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Abstract

Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluri-
potent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range
from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However,
while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to
complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic
products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process
between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the
production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects,
(ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of
the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of
single-use technology is discussed.

Key points

e Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation

o Single-use stirred bioreactor systems are preferred for the cultivation of both cell types

e Future research should adapt and modify downstream processes to available single-use devices
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modern idea, and with the cell therapy market size expected
to grow to $45 billion by 2030 (Vision Research Reports
2022) due to strong financial backing and lower regula-
tory hurdles, especially in North America (Polaris Market
Research 2022), a closer look at the cells driving this trend
is definitely warranted. General interest in the regenera-
tive properties of stem cells first began as far back as 1867,
when Cohnheim (1867) observed how non-hematopoietic
cells migrated to the site of inflammation and differentiated
to fibroblasts during wound healing. A century and a half
of research finally led to the identification (Rekers 1950)
and general characterization (Tavassoli and Crosby 1968;
Friedenstein et al. 1970; Owen and Friedenstein 1988; Pit-
tenger et al. 1999; van den Bos et al. 2014) of hMSCs. These
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cells not only have the ability to replace damaged tissue via
differentiation, but also produce and secrete chemo- and
cytokines, modulating local immune response and tissue
regeneration (van den Bos et al. 2014; Zhou et al. 2019).
In this context, hMSC-derived extracellular vesicles have
also been the target of recent cell-free therapeutics. A more
comprehensive review of these products may be found in the
publication by Kou et al. (2022).

Currently, more than 1400 clinical trials have been
submitted involving the application of hMSCs as regen-
erative medicine products or biologics in the USA alone
(National Library of Medicine (US) 2022), and more than
27 products containing hMSCs have been approved in sev-
eral countries worldwide (Table 1). Of these 27 products,
17 are allogeneic, meaning the cells from a single healthy
donor are used to treat multiple patients, while only 10
are autologous, i.e., the donor is the patient, displaying
a clear trend towards allogenic. The first such product to
be granted orphan drug status by the European Union and
to receive market approval in 2009 for the treatment of
perianal fistulas resulting from Crohn’s disease or inflam-
matory bowel disease was Alofisel (European Medicines
Agency 2009). Since then, many more have followed, e.g.,
for the treatment of osteoarthritis (Ha et al. 2019), graft-
versus-host disease (Heathman et al. 2015), and spinal cord
injury (Cofano et al. 2019).

Compared to hMSCs, hiPSCs are a far more recent dis-
covery (Takahashi and Yamanaka 2006; Takahashi et al.
2007a; Flahou et al. 2021). These cells are characterized by
their inherent capacity for indefinite self-renewal and ability
to differentiate into all three germ layers (endo-, meso-, and
ectoderms), which allows a broader range of indications to be
targeted than would be possible with hMSCs. To this end, their
suitability for the treatment of diseases currently considered
challenging using conventional means, such as macular degen-
eration, ischemic stroke, and cancer (Shiba et al. 2016; Takagi
et al. 2019), has been repeatedly demonstrated. In fact, more
than 27 hiPSC-derived cell products are currently undergoing
pre-clinical to phase 3 trials (National Library of Medicine
(US) 2022), 7 of which are in phases 2 and 3 (Table 1). Of
these 7 products, all are based on the allogeneic manufacturing
approach. Companies currently leading the development of
such hiPSC-based cell therapeutics include Astellas Pharma,
Cynata Therapeutics Ltd., and ReNeuron Ltd.

Regardless of whether the cell therapy is based on hMSCs
or hiPSCs, it stringently requires the production of clinically
relevant cell quantities of between 10° and 10'2 per dose
while ensuring target cell quality (viability, marker profile,
potency), both of which have been linked to therapeutic effi-
cacy and are outlined in more detail elsewhere (Dominici
et al. 2006; Sullivan et al. 2018; Scibona and Morbidelli
2019). This review therefore focuses on the upstream and
downstream processing for both hMSC and hiPSC-based
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cell therapeutics. Furthermore, it highlights successfully
implemented single-use (SU) devices, while considering
cell typical characteristics and requirements.

hMSCs versus hiPSCs
Origin, safety, and ethical aspects

The production process of hMSC- and hiPSC-based thera-
peutics always begins with the extraction of tissue from a
willing donor (see also Fig. 2). For example, hMSCs, which
belong to the group of multipotent adult stem cells, are
easily accessible and present in almost every human organ
(Audet and Stanford 2009). To date, no safety concerns
have been reported regarding their use, likely due to their
immune-privileged status (Najar et al. 2022). In addition,
their use is not ethically objectionable, as they are obtained
from consenting individuals (Cofano et al. 2019). Histori-
cally, the most important source of hMSCs has been bone
marrow (Audet and Stanford 2009). However, larger quanti-
ties of hMSCs can easily be obtained from adipose tissue as
a byproduct of liposuction (Timaner et al. 2020) or from the
umbilical cord immediately after birth (Audet and Stanford
2009). Consequently, the umbilical cord—derived subtype
has also exhibited a superior life span, lower risk of contami-
nation, and better immunological compatibility compared to
the bone marrow—derived subtype (Mahmood et al. 2018).

In contrast to hMSCs, hiPSCs are pluripotent stem cells
produced by reprogramming (Takahashi et al. 2007a; Hsu
et al. 2018) of somatic skin (Takahashi et al. 2007b; Yu
et al. 2007) or blood cells (Zeng et al. 2017) in the labora-
tory. This reprogramming was initially realized through the
introduction of 4 factors (Oct3/4, Sox2, Kfl4, and c-Myc)
via a viral vector transport vehicle which integrated them
into the host cell DNA. The forced expression of these fac-
tors returned the cells to an embryonic state, allowing them
to once again differentiate into all germ layers (Takahashi
et al. 2007a). In this manner, the ethical issues of using
promising embryonic stem cell-derived therapeutic prod-
ucts (Menasché 2020) were circumvented, earning Shinya
Yamanaka, the researcher who pioneered the method with
murine cells in 2006 (Takahashi and Yamanaka 2006), the
Nobel Prize in 2012 (The Nobel Prize 2022).

Although the generation of hiPSCs is ethically acceptable
and technically simple, it still remains inefficient, time-con-
suming, and expensive (Borgohain et al. 2019). Currently,
it takes several months until sufficient cells are available for
experiments. Also, reprogramming efficiencies reported in
the literature are generally between 0.001 and 1%, meaning
that at most, only 1 out of 100 cells is successfully repro-
grammed into a hiPSC (Birbriar 2021).
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Table 1 Overview of approved hMSC-based therapeutics and hiPSC-based therapeutics in phase 2 and 3 clinical trials

Company Medicinal product ~ Cell type Indication Phase Marketing authorization
AlloSource AlloStem® Allogeneic hAD-MSCs ~ Bone regeneration Approved USA
Anterogen Co., Ltd. Cupistem® Autologous hAD-MSCs  Crohn’s fistula Approved South Korea
Adipocell® Autologous hAD-MSCs  Chronic ischemic car- Approved South Korea
diomyopathy
Queencell® Autologous hAD-MSCs  Subcutaneous tissue Approved South Korea
defect
Astellas Pharma MAO9-hRPE Allogeneic hiPSC-RPEs Macular degeneration Phase 1 | phase 2 n.a.
Biomet Inc. Bonus Triad™ Allogeneic hBM-MSCs  Musculoskeletal defects Approved USA
Cell Tech Pharmed Mesetrocell® Autologous hBM-MSCs Multiple sclerosis Approved Iran
Company
Corestem, Inc. NeuroNata-R® Autologous hBM-MSCs Amyotrophic lateral Approved South Korea
sclerosis
Cynata Therapeutics CYP-004 Allogeneic hiPSC- Osteoarthritis Phase 3 n.a.
Ltd. MSCs
CYP-001 Allogeneic hiPSC- Graft-versus-host Phase 2 n.a.
MSCs disease
CYP-002 Allogeneic hiPSC- Critical limb ischemia ~ Phase 2 n.a.
MSCs
CYP-001 Allogeneic hiPSC- Acute respiratory dis- Phase 1 | phase 2 n.a.
MSCs tress syndrome
JCR Pharmaceuticals TEMCELL® HS Allogeneic hBM-MSCs  Graft-versus-host Approved Japan
disease
medac GmbH Obnitix® Allogeneic hBM-MSCs  Graft-versus-host Approved Germany
disease
Medipost Co. Ltd. CARTISTEM® Allogeneic hUC-MSCs  Osteoarthritis Approved South Korea
Mesoblast, Inc. Remestemcel-L Allogeneic hBM-MSCs  Graft-versus-host Approved Canada/New Zealand
disease
Nipro Corporation Stemirac® Autologous hBM-MSCs  Spinal cord injury Approved Japan
NuVasive OsteoCel Plus Allogeneic hBM-MSCs  Spinal cord injury Approved USA
Orthofix Inc. Trinity Evolution™ Allogeneic hBM-MSCs Musculoskeletal defects  Approved USA
Trinity Elite™ Allogeneic hBM-MSCs  Musculoskeletal defects  Approved USA
Osiris Therapeutics, Inc. BIO4® Allogeneic hBM-MSCs  Musculoskeletal defects ~ Approved USA
Pharmicell Co., Ltd. Cellgram® Autologous hBM-MSCs Acute myocardial infarc- Approved South Korea
tion
Regeneus Ltd. HiQCell® Autologous hAD-MSCs Musculoskeletal defects ~ Approved Australia
Reliance Life Sciences  CardioRel® Autologous hBM-MSCs Myocardial infarction Approved India
ReNeuron Ltd. CTXO0EO03 Allogeneic hiPSC-NSCs Ischemic stroke Phase 2 n.a.
hRPC Allogeneic hiPSC-RPCs Retinitis pigmentosa Phase 1 | phase 2 n.a.
Sewon Cellontech Co.,  RMS Ossron™ Autologous hBM-MSCs Bone regeneration Approved South Korea
Ltd.
Smith & Nephew Grafix® Allogeneic hUC-MSCs  Advanced wound Approved USA
therapy
GrafixPL® Allogeneic hUC-MSCs  Advanced wound Approved USA
therapy
Stravix® Allogeneic hUC-MSCs  Diabetic wound Approved USA
StravixPL® Allogeneic hUC-MSCs  Diabetic wound Approved USA
Stempeutics Research Stempeucel® Allogeneic hBM-MSCs  Critical limb ischemia Approved India
PvtLtd Stempeucel® Allogeneic hBM-MSCs  Osteoarthritis Filed India
Takeda Alofisel® Allogeneic hAD-MSCs  Crohn’s fistula Approved EU/Japan

hAD-MSCs human adipose tissue—derived mesenchymal stem cells (hAD-MSCs), hABM-MSCs human bone marrow—derived mesenchymal stem
cells, hUC-MSCs human umbilical cord—derived mesenchymal stem cells, hiPSC-RPEs human-induced pluripotent-derived retinal pigment epi-
thelial cells, #iPSC-MSCs human-induced pluripotent-derived mesenchymal stem cells, #iPSC-NSCs human-induced pluripotent-derived neural

stem cells, hiPSC-RPCs human-induced pluripotent-derived retinal pigment cells, n.a. not applicable
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Another important consideration is safety. The integration
of the previously mentioned factors into the genome of hiP-
SCs during reprogramming increases the risk of interference
with other important genes, which may lead to tumor forma-
tion in vivo following implantation (Yu et al. 2007), even
after directed differentiation (Lee et al. 2013; Kojima et al.
2019). Other risks include the occurrence of genetic abnor-
malities during ex vivo cultivation and tissue rejection by
the patient’s immune system, neither of which can be com-
pletely precluded at present (Sullivan et al. 2018; Rehakova
et al. 2020). Consequently, hiPSCs are considered less safe
than hMSCs, which also explains the lack of commercially
available hiPSC-based therapeutics to date. Regardless,
researchers are working expeditiously towards developing
more safe and efficient reprogramming techniques (Rajas-
ingh et al. 2021). These include the use of more responsive
and accessible tissues (Rajasingh et al. 2021), more potent
and lower risk gene combinations for reprogramming (Okita
et al. 2007; Yu et al. 2007; Furukawa et al. 2022), and the
use of non-integrating vectors or even completely non-viral
methods (Birbriar 2021).

Cell characteristics and impact on cultivation
conditions

Once a cell line has been established, a closer look at its
characteristics must be taken to ensure optimal cell growth.
In this regard, both hMSCs and hiPSCs require a tempera-
ture of 37 °C and a pH between 6.9 and 7.5. In addition,
both cell types can be cultivated under normoxic as well
as hypoxic conditions (Antebi et al. 2018), are considered
shear sensitive (Horiguchi et al. 2021; Burns et al. 2021),
and are strictly adherent. The latter characteristic describes
their need for a planar surface or scaffold to survive and
self-renew. These cells are therefore either cultivated in
static cultivation systems as a monolayer (2D culture), or
in mechanically or hydraulically driven dynamic biore-
actors (3D culture), as spheroids (cell aggregates), or on
artificial scaffolds, such as membranes, macrocarriers or
microcarriers.

In both 2D and 3D cultivations, differences in size, mor-
phology, and motility impact spatial requirements and must
therefore be considered. For example, in suspension, single
hMSCs and hiPSCs are roughly spherical with a similar
diameter of approximately 18 pm (Pittenger et al. 2019) and
16 pm (Lipsitz et al. 2018), respectively, and are able to form
and proliferate as spheroids (Allen et al. 2019). However,
after attachment to an artificial scaffold, predominantly via
integrin (Jin et al. 2012; Isomursu et al. 2019), their mor-
phology and size differ significantly (Fig. 1). While hMSCs
adopt a fibroblast-like morphology and require between
450 and 35,000 pm2 per cell (Haasters et al. 2009), hiPSCs
only require ~43.5 pm? due to their epithelial morphology
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Fig. 1 Phase contrast images taken of the ATCC® adipose-derived
mesenchymal stem cell line SCRC-4000™ (A) and the Gibco™ epi-
somal induced pluripotent stem cell line (B) cultivated as monolayers
on coated polystyrene surfaces. The scale bar in the lower left corner
corresponds to 100 pm

(Wakao et al. 2012; Courtot et al. 2014). Hence, more hiP-
SCs can be grown per available surface area before conflu-
ency is reached. They also display a high nucleus-to-cyto-
plasm ratio (Wakao et al. 2012), a characteristic associated
with proliferative potential (Wang et al. 2021).

The effective use of limited spatial resources can further
be optimized through single-cell passaging and by ensuring
uniform cell distribution during inoculation. In this regard,
hMSC:s are less susceptible as they display higher motility
(Bertolo et al. 2015; Somaiah et al. 2015) and are able to
migrate to sites with lower relative cell occupation, delay-
ing the onset of localized confluency and contact inhibi-
tion. In contrast, hiPSCs remain in very close proximity
to their point of initial attachment (Zhang et al. 2011) and
are therefore more susceptible to inhomogeneous inocu-
lation. Regardless, the migratory capacity of hMSCs has
been shown to decrease and their size increase, as replicative
senescence sets in (Haasters et al. 2009; Bertolo et al. 2015),
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potentially impacting this phenomenon alongside overall cell
quality. This is currently estimated to happen after approxi-
mately 20—40 population doublings (Khorraminejad-Shirazi
et al. 2019). Assuming one can isolate 10°~10* cells (Stoc-
chero and Stocchero 2011), 16-20 population doublings
would be required to produce 1 dose containing 10° cells
with the target cell quality (Scibona and Morbidelli 2019).
Practically, cell cultivation and purification results in cell
loss and far lower yields must be expected. Consequently,
the manner and duration of these steps have a significant
impact on cell yield and quality per batch, following culti-
vation, harvest, purification, and cryogenic storage, which
has prompted the development of bioprocessing solutions
to meet these needs.

The production of h(MSC- and hiPSC-based
therapeutics

Manufacturing overview

Typical bioprocessing steps for hMSC- and hiPSC-based
therapeutics are outlined in Fig. 2. The manufacturing of

Fig.2 A simplified work-

flow for the production of
hMSC-based and hiPSC-based
therapeutics. The manufactur-
ing process has been divided
into (blue) typical upstream and
(orange) downstream opera-
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mechanical, physical, and chemical cues (Garcia-Fernan-
dez et al. 2020). According to literature, this is best ensured
through either mechanical or hydraulic agitation (Jossen
et al. 2018; Tsai and Pacak 2021) in instrumented bioreac-
tors (see also Table 2), which allow for the regulation and
near homogenous distribution of process parameters such
as temperature, pH, and dissolved oxygen (Manstein et al.
2021). Our review further revealed that most hMSC and
hiPSC cultivations were performed in top-driven stirred bio-
reactor systems using microcarriers (Schirmaier et al. 2014;
Dufey et al. 2016; Lawson et al. 2017; Pandey et al. 2020;
Rotondi et al. 2021). A more detailed overview of microcar-
rier types suitable for stem cell production is provided in
a review by Ornelas-Gonzilez et al. (2021). Furthermore,
while hMSC cultivation up to a pilot scale of 150 L has
been described using stirred bioreactors (Jossen et al. 2018),
hiPSC expansion has not yet progressed beyond bench-top
scale (Pandey et al. 2020).

Independent of scale, one prevailing theme is the use
of SU bioreactors for growing hMSCs (Schirmaier et al.
2014), hiPSCs (Kwok et al. 2018), and their differentiated
progeny (Jiang et al. 2019; Shafa et al. 2019). Such bioreac-
tors, whose sterile plastic containers are used only once, are
currently offered by multiple vendors (Eibl and Eibl 2019;
Eibl et al. 2022) and are available up to a maximum work-
ing volume of 6 m®. SU bioreactors are known to reduce
the risk of cross-contamination (Jossen et al. 2018) and are
approved and even recommended by regulatory agencies
for production processes that are subject to stringent safety
requirements, i.e., processes whereafter contaminants cannot
be easily removed, such as stem cell expansion and differen-
tiation for therapeutic use (Nogueira et al. 2021).

As shown in Table 2, the application of such SU bioreac-
tors has enabled peak cell yields of between 10.9 and 37.5 X
10° hMSCs or 10.2 x 10° hiPSCs per batch, while still main-
taining key cell quality indicators (Schirmaier et al. 2014;
Lawson et al. 2017; Pall Biotech 2020; Huang et al. 2020).
Our review has also shown that higher volumetric yields of
hiPSCs can be expected per batch compared to hMSCs when
using the same system. Another method of improving yield
or reducing process time for both cell types was the choice
of process mode. Here, the cultivations that achieved the
highest hMSC and hiPSC expansion factors were performed
either as repeated batch (Kwok et al. 2018; Pandey et al.
2020; Dang et al. 2021) or in perfusion mode (Abecasis et al.
2017; Pandey et al. 2020; Huang et al. 2020; Manstein et al.
2021). For perfusion processes with hMSCs and hiPSCs
in stirred bioreactors, filters with either defined pore sizes
(dos Santos et al. 2014; Kropp et al. 2016; Abecasis et al.
2017; Huang et al. 2020; Huang et al. 2020; Manstein et al.
2021), settling tubes (Huang et al. 2020; Sion et al. 2021), or
acoustic separators (Huang et al. 2020) were used to ensure
cell retention during medium replacement. Perfusion rates
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used for hiPSCs typically ranged from 0.5 to 1.3 vvd (Kropp
et al. 2016; Abecasis et al. 2017; Pandey et al. 2020; Huang
et al. 2020; Manstein et al. 2021), while for hMSCs, rates of
0.25 to 0.48 vvd (dos Santos et al. 2014; Sion et al. 2021)
were used. In this manner, expansion factors of up to 33.6
and 62.6 in 8-9 days could be achieved for hMSCs (Mennan
et al. 2019) and hiPSCs (Pandey et al. 2020), respectively.
While the N;; or N, and Ny, criteria have been applied
for stirred SU bioreactors operated with microcarriers to
support the expansion of hMSCs and their process scale-up
(Schirmaier et al. 2014; Lawson et al. 2017), other criteria,
such as critical Kolmogorov length (4,), have also been suc-
cessfully used for the cultivation of hiPSCs as spheroids in
both rotating- (Shafa et al. 2019) and vertical wheel-impeller
(Dang et al. 2021) bioreactors. Based on Zwieterings (1958)
findings, N;; or Ny; describes a minimum impeller speed at
which solid particles, or in this case microcarriers, are just
suspended in a bioreactor’s working volume (Hewitt et al.
2011; Rafiq et al. 2013), while N;, describes a lower limit
for N,,, where the microcarriers are in contact with the bot-

tom (;f the bioreactor but not at rest (Kaiser et al. 2013; Jos-
sen et al. 2016). These criteria may be determined visually
or using particle image velocimetry (Tsai and Pacak 2021).
Application of the N, approach when cultivating hMSCs
in spinner flasks allowed Jossen et al. (2016) to maintain a
mean shear stress (7) of 4.96 X 107> N m~2 ensuring optimal
cell growth and quality. Petry and Salzig (2021) went on to
define current estimates for acceptable 7 and energy dissipa-
tion rates (¢€) in stirred bioreactors to be between 0.01-0.06
N m~2 and 0.2-4.8 mW kg™, respectively, for htMSC culti-
vation. Additionally, they mentioned that the ratio of maxi-
mum energy dissipation (e,,,,) to €, or hydrodynamic het-
erogeneity (@) should not exceed 20. While little has been
reported on acceptable 7 ranges for hiPSCs, a € of 0.3-1.5
mW kg~! has been suggested (Dang et al. 2021).

These authors also mention the use of 4, as a means of
estimating the maximum allowable power input in order to
control spheroid size and minimize cell damage (Dang et al.
2021; Petry and Salzig 2021). Accordingly, the higher the
impeller speed in a bioreactor, the smaller 4. becomes, with
its length ideally being more than two thirds of the diameter
of any cell or microcarrier aggregates in the system, to pre-
vent cell stripping at their liquid/aggregate interface (Hewitt
et al. 2011; Nienow et al. 2016a; Nienow et al. 2016b). The
direct application of 1. does, however, presume fully turbu-
lent conditions (Nienow 2021), which is generally not the
case for the cultivation hMSCs or hiPSCs. Regardless, the
approach has been readily adopted to limit the size of hMSC
and hiPSC spheroids to a critical diameter of 200-300 pm
(Sart et al. 2013; Allen et al. 2019; Huang et al. 2020; Petry
and Salzig 2021), so that mass transfer is not restricted.
These diameter limitations are less critical for microcar-
rier processes, especially when large spherical non-porous
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varieties (diameter ~190 pm) are used, as they form more
open aggregate structures (Ornelas-Gonzalez et al. 2021).
In this context, the ability of both cell types to detach from
populated and reattach to unpopulated microcarriers or form
bridges between the two, referred to as bead-to-bead transfer
(Badenes et al. 2017; Leber et al. 2017; Rafiq et al. 2018),
has also been observed. The use of bead-to-bead transfer
during inoculation has been shown to reduce the lag phase
associated with the proteolytic treatment of both cell types
during single cell transfer from static to dynamic cultivation
systems (Badenes et al. 2017; Rafiq et al. 2018), shortening
process time.

Culture medium

In addition to the choice of bioreactor, process mode,
and surface/scaffold, the culture medium has a decisive
influence on the result of cell expansion and differentia-
tion. Table 3 gives an overview of commercially available
serum-free, xeno-free, or chemically defined media used
for the production of hMSCs and hiPSCs. At this point, it is
worth mentioning that while chemically defined media for
cell differentiation are available (Gultian et al. 2022), their
application remains limited. On the contrary, the more pop-
ular approach is to supplement the media either with fetal
bovine serum or a substitute, such as KnockOut™ Serum
Replacement (Ackermann et al. 2018), human plasma
(Sivalingam et al. 2021), or platelet lysate (Mizukami et al.
2018) alongside other recombinant and synthetic compo-
nents (Olmer et al. 2018; Haack-Sgrensen et al. 2018; Yabe
et al. 2019; Laco et al. 2020; Jacobson et al. 2021). Cor-
respondingly, these media compositions have facilitated the
differentiation of hiPSCs into various cell types, such as
hMSCs (Goetzke et al. 2019), cardiomyocytes (Laco et al.
2020), neurons (Silva et al. 2021), definitive endoderm
(Jacobson et al. 2021), and hematopoietic cells (Sivalingam
et al. 2021). Moreover, by adjusting composition and lev-
eraging changes in intrinsic metabolic requirements during
differentiation, selective pressure could be applied, improv-
ing target cell purity (Kehoe et al. 2010; Tohyama et al.
2017; Hsu et al. 2021) prior to downstream processing.

Downstream processing

In the context of cell therapeutic production processes,
downstream processing has received less attention in peer-
reviewed literature than its upstream counterpart. It there-
fore comes as no surprise that there are still challenges and
bottlenecks associated with downstream processing during
the production of cell therapeutics. These include the short
time window available between cell detachment and cryo-
preservation before quality becomes unacceptable (Viswa-
nathan and Hematti 2017; Scibona and Morbidelli 2019)

and the cells shear sensitivity, which restricts rigorous
operations in favor of cell recovery (Cunha et al. 2015a;
Scibona and Morbidelli 2019). In this context, the first
step is the detachment of the hMSCs or hiPSCs from their
growth surface as well as from each other. This is usually
achieved by adding a proteolytic agent, such as TrypLE
or Accutase, to cleave the integrin necessary for cell-to-
surface/scaffold attachment, and chelating agents, such as
Versene, to scavenge divalent ions required for cell-to-cell
junctions (Derakhti et al. 2019). Alternatively, dissolvable
scaffolds may be enzymatically digested instead (Rod-
rigues et al. 2019), or a temperature shift performed to
affect cell release if a thermoresponsive coating was used
(Narumi et al. 2020). For microcarrier or spheroid-based
cultivations, cell recovery rates during detachment may
further be improved by increasing fluid dynamic stress and
collisions within the system (Nienow 2021), as has been
demonstrated in various SU bioreactors with @ between
10 and 25 at impeller speeds of 2 — 5N, corresponding
to a €, of 1310-2830 mW kg~! and a 4, of 24-30 pm
(Nienow et al. 2016a; Nienow et al. 2016b).

Following complete detachment from carriers, the cells
must be separated from any non-dissolvable debris (Viswa-
nathan and Hematti 2017). This so-called clarification is
generally realized through dead-end filtration using, for
example, SU products such as the Thermo Scientifics’
Harvestainer™ BioProcess Container (Jossen et al. 2018),
Entegris’ Microcarrier and Cell Separation System (Pandey
et al. 2020), or Merck’s OptiCap® capsules (Cunha et al.
2015a). Various studies have shown that pore diameters
>75 pm resulted in cell recovery rates of >80 %, while
ensuring a high cell quality and efficient microcarrier
removal (Schirmaier et al. 2014; Cunha et al. 2015b; Serra
et al. 2018).

After clarification cells are concentrated and then washed
by diafiltration. Due to time constraints, both of these pro-
cesses are often integrated (Cunha et al. 2015a; Pandey et al.
2020), e.g., by tangential flow filtration (TFF), using either
hollow-fiber modules or flat sheet cassettes (Viswanathan and
Hematti 2017; Cunha et al. 2017). Studies with TFFs high-
lighted that cell recovery rates and protein clearance improved
when processing was continuous (Cunha et al. 2015a). Pro-
tein clearance could further be improved by adding a negative
mode expanded bed adsorption step prior to concentration and
washing (Cunha et al. 2016), while cell recovery rates were
shown to be dependent on the choice of system, material, and
operating parameters (Cunha et al. 2015b; Cunha et al. 2017).
SU TFF technologies used for the downstream processing of
hMSCs (Cunha et al. 2017) include Asahi Kasei’s BioOp-
timal™ MF-SL Microfilters (Cunha et al. 2015a), Cytiva’s
ReadyToProcess™ HF microfiltration cartridges, Merck’s
Pellicon® XL Cassettes, and Sartorius’ Sartocon®Slice 200
(Cunha et al. 2017).

@ Springer



4438

Applied Microbiology and Biotechnology (2023) 107:4429-4445

Table 3 Commercially available chemically defined (CD) and xeno-free (XF) media used for the expansion of hMSCs and hiPSCs

Name Manufacturer/developer Cell type  Reference
StemFit® (CD) Amsbio LLC hiPSCs Morizane and Bonventre (2017)
StemXVivo XF Human MSC Expansion Medium Bio-Techne AG hMSCs Bhat et al. (2021)
UrSuppe (CD) Cardio Centero Ticino hMSCs Panella et al. (2021)
hiPSC Growth Medium (CD) Cell Applications, Inc. hiPSCs Cell Applications, Inc. (2023a)
hMSC XF Basal Medium Cell Applications, Inc. hMSCs Cell Applications, Inc. (2023b)
StemMaxOne (XF) Cell Culture Technologies hMSCs Leber et al. (2017)
L7™ TFO2 (XF) Lonza AG hiPSCs Pandey et al. (2020)
TheraPEAK™ MSCGM™ Mesenchymal Stem Cell Lonza AG hMSCs Gottipamula et al. (2013)
Growth Medium (XF)
Human Mesenchymal-XF Expansion Medium Merck hMSCs Tang et al. (2022)
Stemline® XF MSC Medium Merck hMSCs Merck KGaA (2020)
StemMACS™ iPS-Brew XF Miltenyi Biotec hiPSCs Lorenz et al. (2017)
PowerStem MSC1 (XF) PAN-Biotech hMSCs Hoang et al. (2021)
Mesenchymal Stem Cell Growth Medium XF PromoCell hMSCs Shetty et al. (2016)
NutriStem® hPSC XF Medium ReproCELL Inc. hiPSCs Jeriha et al. (2022)
RoosterNourish™-MSC-XF RoosterBio® hMSCs Hogan et al. (2019)
MSC NutriStem® XF Medium Sartorius AG hMSCs Liet al. (2021)
Mesenchymal Stem Cell Medium-ACF (XF) ScienCell Research Laboratories hMSCs ScienCell Research Laboratories (2022)
TeSR™-AOF (XF) STEMCELL Technologies hiPSCs STEMCELL Technologies (2023a)
TeSR™-E8™3D (XF) STEMCELL Technologies hiPSCs STEMCELL Technologies (2023b)
MesenCult™-ACF Plus (XF) STEMCELL Technologies hMSCs Hervy et al. (2014)
Cellartis® DEF-CS™ XF Takara Bio Inc. hiPSCs Abecasis et al. (2017)
Cellartis® MSC XF Takara Bio Inc. hMSCs Li et al. (2020b)
Essential 8™ (XF) Thermo Fisher Scientific hiPSCs Chen et al. (2011)
Essential 8™ Flex (XF) Thermo Fisher Scientific hiPSCs Giacomelli et al. (2020)
StemPro™ MSC SFM Thermo Fisher Scientific hMSCs Hervy et al. (2014)
TransStem™ CD XF Human Pluripotent Stem Cell TransGen Biotech Co., Ltd. hiPSCs TransGen Biotech Co., Ltd. (2022a)
Medium
TransStem® SF, XF Human MSC Medium TransGen Biotech Co., Ltd. hMSCs TransGen Biotech Co., Ltd. (2022b)
MSC-GRO™ VitroPlus III SF, XF Medium Vitro Biopharma hMSCs Vitro Biopharma (2023)

hMSCs human mesenchymal stem cells, hiPSCs human-induced pluripotent stem cells

An alternative scalable low shear approach capable of
integrating cell concentration and washing is continuous
centrifugation (counterflow and disk stack centrifugation).
While counterflow centrifugation has been used to purify
hMSCs and hiPSCs at different scales (Li et al. 2019; Li
et al. 2019; Pandey et al. 2020; Li et al. 2020a), there have
been no reports using disk stack centrifugation. A design-of-
experiment study performed with a counterflow centrifuge
(CTS Rotea) showed that, while neither flowrate, centrifugal
force-to-flowrate ratio, serum concentration, nor trypsin con-
centration impacted live hMSC recovery during centrifuga-
tion, the first two did negatively influence cell metabolism (Li
et al. 2020a). Further studies showed that these systems not
only shorten the process time (Li et al. 2019), but also allow
the selective isolation of cell populations based on physi-
cal properties, such as size, density, and even viability (Li
et al. 2022). Furthermore, the scalability of these systems

@ Springer

was demonstrated in a recent study where 3 L cell suspen-
sions with a density of 0.9-3.4 x 10° hiPSCs mL~! were
processed within 30 min, achieving a 105-fold concentration
and cell recovery rates of up to 99 %, while maintaining tar-
get cell quality. The authors did, however, highlight that the
chamber capacity would present the main scale-up constraint
when moving to 50 L production (Pandey et al. 2020). Com-
mercially available SU continuous centrifugation systems
used for the downstream processing of hMSCs and hiPSCs
include Sartorius’ kSep® (Pandey et al. 2020), Thermo Sci-
entific’s CTS Rotea Counterflow Centrifuge (Li et al. 2020a),
and Terumo BCT’s Elutra Cell Separation System (Li et al.
2022). After this downstream operation, cells are formulated
in preparation for cryogenic storage, filled into vials or bags,
visually inspected, and frozen away for transport to the site of
administration. A more detailed description of these opera-
tions is given elsewhere (Viswanathan and Hematti 2017).
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Conclusions and outlook

Allogeneic hMSC- and hiPSC-based therapeutics are on the
rise, with a clear trend towards their production in stirred SU
bioreactors on microcarriers. Nevertheless, securing clinically
relevant cell quantities and quality continues to pose a challenge.
In upstream processing, safety issues surrounding hiPSCs need
to be addressed and SU perfusion systems adapted to deal with
cell shear sensitivity and bioreactor scale. Moreover, suitable
chemically defined expansion and differentiation media com-
positions remain to be developed and commercialized. Here
medium compatibility with perfusion mode could be advanta-
geous. In the meantime, the groundbreaking work already done
with hMSCs and microcarriers may be adapted to hiPSCs to
increase process scale and yield using SU bioreactors, while
bearing in mind the inherent similarities and differences between
the two cell types.

Ensuring a high cell yield during the cultivation process is
only the first step, however. Cells must still undergo downstream
operations to meet the quality and purity standards set by regu-
latory bodies. This demands the development of scalable auto-
mated systems capable of time sensitive cell processing. SU
downstream processing technologies which combine process
steps, such as TFF and continuous centrifugation have proven
themselves in this regard, yet more research is necessary to fully
understand how these systems impact cell quality and recovery.
Finally, new technologies with great developmental potential,
such as SU acoustic wave separators (Merck’s ekko™) and SU
disk stack centrifuges (GEAs kytero and Alfa Lavals Culture-
One), have only recently become commercially available and
remain to be tested for stem cell application.
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