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ABSTRACT Automating the monitoring of industrial processes has the potential to enhance efficiency and
optimize quality by promptly detecting abnormal events and thus facilitating timely interventions. Deep
learning, with its capacity to discern non-trivial patterns within large datasets, plays a pivotal role in this
process. Standard deep learning methods are suitable to solve a specific task given a specific type of data.
During training, deep learning demands large volumes of labeled data. However, due to the dynamic nature
of the industrial processes and environment, it is impractical to acquire large-scale labeled data for standard
deep learning training for every slightly different case anew. Deep transfer learning offers a solution to this
problem. By leveraging knowledge from related tasks and accounting for variations in data distributions, the
transfer learning framework solves new tasks with little or even no additional labeled data. The approach
bypasses the need to retrain a model from scratch for every new setup and dramatically reduces the labeled
data requirement. This survey first provides an in-depth review of deep transfer learning, examining the
problem settings of transfer learning and classifying the prevailing deep transfer learning methods. Moreover,
we delve into applications of deep transfer learning in the context of a broad spectrum of time series anomaly
detection tasks prevalent in primary industrial domains, e.g., manufacturing process monitoring, predictive
maintenance, energy management, and infrastructure facility monitoring. We discuss the challenges and
limitations of deep transfer learning in industrial contexts and conclude the survey with practical directions
and actionable suggestions to address the need to leverage diverse time series data for anomaly detection in
an increasingly dynamic production environment.

INDEX TERMS Deep transfer learning, time series analysis, anomaly detection, manufacturing process
monitoring, predictive maintenance.
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The associate editor coordinating the review of this manuscript and ML Machine Learning.
approving it for publication was Yu Liu . MMD  Maximum Mean Discrepancy.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
3768 For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024


https://orcid.org/0009-0006-0236-4707
https://orcid.org/0000-0003-4679-8081
https://orcid.org/0009-0007-0851-665X
https://orcid.org/0000-0002-7577-783X
https://orcid.org/0009-0002-5760-9346
https://orcid.org/0000-0001-8560-2120
https://orcid.org/0000-0002-3784-0420
https://orcid.org/0000-0002-4367-5097

P. Yan et al.: Comprehensive Survey of Deep Transfer Learning for Anomaly Detection

IEEE Access

RNN  Recurrent Neural Network.
SAE  Sparse Auto-Encoder.

I. INTRODUCTION

A. MOTIVATION AND CONTRIBUTION

The fourth industrial revolution — Industry 4.0 [1], that is char-
acterized by increasing efficiency through the digitization
of production, automation, and horizontal integration across
companies [2], and the advent of connected cyber-physical
systems — referred to as internet of things [3], [4], [5],
increases the need for autonomous and intelligent process
monitoring. This can be exemplified by the use case of a
smart factory in which industrial processes are transformed
to be more flexible, intelligent, and dynamic [6], or the
use case of decentralized energy production with wind and
solar [7]. In these examples, Al-powered anomaly detection
integrates the analysis of time series data to detect unusual
patterns in the recorded data. To achieve this, a deep learning
architecture is modeled to capture indicators of normal
and abnormal operation. The learning process involves the
analysis of historic time series sensor data of normal and
possibly abnormal operations. This data is for example used
for representation- or reconstruction-based learning. After
training, the deep learning model represents or reconstructs
normal data in a certain way. The model is designed in
a way that abnormal data-because it is different—is either
represented differently from the normal data or reconstructed
poorly and thus recognized as an anomaly. By identifying
operational parameters that fall outside a window of normal
interval, operators can trigger interventions and adjustments
to ensure high product quality and safe operations. To achieve
this, physical properties such as pressure or temperature are
monitored and analyzed in real-time applications. Changes
in these variables capture drifting and abrupt faults caused
by process failures or malfunctions [8]. The production
process must adapt quickly to changes in production and
the environment to meet the requirements for flexibility
and dynamics. Further use cases exist in a wide range of
diverse fields, such as manufacturing monitoring including
automatic quality control [9], [10], predictive maintenance
of goods and services [11], [12], [13], [14], [15], [16],
infrastructure monitoring of building systems [17], [18]
and power plant [19], digital agriculture [20], petrochemi-
cal process optimization [21], computer network intrusion
detection [22], or aircraft flight monitoring [23], to name
a few.

Artificial Intelligence, particularly deep learning, provides
competent frameworks with underlying deep neural networks
to automate intelligent monitoring and provide valuable
assistance to operators and high-level control systems.
Leveraging the power of deep learning, informative features
of the data — technically referred to as representations [24] —
can be captured in a machine-learned model and thereby
enable a detailed understanding of variations in standard
operations.
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However, the task or underlying data may change under
non-trivial and non-stationary conditions. For instance, the
monitoring system of a milling machine may be assigned
the task of identifying a blunt tool based on vibration in
one scenario, and in a different scenario, it may utilize the
same vibration measurements to detect insufficient cooling
lubricant. Knowledge acquired to solve one task in one setting
with a given tool, machined part, and type of machine may be
transferred to solve the same or similar task in another setting
with a different tool, machined part, or type of machine.
Slowly changing conditions (drifts), abrupt mode changes
(for instance, due to tool change), and new tasks (such as the
detection of another failure mode) may require adjustments
to the deep learning model. In these cases, it is desirable to
adjust the analysis model without retraining from scratch, as it
is costly or impractical to acquire sufficient training data to
learn the full manifold [25].

Transfer learning is a machine learning framework to
achieve this [26], [27], [28], [29], [30]. As depicted in Fig. 1,
data and algorithms from one task may be leveraged in a new
related one. By accounting for changes in data distributions
and tasks or leveraging existing models, knowledge learned
from related tasks can be used to improve performance
on new tasks instead of retraining a model for each
individual application from scratch. This transfer-learning-
boosted modeling forms the basis for identifying anomalies
that deviate from established patterns in a non-trivial manner
without full re-training.

Deep transfer learning [29], [31] extends the transfer
learning paradigm by leveraging deep learning. In industrial
contexts, it ensures optimal production even as produc-
tion conditions shift. This dynamic adaptability is key in
maintaining the effectiveness of anomaly detection systems
in the dynamic environment that characterizes industrial
applications including the broad categories of manufacturing
process monitoring, predictive maintenance, energy manage-
ment, and infrastructure facility monitoring as detailed in
Section IV.

This survey is a non-systematic yet application-oriented
review with a narrow focus on deep transfer learning for
anomaly detection in time series in the industry. Our main
contributions are as follows:

« We categorize transfer learning problem settings and
then systematically summarize deep transfer learning
approaches into four categories. With the foundations
of deep transfer learning, we equip the reader with
a working knowledge of the main principles and
intuitions.

« We analyze the recent literature and provide a compre-
hensive overview of the current state of the art of deep
transfer learning approaches for time series anomaly
detection for main industrial applications.

« We discuss potential challenges and limitations
and then give directions for future work with
actionable recommendations for Al practitioners and
decision-makers.
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FIGURE 1. Transfer learning is useful when changes in production take
place and sufficient data for full retraining is not available as shown here
for a hypothetical production of two types of gears. In the production of
gear A, a lot of data is available to train a deep learning model that helps
improve production. In the production of gear B, data is more limited, and
the traditionally trained deep learning model fails to improve production.
With suitable transfer learning methods, however, data and algorithms
acquired during the production of gear A can be leveraged to support
improving the production of gear B because the data and tasks in the
production of both gears are related.

To our knowledge, this is the first survey of deep transfer
learning in the narrow context of industrial time series
anomaly detection. The review describes the underlying
methodological principles and methods within a generic
taxonomy and discusses practical implications for Al prac-
titioners to make informed decisions. We cover multiple
areas of application, including manufacturing monitoring,
maintenance prediction, and infrastructure monitoring.

The rest of the paper is organized as follows. First,
we provide an overview of transfer learning by introducing
a taxonomy of transfer learning problem settings and further
categorizing deep transfer learning approaches (Section II).
Then, we describe the task of anomaly detection in time series
(Section III) in selected industrial applications (Section IV).
To conclude, we discuss current challenges, limitations, and
future research directions (Sections V-VI) in the field.

B. SURVEY METHODOLOGY

We seek to identify application-oriented peer-reviewed liter-
ature in the intersection of transfer learning as the learning
framework, time series as the data domain, and anomaly
detection as the task (Fig. 2). To execute the selection process
of literature, we search related terms on Google Scholar,
Scopus, Elsevier, and IEEE databases. Based on the title,
we pick those papers that may fit the narrow topic into a pre-
selection list. Eventually, we included publications matching
the topic according to the abstract and screening of the
content.

Along the reviewed topical papers, we include contextually
relevant papers such as deep learning approaches that are
agnostic to data types and tasks. For deep transfer learning
in general, we searched the keywords “transfer learning”
and “deep transfer learning”. Specifically, we focus more
on deep transfer learning approaches. Then, we switch to
the application-oriented cases where deep transfer learning
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FIGURE 2. Venn diagram of this survey’s focus on the intersection of
transfer learning, anomaly detection, and time series analysis.

is applied to tackle time series anomaly detection in the main
industrial applications. To achieve this, we search queries like
“deep transfer learning for time series anomaly detection”
and “deep transfer learning for predictive maintenance”.
After searching in the database, we carefully check and
screen out the most relevant literature based on the fol-
lowing inclusion/exclusion criteria: (1) We only include the
applications that utilize deep transfer learning approaches,
instead of traditional transfer learning; (2) We only include
publications after 2013; (3) We cover all three main topics
in Fig. 2 (highlighted with cycles), but we specifically focus
on the intersection of the three aforementioned domains.
After carefully screening out, we select 45 papers for
deep transfer learning in general and 37 papers for deep
transfer learning for anomaly detection in industrial time
series.

Fig. 3 illustrates the taxonomy in this survey to categorize
reviewed studies based on different aspects, including deep
transfer learning, time series anomaly detection, industrial
applications, current challenges, and future directions.

Il. DEEP TRANSFER LEARNING

A. OVERVIEW OF THE FIELD

Transfer learning in the setting of industrial time series
analysis for anomaly detection is a tool to increase the
flexibility of autonomous process monitoring. It addresses the
challenge of adapting the algorithm, and thus the decision
process, to a related but previously unseen setting where
limited training data is available. The transfer eliminates
the need to train a deep learning model from scratch,
which in turn reduces the amount of necessary data and
compute required to solve a new task or adjust to a new
data domain. In either case, knowledge is transferred from
a source to a target domain, as described below. The
transfer learning problem settings can be categorized as
inductive or transductive transfer depending on the data
and task conditions. We categorize deep learning-based
transfer learning approaches into instance transfer, parameter
transfer, mapping transfer and domain-adversarial transfer.
We illustrate them by using two intuitive examples in
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FIGURE 3. A generic taxonomy in this paper to analyze deep transfer learning for industrial time series anomaly detection.

Fig. 4, with more details being elaborated in the following
sections.

B. FORMAL DESCRIPTION OF DEEP TRANSFER LEARNING
Domain D includes the domain feature space X and marginal
data distribution P(X) as D = {X, P(X)}, where X is the
domain data, X = {x1,...,x,} € &. Similarly, a learning
task is defined as 7 = {J,fr(-)}, where ) denotes the
task space and usually represents class label. For anomaly
detection tasks, ) is the set of the two classes ‘“‘normal”
and “abnormal”. The function f7(-) can be used to predict
the corresponding label of a new instance x;. The objective
predictive function f7(-) learned from domain data can be
interpreted as a form of conditional probability. Thus, the
learning task can be rewritten as 7 = {), P(Y|X)}, where
P(Y|X)is used as a likelihood measure to determine how well
a given data set X fits with a corresponding class label set Y.

In the surveyed literature on transfer learning for anomaly
detection in industrial applications, transfer learning methods
from other fields, such as computer vision and natural
language processing, were adopted. We therefore use a
generic classification scheme for transfer learning methods.
We largely follow the definition of transfer learning in
literature [27], [28]. Given a source domain Dg and learning
task 7g, as well as a target domain D7 and learning task
Tr, transfer learning aims to improve the performance of the
predictive function f7(-) in Dr by transferring knowledge
from Ds and 7g, where Ds # Dy and/or Ty # 7r. Usually,
the size of source dataset is much smaller than target dataset.

This definition of transfer learning can be broadened, i.e.,
the target task can benefit from multiple source domains.
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Transfer learning is thus the idea of making the best use
of related source domains to solve new tasks. In contrast,
traditional machine learning (ML) methods learn each task
separately from scratch, and each respective model can only
be applied to the corresponding task.

We define a taxonomy of transfer learning problem settings
as shown in Fig. 4 mainly depending on the label availability
in the two domains to be easily applicable to the requirements
of a case at hand (compare different definitions for other
purposes in the literatures [27], [28], [29]).

We differentiate it into inductive and transductive transfer
learning [28]. Inductive transfer learning is applied when the
target task is different from the source task, i.e., 7g # 77
(meaning that {Ys # Y7} or {P(Ys|Xs) # P(YT|Xr)}). The
conditional probability distribution is induced with labeled
training data in the target domain [34]. A corresponding
example is illustrated as Scenario A in Fig. 4, where the
learning tasks are different and the goal of transfer learning
is to recognize point anomaly from the collective anomaly
task. Related areas of inductive transfer learning are multi-
task learning [35], [36] and sequential learning, depending
on whether tasks are learned simultaneously or sequentially.

Transductive transfer learning is applied when the source
and target tasks are the same, while the source and target
domain are different, i.e., 7s = 77 and Ds # D7 (meaning
that {Xs # X7} or {P(Xs) # P(Xt)}. A subcategory is
domain adaptation [37] when the feature space of source
and target data are the same but the corresponding marginal
distributions are different (i.e., {Xs = X7} and {P(Xs) #
P(X71)}). Scenario B in Fig. 4 is an example of transductive
transfer learning where the learning tasks are identical,
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FIGURE 4. Taxonomy of transfer learning problem settings (left; see Section 1I-B for the definition of terms) and corresponding examples using deep
transfer learning approaches (right). On the left, we classify transfer learning problems as inductive or transductive transfer settings Correspondingly,

we provide two examples using deep transfer learning methods: In the inductive transfer setting, we collect time series data from screw production and
wrench production. Labeled screw data (A1) is used to detect collective anomalies (a set of data points behaving differently compared to the entire time
series [32], [33], further explained in Section IlI). Then, parameter transfer (Section 11-C2) is applied to transfer knowledge by fine-tuning the pre-trained
model from labeled screw data to detect point anomalies (further explained in Section Ill) on labeled wrench data (A2). For the transductive transfer
setting in the lower panel, we present a different situation for contextual anomaly detection (further explained in Section Ill). In this case, we have two
datasets, B1 and B2, analyzed using the same model. However, the data in B2 significantly differs in appearance from the data in B1. To address this
problem, instance transfer (further explained in Section 11-C1) is used. Through this learning process, the data in B2 is transformed in a way that makes it
compatible with the model that has been trained exclusively on data from B1. Transfer learning, in this case, is thus achieved by adapting the data to fit
the model through domain adaptation rather than adjusting the model to fit new data.

TABLE 1. Overview of deep transfer learning approaches with references.

Deep transfer learning approach

Short description

References

Instance transfer

Augmenting target data by transforming data instance from the
source domain to the target domain

[42]-[44]

Parameter transfer

Transfering learned parameters of a pre-trained model from so-

urce domain and adapting the model for target domain

[17], [45]-[53]

Mapping transfer

Reducing feature discrepancies between source and target do-
mains by minimizing the distance between mapped features in

the latent space

[27], [54]-[59]

Domain-adversarial transfer

Extracting an indiscriminative feature representation between

source and target domain through adversarial training

[60]-{65]

and the goal of transfer learning is to recognize contextual
anomalies in an unlabelled data set.

C. DEEP TRANSFER LEARNING APPROACHES

Since deep neural networks (DNNs) can learn useful
feature representations from large amounts of data through
back-propagation [24], they have been widely adopted for
tackling complex problems in practice [38], [39], [40],
[41], which involve large-scale and high-dimensional data.
Deep transfer learning methods implement transfer learning
principles within DNN and, among other things, enable
deep learning based analysis pipelines to be applied to new
datasets.
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Based on the transferring techniques in the surveyed litera-
ture, we access how knowledge is shared across domains and
help increase the performance in the target task or domain.
we divide deep transfer learning approaches further into
4 categories: instance transfer, parameter transfer, mapping
transfer, and domain-adversarial transfer, as illustrated in
Table 1. Furthermore, instance transfer, mapping transfer,
and domain-adversarial transfer can be described as data-
driven approaches. They focus on transferring knowledge
by leveraging a large amount of data. It usually involves
transforming and adjusting the data instances or manipulating
data from different domains by feature alignment, feature
mapping, etc. On the other hand, parameter transfer is
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a model-driven approach, which places more emphasis
on understanding the underlying structure and dynamics
of the data. It usually involves transferring the parame-
ters of pre-trained model from source domain to target
domain.

1) INSTANCE TRANSFER

The intuition of instance transfer is that although source
and target domains differ, it is still possible to transform
and reuse source data together with a few labeled target
samples. A typical approach is to re-create some labeled data
from the source domain. For example, He et al. propose an
instance-based deep transfer learning model with an attention
mechanism to predict stock movement [42]. They first create
new samples from the source dataset that are similar to the
target samples by using an attention network and then train
another network on the created samples and target training
samples for prediction tasks. Since two networks are trained
separately for different tasks, it needs further investigation
to what extent the generated samples can contribute to
the prediction task. Amirain et al. introduce an innovative
instance transfer method for domain adaptation [43]. They
propose an effective auto-encoder model with a pseudo-label
classifier to reconstruct new data instances that obtain general
features across different datasets for medical image analysis.
Taking another avenue, Wang et al. exclude the source data
that negatively impacts training target data. Specifically, they
choose a pre-trained model from a source domain, estimate
the impact of all training samples in the target domain,
and remove samples that lower the model’s performance.
Then, the optimized training data is used for fine-tuning.
The experiments are conducted on large image datasets [44].
Instead of transferring the data, the approach excludes
certain samples based on the pre-trained model’s predictions.
Additional validation is required in industrial environments,
especially when only a few data are available in some
industrial settings.

2) PARAMETER TRANSFER

Parameter transfer adapts the learned parameters of a
pre-trained model to a new model. This assumes that DNNs
can get similar feature representations from similar domains.
Thus, through transferring parts of the DNN layers together
with pre-trained parameters and/or hyperparameters, the
pre-trained model is used as a base model to further train
on target domain data and solve different learning tasks.
Particularly, parameter transfer has gained popularity in
computer vision and natural language processing, where large
models are pre-trained on large datasets [45]. In natural
language processing, for example, BERT [46] and GPT-3 [53]
are based on the Transformer architecture [48] which can
be fine-tuned for a variety of downstream tasks, including
content generation [49], language translation [66], question
answering [67], and summarization [50]. In computer vision,
Yosinski et al. investigate the general transferability of CNNs
in image recognition [30]. They analyze the transferring
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effect by fine-tuning or freezing a certain amount of
layers in the networks. Experimental results show that
transferring features from source to target domain improves
network generalization compared to those trained solely on
the target dataset. Additionally, they quantify the model
performance by assessing how features at what layers
transfer from one task to another. It is surprising to find
that transferring a pre-trained network from any number
of layers can produce a boost for fine-tuning on a new
dataset. However, the experiments are only conducted on
certain image datasets, and Tuggener et al. show [68] the
limits of parameter transfer when the chosen architecture
is overfitted on the particularities of certain large-scale
datasets.

Unlike the typical way of fine-tuning a pre-trained model,
Guo et al. propose an adaptive fine-tuning approach SpotTune
to find the optimal fine-tuning strategy for the target
task [51]. Specifically, a policy network is used to make
routing decisions on whether to pass the target instance
through the pre-trained model. The results show SpotTune
is effective in most cases by using a hybrid of parameter
and instance transfer. Sager et al. propose an unsupervised
domain adaptation for vertebrae detection in 3D CT volumes
by transferring knowledge across domains during the training
process [52].

3) MAPPING TRANSFER

Mapping transfer refers to learning a related feature represen-
tation for the target domain by feature transformation, which
includes feature alignment, feature mapping, and feature
encoding [27]. The goal is to reduce feature discrepancies
between source and target domains by minimizing the
distance between the distribution of latent feature represen-
tation. There are various criteria to measure the distribution
difference, including Wasserstein distance [69], Kullback-
Leibler Divergence [70], etc. Among them, Maximum Mean
Discrepancy (MMD) [55] is most frequently adopted in
mapping transfer from the surveyed papers. The MMD is
calculated as the difference between the mean embeddings of
the samples in a reproducing kernel Hilbert space associated
with a chosen kernel function. Added to the target loss
function, it serves as a powerful tool for comparing the
similarity of complex, high-dimensional datasets using a
wide variety of kernel functions.

Previous work has focused on transferred feature extrac-
tion/dimensionality reduction using MMD. Wang et al. focus
more on the subdomain of the same subcategory instead of
the alignment of the global distribution between source and
target domain [54]. Specifically, they first use the attention
mechanism to extract discriminative features that are most
related to the fault signal. Then, local MMD is applied to
transfer knowledge to adjust the distribution of related sub-
domains under the same category. Long et al. propose their
Joint Adaptation Network [56] based on MMD, in which the
joint distributions of multiple domain-specific layers across
domains are aligned. In addition, an adversarial training
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version was adopted to make distributions of the source and
target domains more distinguishable. Similarly, Long et al.
adopt multi-layer adaptation and proposed Deep Adaptation
Networks (DAN) [57]. The first three convolutional layers
are used in DAN models to extract general features. For the
last three layers, multi-kernel MMD bridges the cross-domain
discrepancy and learns transferable features. Zhang et al.
propose a Deep Transfer Network in which two types
of layers are used to obtain domain invariant features
across domains by adding MMD loss. The shared feature
extraction layers learn a shared feature subspace between
the source and the target samples, and the discrimination
layer is then used to match conditional distributions by
classifier transduction [58]. Venkateswara et al. propose
Deep Adaptation Hash network [59], which is fine-tuned
from the VGG-F [71] network. Multi-kernel MMD 1loss is
employed to train the Deep Adaptation Hash network to
learn feature representations that align the source and target
domains.

4) DOMAIN-ADVERSARIAL TRANSFER

Inspired by Generative Adversarial Networks (GANs) [72],
[73], the goal of domain-adversarial transfer is to extract
a transferable feature representation that is indiscriminative
between source and target domain through adversarial
training. Adversarial transfer is primarily concerned with
addressing domain adaptation problems.

Soleimani and Nazerfard utilize the GANs framework to
perform cross-subject transfer learning [60]. The generator
is used to generate samples that are similar to the target
data. Meanwhile, the discriminator distinguishes the fake
samples from the target samples. The classifier is trained to
discriminate the labeled source data and fake samples to learn
generalized features invariant to source and target domains.
It is important to note that in real-world applications, training
GANSs can be unstable due to mode collapse, especially in
the case when the source data and target data are unbalanced,
and the generator may fail to generate fake samples that
can confuse the discriminator. Tzeng et al. adopt a domain
confusion loss across the source and target domains to
learn a domain invariant representation [61]. Ganin et al.
propose a new domain adaptation architecture by adding
a domain classifier after feature extraction layers [63].
A gradient reversal layer is used to ensure the similarity
of the feature distributions over source and target domains.
Similarly, Ozyurt et al. develop a novel framework for
unsupervised domain adaptation of time series data by
using contrastive learning and domain-adversarial transfer
learning [62]. A domain classification loss is applied to
extract domain invariant features. The drawback is that the
experiments are designed in a way that the source and target
data sizes are similar, whereas in practice, the target data
is usually much fewer than the source data. Ajakan et al.
propose a domain adversarial DNN in which a domain
regressor is applied to learn a domain invariant feature
representation [64]. Tzeng et al. use an unsupervised domain
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adaptation method that combines adversarial learning with
discriminative feature learning [65].

D. RELATED LEARNING PARADIGMS

Besides the dedicated transfer learning approaches discussed
above, there are methods that represent alternative ways to
solve tasks across domains or are complementary to the native
transfer learning methods.

o Multi-task learning is a machine learning technique
where a single model is trained on multiple tasks
simultaneously. The idea is to improve the performance
of the model by learning a shared representation that
captures the features between all tasks. Because the
network learns to solve multiple tasks, it may generalize
better to new data and tasks.

o Continuous learning [74] is a learning process where
the model continuously learns new tasks from previous
tasks over time without forgetting how to solve previous
tasks. To some extent, continuous learning can be
seen as a sequential transfer learning process, with the
constraint to preserve the performance of the previous
tasks, which leads to an accumulation of knowledge over
time.

o Few-shot learning [75] is a type of machine learning
where a model can learn and perform well on a
new task with only a limited number of labeled
samples. In extreme cases, the model can learn with
one label [76] and without any label [77]. Whereas,
transfer learning usually involves reusing the model
from relevant tasks and continuing training on the target
dataset.

o Domain generalization [ 78], [79] focuses on developing
a generalized model from one or multiple distinct
domains to detect unseen target domain data. The
main goal is to overcome the domain shift problem.
Domain generalization and transfer learning are both
applied to transfer knowledge from source domain to
target domain. The major difference between trans-
fer learning and domain generalization lies in the
utilization of target domain data. Transfer learning
leverages knowledge from source domain and target
domain. In contrast, domain generalization solely learns
from source domain, without access to the target
data.

o Meta-learning [80], [81] is known as ‘“learning to
learn”. For meta-learning, models are trained on a
different set of tasks instead of a set of data in the
traditional machine learning setting. In this sense, meta-
learning can be seen as a form of transfer learning
because it involves transferring knowledge from task to
task.

o Knowledge distillation [82] effectively learns a small
model trained to mimic the behavior of a larger, more
complex model. The knowledge learned by the larger
model can be transferred to the smaller model, which
can then be used for the target task.
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o Self-supervised learning [83], [84] involves training a
model to predict some aspect of the input data without
any external supervision. The learned representations
can be used for various downstream tasks, including
those that involve transferring knowledge from one
domain to another.

Ill. TIME SERIES ANOMALY DETECTION IN INDUSTRY
Time series anomaly detection encompasses statistical tech-
niques to analyze and interpret sequential temporal data.
In the context of industrial processes, time series anomaly
detection plays a crucial role in automating monitoring,
effectively scheduling maintenance, and controlling the
efficiency, quality, and performance of these processes.
For example, after the detection of an anomaly, another
model that captures the relationship between time course
and different failure modes or drifts may be exploited for
predictive maintenance. For example, in injection molding
process monitoring, anomaly detection models are used
to analyze recorded sensor data from injection molding
machines to detect bad parts and identify the root cause of
anomalies [85]. There are two basic ways to detect anomalies:
for supervised anomaly detection, labels (normal/abnormal)
are needed per time series to build a binary classifier [86].
For unsupervised anomaly detection, an anomaly score
or confidence value that is conditioned purely on normal
data can be used to differentiate abnormal from normal
instances [87], [88].

A. ANOMALY TYPES

According to the literature [89], an outlier is an observation
that deviates significantly from other observations in a
way that it is likely that it was generated by a different
mechanism. In this survey, we focus on time series data
collected from machine sensor readings in the context of
industrial applications, either univariate (only one variable is
recorded over time) or multivariate (several simultaneously
recorded measurements). Time series anomalies might occur
for various reasons, including internal factors (e.g., temporary
sensor error, machinery malfunction) and external factors
(e.g. human error, ambient temperature). They can be divided
into three categories [32], [33]: point anomalies, contextual
anomalies, and collective anomalies. Point anomalies are
isolated samples that deviate significantly from the normal
behavior of that time series, which can be seen on the left
of Fig. 5, e.g., a sudden spike in a pressure reading from a
manufacturing machine sensor. These point anomalies can be
caused by temporal sensor error, human error, or abnormal
machinery operations. Contextual anomalies represent data
points that deviate from normal ones only in their current
context, and an example can be seen in the middle of
Fig. 5. Collective anomalies are a set of data points that
in their entirety (but not individually) are abnormal with
respect to the entire time series, as shown on the right of
Fig. 5.
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FIGURE 5. Three time series anomaly types. Gray lines represent recorded
time series signals, and dashed green lines are a priori set thresholds of
normal operations. The red dots and the red line indicate anomalies.
Point anomalies are single values that fall outside of a pre-set range (left
panel). Contextual anomalies are samples that deviate from the current
context (middle panel). Collective anomalies are defined as a series of
data points that all fall within the range of operation but jointly are not
expected (right panel).

B. CHALLENGES

Challenges regarding detecting time series anomalies persist
due to two specific properties: (1) The complexity of time
series data. As the automation level of industrial processes
and the complexity of industrial systems increases, univariate
time series data become insufficient and inefficient in
representing any industrial process in its entirety. Hence,
more sensors are installed to monitor the whole process,
making it necessary to detect anomalies from multivariate
time series, which poses particular challenges since it requires
consideration of temporal dependencies and relationships
between variables and modalities. Many researchers work on
discovering generalized patterns from spatial and temporal
correlated multivariate time series data. Zhang et al. propose
a Deep Convolutional Autoencoding Memory network [87],
where they build an autoencoder to capture spatial depen-
dency of multi-variant data using MMD to distinguish noisy,
normal and abnormal data. Zhu et al. propose an interpretable
model agnostic multivariate time-series anomaly detection
method for applications of cyber physical systems [90].
The new method considers both the temporal and feature
dimensions through an adaptive mask based series saliency
module to produce accurate anomaly detection results and
reasonable interpretations in the form of a mask matrix. (2)
The dynamic variability in industrial processes. Industrial
processes often have high dynamic variability and can be
affected by a wide range of conditions, such as changes in
temperature, pressure, and humidity. These conditions can
cause fluctuations in the process outputs, which leads to
data shift and domain shift. This can make it challenging
to detect anomalies and maintain control over the industrial
process.

C. ANOMALY DETECTION METHODS

Time series anomaly detection has been investigated for
decades, and various types of methods have been pro-
posed [91]. This paper exclusively discusses the time series
anomaly detection techniques using deep learning, leveraging
its robust representation learning capabilities. Current deep
learning methods can be mainly divided into reconstruction-
based, forecasting-based, and other methods. Fig. 6 illustrates
the two main methods. In deep reconstruction-based anomaly
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FIGURE 6. lllustration of deep learning-based anomaly detection (top
row) with reconstruction-based (center row) and forecasting-based
(bottom row) anomaly detection in time series. The first column
represents two time series. The second column shows the reconstructed
(top) and forecasted (bottom) time series. The third column shows the
difference between reconstructed/forecasted time series. Deviations from
the reconstructed or forecasted time series are indicative of an anomaly.
In deep reconstruction-based anomaly detection, the entire sequence is
reconstructed in a decoder-encoder architecture, and the reconstructed
sequence is used to compare with the actual sequence. In deep
forecasting-based anomaly detection, the end of a sequence is predicted
using the start of the sequence and only the forecasted sequence is used
to assess the similarity to the ground truth. In this example, the red time
series has a likely anomaly at about 1.5 seconds. (Best viewed in color.)

detection, the reconstructed sequence is used to compare with
the actual sequence. Differently, in deep forecasting-based
anomaly detection, only the forecasted sequence is used to
assess the similarity to the ground truth.

1) RECONSTRUCTION-BASED METHODS
Reconstruction-based methods aim to learn the data dis-
tribution of the normal time series and differentiate the
abnormalities from the normal ones by computing the
reconstruction errors. Audibert et al. propose a fast and stable
method — Unsupervised anomaly detection for multivariate
time series [92], based on adversely trained autoencoders.
The encoder-decoder architecture within an adversarial train-
ing framework combines the advantages of autoencoders and
adversarial training while compensating for the limitations
of each technique. After training two autoencoders, the
anomaly score is defined by balancing the reconstructed
errors from the two autoencoders with two hyperparameters.
However, the challenge arises in selecting these two hyper-
parameters of the anomaly score when the testing dataset is
unavailable.

Malhotra et al. also formulate an anomaly score based
on reconstruction error [93]. They first train the LSTM
encoder-decoder model to reconstruct the normal time series.
Subsequently, they leverage the reconstruction errors to
calculate the probability by using Maximum Likelihood
Estimation to detect a specific point within a time series as an
anomaly. They set a window to detect anomalies. The window
will be labeled as anomalous if the probability exceeds a
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threshold. Similarly, Wei et al. also propose an LSTM-based
encoder-decoder model to detect multivariant time series
sequences based on the reconstruction error [94]. The major
difference is the anomaly detection criteria. They assume
the reconstruction error of train/test data follows the normal
distribution and detect anomalies by using the 2-sigma rule of
the normal distribution as a threshold. Zeng et al. propose an
adversarial transformer structure to detect multivariate time
series anomalies effectively [95]. Here, two-stage adversarial
training is applied for the transformer. In the first stage, two
transformers are trained by minimizing the reconstruction
error to capture the temporal trends in the time series.
In the second stage, the reconstruction error serves as prior
knowledge in the adversarial training process, enabling the
model to distinguish anomalies from normal time series.
Then, an anomaly score is defined by combining the anomaly
probability and reconstruction error. Again, a threshold has
been chosen to differentiate anomalies from normal ones.

GANS, as effective unsupervised learning methods, have
been used in time series anomaly detection. Anomaly detec-
tion methods based on GANs focus on extracting features
by adversarial training on normal samples. Consequently,
features from the abnormal samples diverge from those
of the normal ones, reflecting in reconstruction error and
discrimination value. Li et al. use LSTM-RNN as a base
model for building generator and discriminator in GAN
[96]. The proposed framework considers multiple variables
to capture the temporal correlation of multi-time series
distributions. Additionally, they proposed a novel anomaly
score, which can detect anomalies through discrimination and
reconstruction. More specifically, the score is a combination
of the reconstruction difference between generated data
and original data and the discrimination results from the
discriminator. Similarly, Niu et al. and Bashar et al. both
propose an LSTM-based VAE-GAN for time series anomaly
detection, where LSTM networks are used as the generator,
and discriminator [97], [98]. When it comes to anomaly
scores, setting an optimal threshold is usually a critical step.
However, using a small portion of the test set to decide
the optimal threshold may not be practical in real-world
scenarios [97]. Additionally, it is important to note that the
method has been only tested for point anomaly detection,
further investigation is required when they are applied to
detect other anomaly types.

2) FORECASTING-BASED METHODS

Forecasting-based methods predict the value of the following
timestamps and predict temporal anomalies according to
the prediction error. Kim et al. propose a forecasting-based
unsupervised time-series anomaly detection method using
transformer architecture [99]. The idea is to train a
transformer-like model by forecasting a fixed-length time
series based on the previous timestamps. The trained model
is used to predict time series with an anomaly score such that
an instance where the anomaly score is larger than a static
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threshold is defined as an anomaly. A dynamic thresholding
technique is also mentioned but not explicitly discussed in the
paper.

Deng and Hooi propose a novel attention-based graph
neural network approach [100] that learns a graph of
dependence relationships between multi-variant time series
signals by forecasting the behavior based on past time
series. Then, a graph deviation scoring is defined for each
sensor to detect and explain anomalies. Tang et al. propose
an interpretable multivariate time series anomaly detection
method based on graph neural networks and gated recurrent
units [101]. The feature representation is learned through
forecasting the future time series segment. An abnormal score
is set for each time series to detect anomalies. The feature
embedding is then used for 2D visualization through t-SNE
plots to interpret the clusters within time series from different
Sensors.

3) OTHER METHODS

Ding et al. propose a joint network to integrate the advantages
of reconstruction and forecasting/prediction [102]. First,
they propose a multimodal graph attention network to
tackle the spatial-temporal dependencies for multimodal
time series. Further, they optimize the reconstruction and
prediction modules simultaneously to predict anomalies.
Himeur et al. take advantage of annotated data and directly
use a DNN as a classifier to classify normal and abnormal
energy consumption types [103]. The enormous imbalance
of real anomaly patterns is one concern in the approach.
Thus, a normalized technique of power consumption data
is applied to deal with this problem. The normalized data
represent the difference in power consumption rates of each
current time sample and the previous one. It can provide
information on how fast the consumption reacts to the
time evolution. However, any further evaluation of this
technique is not discussed, and it is still an open problem
regarding anomaly detection for other datasets. Yang et al.
propose a contrastive learning structure with dual attention
to learn a permutation invariant representation of the data
with superior discrimination characteristics between normal
points and anomalies [104]. Unlike most reconstruction-
based models, their model is a self-supervised framework
based on representation learning. The new method achieves
state-of-the-art comparable performance on six multivariate
and one univariate time series anomaly detection benchmark
datasets. However, the extensive framework with two multi-
head-attention blocks may be prone to overfitting. This
concern is amplified by the absence of training details,
leaving only evaluation details disclosed.

In principle, these anomaly detection approaches are
applicable to all types of anomalies. Reconstruction-based
methods are typically applied to the entire or a portion of the
time series. Long-time series are commonly segmented into
subsequences using a predefined sliding window. In the case
of detecting context/collective anomalies, the reconstructed
loss of the time series sequence is evaluated within the
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predefined sliding window, if the reconstruction loss is larger
than an acceptable threshold, then that time series sequence
is classified as an anomaly. In the case of point anomalies,
reconstruction is performed at each single time stamp, akin
to a regression problem, and then the reconstruction loss
of each single timestamp is evaluated to determine whether
the single timestamp is anomalous or not. It is also applied
to forecasting-based anomaly detection methods, instead of
computing reconstruction error, forecasting-based methods
predict the value in the next time stamp for point anomalies
or the next time series sequence for context/collective
anomalies. The anomalies will be detected based on the
deviation between the predicted value and the normal value.
Other anomaly detection approaches usually combine the
reconstruction-based and foresting-based methods.

To sum up, these methods are applicable to each type
of anomaly. However, the effectiveness of these anomaly
detection approaches may vary depending on the anomaly
detection tasks at hand, which are characterized by the
granularity at which the time series data is observed and
analyzed.

IV. INDUSTRIAL APPLICATIONS

A. OVERVIEW

Deep transfer learning techniques have gained prominence in
computer vision and natural language processing, primarily
due to the abundance of available datasets. However, their
adoption in the context of industrial time series data has
been comparatively limited. This hesitancy can be attributed
to the limited public availability of such datasets and the
unique domain-specific characteristics they possess, which
complicate generalized advancements. Encouragingly, there
has been a recent uptick in the application of deep transfer
learning for anomaly detection within the industry such as
fault diagnosis [105], quality management [106], manufactur-
ing process monitoring [85], network/software security [107],
and infrastructure monitoring [108]. These can be mapped
onto the core industrial domains of manufacturing process
and infrastructure monitoring, predictive maintenance, and
energy management. Table 2 presents a compact comparison
of the related works using deep transfer learning approaches
to solve these tasks.

Fig. 7 illustrates the Sankey diagram of the connections
between industrial applications and the deep transfer learning
approaches based on our literature survey. The diagram
shows every path that connects the four dimensions of
the methodology-problem-landscape within the surveyed
literature. The broader the path is, the more papers are related
to the linked topics. The goal is to give an overview of how
deep transfer learning is applied to industrial problems in
the recent literature and specifically show with these four
dimensions: (1) which deep transfer learning approaches
are actually used in practice; (2) what the main industrial
domains for time series anomaly detection are; (3) what deep
transfer learning category these domains belong to; (4) what
labels are available in source and target domain.
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FIGURE 7. Overview of Sankey diagram of transfer learning problem
setting, deep transfer learning approach categories, and label availability
in the surveyed industrial domains.

Key observations from Fig. 7 are: (1) parameter transfer
is much more frequently used than any other deep transfer
learning approach across all surveyed industrial applications
since fine-tuning a pre-trained model on target data is more
straightforward to implement by taking advantage of the
pre-trained model on the source dataset and usually without
fundamental modification on the model architecture. It is
noteworthy that instance transfer and adversarial transfer
do not appear in the diagram. Apparently, these two deep
transfer learning approaches are not considered effective in
time series anomaly detection tasks in industry. The difficulty
lies in implementing and training these scarcely researched
approaches in the industrial field, as indicated by the findings.
(2) Hybrid approaches of parameter and mapping transfer
can be seen in predictive maintenance. (3) Most industrial
applications use inductive transfer learning, indicating they
focus on leveraging labeled source and target data to solve
the target task, i.e., use supervised learning.

B. MANUFACTURING PROCESS MONITORING
Manufacturing process monitoring is crucial to ensure
high-quality products and low rejection rates. For example,
in injection molding machines, sensors are installed to detect
molding conditions in the cavities, such as cavity pressure and
temperature. These signals are used to analyze particularly
the mold filling and solidification process for each produced
part. Such cyclic processing data can also be seen in metal
machining (cutting force signal) or joining of parts (joining
force signal). Currently, parameter transfer is predominantly
used for manufacturing processes [10], [11], [20], [85], [113],
[114], [116], [117], [123].

Park et al. propose a transfer learning technique to detect
time series anomalies for different industrial control sys-
tems [118]. First, they apply principal components analysis
to reduce the dimension of source and target data. A DNN
model is then trained on the compressed source data, and
after a reasonable mapping algorithm is adopted to map the
features of source to target domain, the pre-trained model is
further trained on the target data. The model achieves good
performance even when a model is retrained with only a
proportion of target data. For the experiments, they only test
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on two comparatively larger datasets and fail to show that
the transferred model performs better than the one without
retraining for one dataset. Further investigation needs to
explain the negative transfer. Additionally, even when they
only take a small proportion of target data for transfer learning
purposes, the sample size still exceeds 5000, which exceeds
most industrial applications. Abdallah et al. apply parameter
transfer to monitor the operation status of manufacturing
testbeds with vibration sensor data [20], [116]. Hsieh et al.
transfer knowledge across three chambers in a production
line to detect anomalous time series data [123]. Results
show reduced training time and improved detection accuracy
through transfer learning. In injection molding, parameter
transfer is applied to transfer the knowledge from one or more
source domains to solve tasks in a target domain [10], [113],
[114]. Specifically, they employ simple fully connected
neural networks and transfer knowledge from one product to
another by freezing the first few layers and fine-tuning only
the last few layers. Instead of evaluating the time series data
directly from sensors, they represent the industrial process
by the parameters of the machine settings. However, they
can still provide useful insight for the case of the time-series
data. Tercan et al. build a bridge between simulated data and
real data using parameter transfer in injection molding [85].
Here, a fully connected neural network is trained on simulated
data and then partially or fully reused to further train on real
data. Results show that the transferred model performs better
than a network trained from scratch on real experimental
data. In manufacturing processes, a simulation model/process
hence can play a critical role, but deeper analysis is needed
to further understand and reduce the gap between simulation
and real data. Additionally, Lockner et al. explore the
impact of transfer learning with varying amounts of source
data and assess how performance is influenced by different
configurations of frozen layers [114]. Maschler et al. compare
different DNNs for anomaly detection tasks on metal forming
datasets [11]. Further, they propose a deep transfer learning
framework aiming to transfer knowledge between tasks.
However, the proposed architecture is not validated by
experiments. Later, Maschler et al. apply continuous learning
on the same dataset by transferring knowledge from several
source tasks to a target task to train a deep learning algorithm
capable of solving both source and target tasks [117].
Specifically, they use regularization approaches using altered
loss functions to solve related tasks that appear best suited.

C. PREDICTIVE MAINTENANCE

Predictive maintenance aims to predict the necessity of
maintenance before production is negatively impacted by
a failure. Tasks involve monitoring equipment to anticipate
maintenance requirements (i.e., predict probable future
failure) to optimize maintenance schedules [124]. Time series
anomaly detection is often used in respective systems to iden-
tify abnormal behaviors in operation that may indicate the
need for maintenance, such as increasing noise, vibrations,
etc.
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Mao et al. use mapping transfer with a Sparse Auto-
Encoder (SAE) for motor vibration anomaly detection [14].
A transformation from the source and target data to a
common latent feature space is learned with MMD loss to
make the feature distribution of two domains as identical
as possible. Similarly, Wen et al. also use mapping transfer
with an SAE architecture for fault detection of rotation
bearings, using an MMD regularizer to extract a common
feature representation [125]. Subsequently, they propose a
new MU-Net architecture to detect multivariate time series
anomalies [12]. First, they pre-train a U-Net [126] on a large
time series dataset for an anomaly detection task. Then, they
propose a new model MU-Net, which is built upon U-Net.
In MU-Net, each channel can leverage a pre-trained U-Net
through fine-tuning to transfer knowledge for multivariate
time series anomaly detection.

In a different application, parameter transfer is used to
predict the remaining useful life for tools in manufactur-
ing [127]. An SAE network is first trained to predict the
remaining useful life of a cutting tool on retrospectively
acquired data in an offline process. The trained network is
then transferred to production with a new tool for online
remaining useful life prediction. The result shows that
transfer-learning based hybrid deep learning significantly
reduces the training time and is highly suitable for real-time
industrial fault diagnosis/prediction in various environments.
Similarly, parameter transfer is implemented to reduce the
gap between different industrial environments [13], [112].
Xu et al. use a stacked SAE to extract general features
from source data and a digital-twin-assisted fault diagnosis
approach is presented to transfer knowledge from virtual
space to physical space for real-time use [13]. Here, a DNN
model is first fully trained in virtual space and then migrated
to the physical space using parameter transfer for real-time
use.

The above-mentioned literature proves that deep transfer
learning is a research field that could simplify the life cycle
of predictive maintenance systems and facilitate DNN model
reusability by reducing the required data and training time,
helping adapt them to solve similar tasks.

D. ENERGY MANAGEMENT

Energy management deals with systems that detect abnor-
mal excessive consumption caused by end-users’ unusual
behavior or malfunction of faulty devices or systems [120].
The goal is to develop automatic, quick-responding, accurate,
and reliable fault detection to save energy and build
environmentally friendly systems. Energy anomaly detection
systems monitor data during energy generation, transmission,
and utilization, to ensure normal energy consumption.

Xu et al. design a cluster-based deep adaptation layer to
improve a deep adaptation network, effectively reducing the
mismatch in transfer learning of spinning power consumption
anomaly detection [121]. The basic architecture consists of
five convolutional layers and three fully connected layers.
The weight parameters of the convolutional layers are
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shared between source and target domains. The cluster-based
deep adaptation layer is designed across the feature layers
of two networks to cluster feature representations of the
source and target domains respectively. The proposed method
shows superiority over fine-tuning and DAN because the
adaptation layer can minimize the distance between the
nearest neighbor clusters across the source and target
domains to match the most similar distribution of feature
representations. It is important to note that the anomalies
are defined and tagged by human experts as different types,
thus the problem becomes a classification task. However,
in real-world industrial applications, it’s almost impossible
to enumerate unknown anomaly types because of the
highly dynamic environment. Liang et al. successfully build
an electricity consumption time series anomaly detection
method in aluminum extrusion [119]. Parameter transfer is
applied to transfer domain knowledge from another data-
sufficient domain. First, they train on sufficient extruding
machine data in an unsupervised way and then use only a few
data samples from different extruding machines to adapt the
model by transfer learning. It is important to note that when
the target data is already sufficient, transferring knowledge
can be detrimental as it can decrease prediction accuracy
on the final task. Copiaco et al. aims to detect anomalies
for building energy consumption via transfer learning from
pre-trained CNN models [128]. First, they convert 1D time
series signals to 2D image representations. These serve as
inputs for pre-trained vision models to capture inherent
spatially invariant features. In the end, a SVM is applied
to classify anomaly types. The SVM classifier obtained
optimal results when operating upon a pre-trained ALexNet
model with normalized grayscale graphical representations.
However, a deeper discussion regarding the effect of the
different pre-trained models is not presented. Additionally,
converting 1D time series to 2D images by creating a matrix
representation of the sensor readings may lead to information
loss during the transformation process, which should be
further investigated.

E. INFRASTRUCTURE FACILITIES MONITORING
Infrastructure facilities monitoring refers to monitoring and
maintaining the conditions of infrastructure facilities, such
as bridges, buildings [129], and networks. This can include
detecting potential problems or failures. The goal is to
minimize the impact of failures on the public or the
environment. This application commonly uses parameter
transfer to transfer knowledge from facility to facility to take
advantage of similar data and tasks.

Dhillon et al. present a parameter transfer approach
towards building a network intrusion detection system based
on CNN and LSTM [22]. Specifically, They extract and learn
patterns by mapping the input data into a lower dimensional
representation by convolutional layers. Then, they employ the
LSTM layer to enhance learning and recognizing patterns
across time. In the end, a fully connected layer is used as
a classifier to predict normal and malicious data. To do
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the parameter transfer, they reuse the model architecture
and freeze most weight parameters for the target domain so
that they do not need a large training dataset to retrain the
model. However, they do not mention implementation details,
like which layers are frozen in the transfer learning stage.
Observing how transfer learning performs with different
frozen layers would be interesting. Pan et al. apply parameter
transfer to fully use the similarity of the anomalous patterns
across different bridges [108]. They train a CNN model on
one bridge data, then transfer the knowledge obtained by
the CNN model to a small part of the target data. They
update the last three fully connected layers while keeping
the convolutional layers intact. The experimental results show
transfer learning achieves higher accuracy anomaly detection
across bridges. Weber et al. takes advantage of simulation
data by training on synthetic environmental data, then
fine-tunes the pre-trained model and transfers the knowledge
from simulation data for real-time online building occupancy
detection [17]. Although the results show the effectiveness
of transfer learning, the availability, and reliability of the
simulation data for other industrial applications is still an
open issue. Sayed et al. adapt parameter transfer using
pre-trained CNN models, such as AlexNet and GoogLeNet,
pre-trained on ImageNet [18]. The pre-trained model is then
further used for downstream tasks. The results show the
pre-trained models outperform their customed CNN model,
which is not pre-trained. However, it is important to note that
the transfer effect may not be entirely convincing due to the
fact that the customer CNN model is not pre-trained on the
same dataset.

F. APPLICATION-INDEPENDENT CONSIDERATIONS

Data scarcity, as well as domain shift, stand out as the two
main common problems independent of the industrial field of
application. The same problems have originally prompted the
use of transfer learning in general, and respectively, general
techniques are applied widely across domains. Regarding
data scarcity, this un-surprisingly involves leveraging pre-
trained models as a starting point for further training.
Regarding domain shift, mapping transfer and parameter
transfer are the most often-used approaches. Unlike param-
eter transfer, mapping transfer incorporates the source and
target data in the training process. Instance transfer and
domain-adversarial transfer learning were not employed in
the surveyed literature — researchers seem to not see huge
value in these methods for the surveyed fields.

Another common aspect across time series anomaly
detection applications is the choices of model architecture
to facilitate the training process by capturing temporal
dependencies and recognizing patterns over varying time
scales: Favourite architectures include CNNs, LSTMs, and
auto-encoders that have sets of assumptions (inductive
biases) about the data they analyze that make them excel
in understanding the sequential nature of time series
data. CNNs assume local (in time) connectivity, stationary
statistics, and hierarchical structure, and induce certain
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translation-invariance. LSTMs are still given preference in
many applications over the more modern deep learning
architecture of choice for sequence learning, the transformer.
The reason is their stronger inductive bias, leading to less data
(and compute) hunger. Both CNN and LSTM networks can
be built as e.g. classifiers, but also auto-encoders. These latter
architectures have the advantage of learning low-dimensional
representations of the high-dimensional time series with
minimal loss of signal in an unsupervised way. The analysis
of the data in the low-dimensional latent space facilitates
anomaly detection. The concrete choice of architecture does
not depend on the field of application but on the data and task,
and thus the most suitable inductive bias.

As an interim conclusion, the most striking application-
independent finding is that across the surveyed literature,
predominantly simple, tried-and-tested design patterns for
transfer learning are used in industry. The field of deep
transfer learning would offer a much wider variety of
approaches.

V. DISCUSSION

A. POTENTIAL

The automation of industrial process monitoring stands
as a transformative step toward increasing efficiency and
optimizing quality. While standard deep learning training is
sufficient in discerning intricate patterns from vast datasets,
its application in the dynamic industrial landscape is not
without challenges. Chief among them is the impracticality
of continuously obtaining large-scale labeled data to train
models afresh for every nuanced variation in processes.
Deep transfer learning has shown promise with its adaptive
capabilities. By mitigating the need for extensive labeled data
and eliminating the necessity to train models from scratch for
every distinct setup. However, adopting deep transfer learning
beyond simple parameter transfer is still a challenge.

B. CHALLENGES

1) DOMAIN SHIFT

Different from the i.i.d assumption in most machine learning
problem settings, many industrial processes suffer from
substantial domain shift due to dynamic changes in industrial
settings, e.g., change of products or measuring sensors.
Domain shift lies at the heart of the deep transfer learning
problem. Particularly, the dynamic changes in many indus-
trial processes, up to an apparent dissimilarity of source
and target data, make the transfer learning task particularly
challenging. Here we list the key challenges associated with
domain shift:

o Covariate shift occurs when the marginal distribution
of the features changes from source domain to target
domain. The distribution mismatch poses challenges
in transferring the knowledge from source to target
domain.

o Concept shift refers to the changes in the relationships
between features and labels. The relationship can change
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from source domain to target domain, leading to bias and
error in the model.

o Label shift refers to the label distribution in the
target domain that can be different from the source
domain, whether the marginal distribution changes or
not.

2) LABEL AVAILABILITY AND RELIABILITY

Deep transfer learning is built upon deep learning, which
usually requires a large amount of labeled data, the more
data a model has available for training, the better it can
generalize to new examples. In real-world industrial time
series anomaly detection tasks, collecting data is probably
easy, but collecting labels is much more expensive and
time-consuming, sometimes prohibitively so, leading to the
unavailability of sufficient labeled data. Self-supervised
learning can be used to re-label a large amount of unlabeled
data and thus anomaly detection models usually need to
learn in an unsupervised or semi-supervised mode [130].
In industrial cases, another significant concern is to ensure
the data quality. Due to the high cost associated with
obtaining reliable and precise labels, usually self-supervised
learning is applied to create pseudo labels or relabel the
unlabeled data, thus facilitating the transfer learning process.
Additionally, a data-centric process with humans in the loop
can be involved in improving label reliability. However,
unreliable labels can still affect the transfer learning training
process.

3) MISSING RELEVANT DATA INFORMATION

Missing relevant data poses significant challenges for transfer
learning since it can affect the model’s ability to generalize
and transfer knowledge from source to target domain.

o Imbalanced data: Even if the labels can be collected,
anomalies can be extremely rare by design, which poses
the risk of training with extremely imbalanced data.
A practical problem for anomaly detection in industry
is the extremely imbalanced data distribution, in which
normal samples dominate in data and abnormal samples
only share a small percentage in the whole dataset. Prior
research has proven that the effect of class imbalance
on classification performance by using deep learning
is detrimental [131]. However, most research studies
still ignore such problems, which can result in poor
performance regarding the minority class, i.e., abnormal
data are misclassified as normal.

o Information loss: missing data can lead to lost important
features. For example, some information that has a
significant effect on the process from case to case is
not even recorded or is too complex to record (i.e.
part geometry, machine geometry, or environmental
conditions in injection molding processes).

Various approaches have been developed to address these
challenges to reduce the domain gap between the source
and target domains, aiming at mitigating domain shift.
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These techniques involve domain generalization, contrastive
learning, and adversarial examples. The domain shift problem
is far from being solved. To tackle this problem, transfer
learning requires a deep understanding of the target data’s
characteristics and appropriate transferable strategies to
effectively bridge the gap between the source and target
domains.

4) EFFECTIVENESS OF DEEP TRANSFER LEARNING

The general effectiveness of deep transfer learning is limited
by the difficulty of determining which knowledge or to what
extent the knowledge should be transferred from source to
target task. Unlike natural language processing, pre-training
a language model on a large corpus of text data can help
the model learn the statistical patterns and semantic and
syntactic representations of words and sentences, which can
be used for new natural language processing tasks with a
few or even without data. Due to data privacy, large available
public datasets usually do not exist for industrial time series,
or they cannot be used because of a large domain gap between
different datasets and tasks. In this case, transferring all of
the knowledge may not be beneficial, as it may be irrelevant.
In the worst case, this can lead to negative transfer [28],
[132], in which the extracted knowledge harms the new
task-learning. This requires assessing how source and target
tasks are related, carefully selecting the knowledge to be
transferred, and selecting the proper means to implement
this transfer. Glorot et al. attempt to analyze and quantify
the gained knowledge from source to target domain [133].
For example, they define transfer error, transfer loss, transfer
ratio, and in-domain ratio, which provide metrics to interpret
the transferring performance.

C. DIRECTIONS FOR ANOMALY DETECTION SOLUTION
DESIGN

1) DATA PREPROCESSING

How data preprocessing should be conducted is an open ques-
tion. For industrial applications, some researchers contend
that using raw time series data directly as input for training
may not be the most efficient. Hence, they propose deriving or
selecting features from time series data by statistical methods
or human experience. This can significantly decrease the
complexity of the dataset. On the other hand, this crops a
lot of potentially useful information, e.g., the time series
trend. To reduce the dimensionality, some researchers use
machine parameters as features in the manufacturing process
instead of the processing data collected by sensors [10],
[85], [113], [114]. Others try different transformations of
raw time series data, a common way being to transform
1D time series data to 2D image data [9], [15], [112]
or transforming time domain signals otherwise into the
frequency domain [39]. However, as large-scale computation
power and storage become cheaper and more accessible,
it is becoming increasingly common to use deep learning
techniques to process time series data directly [11], [13].
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2) DATA AUGMENTATION BY GENERATIVE Al

Data augmentation is useful for deep learning models because
it can help to prevent overfitting. For deep transfer learning,
when a model becomes too closely adapted to the specifics
of the source domain, it may not be able to generalize well to
some examples in the task domain. One important technique
is to acquire effective synthetic data, e.g., using a simulation
process or model to explore potential anomalous conditions
by simulating industrial processes under parameters that
cannot yet be experienced in the real world. High fidelity
and reliable simulation data can provide training data at
low cost and mitigate the problem of insufficient samples
for deep transfer learning [13]. Another way to generate
effective synthetic data is to use generative models, such
as GANs. GANs are only trained on normal data to
generate indistinguishable normal samples so that abnormal
samples can be distinguished during the testing stage of the
overarching anomaly detection system, as they deviate from
the normal data distribution [134]. To increase the number of
anomalous samples and thus the robustness of the anomaly
detection model, the technique of adversarial perturbation
known from computer vision [135] can be used.

3) DEALING WITH DATA IMBALANCE

DNNs perform well when they are trained on balanced
datasets. However, in practice, it is difficult to get sufficient
anomalous data for anomaly detection tasks. For example,
the manufacturing process is usually in a healthy state
due to the pre-designed and optimized operation. Several
ways exist to address the imbalanced dataset for time
series anomaly detection. One way is to oversample the
minority class, e.g., by randomly replicating samples from the
minority class to equalize the number of samples from each
class in each batch. The Synthetic Minority Over-sampling
Technique is an advanced method that creates synthetic
samples to force the decision region of the minority class to
become more general [136]. This technique is widely used
in anomaly detection tasks in industry [137], [138]. Apart
from oversampling, resampling strategies are frequently used
to assign a higher probability to abnormal samples and evenly
select the same amount of samples from both classes in each
batch. Moreover, a weighted loss can be implemented to
balance the loss between the abnormal and normal class in
supervised anomaly detection [131].

D. DIRECTIONS FOR DEEP TRANSFER LEARNING
IMPLEMENTATION

1) WHEN SHALL DEEP TRANSFER LEARNING BE USED?

(1) Limited data availability: It poses a significant challenge
in machine learning, particularly when aiming to train models
for specific tasks. Pre-training a model on a larger or more
diverse dataset, even if unrelated to the specific task at
hand, enables the acquisition of generalizable features and
representations. These generalized features, learned from a
broader context, can then be effectively transferred to analyze
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the target domain with limited data. This can effectively
provide a practical solution to the challenges posed by data
scarcity. (2) Similar domains: Deep transfer learning is
well suited when tackling source and target domains with
a high degree of similarity. In such instances, knowledge
can be derived either from a model pre-trained on a similar
dataset or one trained on both source and target data. In both
cases, the model can efficiently transfer relevant features and
representations within the domain, facilitating a more robust
adaptation to the target dataset, and ultimately optimizing
the model’s ability to discern and detect patterns within
the target domain. (3) Limited resources (encompassing
both time and computational power): When faced with
resource constraints, it is recommended to employ parameter
transfer, especially if a pre-trained model is readily available.
As described in [34], the transfer might improve learning
in three distinct ways: (a) a higher performance at the very
beginning of learning, (b) a steeper slope in the learning
curve, or (c) a higher asymptotic performance. Parameter
transfer leverages the learned parameters and weights of a
pre-trained model, often trained on a larger dataset. By doing
so, the resource-intensive process of training a model from
the ground up is circumvented, and the computational burden
is significantly alleviated.

2) WHEN NOT TO USE DEEP TRANSFER LEARNING?

(1) Irrelevant data: If the target data is vastly different
from the source data, deep transfer learning may not be
appropriate, sometimes even leading to negative transfer. For
example, if one wants to train a model for natural language
processing on a new dataset, using a pre-trained model that
has been trained on image data may not yield meaningful
results. This is due to the vast dissimilarity in data modalities
and features between images and text. (2) Task-specific
models: In scenarios where the target task is well-defined
and specific, and pre-trained models do not align closely with
the task requirements, it is usually more effective to build a
task-specific model from scratch. (3) High domain shift: If
there is a large difference between the source and the target
domain, deep transfer learning may not be effective. This can
happen when the data distributions, features, or labels are
vastly different. (4) Abundance of labeled data available for
target task: If there are enough data for the new task, it may
be more effective to train a model from scratch [119].

3) WHAT MODEL ARCHITECTURE TO CHOOSE?

We recommend choosing the model architecture mainly
based on data size and label availability, starting from a
relatively small network and moving gradually to more
complex DNNs. CNNs also effectively extract time series
features [19], [111]. For semi-supervised settings, CNN-
based auto-encoders are trained to reconstruct the original
data [110]. It is important to effectively capture the temporal
dependencies and extract features of time series data. LSTMs
are extensively employed for this purpose, as they excel in
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detecting temporal dependencies in time series data [21],
[23], [112].

Exploring hybrid architectures that combine the advan-
tages of CNNs, RNNs, and LSTMs for tasks involving
both spatial and temporal dependencies can be beneficial.
Cao et al. propose a multi-head CNN-RNN architecture for
multi-time series anomaly detection [16]. A CNN is used
to extract meaningful features from raw data and then an
RNN is applied to learn temporal patterns simultaneously.
Similarly, Dhillon et al. utilize LSTM layers to model the
time series signals after obtaining the features from a CNN.
An alternative way to benefit from different models is
the use of ensemble approaches, combining the strengths
of different model architectures to enhance performance,
especially in situations where the target task requires
capturing diverse features. In the future, we expect more
applications to use transformer-based approaches as pre-
trained models become available and public datasets get
open-sourced.

4) BEYOND TRANSFER LEARNING

Foundation models like SAM [139] or others, using for
example transformer architectures [48] or diffusion mod-
els [140], demonstrate emerging properties such as in-context
learning [53] and complex cross-modality conditioning. This
is achieved by training complex and often auto-regressive
models with massive amounts of data, although the precise
mechanisms that lead to this are not well understood.
Some of those models generalize to new settings and tasks,
without an explicit element of transfer learning. Thus, the
application of foundation models in industrial time series
analysis has the potential to reduce and eventually eliminate
the need to explicitly account for changes in the domain
within the modeling, by instead having the foundation
model provide the transfer capability (see examples in
Sec. VI-b). To not only detect anomalies but also identify
failure modes, analyze root causes, and elicit an appropri-
ate intervention, Al systems must implicitly or explicitly
model causal relations. Counterfactual inference incorporates
causal relations between observations and interventions,
which allows predictions of outcomes never seen during
training [141].

Another aspect of deep learning implementations is the
limited computing power of hardware platforms, such as
embedded systems in industry. Sensor data are typically
acquired using resource-constrained edge processing devices
that struggle with computationally intensive tasks, especially
when training a DNN model. Federated learning stands out
as a leading solution, with its ability to utilize data while
preserving privacy [142], [143]. The technology enables
a more collaborative approach to ML while preserving
user privacy by storing data decentralized on distributed
devices rather than on a central server. Combining deep
transfer learning with federated learning is a promising
and powerful combination in the abovementioned industrial
applications.
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VI. CONCLUSION

In this survey, we presented a comprehensive overview of
deep transfer learning by defining transfer learning problem
settings and categorizing the state-of-the-art deep transfer
learning approaches based on the surveyed papers. Then,
we review and emphasize on investigating deep transfer
learning approaches for time series anomaly detection in
different industrial settings. Equipped with this foundation,
we selected representative examples of the landscape of
fielded applications to provide practitioners with a guide to
the field and possibilities of industrial time series anomaly
detection.

The main finding of this survey is that only a limited
variety of deep transfer learning methods are employed
in anomaly detection in industrial time series analysis
— mainly simple ones. Almost all applications employ
parameter transfer, arguably the most straightforward transfer
approach. In its simplest implementation, it only involves
fine-tuning a pre-trained model. Accordingly, the employed
network architectures are simple, none of the reviewed
research papers used advanced DNN building blocks like
Transformer, which are common in computer vision and
language modeling. We expect this type of architecture
with suitable modifications and/or pre-trained parameters to
spread to more niche fields. Despite this, the survey suggests
that deep transfer learning approaches have huge potential
and promise for solving more complex and dynamic anomaly
detection tasks in industry. As the field is still in an early
stage, more R&D is expected to fully realize the potential of
deep transfer learning in increasingly complex settings.

In the end, we highlight the importance of considering
feasibility, reliability, explainability, and real-time data
stream when designing a transfer learning system for time
series anomaly detection. After carefully discussing open
challenges, we gave practical directions for time series
anomaly detection solution design and deep transfer learning
implementation. In our view, the following directions hold the
greatest potential for future work:

1) AUTOMATIC SELECTION OF TRANSFERABLE

FEATURES [57]

It refers to methods for selecting and transferring only the
relevant knowledge for the new tasks from the base model.
This could involve the use of techniques such as selective
fine-tuning and distillation to identify the most important
features learned from source domains [30], [144].

2) INVESTING INTO ADVANCED DEEP TRANSFER LEARNING
SCHEMES AND DNN MODELS

The conceptionally simplest parameter transfer approach has
the advantage of being readily applicable by interdisciplinary
teams without ML research experience. However, it seems
promising to invest in testing more sophisticated deep
transfer learning approaches according to different use
cases, such as mapping transfer, adversarial transfer, etc.
The same applies to testing diverse DNN models besides
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straightforward ones. Recently, large models have been
used in time series anomaly detection. For example,
Xu et al. propose the Anomaly Transformer with a new
anomaly-attention mechanism to compute the association
discrepancy [145]. A minimax strategy is devised to amplify
the normal-abnormal distinguishability of the association
discrepancy. On the other hand, Pintilie et al. leverage
diffusion models for multivariate time series anomaly
detection [146]. They train two diffusion-based models that
outperform strong transformer-based methods on synthetic
datasets and are competitive on real-world data. Additionally,
their DiffusionAE model is more robust to different levels
and the number of anomaly types. These large models have
proven to be effective and advantageous given certain data
and tasks. It’s important to note that their effectiveness also
depends on the characteristics of the time series data and
the requirements of the anomaly detection task. Additionally,
model computational efficiency and interpretability should
be considered, especially in real-time or resource-constrained
industrial applications.

3) DATA-CENTRIC APPROACH TO REAL-TIME ANOMALY
DETECTION

The data-centric approach focuses on improving ML models
by ensuring high-quality labeled data [147] using techniques
such as re-labeling, re-weighting, or data augmentation [ 148].
Currently, a human-in-the-loop solution is still needed.
Frameworks have been proposed to assist annotators with
graph-based algorithms such as nearest neighbor graphs [84],
decision trees [149], or factor graphs [150]. Although these
methods have proven to be effective, a more automated
process is a goal for future research.

4) LEVERAGING GENERATIVE Al

Generative models like GANs and diffusion models can
generate synthetic time series data, making them valuable
for data augmentation. Augmenting the original data with
synthetic samples can enhance the deep learning models’
robustness, especially in real-world applications where target
data are limited. These models can also be leveraged to
examine anomalies and generate anomalies to help alleviate
the imbalance within the data [151].

5) INTEGRATION WITH OTHER ML METHODS

To develop robust Al solutions for time series anomaly
detection in the industry, relying solely on transfer learning
is insufficient. Future strategies should integrate other ML
approaches, including continuous learning, meta-learning,
and federated learning.
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