigation and existing low-code platforms or code genera-
tion tools. This step-by-step explanation provides clarity on the process by which our
analysis is conducted, ensuring transparency and reproducibility in our scienti�c en-
deavor.

By adhering to rigorous evaluation criteria and employing a well-de�ned methodol-
ogy, we aim to provide reliable and comprehensive insights into the strengths, weak-
nesses and capabilities of the evaluated platforms and tools.

15

CHAPTER 3. METHODOLOGY

3.1 Evaluation criteria

This section describes the evaluation criteria used to evaluate the considered tools.
We identi�ed the following evaluation criteria.

3.1.1 Maintainability
Maintainability refers to the ease with which a software tool can be updated or �xed.
A tool with high maintainability exhibits clear and understandable code, as well as a
well-structured design that enables developers to comprehend and modify its func-
tionality as necessary. This encompasses the ability to update the tool to address bugs,
enhance performance or introduce new features.

Maintainability is a crucial aspect of software engineering, as it contributes to the
long-term sustainability and evolution of the tool. By prioritizing maintainability,
developers can streamline the process of making necessary modi�cations and ensure
the tool remains adaptable to changing requirements over time.

3.1.2 Performance
Performance evaluation assesses the runtime performance of the tool, encompassing
factors such as speed, responsiveness and resource consumption. A high-performance
tool operates rapidly and e�ciently, minimizing lag time and optimizing resource
utilization.

The runtime performance of a tool is particularly critical for applications that require
real-time or mission-critical functionality. In such scenarios, even minor delays or in-
e�ciencies can result in signi�cant consequences. By evaluating the performance of
a tool, developers can ensure its suitability for time-sensitive or high-demand envi-
ronments.

A high-performance tool not only delivers faster results but also enhances the over-
all user experience. With quick response times and e�cient resource management,
users can interact with the tool seamlessly, leading to increased productivity and sat-
isfaction.

Considering the runtime performance of a tool during evaluation enables developers
to make informed decisions, selecting tools that meet the performance requirements
of their speci�c use cases. By prioritizing performance, developers can create robust
and responsive software applications that deliver optimal results.

3.1.3 Scalability
Scalability evaluation focuses on the tool’s ability to handle growing workloads and
its potential for expansion to accommodate increased demands. A scalable tool main-
tains e�ective performance even as the software system it is building grows in size
or complexity.

Scalability is a crucial consideration in software development, as applications often
experience varying levels of usage and data volume. A tool with good scalability can
seamlessly adapt to increased workloads without compromising performance or sta-
bility. It allows for the e�cient allocation of resources, such as processing power and
memory, to ensure optimal execution even under high-demand conditions.

Considering the scalability of a tool during evaluation helps developers select tools
that align with their long-term objectives and can support the growth and evolution

16

CHAPTER 3. METHODOLOGY

of their software systems. By choosing scalable tools, developers can build applica-
tions that can e�ectively handle expanding workloads, ensuring performance and
reliability as the system grows.

3.1.4 Version Control
Version control is an important aspect that assesses how e�ectively a tool manages
di�erent versions or iterations of the software. Robust version control functionality
enables developers to track changes, facilitate collaboration among team members
and ensure the integrity and stability of the codebase.

A tool with reliable version control allows developers to easily monitor and docu-
ment modi�cations made to the software over time. This includes the ability to track
individual changes, view revision history and compare di�erent versions of the code.
E�ective version control enables developers to understand the evolution of the soft-
ware, identify the contributors to speci�c changes and revert to previous versions if
needed.

Furthermore, version control facilitates seamless collaboration among team mem-
bers. It enables multiple developers to work on the same codebase simultaneously,
managing concurrent changes and merging them e�ciently. This ensures that ev-
eryone is working on the latest version of the software and minimizes con�icts or
inconsistencies.

Additionally, version control plays a crucial role in maintaining code quality and sta-
bility. It provides a safety net by allowing developers to roll back to a known working
state in case of unforeseen issues or regressions. This ability to revert to a previous
version helps mitigate risks and ensures that the software remains reliable and func-
tional throughout its lifecycle.

In summary, strong version control capabilities are essential for e�ective software
development. They enable developers to track changes, collaborate seamlessly and
maintain code integrity. By utilizing tools with robust version control, teams can
streamline their development processes, improve productivity and ensure the suc-
cessful management of software iterations and releases.

3.1.5 Reusability
The reusability of a tool refers to its capability to be employed multiple times across
di�erent projects or purposes. A reusable tool possesses components or modules that
can be leveraged in various contexts, promoting e�ciency and cost-e�ectiveness in
software development.

A tool with high reusability allows developers to extract and repurpose speci�c func-
tionalities or components, eliminating the need to reinvent the wheel for each new
project. By utilizing reusable components, developers can save time and e�ort by
building upon established, tested and reliable building blocks. This not only acceler-
ates development timelines but also enhances the overall quality and consistency of
the software.

In conclusion, a tool with high reusability provides signi�cant bene�ts to the soft-
ware development process. It empowers developers to leverage existing compo-
nents, promote consistency and improve e�ciency. By embracing reusability, teams
can optimize their development e�orts, reduce duplication of work and foster col-
laboration and knowledge sharing within the organization.

17

CHAPTER 3. METHODOLOGY

3.1.6 Extendability
The extensibility of a tool relates to its ability to accommodate the addition of new
features or capabilities in a seamless and non-disruptive manner. An extendable tool
is designed with modularity in mind, allowing for the incorporation of new function-
alities without compromising the existing system.

An extendable tool adopts a modular architecture, where components are designed
to be loosely coupled and independent. This design approach enables developers to
introduce new features or extend the tool’s functionality by simply adding or mod-
ifying speci�c modules, without the need for extensive rework or impacting the ex-
isting system. The modularity of the tool ensures that changes or enhancements can
be made in isolation, minimizing the risk of unintended side e�ects or system-wide
disruptions.

In summary, an extendable tool provides the �exibility and agility required to ac-
commodate the addition of new features and capabilities. By embracing modularity
and providing well-de�ned extension points, the tool enables developers to extend its
functionality without disrupting the existing system. This promotes adaptability, en-
courages collaboration and ensures the tool can evolve and meet the changing needs
of its users.

3.1.7 Documentation
The quality of documentation for a tool encompasses its comprehensiveness, clarity
and usefulness. Well-crafted documentation provides detailed explanations of the
tool’s functions, o�ers practical examples on how to utilize it e�ectively and pro-
vides solutions to common challenges or issues.

Comprehensive documentation encompasses a wide range of aspects, covering the
tool’s features, functionalities and usage scenarios. It o�ers in-depth descriptions
of each component, module or function, allowing users to gain a thorough under-
standing of the tool’s capabilities. Furthermore, comprehensive documentation may
include tutorials, guides or step-by-step instructions that demonstrate how to utilize
the tool in various contexts. This enables users, especially newcomers, to quickly
grasp the tool’s functionalities and utilize them e�ciently.

3.1.8 Vendor Lock-in
This relates to the degree of dependency users have on a speci�c vendor for services
and products. A tool with high vendor lock-in indicates that users will encounter
challenges when attempting to switch to a di�erent product or vendor, often incur-
ring signi�cant transition costs.

This aspect also considers the potential limitations and constraints imposed by ven-
dor lock-in. When users heavily rely on a speci�c vendor, they may face challenges
such as limited customization options, lack of �exibility and potential restrictions on
integrating with external systems or technologies. Additionally, vendor lock-in can
impact the long-term viability and sustainability of the tool, as users may become
reliant on the vendor’s continued support and availability. Therefore, it is crucial to
carefully evaluate and assess the level of vendor lock-in associated with a tool, tak-
ing into account the potential implications and risks it may pose to future scalability,
adaptability and vendor independence.

3.1.9 Deployment
This aspect evaluates the deployment capabilities of the software created with the
tool in a live environment. It encompasses considerations such as the tool’s compat-
ibility with di�erent systems and platforms, the ease of setting up and con�guring

18

CHAPTER 3. METHODOLOGY

the software and the e�ciency of the update process once the software has been de-
ployed. A tool with good deployment features will facilitate smooth and seamless
transitions from development to production, ensuring that the software can be read-
ily installed and used in a live environment. This includes providing robust mech-
anisms for system compatibility, straightforward setup procedures and streamlined
update mechanisms to ensure that the deployed software remains up-to-date and
maintainable throughout its lifecycle.

3.1.10 Frontend Integration
The frontend integration capabilities of a tool encompass its ability to seamlessly
connect backend services with frontend applications. The ease and simplicity of the
integration process directly impact the e�ciency and e�ectiveness of the tool.

A tool with robust frontend integration capabilities streamlines the process of inte-
grating backend functionality into the frontend, allowing for smooth communication
and data exchange between the two layers. This facilitates the development of dy-
namic and interactive user interfaces that seamlessly interact with the backend ser-
vices. An e�cient frontend integration process ensures that developers can easily
consume backend APIs, access data and implement business logic within the fron-
tend application. It minimizes the complexity and e�ort required to establish con-
nections, handle data formats and manage communication protocols.

By providing seamless and straightforward frontend integration, a tool empowers
developers to build sophisticated frontend applications that leverage the full poten-
tial of backend services, resulting in enhanced user experiences and e�cient soft-
ware development processes.

3.1.11 Time to Market
Time to market is a critical metric that measures the duration it takes to develop and
deploy a software product that ful�lls user requirements. It plays a pivotal role in
determining the success of a product and is a signi�cant consideration for organiza-
tions when assessing various tools and technologies.

The faster a software product can be developed and brought to market, the greater
the competitive advantage for the organization. Shorter time to market enables com-
panies to seize business opportunities, respond rapidly to changing market demands
and gain an edge over competitors. It allows organizations to deliver value to cus-
tomers promptly, satisfy their needs and establish a strong market presence.

19

CHAPTER 3. METHODOLOGY

3.2 Evaluation methods

This section describes the evaluation methods used to evaluate the considered plat-
forms, tools and our proposed solution. The evaluation methods are based on the
evaluation criteria de�ned in section 3.1.

3.2.1 Evaluation of tools
The evaluation is based on the evaluation criteria de�ned in section 3.1. For this the-
sis we have chosen to evaluate existing frameworks and tools.

Present work such as [2] and [4] have already evaluated existing low code platforms
based on business evaluation criteria. In contrast, this thesis will focus on the techni-
cal evaluation criteria. The technical evaluation criteria are based on the fundamen-
tal principles in software engineering, as stated in 3.1 We do not evaluate the business
centered evaluation criteria, such as the ability to create a business application with-
out programming knowledge. The reason for this is that we are not evaluating low
code platforms and frameworks for business users, but for software engineers.

3.2.2 How we compare the tools
The evaluation of our prototype and the selected existing tools follows a systematic
approach, ensuring a comprehensive and objective analysis of their capabilities. To
facilitate this evaluation, we have developed a test application called TeamUp, which
serves as a dedicated platform for assessing the functionalities and performance of
the tools. TeamUp is a collaborative platform designed to facilitate the sharing of
scholarly projects and foster interaction among users. It provides a valuable avenue
for connecting students with similar interests, making it particularly advantageous
for cross-curricular collaborations.

In addition to evaluating the features and capabilities of the tools, we also consider
the time-to-market aspect. To do so, we set a �xed time frame of 4 hours for develop-
ing the TeamUp application using each tool. This enables us to assess how e�ciently
and e�ectively each tool enables us to deliver a functional product within a speci�c
time frame, re�ecting the real-world pressures and demands of software develop-
ment projects.

Throughout the evaluation process, we have carefully built the TeamUp application
using our prototype and the selected existing tools. This step-by-step evaluation ap-
proach allows us to thoroughly assess various aspects of the tools such as their per-
formance, scalability, extensibility and maintainability. By employing this structured
methodology, we aim to provide an objective and comprehensive evaluation of the
tools suitability and e�ectiveness in meeting the requirements of modern software
development projects.

Implementation of TeamUp

TeamUp is a collaborative platform designed to facilitate the sharing of scholarly
projects and foster interaction among users. It provides a valuable avenue for con-
necting students with similar interests, making it particularly advantageous for cross-
curricular collaborations.

Creating TeamUp on each platform allows us to evaluate the tools based on the eval-
uation criteria de�ned in section 3.1. For each tool we set a �xed time frame of 4
hours.

20

CHAPTER 3. METHODOLOGY

Evaluation of Criteria

The evaluation process assesses each tool based on the predetermined criteria: Main-
tainability, Performance, Scalability, Version Control, Reusability, Extendability, Doc-
umentation, Vendor Lock-in, Deployment, Frontend Integration and Time-to-Market.
These criteria serve as benchmarks for evaluating the strengths and weaknesses of
each tool. Throughout the development and testing stages, observations and mea-
surements are collected to assign scores to each tool, providing a quantitative assess-
ment of their quality.

Interpretation and Suggestions

The evaluation process concludes with an interpretation of the results and the formu-
lation of practical recommendations for developers. This systematic and objective
evaluation methodology ensures a fair and comprehensive comparison between the
proposed prototype, OutSystems, Mendix and JHipster, enabling us to draw mean-
ingful conclusions about the performance and capabilities of each tool. The insights
gained from this evaluation provide valuable guidance for developers in selecting
the most suitable tool for their speci�c project requirements.

21

Chapter 4

Evaluation of existing tools and
platforms

This chapter provides a comprehensive analysis of some existing platforms and tools
that are currently available for code generation and software development automa-
tion with low-code platforms. The purpose of this chapter is to critically evaluate
these tools and platforms in terms of fundamental principles in software engineer-
ing, such as maintainability, performance, scalability, version control, reusability,
extendability, documentation, vendor lock-in and deployment. By leveraging the in-
sights and �ndings from this review, we aim to develop a robust and e�ective tool
that addresses the current challenges and opportunities in software development.

22

CHAPTER 4. EVALUATION OF EXISTING TOOLS AND PLATFORMS

4.1 Overview of existing platforms

The �eld of low-code and no-code platforms has been rapidly growing in recent years
and it can be overwhelming to keep track of all the available options. In this chapter,
we provide an overview of some of the most popular platforms in this space. As we
cannot cover all existing platforms, we have selected a few that we believe are rep-
resentative of the current state of the �eld. Our focus will be on OutSystems, Mendix
and JHipster. Our selection of these platforms and frameworks was informed by the
need to contrast their di�erences e�ectively.

JHipster
JHipster is a development platform to quickly generate, develop and deploy modern
web applications and microservice structures [8]. The generated application code
can then be used as a starting point for further development. The code base gen-
erated by JHipster is based on the Spring Boot framework, which is a popular Java
framework for creating web applications. Beside the backend code, JHipster also
generates a frontend application in either Angular, React or Vue. Furthermore, the
developer can choose to integrate many third-party services, such as Elasticsearch,
caching and authentication with external providers like Okta or Auth0.

OutSystems
Outsystems is a low-code application development platform that allows organiza-
tions to create and deploy web and mobile applications quickly and e�ciently. The
platform provides a visual development environment where developers can cre-
ate custom applications by dragging and dropping pre-built components and con-
�guring them through a simple visual interface. OutSystems also provides a range
of advanced features such as integration with external systems, real-time analyt-
ics and automated testing to ensure high-quality applications that meet the needs
of users. The platform’s low-code approach reduces the amount of hand-coding re-
quired, thereby enabling organizations to accelerate their application development
processes and reduce their time-to-market [9].

Mendix
Finally, Mendix is a low-code development platform that enables businesses to cre-
ate, deploy and manage custom web and mobile applications quickly and easily. The
platform o�ers a visual development environment that allows developers to create
applications using drag-and-drop components, reusable templates and a simple vi-
sual interface. Mendix also provides a range of advanced features such as integration
with external systems, real-time collaboration and automated testing to ensure high-
quality applications that meet the needs of users. The platform’s low-code approach
reduces the amount of manual coding required, thereby enabling organizations to
accelerate their application development processes and reduce their time-to-market
[10].

23

CHAPTER 4. EVALUATION OF EXISTING TOOLS AND PLATFORMS

4.2 Evaluating Existing Platforms on Key Software
Development Metrics

Code generation tools and low-code platforms have emerged as powerful resources
for software development, streamlining the process with minimal coding e�ort. While
low-code platforms o�er an intuitive visual interface for building custom logic, code
generation tools provide developers with a more �exible solution, enabling the con-
struction of complex applications with enhanced control and adaptability.

When comparing software development tools, establishing a common ground for
comparison is crucial. To achieve this, we have conducted a comprehensive evalua-
tion of both low-code platforms and code generation tools based on the criteria out-
lined in section 3.1. Moving forward, we will refer to low-code platforms as LCDPs,
representing Low-Code Development Platforms.

By constructing the same application using each platform, we have gained valuable
insights into the strengths and weaknesses of each approach. Throughout the de-
velopment process, we have placed particular emphasis on key software develop-
ment metrics, including maintainability, performance, scalability, version control,
reusability, extendability, documentation, vendor lock-in and deployment. In this
section, we will delve into each metric in detail and compare LCDPs with code gen-
eration tools such as JHipster.

This knowledge empowers us to comprehend the strengths and weaknesses inherent
in each platform, enabling informed decisions to enhance our proposed solution. By
leveraging this understanding, we can optimize our development process and deliver
higher-quality software applications.

4.2.1 Evaluation of JHipster
JHipster stands out in terms of providing developers with full access to the code-
base, enabling them to customize the entire codebase according to their speci�c re-
quirements. This traditional approach to software development aligns with the key
metrics of software engineering, including maintainability, performance, scalabil-
ity, version control, reusability, extendability, documentation, vendor lock-in and de-
ployment.

However, a limitation of JHipster lies in its frontend capabilities, which are primarily
geared towards administrative purposes rather than building customer-facing fron-
tend applications for end users. Consequently, developers often need to develop an
additional frontend application to cater to the needs of end users. This dual develop-
ment approach impacts the time-to-market, as it requires building and maintaining
two separate applications, resulting in increased development e�orts.

Furthermore, while JHipster provides a generic REST API for backend interaction,
this API may not be speci�cally tailored to the requirements of the frontend applica-
tion. As a result, the frontend integration may not be optimal, potentially impacting
the overall performance of the application. To enhance frontend integration, devel-
opers would need to customize the backend codebase to align with frontend needs
and create a separate communication layer that ensures type safety and facilitates
intuitive interaction with the backend. These additional steps can be time-consuming
and increase the overall development e�ort.

Considering these factors, while JHipster o�ers signi�cant advantages in terms of
codebase accessibility and adherence to software engineering metrics, developers
should be aware of the limitations regarding frontend capabilities and the need for
additional frontend development e�orts.

24

CHAPTER 4. EVALUATION OF EXISTING TOOLS AND PLATFORMS

4.2.2 Evaluation of OutSystems
OutSystems is a low-code platform that enables developers to build web and mo-
bile applications with minimal coding e�ort. The platform o�ers a visual interface
for building custom logic, which allows developers to create complex applications
with ease. As we developed the sample application using OutSystems, we focused on
key metrics of software engineering, including maintainability, performance, scala-
bility, version control, reusability, extendability, documentation, vendor lock-in and
deployment.

We observed that most of these metrics can be applied to the visual builder, as it
abstracts the underlying codebase from the developer. However, we had concerns
regarding the extendability, vendor lock-in and version control capabilities of the
platform.

One limitation of OutSystems is its proprietary nature, which results in vendor lock-
in. Developers are tied to the platform and face challenges if they want to migrate to
another platform. This can be problematic if the platform becomes obsolete or if the
developer desires greater �exibility.

In terms of version control, OutSystems provides a simplistic system where a new
version is created upon publishing the application. However, advanced version con-
trol features like branching, merging or cherry-picking are not supported. This lim-
itation can hinder collaboration and make it di�cult to manage code changes e�ec-
tively.

Furthermore, we found that the platform’s extendability is limited. When develop-
ers encounter speci�c requirements that are not supported by the platform, they of-
ten need to modify the requirements or employ workarounds to achieve the desired
functionality. This lack of �exibility can be a hindrance when building complex ap-
plications that require customized solutions.

In summary, while OutSystems simpli�es application development through its low-
code approach, considerations should be given to its limitations in terms of extend-
ability, vendor lock-in and version control. Developers should carefully evaluate
their project requirements and assess whether the platform aligns with their long-
term goals and needs.

4.2.3 Evaluation of Mendix
After completing the application with OutSystems, we proceeded to develop the same
application using Mendix, another low-code platform that o�ers developers the abil-
ity to create web and mobile applications with minimal coding e�ort. Similar to Out-
Systems, Mendix features a visual interface for building custom logic. During the de-
velopment of the sample application using Mendix, we evaluated the platform based
on key software engineering metrics, including maintainability, performance, scala-
bility, version control, reusability, extendability, documentation, vendor lock-in and
deployment.

Our evaluation revealed similar limitations in terms of extendability, vendor lock-in
and version control compared to OutSystems.

Like OutSystems, Mendix is a proprietary platform, which results in vendor lock-in.
Developers are bound to the platform and may face challenges if they decide to mi-
grate to another platform. This limitation becomes particularly problematic if the
platform becomes obsolete or if developers seek greater �exibility.

Regarding version control, Mendix o�ers a basic system where a new version is cre-
ated upon publishing the application. However, advanced version control features

25

CHAPTER 4. EVALUATION OF EXISTING TOOLS AND PLATFORMS

such as branching, merging or cherry-picking are not supported. This limitation can
impede e�ective collaboration and make managing code changes more challenging.

Additionally, we observed that the extendability of the Mendix platform is limited.
When developers encounter speci�c requirements that are not supported by the plat-
form’s built-in features, they often need to modify the requirements or �nd workarounds
to achieve the desired functionality. This lack of �exibility can be a constraint when
developing complex applications that require tailored solutions.

In summary, while Mendix simpli�es application development through its low-code
approach, it is important to consider the limitations related to extendability, vendor
lock-in and version control. Developers should assess these factors alongside their
project requirements to determine whether Mendix aligns with their long-term goals
and needs.

4.2.4 Conclusion
In conclusion, the evaluation of JHipster, OutSystems and Mendix revealed unique
strengths and limitations associated with each platform. JHipster stood out with its
focus on providing developers with full access to the codebase, allowing for cus-
tomization and adherence to key software engineering metrics. This approach is
particularly advantageous for complex projects that may require �exibility and the
ability to handle unforeseen features and dependencies. However, JHipster faced
limitations in its frontend capabilities, which required the development of additional
frontend applications and increased development e�orts and time-to-market.

OutSystems and Mendix demonstrated their low-code capabilities, simplifying the
development process and o�ering visual interfaces for building custom logic. While
these platforms provided convenience, concerns arose regarding extendability, ven-
dor lock-in and version control limitations. The proprietary nature of both platforms
restricted �exibility and posed challenges for migrating to other platforms. Addition-
ally, advanced version control features were lacking, hindering e�ective collabora-
tion and code management.

In summary, JHipster’s emphasis on codebase accessibility and adherence to soft-
ware engineering metrics make it a favorable choice for projects with complex re-
quirements. OutSystems and Mendix o�er low-code convenience but require care-
ful consideration of limitations related to frontend capabilities, extendability, vendor
lock-in and version control. Developers should thoroughly evaluate project require-
ments and long-term goals to select the platform that best aligns with their speci�c
needs.

26

CHAPTER 4. EVALUATION OF EXISTING TOOLS AND PLATFORMS

4.3 Limitations of Existing Platforms and the Need
for a New Tool

In this chapter, we contrasted LCDPs and code generators in general on key metrics
that are critical to software development projects. We came to the conclusion that
code generator tools are more suitable for more complex software projects, as they
provide more �exibility and customization capabilities. Therefore, we will shift our
focus to code generator approaches, which also re�ects the focus of our proposed
tool.

In the �eld of code generators we analyzed mainly JHipster, as it is a proven and
well-established tool that has a huge community of users. JHipster is a powerful tool
that can be used to generate a complete application stack, including the frontend,
backend and database. However, JHipster’s main focus is on the backend side of the
application, and it does not provide a lot of functionality for the frontend. The gener-
ated frontend mainly consists of administrative pages for managing the application’s
data, which is a good starting point for an administrative interface. However, it is
not suitable for building a customer-facing frontend application that can be used by
actual end users. While JHipster provides a lot of di�erent technology options for
di�erent types of concerns, it also comes with a strong dependency on the Spring
framework. Every dependency that is added to the project, increases the complexity
of the project as well as the e�ort required to maintain it. Generating an application
stack with JHipster can save initial setup e�orts. On the other hand the amount of dif-
ferent technologies which can be selected during initialization can be overwhelming,
typically a project evolves incrementally over time in terms of dependencies which
contrasts to JHipsters philosophy to select all technologies involved at initialization
time.

To address these limitations, we decided to build our own code generator tool that
can be used to generate a complete application stack, similar to JHipster, but our so-
lution includes components that helps the developer to build a more robust frontend
that can be used to build a customer-facing application. Furthermore, we believe
a close communication between the backend and frontend of the application, helps
to improve the developer experience, as the developer has generally a simpler and
more intuitive way to interact with the applications data.
Therefore, we decided to use a more traditional approach by leveraging the power
of server side rendering, which allows us to build a frontend that is tightly coupled
to the backend.

Beside that, our solution should be �exible and customizable to support a wide range
of use cases and project requirements. Therefore, our solution embraces the key
metrics that were presented in chapter 3.1, by providing a tool that is located in the
�eld of code generators.

27

Chapter 5

Design and Implementation

In this chapter, we present a comprehensive overview of the design and implemen-
tation process of our proposed tool. This development was motivated by the identi�-
cation of gaps and shortcomings within the existing landscape of tools, as discussed
in chapter 4. We begin by outlining the objectives that guided the creation of this
new tool, establishing a clear understanding of the problem space we aimed to ad-
dress. Subsequently, we delve into the technical aspects, providing insights into the
frameworks and technologies that were used to develop a new tool. Furthermore,
we provide a detailed explanation of the architectural design, shedding light on the
structural components and their interconnections, which play a critical role in the
overall functionality of the tool.

28

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1 Advantages of Code Generation Tools in Software
Development

The previous chapter discussed the evaluation of existing code generation tools and
low-code platforms. This section outlines the advantages of code generation tools,
which can be used to justify the use of code generation tools in software develop-
ment projects.

Low-code and no-code platforms are designed to simplify the development process
for individuals without programming knowledge. However, software development
is a complex process that requires not only coding expertise but also knowledge of
infrastructure, security, performance, user experience, caching and many other fac-
tors. Non-programmers may �nd it challenging to create high-quality and secure
software using these tools. Creating a robust and reliable software solution is not
solely about writing good code, it requires a broader skill set.

The use of code generation tools in software development can be advantageous when
used by skilled software engineers who can leverage the tool’s capabilities to generate
boilerplate code and improve the overall quality of the end product. This can result
in reduced development costs and a faster development process. A skilled software
engineer can use a high-quality code generation tool to generate code that contains
best practices and a good starting point for the development of a new software prod-
uct.

As we discussed in the previous chapter, code generation tools shine in many areas
of software development, such as maintainability, performance, scalability, version
control, reusability, extendability, documentation, vendor lock-in and deployment.
This is due to the fact that the software engineer has full control over the generated
code and can customize it to meet the requirements of the project.

As experienced software engineers, we know that setting up a new software project
can be a tedious and time-consuming process. The use of code generation tools can
help to reduce the time and e�ort required to set up a new project. A code generation
tool could generate a complete application stack, including the frontend, backend,
database communication, authentication and many other features, while remaining
the biggest advantage of code generation tools, which is the ability to customize the
generated code to meet the requirements of the project. Moreover, code generation
tools can reduce time-to-market by leveraging the generated code as a starting point
for the development of a new software product.

In the previous chapter we outlined the features of JHipster, a well-known code gen-
eration tool in the Java ecosystem. JHipster can generate a complete application
stack, including the frontend, backend, database communication, authentication and
many other features. The backend side of the generated application is production
ready for simple CRUD operations. However, the frontend side of the generated ap-
plication is mainly an admin facing application, which is not suitable for client facing
applications. Therefore, a developer still has to write a lot of code to create a frontend
application. Overall, JHipster is a good code generation tool for a Full Stack Java de-
veloper, but the limitations of the frontend side of the generated application makes
it less powerful for complete web application development.

These facts encourage us to develop a new code generation tool that shifts the focus
not only to the backend side of the application but also to the frontend side. As we
have a lot of experience in many di�erent stacks, including Java, C#, PHP and Type-
Script, we have a good understanding of the advantages and disadvantages of these
stacks. In our experience, within the TypeScript ecosystem we could do more in less
time. This is mainly due to the fact that TypeScript is a modern language with a great

29

CHAPTER 5. DESIGN AND IMPLEMENTATION

type system that drastically reduces time to create or infer types. Another advantage
of TypeScript, respectively JavaScript, is async / await, which makes asynchronous
programming much easier. Moreover, the TypeScript ecosystem is growing rapidly
and there are many high-quality libraries available. This brings us to the conclusion
that the TypeScript ecosystem is a good choice for the development of a new code
generation tool.

30

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.2 Design

This section describes the high level design of the new tool. We begin by describ-
ing the objectives that guided the creation of this new tool, establishing the problem
space we aimed to address.

5.2.1 Objectives
The primary objective of this thesis is to develop a tool that enables software engi-
neers to generate a web application with a user interface from a data model. The
tool should be able to generate a web application with a user interface that is main-
tainable, performant, scalable, version controlled, reusable, extendable, well docu-
mented and deployable. The tool itself should be extendable by the developer, so
that the developer can add new features to the tool. The tool itself should be well
documented, so that the developer can easily extend the tool.

5.2.2 Overview
The following �gure 5.1 shows the high level design of the tool and the interaction
with the developer.

Figure 5.1: Overview

31

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.3 Frameworks and libraries

The proposed implementation of the tool builds on the following frameworks and
libraries. We brie�y describe the frameworks and libraries outlined in the following
subsections.

5.3.1 Remix
Remix is a full stack web framework that focuses on web standards and modern web
application UX [11]. We have chosen Remix because of its intuitive approach to web
development. Remix is a framework that is built on top of React and provides a lot
of features out of the box. For example, it provides routing, scoped error handling
and building forms. The advantage Remix has is that it allows the developer to write
code that is easy to read and understand. This is achieved through the use of lifecycle
methods and hooks which for example allow the developer to fetch data before the
page is rendered.

5.3.2 React
React is a well known library for web application user interfaces [12]. It is used by
many companies and is well documented. React allows us to write components that
are reusable and easy to understand. React is also used by Remix and therefore we
can use the same components in Remix as we would in React.

5.3.3 Prisma
Prisma is a database toolkit that provides type-safe database access and declara-
tive data modeling [13]. It allows us to de�ne the database schema in a declarative
way via its Prisma DSL. The convenience having a library that provides type-safe
database access and declarative data modeling is that it allows the developer to focus
on the business logic. Prisma also provides the automatic generation of the model,
the database client and schema migrations.

5.3.4 Tailwind CSS
Tailwind CSS is a utility-�rst CSS framework for rapidly building custom user inter-
faces [14]. It allows the developer to write CSS in a declarative way directly in the
HTML. With its built in utility classes, it allows the developer to write CSS without
the need to write custom CSS.

5.3.5 Storybook
Storybook is an open source tool for developing UI components in isolation for React
[15]. It allows the developer to write components in isolation and document them.
This is especially useful for a design system. Furthermore, it allows the developer
to preview the components in di�erent states without the requirement of deploying
the application. This is especially useful for prototyping, testing and previewing the
components.

5.3.6 TypeScript
TypeScript is a strongly typed superset of JavaScript that compiles to plain JavaScript
[16]. It allows the developer to write understandable, maintainable and typesafe
code. Typescript can catch errors at compile time and therefore reduces the number
of bugs in the code. This is especially useful for a large codebase with many moving
parts.

32

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.3.7 NX Workspace
NX is a build system with monorepo support and integrations for many technologies
like Remix or Docker [17]. For example, it allows the developer to generate code, run
tests and lint the code. Project dependencies are de�ned declarative and NX will only
build the projects that are a�ected by the changes by using the concept of incremental
build. This increases the speed of the development process and allows the developer
to focus on the code. To visualize the dependencies between the projects, NX provides
a dependency graph which can be generated. Nx allows us to separate applications
and infrastructure into di�erent projects. This allows us to reuse the infrastructure
for di�erent applications.

5.3.8 Docker
Docker is a set of platform as a service products that use OS-level virtualization to de-
liver software in packages called containers [18]. It allows us to build the application
and its dependencies into a single image which can be deployed to a server or to a lo-
cal machine. This is especially useful for deployment because it allows the developer
to run the application in the same environment as it will be deployed. This reduces
the number of bugs that are caused by di�erent environments. Being portable also
allows the developer to run the application on di�erent machines without the need
to install the dependencies.

5.3.9 GitHub Work�ows
GitHub Work�ows is a GitHub feature that allows developers to automate tasks based
on events [19]. For example, it allows the developer to run tests on every push to
the repository. This is especially useful for CI/CD because it allows the developer
to automate the deployment process. GitHub Work�ows is also used by NX to run
tests and lint the code. By providing a CI/CD pipeline, GitHub Work�ows allows the
developer to focus on the code and not on the deployment process. Work�ows are
de�ned in a YAML �le which makes them easy to read and understand.

33

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.4 Architecture and features

This section provides an overview of the architecture and features of our proposed
tool named CodeFlow.

The web app generator is speci�cally designed to streamline the development pro-
cess by rapidly generating web applications using modern web technologies. It is
built upon a codebase (root workspace) that serves as the foundation for the gener-
ated project. The generator incorporates various essential tools and frameworks, in-
cluding Remix, Prisma, TypeScript, Tailwind CSS, Storybook, NX workspace, Docker,
GitHub work�ows and a CLI tool. Additionally, the root workspace is fully functional,
allowing developers to easily extend it by incorporating additional features. Changes
made to the codebase can be viewed in real-time using the integrated development
server, facilitating rapid codebase expansion. The availability of a fully functional
root workspace signi�cantly enhances the developer experience, fostering an im-
proved and streamlined development process.

The following �gure 5.2 shows the conceptual diagram of the application.

Figure 5.2: Project Diagram

34

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.4.1 Libraries
The generated project includes a set of reusable libraries and pre-built applications.
Each of these libraries is responsible for a speci�c task, such as managing the database
schema, handling HTTP requests or generating forms. Extending these libraries al-
lows developers to customize the generated project to suit their needs. The following
�gure 5.3 shows the separation of the provided libraries. Each library has its own
purpose and encapsulates functionality.

Figure 5.3: Project Diagram

The libraries include:

• db/user: This library contains the basic Prisma schema that can be extended
using the Prisma DSL. It provides a foundation for de�ning database schemas
and models, which can be used to build database-backed applications.

• env: The env library contains utilities for generating speci�c environment �les
used within the applications. It simpli�es the process of managing environment
variables by providing a set of tools for creating, updating and validating envi-
ronment �les.

• plugin: The plugin library contains custom NX executors that help in building
applications. It provides a set of reusable tools that can be used to streamline
the development process, reduce boilerplate code and enhance the developer
experience.

• remix/domain: The remix/domain library contains utilities that help in sepa-
rating business logic from the rest of the application. This library is designed
for remix applications only and it provides a set of tools for managing business
logic, such as managing state, handling events and performing API requests.

• remix/forms: The remix/forms library helps in automatically generating forms
based on a Zod schema. Zod is a TypeScript-�rst schema declaration and valida-
tion library, which helps in de�ning data types and validating data. This library

35

CHAPTER 5. DESIGN AND IMPLEMENTATION

simpli�es the process of creating forms by automatically generating form com-
ponents based on the given Zod schema.

• remix/server: The remix/server library contains common server-side logic that
can be used in all remix applications. It provides a set of tools for handling
HTTP requests, managing sessions and performing database queries, among
other functionalities.

• tailwind/animation: The tailwind/animation library is a Tailwind plugin that
adds additional utilities for animations to the Tailwind ecosystem. It provides a
set of pre-built animations that can be easily integrated into web applications,
simplifying the process of adding animations to UI components.

• tailwind/pattern: The tailwind/pattern library is a Tailwind plugin that adds
additional utilities for background patterns to the Tailwind ecosystem. It pro-
vides a set of pre-built patterns that can be used to enhance the visual design
of web applications, simplifying the process of creating visually appealing UI
components.

• ts/core: The ts/core library contains general types as well as constants that are
frequently used over the whole workspace. It provides a set of reusable tools
for managing data types, constants and other general-purpose functionalities,
reducing boilerplate code and enhancing the developer experience.

• ts/utils: The ts/utils library contains general utilities that are frequently used
over the whole workspace. It provides a set of reusable tools for managing com-
mon functionalities such as string manipulation, array manipulation and other
general-purpose functionalities, reducing boilerplate code and enhancing the
developer experience.

• ui/core: The ui/core library contains the atoms of the UI library. Atoms are
the smallest elements in a design system, such as buttons, badges and similar
elements. It provides a set of reusable UI components that can be used to build
custom UI components, reducing the amount of code needed to create custom
UI elements.

• ui/app: The ui/app library contains UI components that are used in a typical ad-
min application. These components are referred to as molecules or organisms,
which are composed of atoms. It provides a set of reusable UI components that
can be used to build custom admin applications, reducing the amount of code
needed to create custom admin UI elements.

• ui/common: The ui/common library contains UI components that are used in
many di�erent kinds of applications, such as e-commerce, admin applications
and so on. It provides a set of reusable UI components that can be used across
di�erent applications, reducing the amount of code needed to create custom UI
elements.

• ui/context: The ui/context library contains common React context APIs such
as LoadingContext or ThemeContext. These contexts are used to provide spe-
ci�c functionality to the entire application in a way that reduces the coupling
of components by leveraging the power of hooks. For example, the LoadingCon-
text can be used to display a loading indicator across the application, while the
ThemeContext can be used to provide a consistent theme across all components.
By using contexts, components can consume functionality without needing to
know the implementation details, making the code more modular and easier to
maintain.

• ui/utils: The ui/utils library contains commonly used UI utilities. It provides
a set of reusable tools for managing common functionalities such as styling,
layout and event handling. These utilities can be used to enhance the developer
experience by reducing the amount of code needed to achieve common UI tasks.

36

CHAPTER 5. DESIGN AND IMPLEMENTATION

• zod/i18n: The zod/i18n library adds internationalization support to the Zod li-
brary. It provides a set of tools for de�ning translations and applying them to
Zod schemas, ensuring that all validation messages and error messages are cor-
rectly translated. This library simpli�es the process of adding international-
ization support to applications by providing a set of reusable tools that can be
easily integrated into the Zod schema validation process. By using this library,
developers can create applications that are accessible to a wider audience, en-
hancing the overall user experience.

5.4.2 Pre-built Applications
The generator also includes pre-built applications that can be customized based on
speci�c project requirements. Each of this application contains two separate projects:
one for the web application itself and another for setting up the environment vari-
ables required by the application. The pre-built applications are designed to be used
as starting points for developers who want to build web applications quickly and
e�ciently. Furthermore, they can be extended to add new features or customize ex-
isting ones. Finally, these applications can then be used as templates for creating
new applications. The following �gure 5.4 shows the pre-built applications included
in the generator. It shows that each application contains two separate projects: one
for the web application itself and another for setting up the environment variables
required by the application.

Figure 5.4: Applications

The following applications are included in the generator:

• apps/minimal/web: The apps/minimal/web project is a minimal Remix appli-
cation that provides all the fundamental components needed to create a web
application. It serves as a great starting point for developers who want to create
web applications quickly and e�ciently. By providing a basic structure and set
of UI components, developers can focus on building their application’s unique
features without spending time on boilerplate code.

• apps/minimal/env: The apps/minimal/env project is responsible for setting up
the environment variables for the minimal application. It provides a starting
point for developers to con�gure the environment variables required by their
applications. The developer can extend the environment �le whenever needed,
making it easy to add new environment variables as the application grows.

• apps/auth/web: The apps/auth/web project is a Remix application that comes
with built-in authentication functionality. It provides a great starting point for

37

CHAPTER 5. DESIGN AND IMPLEMENTATION

developers who want to build secure web applications that require user authen-
tication. By providing authentication functionality out-of-the-box, developers
can focus on building their application’s unique features, while ensuring that
the application is secure and user-friendly.

• apps/auth/env: The apps/auth/env project is responsible for setting up the en-
vironment variables for the auth application. It provides a starting point for
developers to con�gure the environment variables required by their authen-
tication application. The developer can extend the environment �le whenever
needed, making it easy to add new environment variables as the authentication
application grows.

5.4.3 Deployment Application
Besides that, the generator contains an additional application that allows to easily
integrate docker into the development process. This application is located in the app-
s/docker directory and contains a docker-compose �le as well as all the required en-
vironment �les that are generated through the speci�c environment projects. The
existing docker-compose �le is meant to be used for development purposes only, but
it can be easily extended to support production deployments as well.

5.4.4 CLI Application
The CLI project located in apps/cli is responsible for providing a command-line inter-
face that allows to easily generate a new workspace or update an existing one with
new features.
The CLI is the main interface for the code generation tool.

It allows the developer to create a new NX workspace including many libraries and
applications as well as a CI/CD pipeline integrated with GitHub. After the initial setup
of the NX workspace, the developer can add additional applications with the CLI.

The proof of concept of the code generation tool includes basic applications and many
useful libraries that can be used to further customize the generated applications.
Besides that, the developer can add additional libraries and applications to the NX
workspace as full access to the workspace is provided.

This architecture allows to easily extend the generator with new features, such as
additional libraries or applications. Additionally, the developer can easily customize
the generated workspace by adding new libraries or applications to the workspace.
As the developer has full access and control over the entire workspace, it is possi-
ble to customize every aspect of the entire project, which re�ects the philosophy of
traditional application development. Earlier, we discussed the key metrics of soft-
ware development, including maintainability, performance, scalability, version con-
trol, reusability, extendability, documentation, vendor-lock-in and deployment. Our
generator addresses all of these metrics by leveraging the power of traditional ap-
plication development and the developer experience of generators, which mainly
a�ects the performance in terms of development speed and the reusability of the
generated code.

38

CHAPTER 5. DESIGN AND IMPLEMENTATION

The following �gure 5.5 shows the module dependencies:

Figure 5.5: Dependency Graph

39

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.5 Usage of CodeFlow

In this section, we explore the practical usage of CodeFlow and delve into its various
features and functionalities. Whether you are a seasoned developer or new to the
world of software development, this section will provide valuable insights on how to
e�ectively leverage CodeFlow for rapid application development.

To enhance your understanding and facilitate the learning process, we have created
a comprehensive video series that walks you through the usage of CodeFlow step by
step. Each video focuses on a speci�c aspect of CodeFlow, ranging from the setup
and con�guration of the development environment to the generation of high-quality
code and the integration of custom code. We encourage you to follow along with
the video series, which can be accessed at https://drive.google.com/drive/
folders/1dVv8U_OnwGzdbIJXRLTwEJvTJ5avYXLR?usp=sharing.

In addition to the video series, this section provides a high level overview of the indi-
vidual parts that are presented in a practical fashion throughout the video course. We
will demonstrate how CodeFlow enables e�cient prototyping, code generation and
the development of scalable and maintainable applications. Furthermore, we will
highlight the bene�ts and considerations associated with using CodeFlow, allowing
you to make informed decisions and optimize your development work�ow.

The complete source code of the resulting application from the video series can be
found at https://github.zhaw.ch/eglipat3/todo-app. Note, this repository is
only accessible to limited number of users. If you are interested in gaining access to
the repository, please reach out to us at mailto:eglipat3@students.zhaw.ch.
Whether you are looking to streamline your development process, increase produc-
tivity or build high-quality applications in a shorter time frame, CodeFlow o�ers a
powerful solution that combines the bene�ts of low-code development with the �ex-
ibility and extensibility of traditional coding practices.

5.5.1 Cloning the CodeFlow Repository
To get started with CodeFlow, the initial step is to clone the repository. It’s important
to note that CodeFlow is currently a closed-source project, available to a limited num-
ber of users. If you are interested in gaining access to the repository, please reach out
to us at mailto:eglipat3@students.zhaw.ch and we will gladly provide you with
the necessary access.

Once you have been granted access to the repository, you can proceed with cloning
it using the following command:� �
git clone <repository-url>� �
Replace <repository-url> with the actual URL of the CodeFlow repository. By exe-
cuting this command, you will download the entire repository to your local machine,
enabling you to explore the CodeFlow tool and its associated resources.

With the repository successfully cloned, you are now ready to embark on your jour-
ney with CodeFlow and discover its capabilities for rapid application development.

5.5.2 Setting up the Development Environment
To begin using CodeFlow, we �rst need to set up the development environment. Em-
phasizing a seamless developer experience, the setup process is straightforward and
requires executing a single command.

40

https://drive.google.com/drive/folders/1dVv8U_OnwGzdbIJXRLTwEJvTJ5avYXLR?usp=sharing
https://drive.google.com/drive/folders/1dVv8U_OnwGzdbIJXRLTwEJvTJ5avYXLR?usp=sharing
https://github.zhaw.ch/eglipat3/todo-app
mailto:eglipat3@students.zhaw.ch
mailto:eglipat3@students.zhaw.ch

CHAPTER 5. DESIGN AND IMPLEMENTATION

To install the necessary dependencies and prepare the development environment,
run the following command:� �
npm install� �
This command will handle the installation of all required dependencies, ensuring
that your environment is properly con�gured. Once the installation process is com-
plete, we can proceed with creating the target workspace. But before we do that,
let’s take a moment to delve into the concept of the root workspace and the target
workspace.

5.5.3 Root Workspace and Target Workspace
The root workspace serves as the foundation of CodeFlow and encompasses the CLI
application responsible for generating the target workspace. It also houses the li-
braries and application templates necessary for generating the target workspace.

The CLI application plays a crucial role in this process by prompting the user for input
and using that information to generate the target workspace. It adjusts the provided
source code from the libraries and application templates to align with the user’s spe-
ci�c requirements.

The target workspace, generated by the CLI application, serves as the working envi-
ronment for developers. If the developer chooses to generate an application within
the target workspace, it will contain a fully functional application. Developers have
complete access to the codebase and can freely modify it to meet their needs.

Furthermore, the CLI application supports extending previously generated target
workspaces. Developers can generate additional projects within the target workspace,
which seamlessly integrate with the existing codebase. Additionally, developers have
the �exibility to extend the codebase of the CodeFlow repository itself, enhancing
the capabilities of the root workspace. These modi�cations are applied to the target
workspace upon generation.

Now that we have gained a better understanding of the root workspace and the target
workspace, we are ready to proceed with creating the target workspace.

5.5.4 Generating the Target Workspace
To generate the target workspace, we need to execute the following command:� �
npm run cli:generate:project� �
This command will prompt the user for input and use that information to generate
the target workspace. The following questions will be asked and we provide the an-
swers that we used for the video series:

• What is the name of the project?
todo-app

• Please specify the parent directory from the new parent
<path-to-your-target-workspace-directory>

• Please select the type of GitHub work�ow you want to use
ci-only

• Please select the theme
sky

41

CHAPTER 5. DESIGN AND IMPLEMENTATION

• Do you want to create a new app?
Yes

• Which template do you want to use for the new app?
Application with Authentication included

• What is the directory of the app? Please make sure that the directory is
unique and does not exist yet.
main

• What is the display name of the app? This name will be used in the PWA
manifest and in some other places.
Todo Application

• What is the description of the app? This name will be used in the PWA
manifest and in some other places.
This is an amazing todo application

• What is the theme color of the app? It is recommended to use the primary
color of your app. By default we use the primary-[500] color of your theme.
#0ea5e9

• What is the background color of the app? By default we use the gray-[900]
color of your theme.
#0f172a

• What is the name of the database client library? Most probably you will
extend this library with your custom schema, so it is recommended to use a
name that �ts your DB schema purpose. Make sure that no other directory
with the same name exists in libs/db.
user

• Do you want to create a new app?
No

Once the CLI application has �nished generating the target workspace, we can open
the target workspace in our IDE of choice. All the required dependencies are already
installed and the target workspace is ready for development.

The following �gure 5.6 shows the CLI application in action.

Figure 5.6: CodeFlow CLI

42

CHAPTER 5. DESIGN AND IMPLEMENTATION

To start the development server of the main application, we need to execute the fol-
lowing command:� �
npm run main:dev� �
This command will start the development server of the main application, which we
can access by navigating to http://localhost:3000 in our browser.

The generated application is fully functional and provides authentication functional-
ity out of the box. Besides the authentication, the application also provides interna-
tionalization support, PWA integration, error handling, full responsiveness ensuring
the application works on mobile devices as well as on desktop devices and a dash-
board with a navigation that can be easily extended by developers.

The following �gure 5.7 shows the dashboard of the generated application.

Figure 5.7: CodeFlow Dashboard

Now that we have successfully generated the target workspace, we could start devel-
oping our application. But before we do that, let’s take a moment to explore the UI
component libraries that CodeFlow provides.

5.5.5 UI Component Libraries
CodeFlow provides a set of UI component libraries that developers can use to build
their applications. These libraries are located in the libs/ui directory of the workspace
and are structured as follows:

• ui/core: The ui/core library contains the atoms of the UI library. Atoms are
the smallest elements in a design system, such as buttons, badges and similar
elements. It provides a set of reusable UI components that can be used to build
custom UI components, reducing the amount of code needed to create custom
UI elements.

• ui/app: The ui/app library contains UI components that are used in a typical ad-
min application. These components are referred to as molecules or organisms,
which are composed of atoms. It provides a set of reusable UI components that
can be used to build custom admin applications, reducing the amount of code
needed to create custom admin UI elements.

• ui/common: The ui/common library contains UI components that are used in
many di�erent kinds of applications, such as e-commerce, admin applications

43

http://localhost:3000

CHAPTER 5. DESIGN AND IMPLEMENTATION

and so on. It provides a set of reusable UI components that can be used across
di�erent applications, reducing the amount of code needed to create custom UI
elements.

• ui/context: The ui/context library contains common React context APIs such
as LoadingContext or ThemeContext. These contexts are used to provide spe-
ci�c functionality to the entire application in a way that reduces the coupling
of components by leveraging the power of hooks. For example, the LoadingCon-
text can be used to display a loading indicator across the application, while the
ThemeContext can be used to provide a consistent theme across all components.
By using contexts, components can consume functionality without needing to
know the implementation details, making the code more modular and easier to
maintain.

• ui/utils: The ui/utils library contains commonly used UI utilities. It provides
a set of reusable tools for managing common functionalities such as styling,
layout and event handling. These utilities can be used to enhance the developer
experience by reducing the amount of code needed to achieve common UI tasks.
For example, the library can include utilities for handling responsive design,
creating animations and handling input validation.

To provide a great developer experience, CodeFlow integrates Storybook. Storybook
is a tool for developing UI components in isolation, which allows developers to build
UI components without needing to worry about application-speci�c dependencies.
Besides that, Storybook is suitable for exploring the UI component libraries that Code-
Flow provides. To start Storybook for the ui/core library, we need to execute the fol-
lowing command:� �
npm run ui:core:storybook� �
This command will start Storybook for the ui/core library, which we can access by
navigating to http://localhost:4400 in our browser.

The following �gure 5.8 shows a screenshot of Storybook in action. This is the Story-
book instance of the ui/core library, which contains the atoms of the UI library.

Figure 5.8: CodeFlow Storybook instance of the ui/core library

The same can be done for the ui/app component library by executing the following
command:� �
npm run ui:app:storybook� �

44

http://localhost:4400

CHAPTER 5. DESIGN AND IMPLEMENTATION

This command will start Storybook for the ui/app library, which we can access by
navigating to http://localhost:4401 in our browser.

The following �gure 5.9 shows a screenshot of Storybook in action. This is the Story-
book instance of the ui/app library, which contains the atoms of the UI library.

Figure 5.9: CodeFlow Storybook instance of the ui/app library

Feel free to explore the UI component libraries that CodeFlow provides. Once you
are done exploring, we can move on to the next step, spinning up the database.

5.5.6 Spinning up the Database
CodeFlow provides a PostgreSQL database container that we can use for develop-
ment purposes as well as for production deployments if needed. To spin up the Post-
greSQL database container, we execute the following command:� �
docker-compose -f apps/docker/docker-compose.yaml up -d� �
This command spins up the PostgreSQL database container in the background. To
stop the PostgreSQL database container, we execute the following command:� �
docker-compose -f apps/docker/docker-compose.yaml down -v� �
This command stops the PostgreSQL database container and removes the data vol-
ume. If we do not want to remove the data volume, we can omit the -v �ag.

The PostgreSQL database container reads by default the environment variables from
the apps/docker/env/dev/db.env �le. To change the values of these environment
variables, we can adjust the .env.local �le in the root directory of the workspace.
The following .env.local �le is an example of how we can adjust the environment
variables of the PostgreSQL database container:� �
POSTGRES_HOST=db
POSTGRES_DB="todo-application"
POSTGRES_USER="todo-user"
POSTGRES_PASSWORD="top-secure"� �
These environment variables are picked up by the build:env target. The generated
workspace contains many applications that use the build:env target to generate en-

45

http://localhost:4401

CHAPTER 5. DESIGN AND IMPLEMENTATION

vironment variables for the applications. To run the build:env target for all applica-
tions that use it, we execute the following command:� �
npm run build:env� �
After running the build:env target, we should see the con�gured environment vari-
ables in the apps/docker/env/dev/db.env �le. If we want to apply the environment
variables to the PostgreSQL database container, we need to restart the container by
executing the following command:� �
docker-compose -f apps/docker/docker-compose.yaml restart db� �
Next, we want to extend our model by adding a new entity to our application.

5.5.7 Extending the Model
CodeFlow incorporates Prisma [13], a cutting-edge ORM for Node.js and TypeScript,
which o�ers a range of tools for data modeling in applications. To extend the model of
our application, we navigate to the libs/db/user/prisma directory within the workspace.
Within this directory, we locate the schema.prisma �le, which de�nes the model of
our application.

The default model of our application is represented as follows:� �
generator client {
provider = "prisma-client-js"
output = "./generated/prisma"

}

datasource db {
provider = "postgresql"
url = env("DATABASE_URL")

}

model User {
id String @id @default(uuid())
email String @unique
password String
firstName String?
lastName String?
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt

}� �
The provided model showcases the default structure for a User entity in our appli-
cation. It includes attributes such as id, email, password, �rstName, lastName, cre-
atedAt and updatedAt, each with speci�c data types and optional modi�ers. Prisma’s
generator con�guration speci�es the output directory for the Prisma client, while the
datasource con�guration establishes the connection to a PostgreSQL database using
the provided URL.

By modifying the schema.prisma �le, developers can tailor the data model to suit
their application’s speci�c requirements. This �exibility enables the seamless inte-
gration of custom entities, relationships and additional attributes into the applica-
tion.

In our case, we want to extend the model of our application to include a new entity
called Todo. Therefore, we add the following code to the schema.prisma �le:

46

CHAPTER 5. DESIGN AND IMPLEMENTATION

� �
model Todo {
id String @id @default(uuid())
title String
description String
completed Boolean @default(false)
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
user User @relation(fields: [userId], references:

[id])
userId String
}� �

Additionally, we need to add the following code to the User entity:� �
todos Todo[]� �
This code establishes a one-to-many relationship between the User and Todo entities.
The User entity can have many Todo entities, while the Todo entity can only have one
User entity. This relationship is represented by the todos attribute in the User entity
and the user attribute in the Todo entity. The todos attribute in the User entity is an
array of Todo entities, while the user attribute in the Todo entity is a single User entity.

The �nal schema.prisma �le should look as follows:� �
generator client {
provider = "prisma-client-js"
output = "./generated/prisma"

}

datasource db {
provider = "postgresql"
url = env("DATABASE_URL")

}

model User {
id String @id @default(uuid())
email String @unique
password String
firstName String?
lastName String?
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
todos Todo[]

}

model Todo {
id String @id @default(uuid())
title String
description String
completed Boolean @default(false)
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
user User @relation(fields: [userId], references:

[id])
userId String

}� �
47

CHAPTER 5. DESIGN AND IMPLEMENTATION

Once we are done modifying the schema.prisma �le, we can move on to the next step,
which is to generate the Prisma client. So far, we only modi�ed the schema.prisma
�le, which is a declarative �le that de�nes the model of our application. To generate
the actual Prisma client, we need to execute the following command:� �
npm run prisma:generate� �
This command will generate the Prisma client, which we can use to interact with the
database in a type-safe manner. The generated Prisma client is located in the lib-
s/db/user/generated/prisma directory within the workspace. The generated Prisma
client is exported from the libs/db/user library and can be imported into other li-
braries and applications through the @todo-app/db/user package. In case of you
decided to use a di�erent name for your workspace, the package name will be dif-
ferent, e.g., @my-workspace/db/user.

Now that we have generated the Prisma client, we can move on to the next step,
which is to create a migration. Add the following script to the package.json �le in
the root of the workspace:� �
"main:prisma:migrate": "cd libs/db/user && prisma migrate dev --

schema ./prisma/schema.prisma",� �
This command will create a migration based on the changes we made to the schema.prisma
�le. The resulting package.json �le should look as follows:� �
{
"name": "todo-app",
"version": "0.0.0",
"license": "MIT",
"scripts": {
"build:affected": "nx affected:build",
"build:all": "nx run-many --all --target=build",
"build:all:no:cache": "nx run-many --all --target=build --

skip-nx-cache",
"lint": "nx run-many --all --target=lint",
"lint:fix": "nx affected:lint --fix",
"prettier": "nx format:write",
"build:env": "npx nx run-many --all --target=build:env",
"ui:app:storybook": "cross-env NODE_OPTIONS=--

openssl-legacy-provider npx nx storybook ui-app",
"ui:core:storybook": "cross-env NODE_OPTIONS=--

openssl-legacy-provider npx nx storybook ui-core",
"prisma:generate": "npx nx run-many --all --target=prisma:

generate",
"main:prisma:migrate": "cd libs/db/user && prisma migrate dev

--schema ./prisma/schema.prisma",
"test": "npx nx run-many --all --target=test --skip-nx-cache",
"postinstall": "remix setup node && npm run prisma:generate &&

npm run build:env",
"prepare": "husky install",
"main:dev": "npx nx dev main-web",
"main:build": "npx nx build main-web"

},
"private": true,
"dependencies": {
...

},
"devDependencies": {

48

CHAPTER 5. DESIGN AND IMPLEMENTATION

...
},
"workspaces": [
"libs/*"

],
"engines": {
"node": ">=18.13.0",
"npm": ">=8.19.3"

}
}� �
To create the migration, we need to execute the following command:� �
npm run main:prisma:migrate� �
This command will create a new migration in the libs/db/user/prisma/migrations
directory within the workspace. The migration is a declarative �le that de�nes the
changes that need to be applied to the database. These migrations are automatically
applied to the running database instance during development. However, in produc-
tion, migrations need to be applied with the following command:� �
prisma migrate deploy� �
This command will apply all pending migrations to the database instance. After the
migration has been applied, we can move on to the next step, which is to create
schemas that will perform input validation.

5.5.8 Creating Schemas for Input Validation
In this section, we will create schemas that will perform input validation. Besides
input validation, these schemas can also be used to generate forms automatically as
CodeFlow has built-in support for generating forms from zod-schemas.

To perform the actual input validation, CodeFlow uses the zod library [20], which
is a TypeScript-�rst schema declaration and validation library. We recommend to
add all the schema �les to the libs/ts/core/src/lib/schema directory and export them
from index.ts �le, located in the same directory. Let’s create a schema �le called
todo.create.schema.ts in the libs/ts/core/src/lib/schema directory and add the fol-
lowing code to it:� �
import { z } from ’zod’;
import { SESSION_PROPERTIES } from ’../constants’;

export const TODO_CREATE_SCHEMA = z.object({
title: z.string().min(1),
description: z.string().min(1),
action: z.enum([’create’]),
[SESSION_PROPERTIES.csrf]: z.string().min(1),

});� �
This schema de�nes the following properties:

• title: The title of the todo. This property is required and must be a string with
a minimum length of 1.

• description: The description of the todo. This property is required and must
be a string with a minimum length of 1.

49

CHAPTER 5. DESIGN AND IMPLEMENTATION

• action: The action that needs to be performed. This property is required and
must be equal to the string create.

• csrf: The CSRF token. This property is required and must be a string with a
minimum length of 1.

Let’s create another schema �le that is responsible for updating the state of a todo.
We call this schema �le todo.complete.schema.ts and add the following code to it:� �
import { z } from ’zod’;
import { SESSION_PROPERTIES } from ’../constants’;

export const TODO_COMPLETE_SCHEMA = z.object({
id: z.string().min(1),
completed: z.boolean(),
action: z.enum([’complete’]),
[SESSION_PROPERTIES.csrf]: z.string().min(1),

});� �
Then we simply export the schema �les from the libs/ts/core/src/lib/schema/index.ts
�le:� �
export * from ’./login.schema’;
export * from ’./register.schema’;
export * from ’./todo.complete.schema’;
export * from ’./todo.create.schema’;� �
That’s it! By creating these schemas, we have already de�ned the input validation
rules for our application. Feel free to add more schemas to the libs/ts/core/src/lib/schema
directory if you need to perform input validation for other use cases.

In the next section, we will create the actual business logic that we will use in the
data loaders and action handlers of Remix.

5.5.9 Creating Business Logic
In this section, we will create the business logic. The input coming from the data load-
ers and action handlers is validated against the schemas that we created in the pre-
vious section. We recommend to add all the business logic �les to the apps/main/we-
b/app/domain directory assuming that we are working within the main application.

Let’s create a new directory called todo in the apps/main/web/app/domain direc-
tory. This directory houses all the business logic related to todos. In this directory,
we create three �les:

• todo.create.server.ts: This �le contains the business logic for creating a todo.

• todo.complete.server.ts: This �le contains the business logic for changing the
state of a todo.

• todo.list.server.ts: This �le contains the business logic for listing todos that
belong to the authenticated user.

Let’s start with the todo.create.server.ts �le.� �
import { prisma } from ’@todo-app/db/user’;
import { makeDomainFunction } from ’@todo-app/remix/domain’;
import { handleMutationError, requireUser } from ’@todo-app/remix/

server’;

50

CHAPTER 5. DESIGN AND IMPLEMENTATION

import { TODO_CREATE_SCHEMA } from ’@todo-app/ts/core’;
import { z } from ’zod’;
import i18nextServer from ’../../i18n/i18next.server’;

const environmentSchema = z.object({
request: z.any(),

});

export const todoCreateMutation = makeDomainFunction(
TODO_CREATE_SCHEMA,
environmentSchema

)(async (values, { request }) => {
const { title, description } = values;
const user = await requireUser(request);

try {
return await prisma.todo.create({
data: {
title: title as string,
description: description as string,
user: {
connect: {
id: user.id,

},
},

},
});

} catch (e) {
await handleMutationError(e, request, i18nextServer);
}

});� �
In only 34 lines of code, we have created a function that is responsible for creating a
todo, including the input validation, authentication checks as well as error handling.

• Line 1 - 6: Importing the required dependencies.

• Line 8 - 10: De�ning the environment schema. This schema is used to validate
the environment that is passed to the function. In this case, we only need the
request object from the environment.

• Line 15 - 34: De�ning the actual business logic. This code is only executed in
case of the input validation has passed.

• Line 17: Authentication check. If the user is not authenticated, an automatic
redirect to the login page is performed. This ensures that only authenticated
users can create todos.

Let’s create the todo.complete.server.ts �le with the following code:� �
import { prisma } from ’@todo-app/db/user’;
import { makeDomainFunction } from ’@todo-app/remix/domain’;
import { handleMutationError, requireUser } from ’@todo-app/remix/

server’;
import { TODO_COMPLETE_SCHEMA } from ’@todo-app/ts/core’;
import { z } from ’zod’;
import i18nextServer from ’../../i18n/i18next.server’;

const environmentSchema = z.object({
request: z.any(),

51

CHAPTER 5. DESIGN AND IMPLEMENTATION

});

export const todoCompleteMutation = makeDomainFunction(
TODO_COMPLETE_SCHEMA,
environmentSchema

)(async (values, { request }) => {
const { id, completed } = values;
const user = await requireUser(request);

try {
const todo = await prisma.todo.findFirst({
where: {
id: id as string,
userId: user.id,

},
});

if (!todo) {
throw new Error(’Todo not found’);

}

return await prisma.todo.update({
data: {
completed: completed as boolean,

},
where: {
id: todo.id,

},
});

} catch (e) {
await handleMutationError(e, request, i18nextServer);
}

});� �
This �le is very similar to the todo.create.server.ts �le. The only di�erence is that
we are updating an existing todo instead of creating a new one. Therefore, we need
to perform an additional database query to check if the todo exists and belongs to
the authenticated user.

Finally, let’s create the todo.list.server.ts �le with the following code:� �
import { json } from ’@remix-run/node’;
import { Prisma, prisma } from ’@todo-app/db/user’;
import { requireUser } from ’@todo-app/remix/server’;

export type TodoListLoaderData = {
todos: TodoListType;

};

export const todoListLoader = async (request: Request) => {
const user = await requireUser(request);
const todos = await prisma.todo.findMany({
where: {
userId: user.id,

},
});

return json<TodoListLoaderData>({

52

CHAPTER 5. DESIGN AND IMPLEMENTATION

todos,
});

};

const todoListInternal = async (userId: string) => {
return prisma.todo.findMany({
where: {
userId,
},
});

};

export type TodoListType = Prisma.PromiseReturnType<typeof
todoListInternal>;� �

This �le is a bit di�erent from the previous two �les, as the function is used as a data
loader. The data loader is responsible for loading the data that is required for the
page. In this case, we are loading all todos that belong to the authenticated user. To
ensure type safety, we are using the Prisma.PromiseReturnType type to infer the
return type of the todoListInternal function. This allows us to use the same type
for the frontend and backend code and helps to avoid type errors. This is especially
useful when the database schema changes, as the type is automatically updated or
when we query di�erent �elds from the database in a later stage of the project.

Most likely, developers will extend the default UI components with additional ones.
The following section describes how to create a new UI component that we will use
in the �nal section of this chapter.

5.5.10 Creating a new UI component
In this section we create a simple UI component that is responsible for displaying a
title and a subtitle. This is a highly reusable component that can be used in many
di�erent places.

Let’s start by creating a new �le called SectionTitle.tsx in the libs/ui/app/src/lib/-
section directory with the following code:� �
import { cx } from ’@todo-app/ui/utils’;

type SectionTitleProps = {
title: string;
subTitle: string;
className?: string;

};

export function SectionTitle({ title, subTitle, className }:
SectionTitleProps) {

return (
<div className={cx(’flex flex-col border-b border-gray-200

pb-2 dark:border-gray-700’, className)}>
<h2 className="text-lg font-bold text-gray-900 dark:

text-white">{title}</h2>
<span className="text-sm font-normal text-gray-600 dark:

text-gray-500">{subTitle}
</div>

);
}� �

53

CHAPTER 5. DESIGN AND IMPLEMENTATION

This component has a wrapper div with a border at the bottom and within this wrap-
per, we have a title and a subtitle. Previously, we mentioned the Storybook integra-
tion that allows us to develop UI components in isolation. Now, we want to leverage
the power of Storybook to develop this component in isolation. Let’s create a new �le
called SectionTitle.stories.tsx in the libs/ui/app/src/lib/section directory with the
following code:� �
import { SectionTitle } from ’./SectionTitle’;

export default {
title: ’custom/section/SectionTitle’,
component: SectionTitle,
argTypes: {
title: {
control: ’text’,

},
subTitle: {
control: ’text’,

},
},

};

export const Primary = {
args: {
title: ’Create a new project’,
subTitle: ’Create a new project and invite your team members’,

},
parameters: {},

};� �
Luckily, Storybook provides an intuitive API that allows us to create stories for our
components in a very short time. In this case, we are creating a story for the Sec-
tionTitle component. The title property is used to de�ne the title of the story. Addi-
tionally, the component property is used to de�ne the component that we want to
use for the story and the argTypes property is used to de�ne the arguments of the
component. In this case, we have two arguments, the title and the subTitle. Both
arguments are of type text.
Furthermore, we can create multiple stories for the same component. In this case,
we are only creating one story called Primary and we provide the default values for
the arguments title and subTitle.

Now, we need to make sure, that the SectionTitle component is exported from the
libs/ui/app/src/lib/section/index.ts �le. So, let’s create the index.ts �le and add the
following code:� �
export * from ’./SectionTitle’;� �
Furthermore, we have to make sure that all the components within the libs/ui/ap-
p/src/lib/section directory are exported from the libs/ui/app library. Therefore, we
have to export the section directory from the libs/ui/app/src/lib/index.ts �le. The
resulting index.ts �le should look like this:� �
export * from ’./auth’;
export * from ’./layout’;
export * from ’./section’; // Add this line to the file
export * from ’./table’;
export * from ’./user’;
export * from ’./welcome’;� �

54

CHAPTER 5. DESIGN AND IMPLEMENTATION

Let’s spin up Storybook to see the custom UI component in action. To do so, we have
to run the following command:� �
npm run ui:app:storybook� �
The following �gure 5.10 shows a screenshot of the custom UI component within the
Storybook instance of the ui/app library.

Figure 5.10: Storybook custom UI component

As the last step, we need to combine the business logic with the frontend code.

5.5.11 Combining the business logic with the frontend code
In this section, we are going to combine the business logic with the frontend code.
Within Remix, all routes are de�ned in the app/routes directory. In our case, in the
apps/main/web/app/routes directory.

Let’s modify apps/main/web/app/routes/__protected/__layout/index.tsx with the fol-
lowing code:� �
import { CheckIcon, XMarkIcon } from ’@heroicons/react/24/outline

’;
import { ActionFunction, LoaderFunction } from ’@remix-run/node’;
import { useLoaderData } from ’@remix-run/react’;
import { formAction } from ’@todo-app/remix/forms’;
import { SESSION_PROPERTIES, TODO_COMPLETE_SCHEMA,

TODO_CREATE_SCHEMA } from ’@todo-app/ts/core’;
import { SectionTitle } from ’@todo-app/ui/app’;
import { BaseButton, Card, Form } from ’@todo-app/ui/core’;
import { cx } from ’@todo-app/ui/utils’;
import { useAuthenticityToken } from ’remix-utils’;
import { todoCompleteMutation } from ’../../../domain/todo/todo.

complete.server’;
import { todoCreateMutation } from ’../../../domain/todo/todo.

create.server’;
import { todoListLoader, TodoListLoaderData } from ’../../../

domain/todo/todo.list.server’;

export const loader: LoaderFunction = async ({ request }) => {
return await todoListLoader(request);

55

CHAPTER 5. DESIGN AND IMPLEMENTATION

};

export const action: ActionFunction = async ({ request }) => {
const action = (await request.clone().formData()).get(’action’);

if (action === ’create’) {
return await formAction({
request,
schema: TODO_CREATE_SCHEMA,
mutation: todoCreateMutation,
environment: { request },
successPath: ’/’,

});
} else if (action === ’complete’) {
return await formAction({
request,
schema: TODO_COMPLETE_SCHEMA,
mutation: todoCompleteMutation,
environment: { request },
successPath: ’/’,

});
}

return new Response(null, { status: 400 });
};

export default function Index() {
const { todos } = useLoaderData<TodoListLoaderData>();
const csrf = useAuthenticityToken();

return (
<div className="flex flex-col space-y-8">
<div className="flex flex-col space-y-8">
<SectionTitle title="Create Todo" subTitle="Create a new

todo, just provide the title and a description" />
<Form
useFieldsWrapper={true}
fieldsWrapperCssClasses="grid grid-cols-1 gap-6 sm:

grid-cols-2"
schema={TODO_CREATE_SCHEMA}
hiddenFields={[SESSION_PROPERTIES.csrf, ’action’]}
values={{ [SESSION_PROPERTIES.csrf]: csrf, action: ’

create’ }}
buttonLabel="Create Todo"

/>
</div>

<div className="flex flex-col space-y-8">
<SectionTitle title="Todo List" subTitle="Here you can see

all your todos" />
<div className="grid grid-cols-1 gap-4 md:grid-cols-2 lg:

grid-cols-3 xl:grid-cols-4">
{(todos || []).map((todo) => (
<Card
key={todo.id}
badge={{
color: todo.completed ? ’primary’ : ’gray’,
label: todo.completed ? ’Completed’ : ’In Progress’,
position: ’right’,

56

CHAPTER 5. DESIGN AND IMPLEMENTATION

size: ’sm’,
}}
className="flex flex-1 flex-col"
bodyClassName="flex flex-1 flex-col"

>
<div className="flex flex-1 flex-col">
<div className="flex flex-1 flex-col">
<h4 className="text-md font-medium text-gray-900

dark:text-white">{todo.title}</h4>
<span className="text-sm font-normal text-gray-600

dark:text-gray-500">{todo.description}
</div>
<div className="mt-3 border-t border-gray-200 pt-3

dark:border-gray-700">
{!todo.completed && (
<Form

schema={TODO_COMPLETE_SCHEMA}
hiddenFields={[SESSION_PROPERTIES.csrf, ’id’,

’completed’, ’action’]}
values={{
[SESSION_PROPERTIES.csrf]: csrf,
id: todo.id,
completed: true,
action: ’complete’,

}}
buttonComponent={({ className, ...props }) =>

(
<BaseButton
type="submit"
className={cx(
className,
’gap-x-2 border-primary-400 bg-transparent

text-sm text-primary-500
transition-all duration-300 ease-in-out
hover:border-primary-700 hover:

text-primary-700 dark:
border-primary-600 dark:hover:
border-primary-300 dark:hover:
text-primary-300’

)}
{...props}
>
<CheckIcon className="h-5 w-5" />
Complete

</BaseButton>
)}

/>
)}

{todo.completed && (
<Form
schema={TODO_COMPLETE_SCHEMA}
hiddenFields={[SESSION_PROPERTIES.csrf, ’id’, ’

completed’, ’action’]}
values={{
[SESSION_PROPERTIES.csrf]: csrf,
id: todo.id,
completed: false,
action: ’complete’,

57

CHAPTER 5. DESIGN AND IMPLEMENTATION

}}
buttonComponent={({ className, ...props }) => (
<BaseButton

type="submit"
className={cx(
className,
’gap-x-2 border-gray-200 bg-transparent

text-sm transition-all duration-300
ease-in-out hover:border-gray-300 dark:
border-gray-600 dark:hover:border-gray-500’

)}
{...props}

>
<XMarkIcon className="h-5 w-5" />
Not ready yet

</BaseButton>
)}

/>
)}
</div>

</div>
</Card>
))}

</div>
</div>

</div>
);

}� �
This code is a bit long, bit it’s not complicated, as the most of the code is just UI code
written in JSX, the React template language. At the beginning, we export a loader
function, which is responsible for loading the data that will be used by the UI and
we can consume the data using the useLoaderData hook. The action function is
responsible for handling the form submission and it’s using the formAction helper
function that will execute the mutation and redirect the user to the success path.

The Form component is a wrapper around the react-hook-form library, which is a
library that helps us to handle forms in React. We could only pass the schema as an
property to the Form component, in that case we would get a very simple form, with
all the con�gured properties. But we are also passing some other properties, like
the hiddenFields property, which is an array of �elds that will be hidden from the
form and the values property, which is an object with the values that will be used to
populate the form. This makes sure that the form will be populated with the correct
values and that the hidden �elds will be sent to the server but not shown to the user.

The rest is just UI code, but we don’t go into details here, as React is a prerequisite
for this project and we assume that the reader is familiar with it.

This quick example shows how easy it is to create a fully functional, user-friendly
web application using CodeFlow. By leveraging the power of CodeFlow’s tools and
technologies, developers can rapidly develop applications that meet their speci�c re-
quirements.

CodeFlow provides a solid foundation for building scalable and maintainable appli-
cations. With its intuitive code generation capabilities and modular architecture,
developers can easily extend the application with additional features and function-
alities. The generated codebase follows best practices in software engineering, en-
suring clean and e�cient code.

58

CHAPTER 5. DESIGN AND IMPLEMENTATION

Furthermore, CodeFlow’s seamless integration with popular frameworks and libraries
such as React, Prisma and Tailwind CSS enables developers to leverage the rich ecosys-
tem of tools and resources available in the frontend development community. This
fosters productivity and empowers developers to create compelling user experiences.

The example provided here is just a glimpse of what can be achieved with CodeFlow.
Its �exibility and extensibility make it suitable for a wide range of projects, from
small prototypes to large-scale applications.
The following �gure 5.11 shows a screenshot of the �nal application.

Figure 5.11: Final application

By now, developers should have a good understanding of how CodeFlow works and
how it can be used to build web applications.

59

Chapter 6

Results

This chapter presents the outcomes of our evaluation involving our proposed solu-
tion CodeFlow, JHipster, OutSystems and Mendix. In order to facilitate a compre-
hensive comparison, we carefully implemented the same application across all four
platforms and tools. Moreover, we imposed a time constraint of 4 hours for each
platform and tool, enabling us to assess their performance within a standardized
timeframe as de�ned in section 3.2.

By employing this uni�ed approach, we gain valuable insights into the strengths and
weaknesses of the various platforms and tools, as outlined by the prede�ned metrics
described in section 3.1.

With these parameters in place, we are ready to conduct an in-depth analysis and
comparison of the evaluated platforms and tools, shedding light on their perfor-
mance, e�ciency and frontend integration. By examining the results, we can pro-
vide developers with actionable information to guide their decision-making process
when selecting the most suitable platform or tool for their speci�c project require-
ments.

• Maintainability: This refers to how easily a software tool can be updated or
�xed. A tool with high maintainability will have clear, understandable code and
a well-structured design that allows developers to easily understand and alter
its functions as needed. This includes updating the tool to �x bugs, improve
performance or add new features.

• Performance: Performance evaluation assesses the runtime performance of
the tool, encompassing factors such as speed, responsiveness and resource con-
sumption. A high-performance tool operates rapidly and e�ciently, minimizing
lag time and optimizing resource utilization.

• Scalability: This refers to the tool’s capacity to handle increasing amounts of
work and its potential to be enlarged to accommodate that growth. Tools that
are scalable will still perform e�ectively even as the size or complexity of the
software system grows.

• Version control: This aspect evaluates how well the tool manages di�erent ver-
sions or iterations of the software. Good version control allows developers to
track changes, rollback to previous versions when necessary and coordinate
work between di�erent team members.

• Reusability: This aspect relates to whether the tool (or parts of it) can be used
multiple times for di�erent purposes or projects. A reusable tool will have com-
ponents that can be employed in various contexts, which can lead to more e�-
cient and cost-e�ective development.

60

CHAPTER 6. RESULTS

• Extendability: This refers to how easy it is to add new features or capabilities
to the tool. A tool is extendable if it is designed in a modular way, which allows
for additions and expansions in functionality without disrupting the existing
system.

• Documentation: This evaluates the completeness, clarity and usefulness of the
tool’s documentation. High-quality documentation includes thorough explana-
tions of the tool’s functions, examples of how to use it and solutions to common
problems.

• Vendor Lock-in: This relates to the extent to which users are dependent on a
speci�c vendor for services and products. A tool with high vendor lock-in means
users will have di�culty moving to a di�erent product or vendor without sub-
stantial transition costs.

• Deployment: This evaluates how easy it is to distribute and implement the soft-
ware created with the tool in a live environment. This might include considera-
tions about the tool’s compatibility with di�erent systems, the ease of setting up
the software and the process of updating the software once it’s been deployed.

• Frontend Integration: This evaluates how easy it is to integrate a customer-
facing frontend application with the given tool. The frontend application should
be able to communicate with the backend application created with the tool.

• Time to Market: This evaluates how quickly a software tool can create a work-
ing application. A tool with a low time to market will allow developers to quickly
create a functional application that can be deployed to production.

61

CHAPTER 6. RESULTS

6.1 Addressed Challenges

This section provides an in-depth exploration of how the challenges presented in
section 5 are not only acknowledged but also successfully addressed within the pro-
totype. By delving into the speci�c strategies and solutions implemented, we aim
to provide a comprehensive understanding of how the prototype e�ectively tackles
these challenges head-on.

6.1.1 Maintainability
A web application framework should prioritize ease of maintenance and updates.
The implemented prototype e�ectively addresses the challenge of maintainability
by granting developers complete control over the source code and dependencies.

By having full control over the source code and dependencies, developers can easily
update and modify the prototype as needed. This �exibility enables seamless updates
to the source code and the integration of new dependencies, ensuring the prototype
remains up-to-date and adaptable.

Additionally, the prototype places emphasis on comprehensive documentation of its
source code. This documentation serves as a valuable resource, making it easier for
developers to understand and maintain the codebase. With well-documented source
code, developers can quickly navigate through the codebase, troubleshoot issues and
make necessary updates or modi�cations with con�dence.

By providing developers with control, �exibility and well-documented source code,
the implemented prototype promotes the long-term maintainability of web applica-
tions. This focus on maintainability allows developers to e�ciently manage updates,
implement enhancements and ensure the continued reliability and functionality of
the prototype.

6.1.2 Performance
The implemented prototype e�ectively addresses the performance challenge by em-
ploying a modular architecture. The modular architecture provides developers with
the necessary �exibility to optimize the prototype for enhanced performance.

By utilizing a modular architecture, the prototype can be divided into separate mod-
ules or components, each with its speci�c functionality. This modularization enables
developers to optimize individual modules or components to improve performance.
They can focus on optimizing critical sections, enhancing algorithms and �ne-tuning
resource utilization to achieve optimal performance.

The modular architecture facilitates targeted performance optimizations by allow-
ing developers to isolate and analyze speci�c areas of the prototype. By focusing on
performance bottlenecks within individual modules, developers can apply tailored
optimization techniques to enhance overall system performance.

Furthermore, the modular architecture promotes e�cient resource utilization by en-
abling developers to allocate resources based on speci�c module requirements. This
allows for e�ective management of computational resources, memory and other sys-
tem assets, ultimately contributing to improved performance.

By leveraging a modular architecture and the associated optimization opportunities,
the implemented prototype prioritizes performance enhancements. This approach
empowers developers to �ne-tune the system, ensuring that it delivers optimal per-
formance while meeting the demands of the intended use cases.

62

CHAPTER 6. RESULTS

6.1.3 Scalability
The implemented prototype e�ectively tackles the scalability challenge by leverag-
ing a modular architecture. This modular architecture provides the developer with
the necessary �exibility to scale the prototype and support the development of large
software systems.

The modular architecture enables the prototype to be divided into separate modules
or components, each responsible for speci�c functionalities. This modularization
promotes loose coupling and high cohesion, allowing for easier management and
expansion of the system as it grows in complexity. Developers can selectively scale
individual modules without a�ecting the entire system, making it easier to accom-
modate evolving requirements and handle increased demands.

Furthermore, the prototype grants developers full control over the source code and
dependencies, enhancing scalability capabilities. Developers have the freedom to
adapt, optimize and extend the prototype as needed to meet the requirements of
large-scale software systems. With complete control, developers can introduce opti-
mizations, �ne-tune performance and incorporate additional functionality to ensure
scalability as the project expands.

By embracing a modular architecture and providing developers with control over
the source code and dependencies, the implemented prototype lays a strong foun-
dation for scalable software development. This approach empowers developers to
e�ectively manage the growth and complexity of large software systems while main-
taining �exibility, maintainability and performance.

6.1.4 Version Control
The implemented prototype e�ectively tackles the version control challenge by utiliz-
ing the Git version control system. By leveraging Git, developers gain precise control
over the source code and dependencies, facilitating seamless management of ver-
sioning throughout the development process.

Git empowers developers with a robust set of version control features, allowing for
e�cient tracking of changes, seamless collaboration among team members and the
ability to revert to previous versions when necessary. With Git, developers can main-
tain a comprehensive history of their project’s evolution, ensuring transparency, ac-
countability and the ability to navigate through di�erent versions of the codebase.

By adopting Git as the version control system, the prototype enables developers to
embrace industry-standard practices and work�ows for managing code changes ef-
fectively. The use of Git instills con�dence in developers, as they have full control
over the source code and can easily manage and organize the versioning of their
work.

Overall, the integration of Git into the prototype’s development work�ow provides
developers with a powerful and �exible version control solution. This integration
empowers developers to e�ectively manage and track changes, collaborate seam-
lessly and maintain a well-documented history of their project’s progression.

6.1.5 Reusability
The implementation of a clean architecture design, along with the principles of sepa-
ration of concerns and modularization, fosters low coupling and high cohesion within
the codebase. This architectural approach ensures that di�erent components are de-
coupled and have minimal dependencies on each other, promoting �exibility and
maintainability.

63

CHAPTER 6. RESULTS

By adhering to the principles of separation of concerns, each module or component
focuses on a speci�c responsibility or functionality. This clear separation allows for
better organization and comprehension of the codebase, making it easier to manage
and maintain over time.

Modularization further enhances the codebase by promoting reusability. Shared
functionality can be encapsulated within separate modules, enabling developers to
reuse that functionality in multiple parts of the application. This approach eliminates
code duplication, reduces development e�ort and improves overall code quality.

By embracing clean architecture, separation of concerns and modularization, the
codebase bene�ts from improved maintainability, �exibility and extensibility. The
low coupling and high cohesion achieved through these practices create a solid foun-
dation for a scalable and adaptable software solution.

6.1.6 Developer Experience
While quantifying developer experience from an external perspective may be chal-
lenging, it remains a crucial factor when evaluating a web application framework.
Recognizing the signi�cance of developer experience, the implemented prototype
takes speci�c measures to address this challenge and prioritize developers’ needs.

Firstly, the prototype provides comprehensive documentation of the codebase. This
documentation serves as a valuable resource, helping developers gain a deep under-
standing of the code and facilitating smoother development processes.

In addition to documentation, a video course has been created, covering both fun-
damental and advanced topics of the prototype. This course equips developers with
the necessary knowledge and skills to e�ectively work with the prototype, including
creating applications and extending functionality. By o�ering this comprehensive
learning material, developers can quickly familiarize themselves with the prototype
and maximize their productivity.

To streamline the development work�ow, the prototype o�ers a CLI (Command-Line
Interface) tool. This tool simpli�es project creation and management, allowing de-
velopers to e�ciently create new projects and e�ectively handle existing ones.

Furthermore, the prototype incorporates Storybook, enabling developers to preview
UI components and visualize them in di�erent states. This feature provides develop-
ers with a convenient overview of UI components, enhancing their ability to design
and develop user interfaces e�ectively.

To further enhance the developer experience, the prototype employs automatic code
formatting and linting. These tools ensure that the codebase remains consistent and
adheres to best practices, promoting readability and maintainability.

Collectively, these features and tools work in tandem to enhance the overall devel-
oper experience of the prototype. By prioritizing clear documentation, comprehen-
sive learning materials, streamlined work�ows, visual component previews and code
consistency, the prototype aims to provide a developer-centric environment that fos-
ters productivity, ease of use and adherence to industry standards.

6.1.7 Extendability
By providing full access to the source code, the implemented prototype empowers
developers to seamlessly extend its functionality. The prototype is intentionally de-
signed with the expectation that developers will extend its capabilities to meet their
speci�c requirements.

64

CHAPTER 6. RESULTS

A key feature of the prototype is its templating mechanism, which enables develop-
ers to create new templates and expand upon existing ones. This mechanism pro-
vides a �exible framework for developers to customize and enhance the prototype
according to their unique needs. By leveraging the templating system, developers
can create new templates from scratch or build upon existing ones to tailor the pro-
totype to their desired speci�cations.

With the ability to extend the prototype’s functionality through source code access
and the templating mechanism, developers have the freedom and �exibility to cus-
tomize the prototype to suit their project’s evolving needs. This adaptability ensures
that the prototype remains a versatile and scalable solution capable of accommodat-
ing diverse development requirements.

6.1.8 Documentation
The implemented prototype e�ectively addresses the challenge of documentation by
providing comprehensive documentation of the codebase. The majority of the code-
base is carefully documented using JSDoc, enabling developers to gain a thorough
understanding of the code’s functionality, structure and usage.

To further support developers, we have also created a video course that covers both
the fundamentals and advanced topics of the prototype. This course serves as a valu-
able resource, equipping developers with the knowledge and skills needed to lever-
age the prototype e�ectively. By providing this additional learning material, devel-
opers can quickly familiarize themselves with the prototype and begin utilizing its
capabilities with con�dence.

The combination of detailed codebase documentation and the supplementary video
course ensures that developers have the necessary resources to utilize the prototype
promptly. With these comprehensive learning materials at their disposal, developers
can easily navigate the prototype, harness its features and streamline their develop-
ment process.

6.1.9 Vendor Lock-in
The implemented prototype e�ectively mitigates the issue of vendor lock-in by lever-
aging open source technologies. By utilizing these technologies, the prototype en-
sures that developers retain complete control over the source code and dependen-
cies, granting them the freedom to switch vendors whenever necessary.

The generated workspace further reinforces this �exibility by providing built-in sup-
port for Docker. This integration enables developers to deploy the generated web
application seamlessly to any container engine that supports OCI images. This versa-
tility opens up a plethora of deployment options, allowing developers to choose the
environment that best suits their speci�c needs and preferences.

In addition to Docker integration, the prototype a�ords developers the choice to de-
ploy the application without Docker. With full access to the source code and depen-
dencies, developers have the autonomy to explore alternative deployment methods
that align with their unique requirements.

This inherent support for open source technologies and the absence of vendor lock-in
empowers developers to maintain control over their projects and adapt to changing
circumstances. Developers can con�dently make decisions regarding vendor selec-
tion, deployment strategies and future scalability, knowing that they have the free-
dom to choose the most suitable options throughout the development and deploy-
ment lifecycle.

65

CHAPTER 6. RESULTS

6.1.10 Deployment
Deploying the prototype is a seamless process, facilitated by the built-in Docker inte-
gration within the generated codebase. This integration allows developers to e�ort-
lessly deploy the web application to any container engine that supports OCI images.

The deployment options for the generated web application are virtually limitless.
With complete access to the source code and dependencies, developers have the free-
dom to deploy the application to any platform that supports either Node.js or Docker.
This �exibility empowers developers to choose the deployment environment that
best suits their speci�c project requirements and infrastructure preferences.

Whether deploying to a cloud-based platform, a self-hosted server or any other com-
patible environment, the prototype ensures developers retain full control over the
deployment process. By leveraging the bene�ts of Docker and OCI images, devel-
opers can con�dently deploy the application with ease, opening up a vast array of
possibilities for hosting and scaling the web application according to their needs.

6.1.11 Frontend Integration
The implemented prototype e�ectively tackles the frontend integration challenge by
o�ering a wide array of components, utilities and exceptional libraries like Story-
book and React. By leveraging these resources, developers can seamlessly integrate
the frontend with the backend, minimizing the need for excessive boilerplate code.

The prototype equips developers with an extensive collection of pre-existing compo-
nents and utilities. These readily available building blocks empower developers to
create a frontend that harmoniously integrates with the backend functionalities. By
utilizing these pre-built elements, developers can accelerate their development pro-
cess, saving valuable time and e�ort.

In addition to the pre-existing resources, the prototype also allows developers to cre-
ate custom components and utilities. This �exibility enables developers to extend
the functionality of the prototype according to their speci�c project requirements.
By leveraging the ability to tailor and expand the prototype, developers can unlock
new possibilities and cater to the unique needs of their frontend development.

In summary, the implemented prototype o�ers a robust solution for frontend inte-
gration challenges. With its rich collection of components, utilities and exceptional
libraries, developers can seamlessly integrate frontend and backend functionalities
while minimizing boilerplate code. The prototype’s adaptability allows for the cre-
ation of custom components and utilities, further enhancing its versatility and em-
powering developers to achieve their desired frontend integration goals.

6.1.12 Time to Market
Our tool, CodeFlow, tackles the time-to-market challenge head-on by o�ering a con-
venient CLI (Command-Line Interface) tool. With just a single command, developers
can create a new workspace rapidly and e�ciently. This CLI command prompts the
developer with a series of questions to customize the workspace according to their
speci�c needs.

The resulting workspace encompasses a wide range of components and utilities care-
fully curated to facilitate the creation of exceptional web applications. Leveraging
the power of renowned libraries and frameworks like Remix, React, Storybook and
Tailwind CSS, CodeFlow generates a workspace that seamlessly integrates these tools.
This integration signi�cantly streamlines the development process, empowering de-
velopers to rapidly craft stunning web applications.

66

CHAPTER 6. RESULTS

By automating the setup and con�guration of the workspace, CodeFlow eliminates
time-consuming manual tasks, enabling developers to focus on building innovative
and captivating user experiences. Whether it’s leveraging Remix for enhanced server-
rendered React applications, harnessing the versatility of Storybook for interactive
component development or utilizing the utility-�rst approach of Tailwind CSS for ef-
fortless styling, CodeFlow ensures these libraries and frameworks are readily avail-
able within the generated workspace.

With CodeFlow, developers can unlock their productivity potential, con�dently em-
barking on the journey of web application development while bene�ting from the
pre-con�gured environment and the seamless integration of powerful tools and li-
braries.

67

CHAPTER 6. RESULTS

6.2 Practical Results

This section presents the results of the evaluation of our own solution CodeFlow, JHip-
ster, OutSystems and Mendix in respect to the generated sample application and the
previously described metrics. To facilitate the evaluation process, we have devised
a rating system on a scale of 1 to 3, where a score of 1 represents "Not good", 2 signi-
�es "Ok" and 3 indicates "Good". This metric allows us to provide clear and concise
assessments of each platform and tool, helping developers make informed decisions
based on their speci�c requirements.

6.2.1 JHipster
JHipster is a powerful development platform designed for the generation, develop-
ment and deployment of Spring Boot + Angular/React/Vue web applications. It o�ers
the �exibility to create applications using either a monolithic or microservice archi-
tecture, while providing developers with a plethora of boilerplate code that acceler-
ates application development.

One of the signi�cant advantages of JHipster is that it grants developers complete
access to the codebase and allows them to leverage state-of-the-art technologies. As-
suming familiarity with JHipster’s chosen technologies, developers can seamlessly
integrate their preferred tools and libraries, enabling a streamlined development
experience. Moreover, JHipster empowers developers with full control over the gen-
erated source code, facilitating easier maintenance and updates tailored to their spe-
ci�c needs.

In terms of performance, JHipster harnesses the power of robust frameworks and
libraries like Spring Boot and Hibernate, renowned for their high-performance ca-
pabilities. Java, as a compiled language, undergoes bytecode compilation and is ex-
ecuted by the Java Virtual Machine (JVM). Notably, Java’s Just-In-Time (JIT) compila-
tion optimizes bytecode at runtime, further enhancing performance.

JHipster also embraces microservice architectures, enabling horizontal scalability.
Developers can e�ortlessly deploy multiple instances of the application and e�ec-
tively distribute the workload across these instances using load balancers. This scal-
ability feature empowers applications to handle increased tra�c and ensure smooth
operation.

Adhering to a more traditional approach to software development, JHipster seam-
lessly integrates with popular version control systems like Git or SVN. This compati-
bility allows developers to track changes, revert to previous versions when necessary
and collaborate e�ciently among team members. As a result, developers can utilize
the version control system they are most familiar with, promoting a cohesive work-
�ow.

JHipster’s extensive boilerplate code facilitates accelerated development by allowing
developers to focus more on the business logic of their applications. The provided
boilerplate code is reusable, allowing developers to leverage it across various ser-
vices and components, further enhancing productivity.

While JHipster leverages the well-established Java programming language, known
for its large developer community and abundance of libraries and frameworks, it
is important to note that Java may lack certain features present in newer languages
like Kotlin or Go. Consequently, Java’s relatively verbose type system may require
developers to write more code to achieve the same results, potentially impacting the
developer experience.

68

CHAPTER 6. RESULTS

JHipster’s development platform o�ers the �exibility to extend generated web appli-
cations with additional features. This can be accomplished through the utilization
of provided JHipster modules or by writing custom code. Leveraging the capabilities
of the Spring Boot framework, developers can create extensive codebases and seam-
lessly incorporate supplementary functionalities.

The comprehensive documentation provided by JHipster serves as a valuable re-
source, o�ering detailed insights into its various features. In addition to the o�cial
JHipster documentation, developers can access a wide array of tutorials and blog
posts that provide additional information and guidance. Furthermore, documenta-
tion for associated technologies such as Spring Boot, Angular, React and Vue is read-
ily available, supported by vibrant communities o�ering tutorials, courses and blog
posts.

As an open-source project, JHipster o�ers developers freedom from vendor lock-in.
The generated source code can be utilized without any restrictions and developers
have the �exibility to deploy their applications on any server of their choice. Whether
deploying to a cloud provider or a self-hosted server, developers retain complete con-
trol over the deployment process.

One notable limitation of JHipster is its lack of a dedicated customer-facing frontend
application. While JHipster excels at generating robust backend applications comple-
mented by comprehensive administration frontends, it does not provide a dedicated
frontend for customers to interact with. This limitation can prove challenging for de-
velopers seeking to create fully-�edged web applications that encompass user-facing
interfaces.

In today’s landscape, where frontend applications are progressively growing in com-
plexity, the absence of a customer-oriented frontend solution is a notable drawback.
The demand for intuitive, user-friendly interfaces has become paramount, empha-
sizing the importance of having a frontend application that is both accessible and
navigable.

To address this limitation, developers utilizing JHipster may need to explore addi-
tional frontend frameworks or technologies to build a customer-facing interface that
meets their speci�c requirements. By integrating these tools alongside JHipster’s
backend capabilities, developers can create a more comprehensive and user-centric
web application experience.

The absence of a dedicated customer-facing frontend application in JHipster signi�-
cantly impacts the time-to-market of the generated application. Developers are faced
with the additional task of researching and integrating frontend technologies, which
can result in delays in the application’s release. This limitation necessitates extra
time and e�ort to ensure the frontend meets the desired functionality and user ex-
perience standards.

Overall, JHipster presents a robust development platform, combining the power of
established frameworks and libraries, extensive documentation and the �exibility to
adapt and extend applications. Its emphasis on developer productivity and choice,
combined with performance optimization and scalability, make it a compelling op-
tion for building Spring Boot + Angular/React/Vue web applications.

69

CHAPTER 6. RESULTS

Criteria Score
Maintainability 3
Performance 3
Scalability 3
Version Control 3
Reusability 3
Developer Experience 2
Extendability 3
Documentation 3
Vendor-Lock In 3
Deployment 3
Frontend Integration 1
Time to Market 1

Table 6.1: Scoring for JHipster

6.2.2 OutSystems
OutSystems is a low-code development platform that empowers developers to build
web and mobile applications using a visual development environment. The platform
o�ers an array of features, including a visual development environment, a visual
modeling language and a visual debugger.

The visual development environment provided by OutSystems allows developers to
create applications by simply dragging and dropping components onto a canvas. This
visual approach to development eliminates the need for extensive coding, resulting
in signi�cant time and e�ort savings. Additionally, OutSystems’ visual modeling lan-
guage, Reactive Web, enables developers to design responsive web applications that
seamlessly adapt to various devices. This capability ensures accessibility across desk-
tops, tablets and mobile phones.

However, a limitation of the platform is that developers do not have direct access to
the generated application’s source code. While the visual development environment
allows some adjustments to the application’s structure, full control over shaping the
application to speci�c requirements is limited.

In terms of performance analysis, developers using OutSystems rely on the platform’s
proprietary visual modeling language, which restricts the ability to analyze source
code performance directly. While performance issues were not encountered during
implementation, developers must trust in OutSystems’ performance optimizations.

OutSystems’ modular architecture provides scalability bene�ts by allowing develop-
ers to create applications using multiple modules. This modular approach enhances
scalability and is complemented by built-in support for vertical and horizontal scal-
ing, as well as a load balancer for e�cient load distribution across multiple servers.

While OutSystems o�ers a built-in version control system, it lacks advanced features
compared to Git. The system creates a new version of the application upon publish-
ing, but branching, merging and cherry-picking capabilities are limited.

The platform provides a rich set of reusable components that accelerate applica-
tion development. Developers can leverage pre-existing components and create their
own, reducing the need to build every component from scratch.

In terms of developer experience, our experience found OutSystems’ visual develop-
ment environment to be unintuitive and cumbersome, with some tasks being more
e�ciently accomplished using code rather than the visual interface. However, de-
veloper experience is subjective and less experienced developers may �nd the envi-

70

CHAPTER 6. RESULTS

ronment more user-friendly.

Being a closed-source platform, OutSystems limits developers’ ability to extend the
platform beyond its provided features. While the platform o�ers a broad range of
functionalities, extending it beyond the available capabilities is not possible.

OutSystems provides extensive documentation and a wide range of tutorials, facili-
tating learning and usage of the platform. The well-structured documentation allows
developers to easily �nd the information they need.

One notable limitation of OutSystems is the vendor lock-in it imposes. Applications
generated using OutSystems’ proprietary visual modeling language are not compati-
ble with other platforms, making migration challenging. Switching platforms would
require rebuilding the application from scratch, as the source code cannot be reused.

OutSystems o�ers diverse deployment options, including deployment to their cloud
infrastructure or on-premise installations, allowing developers to choose the envi-
ronment that best suits their needs.
Regarding frontend integration, OutSystems simpli�es the process by enabling de-
velopers to create responsive web applications through visual component manipu-
lation. Connecting the frontend to the backend is facilitated by the built-in REST API.
However, styling components can be challenging, as developers need to familiarize
themselves with OutSystems’ visual editor.

Considering the experience during implementation, challenges were encountered
due to the learning curve associated with OutSystems. Given more familiarity with
the platform, completing the application within the allocated timeframe would likely
have been achievable.

In summary, OutSystems is a low-code development platform that o�ers a visual de-
velopment environment, visual modeling language and various deployment options.
While it simpli�es development and provides scalability bene�ts, limitations such as
limited control over source code, vendor lock-in and some challenges with the visual
environment should be considered when evaluating the platform for speci�c project
requirements.

Criteria Score
Maintainability 2
Performance 3
Scalability 3
Version Control 2
Reusability 3
Developer Experience 2
Extendability 1
Documentation 3
Vendor-Lock In 1
Deployment 3
Frontend Integration 3
Time to Market 3

Table 6.2: Scoring for OutSystems

71

CHAPTER 6. RESULTS

6.2.3 Mendix
Mendix is a low-code development platform that empowers developers to create web
and mobile applications using a visual development environment. The platform of-
fers a range of features, including a user-friendly visual development environment,
a visual modeling language and powerful debugging capabilities.

Mendix’s visual development environment allows developers to build applications
by intuitively dragging and dropping components onto a canvas. This approach stream-
lines development by reducing the need for extensive coding, resulting in signi�cant
time and e�ort savings. Moreover, Mendix’s visual modeling language enables the
creation of responsive web applications that seamlessly adapt to di�erent devices,
ensuring optimal user experiences across desktops, tablets and mobile phones.

However, a limitation of the platform is that developers do not have direct access to
the underlying source code of the generated applications. While adjustments to the
application’s structure are possible within the visual environment, full control over
shaping the application to meet speci�c requirements is limited.

In terms of performance analysis, Mendix provides performance optimization fea-
tures within its visual modeling language. Developers can leverage these features
to optimize application performance, although the level of control over low-level
source code optimizations may be constrained compared to traditional development
approaches. Nonetheless, our experience with Mendix has not encountered perfor-
mance issues during implementation.

Mendix’s modular architecture allows developers to create applications using mul-
tiple modules, promoting scalability and �exibility. The platform o�ers built-in sup-
port for vertical and horizontal scaling, along with load balancing capabilities, en-
abling e�cient load distribution across multiple servers.

Regarding version control, Mendix incorporates a versioning system that tracks changes
made to the application over time. While the version control capabilities may not be
as advanced as dedicated version control systems like Git, developers can e�ectively
manage changes and rollbacks within the Mendix environment.

Mendix provides an extensive library of reusable components, empowering devel-
opers to accelerate application development. These pre-built components, combined
with the ability to create custom components, signi�cantly reduce the need to build
every aspect of an application from scratch.

In terms of developer experience, Mendix’s visual development environment is gen-
erally well-regarded for its user-friendliness. However, the learning curve associ-
ated with any new platform may present challenges and certain complex tasks may
be more e�ciently accomplished using code rather than relying solely on the visual
interface.

As a closed-source platform, Mendix restricts developers from extending the plat-
form beyond its provided features. While the platform o�ers a broad range of func-
tionalities, customization beyond these capabilities is not possible.

Mendix o�ers comprehensive documentation and a wide array of tutorials, provid-
ing developers with the necessary resources to learn and e�ectively use the platform.
The well-structured documentation enables easy access to information, assisting de-
velopers in leveraging Mendix’s features and functionalities e�ectively.

It’s important to note that Mendix’s proprietary visual modeling language may im-
pose a level of vendor lock-in. Applications developed using Mendix may not be eas-
ily transferable to other platforms, potentially requiring redevelopment from scratch

72

CHAPTER 6. RESULTS

if a switch is desired.

Mendix o�ers �exible deployment options, including cloud infrastructure and on-
premise installations, allowing developers to choose the deployment environment
that aligns with their speci�c needs and preferences.

When it comes to frontend integration, Mendix simpli�es the process by enabling de-
velopers to create responsive web applications through visual component manipula-
tion. The platform provides a built-in REST API to facilitate seamless communication
between the frontend and backend systems. However, styling components within
Mendix’s visual editor may present challenges that require developers to familiarize
themselves with the platform’s speci�c styling capabilities.

Considering the learning curve associated with any new platform, our experience
with Mendix during implementation revealed initial challenges. However, with in-
creased familiarity, completing applications within the allocated timeframe would
likely be achievable.

In summary, Mendix is a low-code development platform o�ering a user-friendly vi-
sual development environment, visual modeling language and various deployment
options. While Mendix simpli�es development and provides scalability bene�ts, it
also has limitations that should be considered for speci�c project requirements.

Criteria Score
Maintainability 2
Performance 3
Scalability 3
Version Control 2
Reusability 3
Developer Experience 2
Extendability 1
Documentation 3
Vendor-Lock In 1
Deployment 3
Frontend Integration 3
Time to Market 3

Table 6.3: Scoring for Mendix

73

CHAPTER 6. RESULTS

6.2.4 CodeFlow
CodeFlow is our proposed solution for the development of a modern web application.
This code generation tool ful�lls all the key metrics in software engineering and also
delivers great results in the frontend integration as well as in time to market.

With CodeFlow, developers can easily generate an entire workspace by utilizing a
CLI tool. This tool enables the creation of a customized workspace with a single com-
mand, allowing developers to provide input for the desired workspace con�guration.
Based on this input, CodeFlow generates the complete workspace, including the nec-
essary boilerplate code. Moreover, developers have the freedom to create multiple
applications within the workspace, promoting �exibility and scalability.

One of the key strengths of CodeFlow is its provision of full access to the generated
codebase. Developers can adjust the source code as needed, enhancing the main-
tainability of the application. Furthermore, developers have the option to extend
or modify the code generator itself. By tweaking the generator to their speci�c re-
quirements and regenerating the codebase, developers ensure that future projects
can bene�t from these customized adjustments.

The generated codebase leverages the power of Remix, a robust framework for build-
ing modern web applications. Built on top of React and Node.js, Remix utilizes the
single-threaded event-driven JavaScript runtime of Node.js, which is performant enough
for many use cases. This runtime enables the development of scalable network ap-
plications, real-time applications, streaming applications and more.

CodeFlow supports the creation of multiple applications within a single workspace,
facilitating the implementation of a microservices architecture. This approach al-
lows developers to horizontally scale the application by adding more instances, en-
suring �exibility and e�cient resource utilization.

To ensure e�cient version control, CodeFlow integrates Git as the chosen system for
the generated codebase. Developers can leverage all the features provided by Git,
including branching and merging, while also bene�ting from seamless collaboration
within a team of developers. Additionally, developers have the �exibility to host the
codebase on their preferred Git provider, such as GitHub, GitLab or Bitbucket.

The generated workspace in CodeFlow includes a comprehensive set of libraries and
utilities designed for reuse across the entire application. This promotes code reusabil-
ity, enabling developers to avoid reinventing the wheel for common components and
utilities.

Developer experience is a priority for CodeFlow and the tool comes equipped with
a range of features to enhance productivity. Automatic code formatting, linting, ex-
cellent IDE support and comprehensive documentation are all part of the developer
experience o�ered. By integrating these tools and libraries, developers can focus on
writing code and building applications without the hassle of setting up the develop-
ment environment.

CodeFlow builds on the foundation of NX workspaces, a collection of powerful tools
for mono-repo development. With NX, developers can create extensible mono repos-
itories that can accommodate multiple applications and libraries. This scalability en-
ables easy extension of the existing workspace with new applications and libraries
as needed.

To ensure that developers can quickly understand and navigate the codebase, Code-
Flow places great emphasis on documentation. The majority of the codebase is thor-
oughly documented, providing developers with clear insights into the functionality
and structure of the application. Additionally, a video course has been created to

74

CHAPTER 6. RESULTS

guide developers through the usage of CodeFlow, enabling them to quickly grasp the
tool’s capabilities and get started e�ciently.

Recognizing the increasing signi�cance of frontend development, CodeFlow includes
a fully functional frontend application built on the powerful Remix framework. Remix
adopts a more traditional approach to web application development, leveraging server-
side rendering, progressive enhancement and the inherent capabilities of the browser.
This approach enables simpli�ed data fetching and mutations, allowing developers
to focus on the business logic and user interface design rather than intricate techni-
cal details.

CodeFlow generates a complete application that encompasses essential features of
modern web applications, such as authentication, authorization, service worker in-
tegration, internationalization, theming and database integration. By handling these
technical aspects, CodeFlow enables developers to concentrate on the core business
logic of the application, reducing the burden of integrating various tools and libraries.
This streamlined development process signi�cantly accelerates time to market, en-
abling developers to deliver their applications quickly and e�ciently.

In conclusion, CodeFlow is a comprehensive solution for modern web application
development. It empowers developers by providing a robust code generation tool
that addresses key metrics in software engineering. With its CLI tool, developers
can e�ortlessly create customized workspaces and applications. By leveraging the
power of Remix and Node.js, CodeFlow ensures high-performance applications that
are scalable and adaptable.

Criteria Score
Maintainability 3
Performance 3
Scalability 3
Version Control 3
Reusability 3
Developer Experience 3
Extendability 3
Documentation 3
Vendor-Lock In 3
Deployment 3
Frontend Integration 3
Time to Market 3

Table 6.4: Scoring for CodeFlow

75

CHAPTER 6. RESULTS

6.2.5 Comparison
The table below presents a comprehensive comparison of various software devel-
opment platforms. To simplify the evaluation process, we have implemented a rat-
ing system on a scale of 1 to 3, with 1 indicating "Not good", 2 representing "Ok"
and 3 denoting "Good". This standardized metric enables us to provide concise and
insightful assessments of each platform and tool, empowering developers to make
well-informed decisions tailored to their speci�c needs.

Criteria Code�ow JHipster Mendix Outsystems
Maintainability 3 3 2 2
Performance 3 3 3 3
Scalability 3 3 3 3
Version Con-
trol

3 3 2 2

Reusability 3 3 3 3
Developer Ex-
perience

3 2 2 2

Extendability 3 3 1 1
Documentation 3 3 3 3
Vendor-Lock
In

3 3 1 1

Deployment 3 3 3 3
Frontend In-
tegration

3 1 3 3

Time to Mar-
ket

3 1 3 3

Table 6.5: Comparison of di�erent software development platforms

Based on the evaluation of di�erent software development platforms, we have gath-
ered valuable insights regarding their performance across various criteria. Code-
Flow emerges as a strong contender, consistently scoring highly in all evaluated ar-
eas, including maintainability, performance, scalability, version control, reusabil-
ity, developer experience, extendability, documentation, vendor lock-in, deployment,
frontend integration and time to market. This indicates that CodeFlow o�ers a com-
prehensive solution that excels in all key aspects of modern web application devel-
opment.

JHipster also showcases strong performance in many areas, particularly in main-
tainability, performance, scalability, version control and reusability. It provides de-
velopers with full control over the source code and dependencies, allowing for easy
maintenance and customization. However, it lags behind in terms of frontend inte-
gration and time to market, as it does not o�er a dedicated customer-facing frontend
application.

Mendix and OutSystems demonstrate competence in certain areas, such as scalabil-
ity, documentation and deployment. However, they fall short in terms of extendabil-
ity and vendor lock-in, as developers have limited control and customization options.

Overall, CodeFlow emerges as the preferred choice for developers seeking a com-
prehensive solution that excels in key metrics while providing full control, extensive
documentation and an excellent developer experience.

6.2.6 Sample Application
In this section, we would like to provide an overview of the sample application,
"TeamUp", that we developed using all four platforms. TeamUp is a collaborative

76

CHAPTER 6. RESULTS

platform designed to facilitate project creation and foster connections among users
with shared interests.

The application allows users to create projects by providing essential details such as
a title, description, related study course and a list of tags. By scrolling through a list of
projects, users can explore various topics and �nd projects that align with their inter-
ests. Interactivity is a key feature of TeamUp, enabling users to engage with projects
by liking or commenting on them.

The primary objective of TeamUp is to connect students who are interested in simi-
lar subjects, particularly in cross-course collaborations. By facilitating the discovery
of like-minded individuals from di�erent courses, the application aims to bridge the
gap and foster collaboration among students who share common interests. This func-
tionality is particularly valuable in facilitating connections that would otherwise be
challenging to establish.

TeamUp serves as a valuable tool for �nding and connecting with students who share
similar academic interests, promoting collaboration and knowledge-sharing across
di�erent study courses. Through this application, users can discover new project
opportunities, engage in meaningful discussions and expand their network within
the academic community.

6.2.7 Comparing the �nal Applications
In this section, we will compare the �nal applications developed using di�erent plat-
forms, namely CodeFlow, JHipster, OutSystems and Mendix. Each platform o�ers
unique features and capabilities for rapid application development and we will out-
line what we could achieve using each platform.

CodeFlow

As we were most familiar with our own solution, we began the development pro-
cess by creating the �rst application using CodeFlow. Within the given time frame
of 4 hours, we successfully built a fully functional application that is user-friendly,
responsive, intuitive and ready for deployment.

The application includes an authentication system, allowing users to sign up and log
in to their accounts securely. To ensure the security of all requests, we implemented
CSRF protection, which authenticates and authorizes each request. All data is stored
in a PostgreSQL database, hosted on the same server as the application, ensuring fast
and e�cient data retrieval.

CodeFlow empowers us to easily extend the application with new features and func-
tionalities by leveraging the tools and technologies it provides. Additionally, we pri-
oritize the reliability and scalability of our application through the use of Prisma,
which enables us to create and apply database migrations seamlessly. These migra-
tions are automatically applied when the application is deployed to production.

To enhance session management, we utilize Redis to store session data, which is also
hosted on the same server as the application. This allows for e�cient session han-
dling and improves the overall performance of the application.

We invite you to access the application at the following URL: https://team-up.
appdesigns.pro/. Explore the functionality and experience �rsthand how Code-
Flow enables the rapid development of robust, user-friendly web applications.

77

https://team-up.appdesigns.pro/
https://team-up.appdesigns.pro/

CHAPTER 6. RESULTS

JHipster

After successfully developing the application using CodeFlow, we decided to replicate
the same application using JHipster. However, we encountered several challenges
during the development process that a�ected our ability to complete the application
within the given time frame.

One notable challenge we faced was the lack of a dedicated frontend application pro-
vided by JHipster. Unlike CodeFlow, which generates a complete web application en-
compassing both frontend and backend functionality, JHipster generates a backend
application that serves as an API for the frontend. As a result, we had to develop the
frontend separately, which required additional time and e�ort.

Furthermore, due to time constraints, we were unable to deploy the JHipster applica-
tion. This, combined with the fact that the generated application primarily served as
an administrative application rather than a user-facing one, in�uenced our decision
to focus our e�orts on other aspects of the project. While JHipster excels in generat-
ing a robust backend and a comprehensive admin control panel, it did not align with
our goal of building a complete user-facing application.

Given the constraints of the time frame and the speci�c requirements of our project,
we prioritized the development and deployment of the applications generated by
CodeFlow, Mendix and OutSystems, which provided a more comprehensive solution
for user-facing applications.

OutSystems

Next, we proceeded to develop the application using OutSystems, which proved to
be a powerful platform for rapid application development, encompassing both the
frontend and backend aspects of the application. Leveraging the wide range of tools
and technologies provided by OutSystems, we were able to build a functional appli-
cation within the given time frame.

Although we encountered some challenges during the development process that re-
quired additional time and e�ort, we were able to deploy a functional application.
However, due to the time constraints, we were unable to implement all the features
that were present in the application developed using CodeFlow. But, we �rmly be-
lieve that with more experience with the OutSystems platform, we would be able to
develop a fully functional application that meets all the requirements.

We invite you to explore the application we built using OutSystems by visiting the fol-
lowing URLhttps://personal-ndced8cv.outsystemscloud.com/TeamUp/Login.
This application showcases the capabilities of OutSystems in delivering a fully func-
tional and user-friendly web application.

Mendix

Lastly, we proceeded to develop the application using Mendix, a robust platform
known for its rapid application development capabilities. Our experience with Mendix
closely mirrored that of OutSystems, as both platforms o�ered comprehensive solu-
tions for e�cient application development.

During the development process, we encountered similar challenges that necessi-
tated additional time and e�ort to overcome. As a result, we were unable to imple-
ment all the features present in the application developed using CodeFlow. However,
we are con�dent that with more experience and familiarity with the Mendix plat-
form, we would be able to create a fully functional application that ful�lls all the
speci�ed requirements.

78

https://personal-ndced8cv.outsystemscloud.com/TeamUp/Login

CHAPTER 6. RESULTS

To explore the application developed with Mendix, please visit the following URL:
https://mendix-prototype-app-sandbox.mxapps.io/login.html. This appli-
cation showcases the potential of Mendix in delivering rapid and intuitive web ap-
plications.

79

https://mendix-prototype-app-sandbox.mxapps.io/login.html

CHAPTER 6. RESULTS

6.3 Interpretation of the results

Low code development platforms o�er advantages in terms of fast prototyping, en-
abling developers to quickly build applications with minimal coding e�ort. However,
one notable challenge with low code platforms is the potential di�culty in extend-
ing them with custom functionality due to vendor lock-in. While they provide an
e�cient way to create applications rapidly, developers may encounter limitations
when attempting to tailor the platform to speci�c requirements.

In terms of version control, low code platforms often o�er proprietary solutions,
which may not provide the same level of �exibility and robustness as proven so-
lutions like Git. Traditional approaches, on the other hand, can leverage the power
of established version control systems, allowing developers to take advantage of ad-
vanced features such as branching, merging and cherry-picking.

JHipster stands out for its ability to generate extensive boilerplate code and provide
a comprehensive admin control panel. However, a notable drawback is the absence
of a dedicated frontend application for end customers. This limitation necessitates
additional e�ort from developers to create a customer-facing frontend, making it an
area where further development and customization are required.

In contrast, our solution, CodeFlow, follows a more traditional approach to software
engineering. By granting developers full access to the codebase, CodeFlow allows
them to integrate any tools they prefer, assuming compatibility with the generated
codebase. This �exibility empowers developers to utilize their preferred technolo-
gies and libraries, enabling seamless integration and customization to meet speci�c
project requirements.

During our evaluation, CodeFlow enabled us to build the most feature-rich applica-
tion within the given time frame. By supporting both frontend and backend capabil-
ities, CodeFlow provides a comprehensive solution that facilitates the development
of complex web applications. The ability to leverage a traditional approach, coupled
with the �exibility to integrate preferred tools, contributed to our successful imple-
mentation.

In conclusion, while low code platforms excel in rapid prototyping, they may pose
challenges when extending functionality due to vendor lock-in. Traditional approaches,
such as CodeFlow, o�er greater �exibility and control over the codebase, allowing
for seamless integration of preferred tools and libraries. By leveraging a more tra-
ditional approach, developers can build robust and feature-rich applications while
maintaining the ability to customize and extend them as needed.

80

CHAPTER 6. RESULTS

6.4 Suggestions

Based on our evaluation and comparison of the di�erent software development plat-
forms, we o�er the following suggestion to the reader:

Consider your speci�c project requirements and priorities when selecting a develop-
ment platform. If rapid prototyping and customization are crucial, CodeFlow may be
an excellent choice due to its modular architecture, full codebase access and support
for key software engineering metrics. However, keep in mind that familiarity with
the associated tools and technologies, such as TypeScript, Remix, Prisma, React and
Tailwind CSS, is essential.

For those looking for fast backend prototyping with a great admin dashboard, JHip-
ster can be a viable option. However, be prepared to develop the user-facing frontend
separately and ensure you have the necessary expertise in Java, Spring Boot, JPA and
related technologies.

If simplicity and built-in components are your priorities, OutSystems and Mendix of-
fer e�cient prototyping and ease of use. However, be cautious of the vendor-lock
in, limited codebase access and potential limitations in addressing all key software
engineering metrics.

Ultimately, the best choice depends on your project’s speci�c needs, team exper-
tise and long-term goals. We encourage you to thoroughly evaluate each platform’s
strengths and weaknesses and choose the one that aligns most closely with your re-
quirements and vision.

81

Chapter 7

Conclusion

In conclusion, our thesis has explored the landscape of software development plat-
forms and tools, focusing on their strengths and limitations and proposing a new tool
called CodeFlow. Throughout this journey, we have uncovered valuable insights and
made signi�cant contributions to the �eld of rapid application development.

CodeFlow has demonstrated its strengths as a powerful tool for e�cient prototyp-
ing and development of modern web applications. It has proven that it is possible
to achieve rapid development without solely relying on low-code platforms. By fol-
lowing a more traditional approach to software engineering, CodeFlow empowers
developers with full access to the codebase, �exibility in choosing technologies and
libraries and the ability to integrate any desired tools.

Through our evaluation and comparison of CodeFlow with other platforms, includ-
ing JHipster, OutSystems and Mendix, we have highlighted the unique features and
bene�ts of each tool. While low-code platforms o�er certain advantages in terms of
ease of use and rapid initial setup, CodeFlow has showcased its capability to deliver
highly customizable and scalable applications, tailored to speci�c project require-
ments.

One of the key �ndings of our research is that low-code platforms may present lim-
itations in terms of vendor lock-in, limited customization options and challenges in
extending the platform with custom functionality. CodeFlow has overcome these lim-
itations by providing developers with full control over the codebase, modularity and
the ability to integrate various tools and libraries.

Furthermore, CodeFlow has demonstrated its e�ectiveness in prototyping, enabling
developers to rapidly build fully functional applications within the given time frame.
Its support for frontend and backend capabilities, comprehensive tooling and adher-
ence to key metrics in software engineering have made it a reliable and e�cient tool
for developers.

In conclusion, CodeFlow has paved the way for a new paradigm in rapid application
development. It has proven that e�ciency in prototyping and development can be
achieved without relying solely on low-code platforms. By providing developers with
the �exibility and control to tailor their applications to speci�c requirements, Code-
Flow empowers them to create high-quality, scalable and customized web applica-
tions. Having full control over the codebase, developers can leverage their preferred
technologies and libraries, enabling seamless integration and customization to meet
speci�c project requirements.

82

CHAPTER 7. CONCLUSION

7.1 Summary of the research questions and
objectives

The research conducted in this thesis aimed to answer the following research ques-
tions:

RQ1: What are the key challenges associated with rapid software development
and how do current low-code and no-code platforms address these challenges?

RQ2: How can a new code generator tool be designed and implemented to gen-
erate high-quality, reusable code for both backend and frontend development?

RQ3: What are the advantages and disadvantages of the new tool in compari-
son to existing code generators and low-code platforms and how can these be
addressed to optimize its usability and e�ectiveness?

In response to RQ1, the key challenges identi�ed in rapid software development in-
clude maintainability, scalability, performance, version control, reusability, devel-
oper experience, extendability, documentation, vendor lock-in, deployment, fron-
tend integration and time-to-market. Current low-code platforms attempt to address
these challenges through features such as visual development environments, code
generation, built-in components and libraries, automated documentation, version
control systems and deployment options. However, they may also introduce limita-
tions in terms of customization, �exibility and code ownership. On the other hand,
current code generator tools such as JHipster create an entire codebase that is fully
customizable and extendable. However, JHipster does not provide a customer-facing
frontend application. Therefore, it requires additional development e�orts to build
a frontend that can be used by end users.

RQ2 focused on the design and implementation of a new code generator tool, Code-
Flow, to tackle these challenges. CodeFlow was designed as a comprehensive solution
for backend and frontend development, leveraging the power of TypeScript, Remix,
Prisma, React, Tailwind CSS and other technologies. The tool aims to enable e�cient
prototyping and code generation, emphasizing code quality, adherence to software
engineering best practices and the generation of reusable code. Its modular archi-
tecture and full codebase access provide developers with the �exibility to integrate
custom tools and extend its functionality.

Addressing RQ3, CodeFlow exhibits several advantages over existing code genera-
tors and low-code platforms. It allows for e�cient prototyping without strict ven-
dor lock-in, empowering developers to customize and adapt the codebase to their
speci�c requirements. CodeFlow’s comprehensive documentation, automated code
formatting and linting features enhance developer experience and maintainability.
However, it should be noted that CodeFlow requires familiarity with TypeScript and
the integrated technologies and it may require additional adjustments for speci�c
frameworks or libraries.

In conclusion, this research has provided insights into the key challenges of rapid
software development, how current code generators and low-code platforms address
these challenges and the design and implementation of CodeFlow as a maintain-
able and customizable code generator tool. CodeFlow demonstrates that e�cient
prototyping and high-quality code generation can be achieved without solely rely-
ing on low-code platforms, o�ering developers a �exible and extensible solution for
rapid application development. The �ndings highlight the strengths and limitations
of CodeFlow in comparison to existing platforms and suggest measures to optimize
its usability and e�ectiveness.

83

CHAPTER 7. CONCLUSION

7.2 Contributions of the study

In this chapter, we present our contributions based on the evaluation and compar-
ison of di�erent software development platforms. Our primary objective was to in-
troduce a new tool that facilitates the rapid development of modern full-stack web
applications, while also harnessing the power of key software engineering metrics.
Our key contributions include:

1. Evaluation Framework: We developed an evaluation framework that encom-
passes key metrics in software engineering. This framework allowed us to as-
sess each platform based on maintainability, performance, scalability, version
control, reusability, developer experience, extendability, documentation, ven-
dor lock-in, deployment, frontend integration and time to market.

2. CodeFlow: We introduced CodeFlow, our proposed solution for modern web ap-
plication development. CodeFlow o�ers a CLI-based code generation tool that
enables developers to quickly set up customized workspaces and applications.
With its modular architecture, full codebase access and support for key soft-
ware engineering metrics, CodeFlow provides developers with the �exibility
and control needed for e�cient development.

3. Platform Comparisons: We conducted in-depth comparisons of CodeFlow with
other popular low-code and traditional software development platforms, in-
cluding JHipster, OutSystems and Mendix. By analyzing their strengths and
weaknesses, we aimed to provide a comprehensive understanding of each plat-
form’s capabilities and limitations.

4. Sample Applications: We built sample applications on each platform to show-
case their functionalities and demonstrate their suitability for various project
requirements. These applications, including the TeamUp application developed
with CodeFlow, allowed us to explore and evaluate the platforms in real-world
scenarios.

5. Recommendations: Based on our evaluations, we provided recommendations
and suggestions to help developers make informed decisions when selecting a
software development platform. We highlighted the bene�ts and drawbacks of
each platform, considering factors such as prototyping capabilities, codebase
access, customization options, vendor lock-in and support for software engi-
neering metrics.

We believe that these contributions will serve as a valuable resource for developers
seeking guidance in choosing the right software development platform. By consider-
ing our evaluations, recommendations and insights, developers can make informed
decisions that align with their project requirements, team expertise and long-term
goals.

84

CHAPTER 7. CONCLUSION

7.3 Limitations of the study

The chapter on limitations aims to shed light on certain constraints and considera-
tions associated with the use of CodeFlow. While CodeFlow o�ers numerous bene�ts
and features, it is important to acknowledge the following limitations:

Language Restriction: CodeFlow currently exclusively supports TypeScript as the pri-
mary programming language. While TypeScript o�ers strong typing and other ad-
vantages, if your project requires the use of a di�erent programming language such
as Java or Python, CodeFlow may not be the most suitable choice.

Given the limited development time for CodeFlow, although it has shown to be an
e�ective tool for accelerated development, there are still certain features that need
to be addressed. Speci�cally, the inclusion of a Command Line Interface (CLI) that di-
rectly integrates with the target workspace, enabling direct code creation within the
workspace. Such an enhancement would signi�cantly improve the development pro-
cess, further enhancing the e�ciency of CodeFlow. This CLI could generate schemas
automatically by inferring the Prisma schema provided by the developer or it could
automatically generate business logic based on the provided schema and the devel-
oper could then customize the generated code.

Design Style Limitations: CodeFlow provides a set of built-in components that follow
a speci�c design style. While these components o�er a cohesive and consistent user
interface, it’s important to note that they may not align perfectly with your unique
design requirements. Customizing these components to meet speci�c design needs
may necessitate modi�cations across multiple components, potentially adding com-
plexity and development e�ort.

Dependency Constraints: CodeFlow relies on various dependencies such as Remix,
React, Tailwind CSS, Storybook and others to enable its functionality. While these de-
pendencies provide powerful capabilities and tooling, if you prefer to use alternative
frameworks or libraries (e.g., Next.js instead of Remix), creating a custom generator
becomes necessary. This requires additional development e�ort and expertise to en-
sure seamless integration with the desired dependencies.

Database Compatibility: CodeFlow leverages the power of Prisma, which supports a
wide range of databases, including PostgreSQL, SQLite, Oracle, Microsoft SQL Server,
MySQL, MariaDB, AWS Aurora, AWS Aurora Serverless, Azure SQL, CockroachDB and
MongoDB. However, it’s important to note that if your project requires the use of
a non-supported database, you would need to replace Prisma with an alternative
database integration solution. This may introduce additional development e�ort and
potentially impact the seamless integration and functionality provided by CodeFlow.

These limitations should be taken into consideration when evaluating the suitability
of CodeFlow for your speci�c project requirements. It is crucial to assess whether
these constraints align with your desired programming language, design �exibility,
dependency preferences and database compatibility.

85

CHAPTER 7. CONCLUSION

7.4 Future Work

The future of software development holds immense potential and one key ingredi-
ent that is guaranteed to revolutionize the �eld is Arti�cial Intelligence (AI). AI has
the capability to play a crucial role in the automated software generation process,
opening up new possibilities and opportunities for developers.

With the advancements in AI technologies, we can envision a future where intelligent
algorithms and machine learning models can analyze vast amounts of code, data
and user requirements to generate high-quality software solutions. AI-powered tools
can assist developers in automating repetitive tasks, generating boilerplate code and
even suggesting optimized design patterns based on speci�c project requirements.
One of the most exciting aspects of AI in software development is its ability to learn
from existing codebases and leverage that knowledge to enhance the development
process. By analyzing large repositories of open-source projects, AI algorithms can
identify patterns, best practices and e�cient solutions that can be applied to gener-
ate code snippets or provide intelligent suggestions during development.

Furthermore, AI can greatly contribute to improving the quality of software through
automated testing and bug detection. Machine learning models can learn from his-
torical data to identify potential bugs or vulnerabilities in the code, enabling devel-
opers to proactively address these issues before they manifest in the production en-
vironment.

In addition to code generation and testing, AI can also enhance the user experience
by automating user interface design, natural language processing for requirements
gathering and intelligent recommendation systems for personalized software solu-
tions.

However, it is important to recognize that the integration of AI into software devel-
opment processes comes with its own set of challenges. Ethical considerations, data
privacy and the need for interpretability and explainability of AI algorithms are crit-
ical factors that must be carefully addressed.

As we look to the future, it is clear that AI will continue to shape and transform the
software development landscape. Embracing AI technologies and exploring their po-
tential applications can lead to more e�cient, productive and innovative software
development processes. By harnessing the power of AI, we can unlock new levels of
automation, optimization and creativity, paving the way for a future where software
development becomes more intelligent, collaborative and adaptive.

In addition to the exciting prospects of AI in software development, we can envision
the integration of AI technologies into our own tool, CodeFlow, to further enhance its
capabilities. By leveraging the power of pretrained transformer models, we could en-
able the AI to scan the entire CodeFlow workspace, gaining knowledge and insights
from the codebase.

With this knowledge, the AI could assist developers by generating individual code
snippets that are tailored to speci�c development scenarios. These code snippets
could provide intelligent suggestions, o�er optimized implementations of common
tasks or even propose alternative solutions based on best practices learned from the
codebase.

Imagine a developer working on a feature and encountering a speci�c coding prob-
lem. The AI-powered CodeFlow tool could analyze the context, understand the prob-
lem and generate a relevant code snippet that solves the issue e�ciently. This would
save developers valuable time and e�ort, accelerating the development process and

86

CHAPTER 7. CONCLUSION

promoting code consistency.

Furthermore, the AI could continually learn and adapt based on developer feedback
and usage patterns within the CodeFlow workspace. Over time, the AI would become
more pro�cient at providing accurate and helpful code suggestions, aligning with the
speci�c coding style and preferences of the development team.

However, it is essential to approach the integration of AI into CodeFlow with care.
Ensuring the privacy and security of the codebase, protecting sensitive information
and maintaining a transparent and understandable AI system are crucial consider-
ations. Striking the right balance between automation and developer control will be
key to creating a productive and trusted AI-enhanced development environment.

By combining CodeFlow with AI technologies, we believe to unlock a new level of
developer productivity and e�ciency. The AI-powered code generation capabilities
would augment developers skills and expertise, enabling them to leverage the collec-
tive knowledge of the codebase to deliver high-quality software solutions faster and
more e�ectively.

87

Bibliography

[1] A. Bucaioni, A. Cicchetti, and F. Ciccozzi, “Modelling in low-code development:
A multi-vocal systematic review,” Software and Systems Modeling, vol. 21, Jan.
2022.

[2] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and challenges
of low-code development: The practitioners’ perspective,” in Proceedings of the
15th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ser. ESEM ’21, Bari, Italy: Association for Comput-
ing Machinery, 2021, isbn: 9781450386654. doi: 10.1145/3475716.3475782.
[Online]. Available: https://doi.org/10.1145/3475716.3475782.

[3] T. C. Lethbridge, “Low-code is often high-code, so we must design low-code plat-
forms to enable proper software engineering,” in Leveraging Applications of
Formal Methods, Veri�cation and Validation, B. Margaria Tizianaand Ste�en,
Ed., Cham: Springer International Publishing, 2021, pp. 202–212, isbn: 978-3-
030-89159-6.

[4] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the under-
standing and comparison of low-code development platforms,” in 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA),
2020, pp. 171–178. doi: 10.1109/SEAA51224.2020.00036.

[5] F. Fagerholm and J. Münch, “Developer experience: Concept and de�nition,”
in 2012 International Conference on Software and System Process (ICSSP), 2012,
pp. 73–77. doi: 10.1109/ICSSP.2012.6225984.

[6] T. C. Lethbridge, “Low-code is often high-code, so we must design low-code plat-
forms to enable proper software engineering,” in Leveraging Applications of
Formal Methods, Veri�cation and Validation, T. Margaria and B. Ste�en, Eds.,
Cham: Springer International Publishing, 2021, pp. 202–212, isbn: 978-3-030-
89159-6.

[7] D. Dahlberg, “Developer experience of a low-code platform: An exploratory
study,” M.S. thesis, Umeå University, Faculty of Social Sciences, Department of
Informatics, 2020.

[8] Jhipster, Accessed: 2023-03-25. [Online]. Available: https://www.jhipster.
tech/.

[9] Outsystems low-code platform, Accessed: 2023-03-25. [Online]. Available:https:
//www.outsystems.com/low-code-platform/.

[10] Mendix low-code application development platform, Accessed: 2023-03-25. [On-
line]. Available: https://www.mendix.com/.

[11] Remix - build better websites, https://remix.run/, (Accessed on 06/06/2023).
[12] React, https://react.dev/, (Accessed on 06/06/2023).
[13] Prisma | next-generation orm for node.js & typescript, https://www.prisma.

io/, (Accessed on 06/06/2023).
[14] Tailwind css - rapidly build modern websites without ever leaving your html.

https://tailwindcss.com/, (Accessed on 06/06/2023).
[15] Storybook: Frontend workshop for ui development, https://storybook.js.

org/, (Accessed on 06/06/2023).

88

https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/ICSSP.2012.6225984
https://www.jhipster.tech/
https://www.jhipster.tech/
https://www.outsystems.com/low-code-platform/
https://www.outsystems.com/low-code-platform/
https://www.mendix.com/
https://remix.run/
https://react.dev/
https://www.prisma.io/
https://www.prisma.io/
https://tailwindcss.com/
https://storybook.js.org/
https://storybook.js.org/

BIBLIOGRAPHY

[16] Typescript: Javascript with syntax for types. https://www.typescriptlang.
org/, (Accessed on 06/06/2023).

[17] Nx: Smart, fast and extensible build system, https://nx.dev/, (Accessed on
06/06/2023).

[18] Docker: Accelerated, containerized application development, https://www.
docker.com/, (Accessed on 06/06/2023).

[19] Using work�ows - github docs, https://docs.github.com/en/actions/
using-workflows, (Accessed on 06/06/2023).

[20] Zod - typescript-�rst schema validation with static type inference, https://
github.com/colinhacks/zod, (Accessed on 06/06/2023).

89

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://nx.dev/
https://www.docker.com/
https://www.docker.com/
https://docs.github.com/en/actions/using-workflows
https://docs.github.com/en/actions/using-workflows
https://github.com/colinhacks/zod
https://github.com/colinhacks/zod

List of Figures

5.1 Overview . 31
5.2 Project Diagram . 34
5.3 Project Diagram . 35
5.4 Applications . 37
5.5 Dependency Graph . 39
5.6 CodeFlow CLI . 42
5.7 CodeFlow Dashboard . 43
5.8 CodeFlow Storybook instance of the ui/core library 44
5.9 CodeFlow Storybook instance of the ui/app library 45
5.10 Storybook custom UI component . 55
5.11 Final application . 59

90

Use of AI Tools

In our thesis development process, we employed various tools to assist our work. Ini-
tially, we used ChatGPT to create the outline, which proved to be a valuable starting
point. This allowed us to organize our thoughts and structure the content e�ectively.
It is important to note that while ChatGPT assisted us in formulating the initial struc-
ture, the content of the thesis itself is a result of our own ideas, research, and analysis.

Furthermore, we leveraged GitHub Copilot, as both of us have integrated it into our
IDEs. However, it is crucial to clarify that we did not rely on ChatGPT or GitHub Copi-
lot for generating sources or expressions. Instead, we utilized them solely to rephrase
certain sentences, ensuring that the context remained unchanged and no additional
information was added.

Throughout the process, we carefully reviewed the generated output and made nec-
essary adjustments when required. The ultimate aim was to maintain the integrity of
our own ideas and thoughts. The content of this thesis primarily consists of our orig-
inal contributions, and we have only re�ned the wording of paragraphs to enhance
readability.

91

	Introduction
	Background and Motivation
	Objectives and research questions
	Scope
	Outline of the thesis

	Background
	Low Code Software Development
	Low Code Software Development
	Low Code Platforms
	Low Code Platforms & Software Engineering

	Existing Comparisons
	Developer Experience

	Methodology
	Evaluation criteria
	Maintainability
	Performance
	Scalability
	Version Control
	Reusability
	Extendability
	Documentation
	Vendor Lock-in
	Deployment
	Frontend Integration
	Time to Market

	Evaluation methods
	Evaluation of tools
	How we compare the tools

	Evaluation of existing tools and platforms
	Overview of existing platforms
	Evaluating Existing Platforms on Key Software Development Metrics
	Evaluation of JHipster
	Evaluation of OutSystems
	Evaluation of Mendix
	Conclusion

	Limitations of Existing Platforms and the Need for a New Tool

	Design and Implementation
	Advantages of Code Generation Tools in Software Development
	Design
	Objectives
	Overview

	Frameworks and libraries
	Remix
	React
	Prisma
	Tailwind CSS
	Storybook
	TypeScript
	NX Workspace
	Docker
	GitHub Workflows

	Architecture and features
	Libraries
	Pre-built Applications
	Deployment Application
	CLI Application

	Usage of CodeFlow
	Cloning the CodeFlow Repository
	Setting up the Development Environment
	Root Workspace and Target Workspace
	Generating the Target Workspace
	UI Component Libraries
	Spinning up the Database
	Extending the Model
	Creating Schemas for Input Validation
	Creating Business Logic
	Creating a new UI component
	Combining the business logic with the frontend code

	Results
	Addressed Challenges
	Maintainability
	Performance
	Scalability
	Version Control
	Reusability
	Developer Experience
	Extendability
	Documentation
	Vendor Lock-in
	Deployment
	Frontend Integration
	Time to Market

	Practical Results
	JHipster
	OutSystems
	Mendix
	CodeFlow
	Comparison
	Sample Application
	Comparing the final Applications

	Interpretation of the results
	Suggestions

	Conclusion
	Summary of the research questions and objectives
	Contributions of the study
	Limitations of the study
	Future Work

