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Abstract
Objective. A key challenge of virtual reality (VR) applications is to maintain a reliable
human-avatar mapping. Users may lose the sense of controlling (sense of agency), owning (sense of
body ownership), or being located (sense of self-location) inside the virtual body when they
perceive erroneous interaction, i.e. a break-in-embodiment (BiE). However, the way to detect such
an inadequate event is currently limited to questionnaires or spontaneous reports from users. The
ability to implicitly detect BiE in real-time enables us to adjust human-avatar mapping without
interruption. Approach.We propose and empirically demonstrate a novel brain computer interface
(BCI) approach that monitors the occurrence of BiE based on the users’ brain oscillatory activity in
real-time to adjust the human-avatar mapping in VR. We collected EEG activity of 37 participants
while they performed reaching movements with their avatar with different magnitude of
distortion.Main results. Our BCI approach seamlessly predicts occurrence of BiE in varying
magnitude of erroneous interaction. The mapping has been customized by BCI-reinforcement
learning (RL) closed-loop system to prevent BiE from occurring. Furthermore, a non-personalized
BCI decoder generalizes to new users, enabling ‘Plug-and-Play’ ErrP-based non-invasive BCI. The
proposed VR system allows customization of human-avatar mapping without personalized BCI
decoders or spontaneous reports. Significance.We anticipate that our newly developed VR-BCI can
be useful to maintain an engaging avatar-based interaction and a compelling immersive experience
while detecting when users notice a problem and seamlessly correcting it.

1. Introduction

Virtual reality (VR) systems are becoming wide-
spread in industrial, clinical and training applica-
tions for their benefit in ecological validity and phys-
ical involvement of participants. One of the main
challenges of VR is to provide users with a sense of

having a virtual body during immersion in order to
interact with the virtual world. The sense of embod-
iment (SoE) for a virtual body representation, the
avatar, is a highly subjective experience that must be
induced and maintained to support successful inter-
actions in immersive VR [1]. SoE has been described
to involve the following components for successful

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ad2c02
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ad2c02&domain=pdf&date_stamp=2024-3-27
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9659-4127
https://orcid.org/0000-0002-6691-1427
https://orcid.org/0000-0002-9745-3983
https://orcid.org/0000-0002-8879-2860
https://orcid.org/0000-0001-5819-1522
https://orcid.org/0000-0003-4570-5146
https://orcid.org/0000-0001-9176-6877
mailto:fumi.iwane@nih.gov
mailto:bruno.herbelin@epfl.ch
mailto:ronan.boulic@epfl.ch
https://doi.org/10.1088/1741-2552/ad2c02


J. Neural Eng. 21 (2024) 026016 F Iwane et al

human-avatar mappings: agency, body ownership,
and self-location [2]. The disruption of at least one
of them causes a break in embodiment (BiE), lead-
ing to a degradation of the virtual experience [1, 3, 4].
However, the way to detect such an inadequate event
is currently limited to explicit feedback from users,
e.g. questionnaires or spontaneous reports. Detecting
BiE implicitly and in real-time would allow custom-
izing the mapping between users and their avatars
so as to fine-tune the interaction possibilities in VR
without interruption.

In the 1990s, research on neural processes
revealed error-related brain activity in EEG sig-
nals originating from the anterior cingulate cortex
(ACC) after perception of errors [5, 6]. Holroyd and
Coles [7] proposed that an error-processing system
in the ACC serves as reinforcement-learning signals
to correct errors. Further studies have also shown
that error-related potentials (ErrPs) spontaneously
arise when users experience BiEs during avatar-based
interaction in VR [4, 8–13]. These findings support
the notion of an accumulation of errors in these con-
ditions [14–16], where cognitive processes in embod-
iment contribute to a global error in user experience.
It is also well established that brain–computer inter-
faces (BCIs) benefit from real-time ErrP detection
to offer intuitive control of external devices without
requiring explicit feedback, as instead they can infer
participants’ perception of errors from their brain
activity and adapt accordingly [17–21]. Some BCIs
have succeeded in decoding the presence of ErrPs
during continuous interaction [22–24], with e.g. the
possibility to customize robot trajectories for each
participant based on continuous ErrP detection [25,
26]. It thus appears that the methods used in ErrP-
based BCI provide the adequate approach for con-
tinuously and implicitly adjusting the interaction
with avatar in immersive VR.

Although recent studies show that ErrP-based
BCI allows customization of continuous human-
computer interactions, its use is still limited to inter-
actions with a computer application [24] or a robotic
arm [25, 26]. This may in part be due to the need
to train personalized decoders, which require a large
amount of repetitions and observations before being
operational. In our context, this limitation would,
however, defeat the purpose of using BCI to impli-
citly improve interaction in VR as the objective is spe-
cifically to avoid repetitively causing BiE, and even-
tually to use this method in a general immersive VR
application context.Hopefully, a recent study demon-
strated the feasibility of using the non-personalized
decoder with some reductions in decoding perform-
ance [23]. However, it remains to be tested if, despite
these limitations, non-personalized ErrP decoders
can be used in a different way, as in our case for
adjusting the mapping between human and avatar
actions.

In our previous study, we demonstrated the feas-
ibility of adapting the human-avatar mapping in VR
based on the explicit feedback of users [27]. However,
it still needs to be demonstrated that it is possible
to adjust this human-avatar mapping by implicitly
predicting the occurrence of BiE, while avoiding to
interrupt the interaction flow and break presence. We
hypothesize that real-time detection of ErrPs during
avatar-based interaction can predict the occurrence
of BiE, and thus allows seamless customization of the
mapping. To demonstrate this, we implemented aBCI
system that monitors the presence (or absence) of
ErrP in real time while distorting the human-avatar
mapping in varying magnitudes (figures 1(a) and
(c)).

The use of distortion of the human-avatar map-
ping has been frequently employed in 3D interac-
tion methods, even without haptic feedback [28–30].
For example, one of the earliest methods focused on
enhancing the effectiveness of user interactions by
deliberately altering the mapping between real and
virtual bodies for a stretching arm. This alteration res-
ulted in an expanded reachable space centered around
the user’s body [31]. Nevertheless, the challenge lies
in fine-tuning of distortion parameters while pre-
venting the occurrence of BiE. For instance, Porssut
et al [1, 32] demonstrated that users tolerate and even
prefer distorted mapping with their avatar move-
ment when this helps to accomplish complex move-
ments. However, once distortion surpasses a certain
threshold, it can lead to BiE. Specifically, our aim
here was thus to customize the human-avatar map-
ping distortion magnitudes based on implicit ErrP-
BCI feedback in order to aid in accomplishing a reach-
ing action while preventing BiEs from occurring. We
recorded EEG signals of participants while they were
embodied in a full-body avatar. The participants per-
formed reaching movements to a target while their
avatar’s reaching movement was distorted in varying
magnitudes. We expect ErrPs to appear when parti-
cipants perceive excessive support from the distor-
tion. The real-time ErrP decoding output was used
to identify optimal distortion magnitudes through a
reinforcement learning (RL) algorithm. We then fur-
ther investigated the feasibility of customizing the
mapping with the non-personalized ErrP decoder
outputs in addition to the use of personalized decoder
in both time-locked and continuous classification.

2. Methods

2.1. Participants
37 healthy subjects participated in the study (36 right-
handed, 16 females, 23.4 ± 3.5 years [mean± std]).
All participants had normal or corrected-to-normal
vision and gave their informed consent prior to
participation. The study was performed in accord-
ance with the ethical standards as defined in the
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Declaration of Helsinki and was approved by the
Swiss Ethics Committees of the canton of Vaud on
research involving humans (Project No. 2018-01601).
Among the 37 subjects, the demographic survey
revealed only one person with extensive experience in
VR, three with good experience with VR, and tenwith
no experience while others tried it only a few times.

2.2. Experimental protocol
2.2.1. Experimental environment
Participants sat in a comfortable chair and EEG sig-
nals were recorded throughout the experiment. The
HTC Vive Pro Eye, a head-mounted display (HMD)
with 1440 × 1600 pixels per eye, 110◦ field of view
and 90 Hz refresh rate, and a 120 Hz eye-tracking sys-
tem with an accuracy of 0.5◦–1.1◦ was used to mon-
itor subjects’ eye-movements. Bose QuietComfort
20 in-ear headphones with active noise canceling
delivered a non-localized white noise. We captured
participants’ motion with 8 HTC Vive Trackers V2
(one to indicate the origin of the room in front of the
chair where subjects sit, one on the subjects’ chest,
and three on each shoulder, elbow and hand). The
participants also held an HTC Vive controller in their
left hand to answer questions (figure 1(a)). Figure 1
and a supplementary video illustrate the general study
design.

The virtual environment was a square room of
6× 6× 3m3 with a chair in the middle. An avatar
holding a tennis ball in its right hand was calib-
rated to co-locate the subjects’ body. Haptic feed-
back was sustained by physically holding a real tennis
ball while subjects observed a virtual tennis ball posi-
tioned in the same location. This maintained visuo-
proprioceptive and tactile coherence between the real
and virtual hands. The application was implemented
using Unity 3D 2019.2.0f1. The participants’ move-
ments were reproduced through animation of the
avatar using LimbIk from FinalIK11.

2.2.2. Experimental procedure
We performed the experiment in three groups. 14,
12 and 11 participants were in the first, second, and
third groups, respectively. The experimental pro-
cedures of the first and second groups were divided
into five phases (figure 1(e)); calibration, explana-
tion, decoder-calibration, practice and distortion-
adaptation. First, the motion capture suit, avatar, and
EEG were calibrated (calibration phase). Then the
participants performed the six trials with instruc-
tions (explanation phase). They then performed four
runs of 75 trials, i.e. 50 trials without distortion and
25 trials with distortion (decoder-calibration phase).
These data were used to train a personalized ErrP
decoder. Each run used a different magnitude of dis-
tortion in a random order (3,5,7,10, see section 2.3).

11 root-motion.com.

The participants performed the same task as in
the decoder-calibration phase until convergence
of the RL algorithm (distortion-adaptation phase,
see section 2.5 for details). During the distortion-
adaptation phase, the personalized decoder predicted
the occurrence of BiE to customize the human-avatar
mapping. Time-locked and continuous classifica-
tion was performed during the distortion-adaptation
phase for the first and second groups, respectively.
In the third group (non-personalized decoder) the
experiment was divided into the calibration, explan-
ation, practice, and distortion-adaptation phases
(figure 1(f)). The practice and distortion adapta-
tion phases were repeated twice. Each distortion-
adaptation phase was carried out with time-locked or
continuous classification in a random order using the
non-personalized decoder which was calibrated with
all data in the decoder-calibration phase recorded
from the first two groups.

2.2.3. Single-trial procedure
In both decoder-calibration and distortion-
adaptation phases, each trial consisted of three times
an arm reaching movement followed by two ques-
tions. Subjects started with their right hand on their
belly holding a tennis ball. Three semitransparent
spheres (blue, red, and green) and a red cross were
displayed for each trial. Subjects were instructed to
reach the first sphere (blue) to the right with the
tennis ball and to remain inside at least 1 s to valid-
ate this first step. The validation progress was indic-
ated in a gray circle, which became fully white once
validated. Subjects then performed the avatar’s arm
reaching movement to the last sphere (green) while
smoothly passing through the second sphere (red).
The green sphere moved along a circular trajectory
with a radius of 0.35 m. The distortion that helps
reaching the green sphere (figure 1(b)) was activated
when the avatar’s hand was located within the red
sphere. The distortion function (attraction well [27],
section 2.3) was centered on the green target and
expanded to the center of the red target (the same
radius as the trajectory). Subjects had to stay inside
the green target for at least 4 s to complete a trial. They
were instructed to fixate their gaze on the red cross
placed in front of them while doing the movement.
If the gaze was not fixed on the red cross for 0.5 s,
the trial restarted after showing a warning message to
subjects.

After each reaching movement, participants
answered to two yes/no questions by controlling a
cursor; ‘I felt that the virtual body moved
exactly like me’, and ‘It felt that the
virtual body was my own body.’. The first
question indicates the subjective experience on con-
scious perception of the distorted avatar’s arm reach-
ing movement (perception of distortion, PoD) [33],
and the second question indicates the presence of a
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Figure 1. Protocol Overview. (a) Setup of the experiment. 1: Computer connected to the EEG amplifier, 2: EEG amplifier, 3: EEG
cap and electrodes, 4: HMD (HTC Vive), 5: Mask and gloves were worn during the experiment due to the COVID-19 safety
regulations and 6: Motion tracker (HTC Vive tracker). (b) Overview of the well-shaped distortion function (attraction well). No
distortion was applied when d is greater than 1 (region 1). When d is below 1, the virtual hand attracted to the target. The
magnitude of attraction increased inverse proportion of d from 1 to r (region 2). The attraction diminished to zero as d decreases
from r to 0 (region 3). (c) Participants were immersed to VR environment by using tracking system and head mounted display,
while recording EEG signals. During the distortion-adaptation phase, online detection of ErrPs were performed to infer
occurrence of BiE. (d) Each trial consisted of the two sequential reaching movements; i: From belly to the blue sphere, ii: From
blue sphere to green sphere while passing through the red sphere. The distortion was induced when passing through the red
sphere to induce BiE. (e) Main phases of the first and second groups. Time-locked classification was performed during the
distortion-adaptation phase for the first group and the continuous classification was performed for the second group . (f) Main
phases timeline of the third group. Each distortion-adaptation phase performed time-locked or continuous classification in a
random order.

BiE [1, 3]. After answering these questions, the full
virtual scene reappeared at their initial position and
the next trial started.

2.3. Attraction well
The distortion is designed to help participants reach
and follow a moving target [1], and an excessive dis-
tortion induces a BiE [4]. The avatar’s hand was first
attracted towards the target until it reached the outer
boundary of the moving target (i.e. a sphere slightly
bigger than a tennis ball). Once the virtual hand was
inside the moving target, the attraction was progress-
ively reduced to zero until the avatar’s hand arrived at
the center of the target.

In our implementation, the distortion function
started at the green sphere and extended towards the

red one, following the trajectory. Please note that
the green sphere’s path aligned precisely with the red
sphere’s position. To facilitate tracking a vertically
moving green sphere with one hand, we calibrated
the position of the red sphere for each subject. This
calibration ensured that subjects did not have to fully
extend their arms as the red sphere’s position never
exceeded 80% of their arm length from the shoulder
position.

Themagnitude of distortion was controlled based
on the distance D between the 3D position of sub-
ject’s hand P⃗real and the 3D position of moving tar-
get P⃗target of radius R, by the following equations;
d= D

drange
and r= R

drange
where drange is the distance

range of the attraction force centered on the moving
target.
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The distortion magnitude was expressed as a
function of the normalized distance d (figure 1(b)
and (d)). For d> 1, no distortion occurred, hence the
virtual hand position was identical to the real hand
position. An attraction was enforced whenever d< 1
thereby bringing the avatar hand closer to the target
compared to the real hand.

The maximum magnitude of the attraction force
was denoted as G. Then:

f(d) =

G× (−2× ( dr )
3 + 3× ( dr )

2)) d ∈ [0, r]

G× (2× (
(d−r)
(1−r) )

3 − 3× (
(d−r)
(1−r) )

2 + 1) d ∈ [r,1] .

(1)

Given the distortion value provided by the attrac-
tion profile f (d), an attraction coefficient was com-
puted 1/(1+ f(d)) to build the distorted hand posi-
tion P⃗distorted, shown to subjects, from the knowledge
of the current positions of themobile target P⃗target and

the real hand P⃗real. Then:

P⃗distorted = P⃗target +

(
1

1+ f(d)

)
×
(
P⃗real − P⃗target

)
.

(2)

The magnitude of distortion f (d) being always
positive, equation (2) ensured that the distorted hand
position P⃗distorted always lied in-between the current
target position P⃗target and the real hand position P⃗real.
Both the real and distorted positions coincided for
the boundaries [0,1] of the normalized distance d.
The distortion was tuned based on R, drange, and G
(referred to as the ‘distortion gain’). Based on the pre-
vious study [1], the following discrete distortion gains
were used in the distortion-adaptation phase: (0, 0.25,
0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4, 5, 7,
10). The last value covered the largest possible mag-
nitude of distortion due to the limited field of view of
the VR display.

2.4. EEG signal processing
2.4.1. EEG acquisition
We recorded 32 EEG and 3 electrooculogram (EOG)
signals throughout the experiment at 512Hz via three
synchronized g.USBAmps (g.tec medical technolo-
gies, Austria). EEG active electrodes were located at
AF3, AF4, F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4,
C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, CP4, P3, P1,
Pz, P2, P4, PO3, POz, PO4, O1, O2 (10/10 interna-
tional system), while the 3 EOG channels were placed
above the nasion and below the outer canthi of the
both eyes, forming a triangle. The ground electrode
was placed on the forehead (AFz) and the reference
electrode was on the left earlobe. The EEG and EOG
signals were notch filtered at 50 Hz to eliminate the
power noise. To reduce signal contamination, subjects
were asked to stare at the cross and hold their head
still when reaching the target. If the movements of
their eyes or neck were above a certain threshold, the

trial was restarted to ensure the quality of the recor-
ded signals.

Before the experiment, participants underwent
90 s of recording in which they performed three dif-
ferent kinds of eye movement, 30 s each; clockwise
and counter-clockwise rolling of eyeballs, vertical and
horizontal eye movements and repeated eye blinks.
These data were subsequently used to compute coeffi-
cients to linearly remove EOG artifacts from EEG sig-
nals based on the autocovariance matrix of EEG and
EOG signals [34, 35].

2.4.2. EEG preprocessing
EEG signals were band-pass filtered with a 4th
order Butterworth filter with cutoff frequencies of [1
10] Hz. The signals were then segmented into epochs
with a time window of [0.2 0.6] s relative to when the
participants passed through the red sphere for each
trial.

2.4.3. Time-locked classification of ErrPs
To build an ErrP decoder that monitors the presence
or absence of ErrPs in real-time, we used only the
data collected during the decoder-calibration phase.
A personalized decoderwas trained for participants in
the first and second groups, while a non-personalized
decoder was trained for the third group by accu-
mulating all data in the first two groups’ decoder-
calibration phase. All EEG epochs were concatenated
to build the non-personalized classifier.

To enhance the signal-to-noise ratio (SNR) of
ErrPs for the subsequent classification analysis, we
applied a spatial filter based on canonical correlation
analysis (CCA) [25, 36–38]. CCA-based spatial filters
were linear transformations that maximize pairwise
correlation between concatenated single-trial EEG
epochs and averaged EEG epochs [39] (see [36] and
supplementary figure 1 for details). The CCA spatial
filter transformed the averaged ErrPs into a subspace
that contained different deflections. Only the first
three components were kept for further processing
as described in previous studies [24, 36]. We extrac-
ted EEG amplitudes resampled at 64 Hz and Welch’s
power spectral density between [4, 10] Hz with a step
of 2 Hz as they have been shown to yield superior
performance in other studies [24, 25, 40]. All com-
puted features were concatenated and normalized
within the range of [0, 1] via Min–Max normaliza-
tion. From this feature vector x, we computed the
posterior probability of distortion p(distortion|x)
using diagonal linear discriminant analysis
(LDA):

p(distortion|x) = 1

1+ exp−(w ′x+b)
(3)

where, w and b are the parameters of the diagonal
LDA.
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For the first and the third group, in which a
decoder was deployed to perform time-locked classi-
fication during distortion-adaptation phase, we used
the theoretical decision threshold for binary classific-
ation, i.e. 0.5. Leave-one run-out cross validation was
performed to validate the classification performance
of the decoder-calibration phase for the first group.

2.4.4. Continuous classification of ErrPs
For the second group that underwent the distortion-
adaptation phase with a personalized decoder for
continuous classification, the decoder was trained the
same way as for the first group. In addition, we tuned
the decision threshold. Leave-one run-out cross val-
idation was performed to estimate the pseudo-
continuous posterior probability at 32 Hz, i.e. from
the onset to 0.6 s after reaching the green target. The
maximum estimated posterior probability within a
trial determined subjects’ perception of BiEs. If it
was above the decision threshold, the decoder detec-
ted BiEs during continuous reaching movements.
The optimal operating point, which yielded the min-
imum number of false predictions, of the receiver
operating characteristic (ROC) curve was determ-
ined as the decision threshold for the continuous
classification.

For the third group, in which the non-
personalized decoder was used during the distortion-
adaptation phase, the optimal decision threshold for
continuous classification was inferred for each par-
ticipant based on the maximal posterior probabilit-
ies of the first four trials without distortion during
the practice period (figure 1(f)) [23]. We performed
leave-one subject-out cross-validation to compute
the pseudo-continuous probabilities of the data col-
lected in the first two groups’ distortion-adaptation
phase while avoiding the use of individual decoder-
calibration data. The averaged maximum posterior
probability of the first four trials during the practice
period and the individual optimal threshold were
used to model the sigmoid function that inferred the
optimal decision threshold.

2.4.5. Statistical analysis of ErrP decoding performance
In the decoder-calibration phase, the classification
performance of the time-locked and continuous clas-
sification was measured as the area under the curve
(AUC) andwas statistically evaluated by a two-sample
t-test. In the distortion-adaptation phase, ErrP-BCI
output was compared with the answers to the PoD
and BiE questions. Classification performance was
measured as balanced classification accuracy, mean
of true positive and true negative rate. Its chance
level is 0.5. Paired t-test was used to evaluate the
classification performance between the time-locked
and continuous classification when using the non-
personalized decoder, while a comparison of other

pairs was performed by a two-sample t-test. All p-
values were Bonferroni corrected.

2.5. Reinforcement learning algorithm
We used a reinforcement learning algorithm that
had been developed and validated in our previous
study [27] to determine the pseudo-optimal distor-
tion value from a set of multiple options. Each of
the available choices corresponded to a distinct level
of distortion gain, and the agents’ actions were met
with positive or negative rewards, depending on the
magnitude of the distortion introduced. This method
enabled us to effectively identify themost suitable dis-
tortion level based on the user’s implicit feedback, the
ErrP-BCI output.

The reinforcement learning algorithm combined
upper-confidence-bound (UCB) explorationwith the
ϵ-greedy policy. Q-values were initialized to zero for
all actions [41]. The convergence of theQ-values, rep-
resenting the expected rewards for each action, was
monitored to determine the optimal threshold.

To adapt to the dynamic nature of the problem,
parameters such as the exploration ratio ϵ and the
learning rateα decayed over time. The study carefully
selected decay rates through a prior grid search. The
algorithm also had termination conditions in place to
avoid running indefinitely (15 unchanged iterations
after the 35th trial and stopped if it reached 200 iter-
ations). More details can be found in our previous
study [27].

2.6. Psychometric function
We computed the PoD and BiE thresholds of each
subject based on the answer to the first and second
questions during the distortion-adaptation phase,
respectively. We used a psychometric function [42,
43] to calculate each threshold (supplementary figure
4). The PoD threshold is the magnitude of distor-
tion in which subjects detected the distortion 50%
of times, while the BiE threshold corresponded to an
approximation of the minimum magnitude of dis-
tortion in which subjects rejected the virtual body as
their body at 50% of times.

2.7. Statistical analysis of the thresholds
To evaluate whether PoD, BiE and RL thresholds
were comparable, a one-way repeated measures
ANOVA was performed for each decoding con-
ditions, i.e. time-locked and continuous classi-
fication with personalized and non-personalized
decoders.

3. Results

3.1. Electrophysiological results
We observed sequential negative, positive, and neg-
ative deflections after the onset of distortions in the
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Figure 2. Grand-averaged EEG potentials at Cz electrode. (a) Grand averaged signals of Cz channel with respect to the onset of
trials (the vertical black line, t = 0) with a non-causal band-pass filter in decoder-calibration phase. Each colored line and shaded
area correspond to different magnitudes of distortion (mean± SE). The gray-shaded areas represent the time samples in which
significant differences were observed between the trials without distortion (D= 0) and those with distortion (D= 3, 5, 7, 10,
paired Wilcoxon signed-rank test followed by BHFDR, α < 0.05). Insets represent topographical representations of each
deflection at 0.20, 0.30 and 0.50 s. (b) Grand averaged signals of Cz channel in distortion-adaptation phase. Each colored line
corresponds to the answer to the perception of distortion (PoD) question. The gray-shaded areas represent the time samples with
significant differences between each answer. c, Grand averaged signals of Cz channel in distortion-adaptation phase. Each colored
line corresponds to the answer to the break-in-embodiment (BiE) question.

decoder-calibration phase (p< 0.05, pairedWilcoxon
signed-rank test followed by Benjamini–Hochberg
false discovery correction (BHFDR), figure 2(a) [44,
45]. These deflections were present throughout the
decoder-calibration phase (supplementary figure 2).
These deflections were strongly elicited from the pari-
etal and the central area of the brain (figure 2(a)). On
the other hand, EEG potentials remained mostly flat
around the onset without distortion. Similarly, in the
distortion-adaptation phase, sequential deflections
were observed when participants perceived distortion
(figure 2(b)) and when participants experienced BiE

(figure 2(c)), and these deflections were attenuated
when they did not.

3.2. Decoding results
In the decoder-calibration phase, the estimated pos-
terior probability in the trials without distortion
was lower than that with distortion (figure 3(a)).
The posterior probability increased progressively over
the magnitude of distortion for both time-locked
(Spearman r = 0.72, p< 0.001) and continuous clas-
sification (r = 0.58, p< 0.001). The AUC was 0.97
± 0.007 (mean ± SE) for time-locked, and 0.89
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Figure 3. Decoding results of ErrPs in the decoder-calibration phase. (a) Estimated posterior probability while validating the
personalized decoder for each magnitude of distortion in the time-locked and continuous classification (mean± SE). The
decoder was trained to differentiate between trials with and without distortion. Each black dot corresponds to a participant.
(b) The area under the curve (AUC) of the time-locked and continuous classification (mean± SE). The horizontal black dashed
line indicates their chance level (0.5). Each dot corresponds to a participant. AUC was higher in the time-locked classification
than in the continuous classification (two-sample t-test, p= 0.005).

± 0.029 for continuous classification (figure 3(b)).
They were above the chance level (0.5), but the con-
tinuous classification performance was significantly
lower than the time-locked classification perform-
ance (two-sample t-test, p = 0.005, figure 3(b)).
Please note that our validation procedure, leave-one
run-out cross validation, did not positively bias the
ErrP-BCI classification performance (supplementary
figure 3).

Similarly to the decoder-calibration phase,
the estimated posterior probability progressively
increased over the magnitude of distortion in the
distortion-adaptation phase for both time-locked
(Spearman r = 0.79, p<0.001) and continuous clas-
sification (r = 0.62, p<0.001, figure 4(a) and sup-
plementary figure 4). Despite its consistent trend
over the magnitude of distortion, the probability
was differentiated between time-locked and con-
tinuous classification, especially in trials with no
or small distortion. Further, progressive increase
in posterior probability was also observed when
using the non-personalized decoder for both time-
locked (r = 0.62, p<0.001) and continuous classific-
ation (r = 0.29, p<0.001, figure 4(b). The posterior
probability range was smaller when using the non-
personalized decoder compared to the correspond-
ing classification approach using the personalized
decoder.

In the distortion-adaptation phase, all four classi-
fication conditions outperformed the chance level as

measured in balanced classification accuracy for both
PoD (figure 4(c)) and BiE questions (figure 4(d)).
For both questions, classification performance was
highest for the time-locked classification with the
personalized decoder. On the other hand, it was
the lowest for the continuous classification with the
non-personalized decoder. When comparing ErrP-
BCI outputs with the PoD question, the statistical
differences were observed between the personalized
and non-personalized decoder for both the time-
locked (two-sample t-test, p = 0.04) and continu-
ous classification (two-sample t-test, p = 0.02), and
between time-locked and continuous classification
when using the non-personalized decoder (paired
t-test, p = 0.03). There were no statistical differences
between time-locked and continuous classification
when using the personalized decoder (two-sample
t-test, p = 0.16). For the BiE question, the differ-
ence was observed between time-locked and con-
tinuous classification when using the personalized
decoder (two-sample t-test, p = 0.04) and between
the personalized and non-personalized decoder
for the time-locked classification (two-sample t-
test, p = 0.04). On the other hand, no differences
were observed between time-locked and continu-
ous classification when using the non-personalized
decoder (paired t-test, p = 1.0) and between
the personalized and non-personalized decoder
for continuous classification (two-sample t-test,
p= 0.30).
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Figure 4. Decoding results of ErrPs in the distortion-adaptation phase. (a) Estimated posterior probability for all 17 magnitudes
of distortion in the distortion-adaptation phase for the time-locked and continuous classification when using the personalized
decoder.(b) Estimated posterior probability when using the non-personalized decoder. (c) Balanced classification accuracy
compared to the PoD answer for time-locked and continuous classification when using the personalized and the
non-personalized decoder (mean± SE). The horizontal black dashed line indicates the chance level, 0.5. Each dot corresponds to
a participant for each decoding condition. Statistical analysis revealed significant differences between the personalized and
non-personalized decoder for both the time-locked (two-sample t-test, p= 0.04) and continuous classification (p= 0.02), and
between time-locked and continuous classification when using the non-personalized decoder (paired t-test, p= 0.03). (d)
Balanced classification accuracy compared to the BiE answer (mean± SE). Significant differences were observed between
time-locked and continuous classification when using the personalized decoder (two-sample t-test, p= 0.04) and between the
personalized and non-personalized decoder for time-locked classification (p= 0.04).

3.3. Behavioral and reinforcement learning results
The PoD and BiE rates increased progressively over
the magnitude of distortion (Spearman r = 0.68, p<
0.001 for PoD, r= 0.49, p< 0.001 for BiE, figure 5(a).
However, they showed slightly different modulations
from each other. PoD rate showed a more rapid
increase relative to BiE rate.

The RL threshold was between the PoD and
BiE thresholds when using the personalized decoder
(figure 5(b) and table 1). Statistical analysis did not
reveal differences between the three thresholds (two

one-way repeated measures ANOVAs, F(2,26) =
1.61,p= 0.219 for time-locked, and F(2,22) =
2.52,p= 0.103 for continuous classification). On
the other hand, when the non-personalized decoder
was used, the RL threshold was higher than the
PoD and BiE thresholds (figure 5(c)). The statistical
analysis did not reveal significant differences between
the three thresholds (two one-way repeated meas-
ures ANOVAs, F(2,20) = 3.22,p= 0.061 for time-
locked, and F(2,20) = 1.06,p= 0.364 for continuous
classification).

9



J. Neural Eng. 21 (2024) 026016 F Iwane et al

Figure 5. Behavioral results and comparison of the PoD, BiE and RL thresholds. (a) Behavioral answer to the perception of
distortion (PoD) and break-in-embodiment (BiE) questions for each magnitude of distortion. Each colored line and shaded areas
represents the answer to each question (mean± SE). The black dashed vertical line represents the mean PoD threshold, while the
solid black vertical line indicates the mean BiE threshold. (b) PoD, BiE and RL thresholds for time-locked and continuous
classification when using the personalized decoder. Each bar corresponds to the PoD (red), BiE (blue), and RL thresholds (green).
Each dot corresponds to a participant. No statistical differences were observed between the three thresholds (two one-way
repeated measures ANOVAs, F(2,26) = 1.61,p= 0.219 for time-lock, and F(2,22) = 2.52,p= 0.103 for continuous
classification). (c) PoD, BiE and RL thresholds for time-locked and continuous classification when using the non-personalized
decoder. Similar to the case using the personalized decoder, No statistical differences were observed between the three thresholds
(two one-way repeated measures ANOVAs, F(2,20) = 3.22,p= 0.061 for time-lock, and F(2,20) = 1.06,p= 0.364 for
continuous classification).

Table 1. PoD, BiE and RL thresholds and the number of trials performed in the distortion-adaptation phase for each decoding condition
(mean± SE).

Personalized decoder Non-personalized decoder

Time-locked Continuous Time-locked Continuous

PoD threshold 1.20± 0.25 1.40± 0.30 1.36± 0.21 1.77± 0.41
BiE threshold 2.23± 0.70 2.84± 0.76 2.26± 0.74 2.18± 0.85
RL threshold 1.96± 0.19 1.94± 0.20 3.93± 0.85 2.95± 0.54
Number of trials 70± 6 77± 6 84± 12 75± 5

4. Discussion

We have presented a novel BCI-VR closed-loop sys-
tem integrated in an immersive interactive system
that allows seamless adjustment of the mapping
between the users’ actual movements and their avatar
for the benefit of interaction in VR. The present
study demonstrated the possibility of adjusting the
magnitude of distortion through an implicit ErrP-
BCI feedback. The ErrP-BCI decoding output was
exploited as reward signals to adjust the magnitude
of distortion to perform the avatar’s arm reaching
movement while preserving the SoE, thus maintain-
ing their virtual experiences. The proposed BCI-VR
closed-loop system is beneficial for customizing the
human-avatar mapping based on user’s brain activ-
ity, which has been limited to users’ explicit feedback
to date. In order to compensate for the limited signal-
to-noise ratio of the BCI output, we incorporated
the RL algorithm to identify the optimal magnitude
of distortion. The proposed approach successfully

achieved the pseudo-optimal magnitude of distor-
tion and demonstrated its ability to fine-tune levels of
assistance for each participant while avoiding degrad-
ation of virtual experiences due to BiEs.

Specifically, as shown in previous studies [1, 33,
46] and illustrated in figure 5(a), participants main-
tained a high level of embodiment even when they
could perceive the distortion. In effect, we show that
there are three distinct stages of cognitive processing
before participants notice and then reject amovement
distortion of their avatar. In the first stage, for very
low distortions, they are not able to perceive the dis-
tortion. In the second stage, between the PoD and the
BiE thresholds, participants are still experiencing a
strong embodiment for their avatar despite being able
to consciously evaluate that the avatar’s arm reach-
ing movement is distorted. In the third stage, bey-
ond the BiE threshold, participants reject the distor-
tion as an error of the system, provoking an ErrP that
the BCI system can detect. The threshold computed
by our BCI-RL approach successfully computed the
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pseudo-optimal threshold to be in between the PoD
and the BiE thresholds when deploying the personal-
ized ErrP decoder. Importantly, these RL thresholds
were nearly identical to those obtained with explicit
feedback (1.93 ± 0.23 [mean ± SE]) [27] (table 1).
Thus, thanks to our individually customized distor-
tion magnitude, users performed the reaching task
without affecting their experience of embodiment for
their avatar.

As opposed to previous works that evaluated the
user’s brain response at given time points (e.g. after
the executions of a movement by an avatar) [19, 20,
47], we performed continuous classification of ErrPs
during avatar-based interactions and used the ErrP-
BCI decoding outputs to customize the human-avatar
mapping. Replacing time-locked by continuous clas-
sification of ErrPs is a challenge for BCI due to the
uncertainty of EEG signals, but a necessary step for
applying it to VR interaction, as users continuously
interact with their embodied avatar. Although a pre-
vious work showed the customization of robot tra-
jectories through continuous ErrP classification [25],
their task did not involve varyingmagnitudes in erro-
neous interactions. A recent study [24] revealed the
scalability of the ErrP-BCI decoding outputs over
the magnitude of errors, and posed the challenge of
decoding ErrPs induced by small errors. Critically,
our experimental protocol did not include trials with
a small magnitude of distortions in the decoder-
calibration phase. Nevertheless, our BCI-VR closed-
loop system using a personalized decoder successfully
classified trials with small distortions and customized
the human-avatarmapping, allowing one tomaintain
embodiment for their avatar.

Furthermore, we also evaluated to what extent
the decoder trained with multiple participants
generalizes to a new group of participants (non-
personalized decoder) [48, 49]. The decoding per-
formance degraded both in time-locked and con-
tinuous classification compared to the personalized
decoder (figures 4(c) and (d)). The RL threshold
obtained with the non-personalized decoder did
not reveal significant differences from the PoE nor
BiE threshold, while being higher than them. These
RL thresholds were also higher than those identi-
fied with explicit feedback [27] (table 1). Notably,
when the non-personalized decoder was used, par-
ticipants saved about 90 mins as data collection
to calibrate the personalized decoder was omitted.
Thus, they were still able to receive implicit BCI feed-
back immediately after the instruction to customize
their human-avatar mapping. Although the non-
personalized decoder showed degraded perform-
ance (figures 4(c) and (d)), our analysis revealed
a progressive increase in the output of the non-
personalized decoder output for both time-locked
and continuous classification over the magnitude of
distortions, but limited to smaller ranges (figures 4(a)
and (b)). This suggests the importance of calibrating

the decision threshold when deploying the non-
personalized decoder for both time-locked and con-
tinuous classification and also the need to update the
decoder to increase the range of posterior probabilit-
ies. These procedures may further improve precision
of RL thresholds when using a non-personalized
decoder.

One of the limitations of the present study is the
relatively specific human-avatar mapping and BCI
algorithms. For example, subjects were instructed
to fix their gazes and head movements to preserve
EEG signals frompossiblemuscle contamination, and
they performed repetitive reaching actions to collect
enough data to build a personalized decoder and cal-
ibrate their interaction. In an ideal scenario, we expect
participants tomove freely without repetitive actions,
while the BCI-VR closed-loop system implicitly cal-
ibrates their human-avatar mapping without the
need for collecting data for building a personalized
decoder.

In summary, this study demonstrated the pos-
sibility and showed the benefits of online adapta-
tion of the human-avatar mapping during VR exper-
iences, without asking explicitly or interrupting the
interaction. Although the RL threshold obtained with
a non-personalized decoder was not between PoD
and BiE thresholds, the decoder may be adaptively
updated in an experiment consisting of multiple ses-
sions [24]. Thus, it would be crucially important to
test our BCI-VR system over longitudinal sessions
because one could speculate that users would increase
their sensitivity to perceive visuo-proprioceptive con-
flicts and become more susceptible to BiE over time.
Future studies may include use of the VR system
over multiple sessions and evaluate their PoD, BiE
and RL threshold, with the possibility to change over
sessions while updating the decoder. With increas-
ing involvement of full-body interaction in immersive
VR commercial products, BCI-VR systems would be
beneficial for optimizing the human-avatar mapping,
allowing to maintain an engaging avatar-based inter-
action and a compelling immersive experience while
detecting when users notice a problem and seamlessly
correcting it.
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