
Ontology-based Automatic Reasoning and NLP for 
Tracing Software Requirements into Models with the 

OntoTrace Tool 

David Mosquera1[0000-0002-0552-7878], Marcela Ruiz1[0000-0002-0592-1779], Oscar Pastor2[0000-

0002-1320-8471], and Jürgen Spielberger1[0000-0003-2617-3535] 

1 Zürich University of Applied Sciences, Gertrudstrasse 15, Winterthur 8400, Switzerland 
{mosq, ruiz, spij}@zhaw.ch

2 PROS-VRAIN: Valencian Research Institute for Artificial Intelligence - Universitat Politèc-
nica de València, València, Spain 
opastor@dsic.upv.es 

Abstract. Context and motivation. Traceability is an essential part of quality 
assurance tasks for software maintainability, validation, and verification. How-
ever, the effort required to create and maintain traces is still high compared to 
their benefits. Problem. Some authors have proposed traceability tools to address 
this challenge, yet some of those tools require historical traceability data to gen-
erate traces, representing an entry barrier to software development teams that do 
not do traceability. Another common requirement of existing traceability tools is 
the scope of artefacts to be traced, hindering the adaptability of traceability tools 
in practice. Principal ideas. Motivated by the mentioned challenges, in this paper 
we propose OntoTraceV2.0: a tool for supporting trace generation of arbitrary 
software artefacts without depending on historical traceability data. The architec-
ture of OntoTraceV2.0 integrates ontology-based automatic reasoning to facili-
tate adaptability for tracing arbitrary artefacts and natural language processing 
for discovering traces based on text-based similarity between artefacts. We con-
ducted a quasi-experiment with 36 subjects to validate OntoTraceV2.0 in terms 
of efficiency, effectiveness, and satisfaction. Contribution. We found that On-
toTraceV2.0 positively affects the subjects’ efficiency and satisfaction during 
trace generation compared to a manual approach. Although the subjects’ average 
effectiveness is higher using OntoTraceV2.0, we observe no statistical difference 
with the manual trace generation approach. Even though such results are prom-
ising, further replications are needed to avoid certain threats to validity. We con-
clude the paper by analysing the experimental results and limitations we found, 
drawing on future challenges, and proposing the next research endeavours.  

Keywords: Traceability, Ontology, NLP, Automatic reasoning, OntoTrace 

1 Introduction 

Traceability in software development refers to generating, maintaining, and using traces 
between software artefacts [1, 2]. A trace is a triplet of elements composed of a source 

This version is a pre-print. Please refear to the publisher (Springer) to access the post-edition paper version here: https://
doi.org/10.1007/978-3-031-29786-1_10
How to cite: Mosquera, D., Ruiz, M., Pastor, O., Spielberger, J. (2023). Ontology-Based Automatic Reasoning and NLP 
for Tracing Software Requirements into Models with the OntoTrace Tool. In: Ferrari, A., Penzenstadler, B. (eds) 
Requirements Engineering: Foundation for Software Quality. REFSQ 2023. Lecture Notes in Computer Science, vol 
13975. Springer, Cham. https://doi.org/10.1007/978-3-031-29786-1_10

mailto:mosq
mailto:ruiz
mailto:opastor@dsic.upv.es


2 

artefact, a target artefact, and a trace link [2]. Software artefacts vary depending on the 
software development context and can be of different formats such as: textual require-
ments, source code, mock-ups, test cases, graphical software models, among others. 
Keeping such artefacts traced is essential to quality assurance tasks such as software 
maintainability, validation, and verification [3, 4]. However, in practice, the effort re-
quired to trace artefacts outweighs traceability benefits [5]. Thus, some authors have 
proposed novel approaches, especially for generating traces between software artefacts 
[5–15]. These proposals have attempted to decrease the effort required for generating 
traces between artefacts. Yet, some of them depend on historical traceability data—
a.k.a. training traceability data—[5, 7, 9, 14], are fixed to specific artefact types [8, 10–
13], and lack decision-making support techniques for trace generation [6, 15]. 

We had previously conceived OntoTrace: a tool for supporting trace generation of 
arbitrary software artefacts using ontology-based automatic reasoning [15] (see Onto-
TraceV2.0 research timeline in Fig. 1). In this paper, we evolve OntoTrace into Onto-
TraceV2.0 providing it with a Natural Language Processing (NLP) layer that support 
decision-making on generating traces between artefacts. Although OntoTrace supports 
trace generation of arbitrary software artefacts, we scope our research to trace software 
requirements—i.e., user stories—into software models—i.e., Existence Dependency 
Graph (EDG) models. Thus, OntoTrace users can use an automatic reasoner together 
with NLP to infer traceability-related information such as: i) which artefacts are not yet 
traced; ii) which are the traceable source/target artefacts; and iii) given a specific arte-
fact, which are the possible recommended traces between it and other artefacts based 
on text-based similarity. 

We conducted a quasi-experiment with 36 subjects to validate OntoTraceV2.0 in 
terms of subjects’ efficiency, effectiveness, and satisfaction in the context of the rapid 
software prototyping course at the Zürich University of Applied Sciences (ZHAW). 
Experimental results show how OntoTraceV2.0 positively affects the subjects’ effi-
ciency and satisfaction during trace generation compared to a manual approach. Alt-
hough the subjects’ average effectiveness is higher using OntoTraceV2.0, we observed 
no statistical difference with the manual trace generation approach in terms of effec-
tiveness. Even though such results are promising, we identified some validity threats 
such as maturity, low statistical power, and generality threats that requires further rep-
lications to validate our results. Finally, we discuss our conclusions and the subsequent 
challenges to a complete technology transference.  

 
Fig. 1. OntoTraceV2.0 research timeline and overview. 

The paper is structured as follows: in Section 2, we review the related works; in 
Section 3, we exhibit the problem scope, main definitions, and exemplify how to con-
figure OntoTrace for tracing user stories and EDG models [16]; in Section 4, we present 



3 

all new features included in OntoTraceV2.0; in Section 5, we show the OntoTraceV2.0 
validation results; and, finally, in Section 6, we discuss conclusions and future work.  

2 Related works 

Automating totally or partially the trace generation in software development has gained 
researchers’ attention. Thus, they have proposed novel traceability tools. Some authors 
propose tools for generating traces between artefacts based on historical traceability 
data—a.k.a. training traceability data—such as: artificial neural networks [5, 14], his-
torical-similarity-based algorithms [9], and Bayes classifiers [7]. Although these tools 
are helpful, they depend on extensive and well-labelled training data sets based on his-
torical traceability data. This represents an entry barrier for software development 
teams that currently do not trace their artefacts. Other authors propose tools that do not 
rely on historical traceability data, such as ontology-based recommendation systems 
[12, 13], expert systems [8], pattern languages [11], and metamodel-based ontologies 
[10]. However, these tools are limited to generating traces between specific artefacts. 
Thus, software development teams cannot adapt such tools to their software develop-
ment traceability needs. For instance, some tools [8, 12, 14] limit their source/target 
artefacts to text-based artefacts—e.g., source code, standards, and textual requirements. 
Therefore, non-textual artefacts such as models, UIs, and mock-ups are beyond their 
scope. Having that in mind, in previous work we have proposed OntoTrace as a tool for 
generating traces between arbitrary artefacts without the need to rely on historical trace-
ability data [15]. Nevertheless, like the Capra tool proposed in [6], they both lack deci-
sion-making support for analysts to decide on which traces need to be generated—i.e., 
both lack support for recommending which artefacts should be traced.  

To address such gaps, we propose to evolve OntoTrace to OntoTraceV2.0: an ontol-
ogy-based automatic reasoning NLP (Natural Language Processing) tool for generating 
traces between software artefacts. Like its predecessor, OntoTraceV2.0 does not rely 
on historical traceability data and is not restricted to a specific set of traceable artefacts. 
In addition, we combine automatic reasoning with NLP to support decision-making on 
which traces should be generated between artefacts. Thus, OntoTraceV2.0 is a step for-
ward in improving software trace generation, having such combination as the main 
technical novelty. 

3 Problem Scope 

The goal of this paper is: to analyse the OntoTrace tool for the purpose of supporting 
software traceability with respect to effectiveness, efficiency, and satisfaction of On-
toTrace users from the point of view of the researchers in the context of software 
trace generation tasks. To address this goal, we have taken the following decisions: 

• The OntoTrace tool proposed in [15] is founded on general traceability definitions 
taken from [1, 2, 17], which supports trace generation in any traceability context. 
We define traceability context as the set of SOURCE and TARGET software artefacts 



4 

to be connected by means of traces. For instance, the traceability context of this pa-
per and the controlled quasi-experiment presented in Section 5 is the generation of 
traces between User Stories [18] as SOURCE and EDG models—a UML-class-
diagram-like model [16]—as TARGET software artefacts. The reason is that User 
Stories and UML models are widely used by software development teams to docu-
ment software requirements. Moreover, EDG models are supported by teaching and 
learning tools like Merlin, which are good fit for teaching and experimental purposes 
[16]. 

• We define traceability activity as any activity involved in the traceability process 
such as generating, using, and maintaining traces [2].  

• We define OntoTrace user as any software development team role carrying out a 
traceability activity using OntoTrace [15].  

• The traceability activity that we select for this paper is trace generation. Other trace-
ability activities are out of this paper's scope. 

Based on these decisions, we propose the following research questions:  
RQ1: How to improve OntoTrace to allow for automatic trace recommendations? We 
consider different NLP techniques [19–22] to provide trace recommendations between 
artefacts and refactor the OntoTrace architecture [15], reflecting all new features. As a 
result, we propose OntoTraceV2.0. 
RQ2: When the subjects use OntoTraceV2.0, is their effectiveness, efficiency, and sat-
isfaction in establishing traceability links among User Stories and EDG models af-
fected? To answer this question, we conduct a quasi-experiment to compare effective-
ness, efficiency, and satisfaction of subjects that did software traceability with Onto-
TraceV2.0 and the traditional way (without OntoTraceV2.0). 

3.1 Traceability context: Tracing user stories and EDG models 

In this Section we show the application of the method Ontology101 [23] to establish 
the traceability context for this paper: Tracing User Stories [18] as SOURCE and EDG 
models [16] as TARGET software artefacts. As a result, we create an ontology based on 
such traceability context, containing the structure of artefacts and traces. This ontology 
is the main input for using OntoTrace since it relies on automatic reasoning based on 
the defined ontological structure. We present a summary with the application of each 
Ontology101 step, a set of guidelines to specialise each Ontology101 step for establish-
ing the traceability context, and the outcome of applying each guideline (see Table 1). 

Table 1. Establishing traceability context:  

Ontology101 
Step (S) 

Guidelines (G) for establishing trace-
ability context 

Result: traceability context  
user stories and EDG 

S1: Determine 
the domain 
and scope of 
the ontology 

G1. Specify context-dependent artefacts 
that require to be traced 

• User story parts 
• EDG model elements 

G2. Classify the context-dependent arte-
facts into source and target artefacts 

• Source: User story parts 
• Target: EDG model elements 



5 

S2: Consider 
reusing  
existing  
ontologies 

G3. Reuse existing metamodels, tools, 
domain models, syntaxes, documenta-
tion, libraries, and vocabulary that de-
scribe context-dependent artefacts 

• We reuse the following ontology 
and metamodel:  

• - Ontology for User Stories [18]  
• - EDG metamodel [16] 

S3: Enumerate 
important 
terms in the 
ontology 

G4. List terms representing context-de-
pendent source artefacts 

• User story role, user story action, 
user story goal, user story object 

G5. List terms representing context-de-
pendent source artefacts 

• EDG object, EDG attribute, EDG 
dependency, EDG method 

G6. Specify context-dependent trace 
properties to link source and target arte-
facts 

• We propose the traceability ma-
trix in Table 2 based on 

• literature on transforming user 
stories into EDG models [24, 25] 
(EDG can be transformed into 
UML and vice versa [16]). This 
traceability matrix represents the 
context-dependent trace properties 
based on researchers’ [24, 25] and 
authors’ experience. 

S4: Define the 
classes and the 
class hierarchy 

G7. Use the class hierarchy for defining 
the source/target sub-classes based on 
the resulting terms from G4 and G5. 

See Fig. 2. 

G8. Use the class hierarchy from G7 for 
defining the trace sub-classes based on 
the resulting trace properties from G6. 
Each sub-class relates to a traceability 
link defined as follows: 

- Trace hasSource some Source AND 
Trace hasTarget some Target. 
Constraint: Define trace sub-classes un-
til all possible trace properties resulting 
from G6 have been covered with at least 
one trace sub-class. 

S5: Define the 
properties of 
classes 

G9. Define context-dependent traceabil-
ity properties with the following naming: 
has + Source/Target + Artefact Name. 
Constraint: All target/source sub-classes 
must be related to at least one traceabil-
ity-related property. 

• Property hasSourceUserSto-
ryRole, inheriting from the has-
Source property.  

• Property hasTargetEDGObject, 
inheriting from the hasTarget 
property. 

S6: Define the 
facets of the 
properties 

G10. Define the range and domain of 
context-dependent traceability properties 
as follows:  

- Set the domain as all possible trace sub-
classes from G8 that have the source/tar-
get artefact as its range. 

- Set the range as the source/target artefact 
of the trace. 

- hasSourceUserStoryRole prop-
erty: this property’s domain is a 
Trace Between User Story Role 
and EDG Object class instance, 
and its range is User Story Role 
class instances. 

- hasTargetEDGObject property: 
this property’s domain is a Trace 
Between User Story Role and EDG 
Object class instance, and its range 
is EDG Object class instances. 



6 

S7: Create  
instances 

G11. For each artefact, select one of the 
following individual instance creation 
strategies:  

- Manual: Artefacts are difficult to access 
programmatically, such as physical doc-
umentation. 

- Automatic: Artefacts are contained in ac-
cessible repositories allowing for pro-
grammatic retrieval operations. 

- Automatic strategy for creating 
source artefacts since User Stories 
are stored digitally. 

- Automatic strategy for EDG mod-
els since they are digital 

Table 2. Traceability matrix in our running example: User story parts vs EDG model elements. 

Source artefact EDG: Target Artefact 
Object Attribute Dependency Method 

User story role ✓    
User story action   ✓ ✓ 
User story object ✓ ✓   
User story goal  ✓ ✓  

✓: Traceability link; EDG: Existence Dependency Graph 

 
Fig. 2. Excerpt of trace sub-classes, hierarchy, and traceability links of our running example. 

Having the strategy selected from G11, the context-dependent traceability ontology 
is ready to be translated into a computational-readable knowledge representation lan-
guage as OWL (Ontology Web Language [26]) and then used with OntoTrace. 

4 Evolving OntoTrace into OntoTraceV2.01 

In previous work, we proposed OntoTrace as an ontology-based automatic reasoning 
trace generation tool [15]. In this Section, we address RQ1 presented in Section 3, im-
proving OntoTrace to allow for automatic trace recommendation. We show which are 
the new OntoTraceV2.0 architecture elements in Fig. 3 compared to OntoTrace. More-
over, we describe the new modules in the following paragraphs.  

 
1  OntoTraceV2.0 code is available here: https://tinyurl.com/4d45utrf 



7 

 
Fig. 3. OntoTraceV2.0 architecture overview 

First, OntoTrace user specifies a context-dependent ontology (see Section 3.1) and cre-
ates an OWL file [26] describing it using an external tool such as Protégé. Then, the 
OntoTrace user provides this OWL file to OntoTrace to use the following modules:   
• Module A. OntoTrace provide information about source and target artefacts using 

a set of SPARQL queries. All the information is retrieved using the context-de-
pendent traceability ontology. 

• Module B. OntoTrace uses an automatic reasoner together with the SPARQL 
query engine to answer the following traceability related questions: i) which 
source/target artefacts are traceable; ii) which are the traces between artefacts; iii) 
which possible traces exist between source/target artefacts.  

Module A and B allow OntoTrace users to store traces between artefacts based on 
automatic reasoning. Nevertheless, OntoTrace cannot recommend which of the possi-
ble source/target artefacts are relevant to be traced. This is problematic, mainly when 
an artefact can be traced to many different artefacts, motivating us to evolve OntoTrace 
[15] and propose OntoTraceV2.0. Therefore, we create a new web-based user interface 
and include the following two modules to OntoTraceV2.0:   
• Module C. We provide OntoTraceV2.0 with an NLP layer for suggesting traces 

between artefacts based on their text-based similarity (see Section 4.1), addressing 
the aforementioned gap. 

• Module D. Now, OntoTraceV2.0 is a web-based tool instead of a standalone tool. 
OntoTrace users uses a RESTful API to access all OntoTraceV2.0 functionalities. 



8 

4.1 Combining NLP and Ontology-based automatic reasoning for supporting 
trace generation between user stories and EDG models 

OntoTrace [15] have a limitation on not recommending which possible source/target 
artefacts are relevant to be traced. In this Section, we use the context-dependent trace-
ability ontology defined in Section 3.1 to exemplify this limitation and show how NLP 
can solve it.  

After having the context-dependent traceability ontology (see Section 3.1), Onto-
Trace users start populating OntoTrace with user story parts and EDG model elements. 
These artefact instances represent the set of all traceable artefacts 𝐴. We divide 𝐴 into 
two subsets: user story parts (source artefacts) 𝑆𝐴 ⊆ 𝐴 and EDG model elements (target 
artefacts) 𝑇𝐴 ⊆ 𝐴. OntoTrace uses ontology-based automatic reasoning to answer trace-
ability related questions, creating subsets of 𝑆𝐴 and 𝑇𝐴. Specially, we focus on the fol-
lowing traceability-related question2: having selected a user story part 𝑠𝑎 ∈ 𝑆𝑎, which 
is the set of possible EDG model elements 𝑃𝑇𝑎 ⊆ 𝑇𝑎 to trace? OntoTrace automatic 
reasoner answers this question creating the 𝑃𝑇𝑎 subset based on the context-dependent 
trace properties (see Table 2). Now, the OntoTrace user can select one of the possible 
EDG model elements 𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎 to create a trace with 𝑠𝑎. For instance, the OntoTrace 
user selects a User Story Role Secretary and OntoTrace answers based on the context-
dependent trace properties (see Table 2) with the following possible EDG model ele-
ments 𝑃𝑇𝑎 to trace: EDG Object Aircraft Manager, EDG Object Aircraft, and EDG 
Object Secretary. Now, the OntoTrace user can select EDG Object Secretary as 𝑝𝑡𝑎 to 
create a trace with the User Story Role Secretary as 𝑠𝑎. We graphically show this ex-
ample in Fig. 4. 

 
Fig. 4. Previous OntoTrace version automatic reasoning result. 

Notice that OntoTrace’s automatic reasoner filtered out all target artefacts that the 
OntoTrace user must not trace to a User Story Role, such as EDG Dependencies, Meth-
ods, and Attributes. However, the OntoTrace user still needs to decide which EDG 
model element 𝑝𝑡𝑎 from the 𝑃𝑇𝑎 subset is the correct one to trace. Whether all possible 
EDG model elements 𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎 are equally valid is a problem that limits the scope of 
the automatic reasoner for trace generation. To address such a problem, we provide 

 
2  Notice that this question can also be written as: having selected a EDG model element 𝑡𝑎 ∈

𝑇𝑎, which is the set of possible user story parts 𝑃𝑆𝑎 ⊆ 𝑆𝑎 to trace? However, we use the 
source-to-target variant instead of target-to-source variant for simplicity. 



9 

OntoTraceV2.0 with an NLP layer to recommend which EDG model element 𝑝𝑡𝑎 is 
relevant to be traced to a selected user story part 𝑠𝑎 based on text-based similarity. 
OntoTraceV2.0’s NLP layer comprises three sub-layers: extracting artefacts’ text data, 
processing extracted text, and calculating the similarity between artefacts. As a result, 
OntoTraceV2.0 provide a similarity value with the possible traces between artefacts. 
We show how OntoTraceV2.0 transforms ontology-based automatic reasoning output 
using the NLP layer in Fig. 5. 

 
Fig. 5. OntoTraceV2.0 NLP layer and sublayers explained. 

In the first sub-layer, we extract the textual data from the selected user story part 𝑠𝑎 
and all possible EDG model elements 𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎 . We gather artefacts’ relevant data 
from 𝑠𝑎 and each 𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎 using SPARQL [27] queries. Then, we transform the in-
formation retrieved by the SPARQL queries into a textual description as input for the 
next sub-layer. In the second sub-layer, we process the textual description resulting 
from last layer. We apply text processing techniques [22], such as removing punctua-
tion, lowercasing, tokenization, stop word removal, and lemmatization. In the third sub-
layer, we receive the processed text and calculate the cosine similarity between the an-
gle of the 𝑠𝑎 and 𝑝𝑡𝑎 vectors [19], having as a result a text-based similarity value be-
tween 0 to 1. Then, we provide the possible traces between the selected user story part 
𝑠𝑎 and all possible EDG model elements 𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎 with the text-based similarity value. 
Finally, OntoTraceV2.0 recommend tracing 𝑠𝑎 to a  𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎 if the calculated text-
based similarity is higher or equal to a recommendation threshold. We show a detailed 
example on how this text go through all three NLP sub-layers in Fig. 6.  

 
Fig. 6. Detailed NLP layer example. 



10 

So far, we briefly discussed the technical details of each NLP sub-layer. In this paper, 
we specially focus on the third sub-layer’s vectorizing techniques [20, 21] and how 
such techniques affect the OntoTraceV2.0 recommendation accuracy. To do so, we test 
four vectorizing techniques: Count Vectorizer, TFIDF Vectorizer, Doc2Vec, and Uni-
versal Sentence Encoder. Count and TFIDF Vectorizers are mathematical-based tech-
niques for vectorizing text, using word frequency to create a vector representation [21]. 
The Doc2Vec and the Universal Sentence Encoder are machine-learning-based tech-
niques for vectorizing text using word embeddings [20, 21]. To compare them, we 
gather and process the text from each 𝑠𝑎 with their 𝑃𝑇𝑎 set using the first two NLP sub-
layers. We calculate the cosine similarity between vector representations for each vec-
torizing technique—i.e., we calculate cos_sim ( 𝑠𝑎 , 𝑝𝑡𝑎) for each 𝑝𝑡𝑎 ∈ 𝑃𝑇𝑎. Finally, 
we calculate the recommendation accuracy to compare the vectorizing techniques. We 
define recommendation accuracy based on [28] as: 

 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠
∗ 100% (1) 

We calculate the average recommendation accuracy to compare the four vectorizing 
techniques and report the results in Table 3.  

Table 3. Vectorizing techniques and their recommendation accuracy. 

Vectorizing  
technique 

Recommendation  
threshold 

Recommendation  
Accuracy (AVG) 

Count vectorizer 0.9025 71.80%  
TFIDF vectorizer 0.9139 75.89% 
Doc2Vec 0.9965 20.21% 
Universal Sentence Encoder 0.9625 60.37% 

We observe that the TFIDF vectorizer has the highest recommendation accuracy in 
average among vectorizing techniques. Therefore, we select the TFIDF vectorizer to 
implement the third sub-layer vectorizing technique. For the sake of space, we include 
a detailed description on how we designed the SPARQL queries, implemented the text 
processing techniques, and selected the vectorizing techniques and similarity calcula-
tion method in an annexe repository3. However, evaluating the effect on recommenda-
tion accuracy with different similarity calculation formulas, text processing techniques, 
SPARQL queries, and other NLP techniques—e.g., using transformer models—is still 
work in progress.  

5 Evaluating OntoTraceV2.0 

We have conducted a quasi-experiment to measure the extent OntoTraceV2.0 affects 
trace generation effectiveness, efficiency, and satisfaction. We design and execute this 
quasi-experiment based on Wohlin et al. [29] and Moody’s [30] Technology Ac-
ceptance Model (TAM), addressing RQ2 presented in Section 3. Our quasi-experiment 
is fixed to User Stories and EDG models. However, we consider answering RQ2 as the 

 
3  https://doi.org/10.5281/zenodo.7589791 



11 

first step for future experiment replications with other artefacts and as a first step to find 
general conclusions. 

5.1 Experimental design 

The experimental goal according to the Goal/Question/Metric template [31] is to ana-
lyse the use of OntoTraceV2.0 for the purpose of trace generation between user sto-
ries and EDG models with respect to effectiveness, efficiency, and satisfaction from 
the point of view of engineering bachelor students in the context of a bachelor course 
on rapid software prototyping (RASOP) at the ZHAW in Switzerland.  

Experimental Subjects. The quasi-experiment was conducted with 36 subjects, all 
of them engineering students enrolled in the RASOP course. The subjects are part of 
diverse engineering programs such as: Information technology (IT; 36.1%), Computer 
Sciences (30.6%), Industrial engineering (8.3%), Systems engineering (5.6%), Me-
chanical engineering (5.6%), Business engineering (5.6%), Aviation (2.8%), Electrical 
engineering (2.8%), and Energy and Environmental Engineering (2.8%). More than a 
half (58.3%) of the subjects have between 0.5 to 10 years of industry experience (2.8 
years average ± 3.1 years std) in field such as software engineering, data mining, me-
chanics, and semi-conductor industry, among others. However, only one subject (2.8%) 
has one year of previous experience on software traceability. The other subjects 
(97.2%) have no previous experience on software traceability. Subjects were informed 
about data collection, and they executed the experimental tasks as part of the course 
graded activities. Nevertheless, we inform them that there are no direct benefits in the 
grades to let us collect their data.  

Variables. We consider one independent variable: generating traces with and with-
out OntoTraceV2.0. On the other hand, we consider three independent variables 
grouped by effectiveness, efficiency, and satisfaction based on Moody’s evaluation 
model [30]. For effectiveness, we decide to measure subject’s precision during trace 
generation. For efficiency, we plan to measure subject’s number of generated traces per 
minute. For satisfaction, we propose to measure three qualitative variables based on a 
1-to-5 Likert scale: Perceived ease of use (PEU), perceived usefulness (PU), and Inten-
tion to Use (ITU).  

Hypotheses. We define null hypotheses (represented by a 0 in the subscript) stating 
that OntoTraceV2.0 do not affect the trace generation effectiveness, efficiency, and sat-
isfaction. The alternative hypotheses (represented by a 1 in the subscript) suppose there 
is an influence. We show our hypotheses in Table 4, alternative hypotheses are omitted.  

Table 4. Null hypothesis (𝐻0) description. 

𝑯𝟎 Statement: The use of OntoTraceV2.0 does not affect the subject’s ... 
𝐻10 …effectiveness when generating traces between user stories and EDG models. 
𝐻20 …efficiency when generating traces between user stories and EDG models. 
𝐻30 … PEU when generating traces between user stories and EDG models. 
𝐻40 … PU when generating traces between user stories and EDG models. 
𝐻50 … ITU when generating traces between user stories and EDG models. 

PEU: Perceived Ease of Use; PU: Perceived Usefulness; ITU: Intention to Use 



12 

5.2 Procedure and data analysis4 

We conducted the quasi-experiment following a blocked subject-object study having 
one factor with two treatments experimental design [29]. Hence, we propose randomly 
dividing subjects into two balanced groups: GR1 and GR2. Both groups received train-
ing on traceability during the RASOP lectures. We design two experimental objects 
(O1 and O2) that both GR1 and GR2 will face in two different sessions. Subjects re-
ceive a set of user stories as source artefacts and an EDG as target artefact, having as a 
task generating the traces between artefacts. Moreover, source and target artefacts are 
previously labelled (see Fig. 7).  

 
Fig. 7. O2 experimental object excerpt. S#: source artefact; T#: target artefact. 

Before each session, we introduce the experimental task using an experimental train-
ing object (O0). Data from O0 is not collected nor evaluated since it is just for training 
subjects. During the first session, GR1 works on O1 and GR2 works on O2, both groups 
without using OntoTraceV2.0—i.e., using a manual traceability strategy. During the 
second session, GR1 works on O2 and GR2 works on O1, but now using Onto-
TraceV2.0. We decide to evaluate OntoTraceV2.0 against manual traceability rather 
than OntoTraceV1.0 since OntoTraceV2.0 contains all features from OntoTraceV1.0, 
allowing us to assess not only the new NLP feature but also the ontology-based auto-
matic reasoning feature. At the end of each session, we ask subjects to provide us with 
the ending time, the generated traces, and a satisfaction questionnaire.  

Using the previously discussed configuration, quasi-experiment findings are not en-
tirely dependent on the experimental object since we use two experimental objects. 
Moreover, we avoid the between-session experimental object learning effect since sub-
jects work on different experimental objects in each session. Furthermore, session 1 
and session 2 were performed with a one-week time difference, decreasing the effect 
on satisfaction variables by the time between sessions. However, we could not prevent 
a between-task learning effect—i.e., even if we did not reveal the correct results be-
tween sessions, subjects learn how to perform the traceability task from session 1 and 

 
4  To facilitate further replications, all material related to the experimental objects, de-

mographics, and results can be found at https://doi.org/10.5281/zenodo.7360221. 



13 

use that knowledge in session 2—due to time and infrastructure limitations. As a dis-
claimer, such a learning effect can affect effectiveness and efficiency metrics, requiring 
further replications to validate our results. We deeply discuss this and other threats to 
validity in more detail in Section 5.3. Finally, all subjects are used in both sessions, 
avoiding variability among subjects. 

Data analysis. We analyse the descriptive statistics, comparing means of dependent 
variables (see Fig. 8). Moreover, we run a generalised linear model to test the hypoth-
esis (see Table 5). 

 
Fig. 8. Quasi-experiment results’ distributions, having y-axis as the probability density.  

Table 5. Statistical generalized linear model test results. 

Independent 
variables 

Dependent variables 

Precision Efficiency 
(Traces/min) 

PEU 
(AVG) 

PU 
(AVG) 

ITU 
(AVG) 

OntoTraceV2.0 0.0165 
(0.0539) 

0.670*** 
(0.230) 

0.489* 
(0.267) 

0.649*** 
(0.231) 

0.600* 
(0.331) 

Experimental 
Object 

-0.099* 
(0.0513) 

0.807*** 
(0.219) 

0.256 
(0.255) 

0.246 
(0.221) 

-0.167 
(0.316) 

OntoTraceV2.0 
& Experimental 
Object 

0.121 
(0.0749) 

-0.783** 
(0.319) 

-0.0438 
(0.372) 

-0.105 
(0.322) 

0.0569 
(0.461) 

Standard errors in parentheses; ***: p < 0.01; **: p < 0.05, *: p < 0.1 

Effectiveness. We observe subject’s effectiveness in terms of precision without On-
toTraceV2.0 is in average 73.99% ± 15.77% compared to 81.74% ± 15.49% with On-
toTraceV2.0. This means that subjects identify 7.75% more correct traces with Onto-
TraceV2.0 compared to a manual strategy on average. However, we observe that On-
toTraceV2.0 has no statistical representative effect into subject’s precision. Similarly 
with the interaction between OntoTraceV2.0 and the experimental object. Therefore, 
we cannot reject 𝐻10. On the other hand, we observe the experimental object has a 
negative representative effect into subject’s precision. This could indicate that one ex-
perimental object is more challenging that the other.  

Efficiency. We observe subject’s efficiency in terms of trace/min without Onto-
TraceV2.0 is in average 1.44 traces/min ± 0.71 traces/min compared to 1.72 traces/min 
± 0.71 traces/min with OntoTraceV2.0. This means that subjects create 0.28 traces/min 



14 

(16.8 traces/hour) faster compared to a manual strategy on average. Moreover, we ob-
serve that OntoTraceV2.0 has a positive statistical representative effect into subject’s 
efficiency. Similarly with interaction between OntoTraceV2.0 and the experimental ob-
ject. Therefore, we reject 𝐻20 with a 99% of confidence. As a disclaimer, this result 
could be due to between-task learning validity threat—i.e., a maturity threat—as we 
previously mentioned. Thus, a double check with future replicas is needed. On the other 
hand, we observe the experimental object has a positive representative effect into sub-
ject’s efficiency. This seems to confirm what we identified with effectiveness, where 
one experimental object seems to not require as much effort as the other.   

Satisfaction. We observe that subject’s satisfaction in terms of PEU, PU, and ITU 
without OntoTraceV2.0 is in average 3.64 ± 0.86, 3.27 ± 0.63, 2.75 ± 0.94 respec-
tively.  Furthermore, we observe that subject’s satisfactions in terms of PEU, PU, and 
ITU with OntoTraceV2.0 is in average 4.11 ± 0.64, 3.88 ± 0.69, 3.38 ± 0.93 respec-
tively. This means that subjects perceived a better satisfaction in terms of PEU, PU, 
and ITU using OntoTraceV2.0 on average—specifically, OntoTraceV2.0 increase 
PEU, PU, and ITU on average 0.47, 0.61, and 0.63 points respectively. Moreover, we 
observe that OntoTraceV2.0 has a positive statistical representative effect into PEU, 
PU, and ITU. Therefore, we reject 𝐻30, 𝐻40, and 𝐻50 with a 90%, 99%, and 90% of 
confidence respectively. On the other hand, we observe that the experimental object 
nor the interaction between experimental object and OntoTraceV2.0 has statistical rep-
resentative effect into subject’s satisfaction in terms of PEU, PU and ITU.  

5.3 Threats to Validity 

Internal Validity. GR1 and GR2 group subjects could share information about their 
experimental objects, materializing a diffusion threat. Due to that, we prepared two ver-
sions of our experimental objects O1.1, O2.1 and O1.2, O2.2. Thus, we minimize the 
effect of diffusion about experimental objects between sessions since subjects always 
face new experimental objects. In terms of maturity, subjects were able to improve their 
tracing skills between sessions affecting their efficiency and effectiveness. To minimise 
this threat, we do not reveal the results of their performance until the end of the second 
session, avoiding subjects learn from the first session results. However, subjects still 
could learn how to generate traces between session 1 and session 2—e.g., subjects could 
learn how to trace more efficiently even if they do it in a wrong way because they do 
not know the correct result. In our quasi-experiment, we did not assess this maturity 
threat that could affect especially effectiveness and efficiency. We plan to verify such 
results in further experiment replications. 
External Validity. We involved students from different engineering bachelor pro-
grams as experimental subjects. This could represent an interaction of selection and 
treatment threat where subjects are not representative of the population we want to 
generalize. However, all students participating in RASOP lecture are interested on soft-
ware development and software quality assurance tasks such as traceability based on 
RASOP syllabus. Thus, we minimize considering RASOP students as potential popu-
lation to use OntoTraceV2.0. Nevertheless, we acknowledge the limits in the generali-
zation of the experiment results since we did not include other subjects of interest such 



15 

as traceability experts. We plan to replicate this quasi-experiment to generalize our re-
sults, including traceability experts and software development teams working in indus-
try.  
Construct validity. Subjects could be afraid of being evaluated affecting their results, 
materializing an evaluation apprehension threat. We minimize this threat letting sub-
jects know that all data is anonymous, and no benefit/penalization is made for letting 
us collect their data.  
Conclusion validity. Although we conducted a quasi-experiment with 36 subjects, the 
sample size is still small. This represents a low statistical power threat. To mitigate this 
threat in the future, we plan to replicate this quasi-experiment increasing the sample 
size. Moreover, there are external experimental setting threats we could not mitigate 
that can affect the experiment results. For instance, RASOP lecture is scheduled from 
17:45 to 21:00. During the evening subjects are tired and that can affect their results.   

6 Conclusions and future work 

In this paper, we propose OntoTraceV2.0: an ontology-based automatic reasoning and 
NLP-based tool for generating traces between software artefacts. OntoTraceV2.0 is 
built on top of previous work by including an NLP layer for supporting decision-mak-
ing on generating traces between artefacts—i.e., for recommending traces between ar-
tefacts. Then, OntoTraceV2.0 users can use an automatic reasoner together with NLP 
to infer traceability-related information such as: i) which artefacts are not yet traced; ii) 
which are the traceable source/target artefacts; and iii) given a specific artefact, which 
are the possible recommended traces between it and other artefacts based on text-based 
similarity.  

We conducted a quasi-experiment with 36 subjects to analyse OntoTraceV2.0 effect 
on effectiveness, efficiency, and satisfaction on trace generation. We observed Onto-
TraceV2.0 positively affects the subjects’ efficiency and satisfaction during trace gen-
eration compared to a manual approach. However, although the subjects’ average ef-
fectiveness is higher using OntoTraceV2.0, we observed no statistical difference with 
the manual trace generation approach in terms of effectiveness. The lack of significant 
effect in terms of effectiveness is a limitation. This indicates we still need to improve 
OntoTraceV2.0 trace recommendation techniques. In the future, we will improve trace 
recommendations by devising new techniques, combining NLP and machine learning 
algorithms. In addition, we identified some threats to validity that can affect our results, 
especially in terms of effectiveness and efficiency. We plan to replicate this quasi-ex-
periment having in mind threats to validity such as maturity, low statistical power, and 
generalisation of experimental results to validate our results. 

Acknowledgments: This research is fully funded by the ZHAW Institute for Ap-
plied Information Technology (InIT), the Innosuisse Flagship SHIFT project, and the 
ZHAW School of Engineering. Moreover, we would like to thank all RASOP course 
students for actively participating on the quasi-experiment, allowing us to gather all the 
data we used to build our research.  



16 

References 

1. Charalampidou, S., Ampatzoglou, A., Karountzos, E., Avgeriou, P.: Empirical studies on soft-
ware traceability: A mapping study. Journal of Software: Evolution and Process. 33, (2021).  

2. Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability. Springer, London 
(2012). 

3. Antoniol, G., Canfora, G., de Lucia, A.: Maintaining traceability during object-oriented soft-
ware evolution: a case study. In: IEEE International Conference on Software Maintenance - 
1999 (ICSM’99). pp. 211–219. (1999).  

4. Sundaram, S.K., Hayes, J.H., Dekhtyar, A., Holbrook, E.A.: Assessing traceability of software 
engineering artifacts. Requir Eng. 15, 313–335 (2010).  

5. Lin, J., Liu, Y., Zeng, Q., Jiang, M., Cleland-Huang, J.: Traceability Transformed: Generating 
More Accurate Links with Pre-Trained BERT Models. In: 2021 IEEE/ACM 43rd International 
Conference on Software Engineering (ICSE). pp. 324–335. IEEE (2021).  

6. Maro, S., Steghofer, J.-P.: Capra: A Configurable and Extendable Traceability Management 
Tool. In: 2016 IEEE 24th International Requirements Engineering Conference (RE). pp. 407–
408. IEEE (2016).  

7. Nagano, S., Ichikawa, Y., Kobayashi, T.: Recovering Traceability Links between Code and 
Documentation for Enterprise Project Artifacts. In: 2012 IEEE 36th Annual Computer Software 
and Applications Conference. pp. 11–18. IEEE (2012).  

8. Guo, J., Cleland-Huang, J., Berenbach, B.: Foundations for an expert system in domain-specific 
traceability. In: 2013 21st IEEE International Requirements Engineering Conference (RE). pp. 
42–51. IEEE (2013).  

9. Javed, M.A., UL Muram, F., Zdun, U.: On-Demand Automated Traceability Maintenance and 
Evolution. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). pp. 111–120. Springer Verlag (2018). 

10. Narayan, N., Bruegge, B., Delater, A., Paech, B.: Enhanced traceability in model-based CASE 
tools using ontologies and information retrieval. In: 2011 4th International Workshop on Man-
aging Requirements Knowledge. pp. 24–28. IEEE (2011).  

11. Javed, M.A., Stevanetic, S., Zdun, U.: Towards a pattern language for construction and mainte-
nance of software architecture traceability links. In: Proceedings of the 21st European Confer-
ence on Pattern Languages of Programs. pp. 1–20. ACM, New York, NY, USA (2016).  

12. Huaqiang, D., Hongxing, L., Songyu, X., Yuqing, F.: The Research of Domain Ontology Rec-
ommendation Method with Its Applications in Requirement Traceability. In: 2017 16th Inter-
national Symposium on Distributed Computing and Applications to Business, Engineering and 
Science (DCABES). pp. 158–161. IEEE (2017).  

13. Hayashi, S., Yoshikawa, T., Saeki, M.: Sentence-to-Code Traceability Recovery with Domain 
Ontologies. In: 2010 Asia Pacific Software Engineering Conference. pp. 385–394. IEEE 
(2010).  

14. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically Enhanced Software Traceability Using 
Deep Learning Techniques. In: 2017 IEEE/ACM 39th International Conference on Software 
Engineering (ICSE). pp. 3–14. IEEE (2017).  

15. Mosquera, D., Ruiz, M., Pastor, O., Spielberger, J., Fievet, L.: OntoTrace: A Tool for Support-
ing Trace Generation in Software Development by Using Ontology-Based Automatic Reason-
ing. In: CAiSE’22. pp. 73–81. Springer (2022).  

16. Snoeck, M.: Enterprise Information Systems Engineering. Springer International Publishing, 
Cham (2014).  



17 

17. Guo, J., Monaikul, N., Cleland-Huang, J.: Trace links explained: An automated approach for 
generating rationales. In: 2015 IEEE 23rd International Requirements Engineering Conference 
(RE). pp. 202–207. IEEE (2015).  

18. Thamrongchote, C., Vatanawood, W.: Business process ontology for defining user story. In: 
2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS). 
pp. 1–4. IEEE (2016).  

19. Li, B., Han, L.: Distance Weighted Cosine Similarity Measure for Text Classification. In: 2013 
International Conference on Intelligent Data Engineering and Automation Learning. pp. 611–
618. Springer (2013).  

20. Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R. st., Constant, N., Guajardo-
Cespedes, M., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., Kurzweil, R.: Universal Sentence 
Encoder. (2018). 

21. Singh, L.: Clustering Text: A Comparison Between Available Text Vectorization Techniques. 
In: 3rd ICSCSP - Soft Computing and Signal Processing. pp. 21–27. Springer (2022).  

22. Hickman, L., Thapa, S., Tay, L., Cao, M., Srinivasan, P.: Text Preprocessing for Text Mining 
in Organizational Research: Review and Recommendations. Organ Res Methods. 25, 114–146 
(2022).  

23. Noy, N.F., McFuiness, D. la: Ontology Development 101: A Guide to Creating Your First On-
tology, https://protege.stanford.edu/publications/ontology_development/ontology101.pdf, last 
accessed 2021/11/29. 

24. Bragilovski, M., Dalpiaz, F., Sturm, A.: Guided Derivation of Conceptual Models from User 
Stories: A Controlled Experiment. In: Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 131–147. 
Springer Science and Business Media Deutschland GmbH (2022).  

25. Nasiri, S., Rhazali, Y., Lahmer, M., Chenfour, N.: Towards a Generation of Class Diagram 
from User Stories in Agile Methods. Procedia Comput Sci. 170, 831–837 (2020). 

26. Web Ontology Language (OWL), https://www.w3.org/OWL/, last accessed 2021/11/29. 
27. SPARQL query language, https://www.w3.org/2001/sw/wiki/SPARQL, last accessed 

2021/11/29. 
28. Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., Kashef, R.: Recommendation Systems: 

Algorithms, Challenges, Metrics, and Business Opportunities. Applied Sciences. 10, 7748 
(2020).  

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation 
in Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). 

30. Moody, D.L.: The Method Evaluation Model: A Theoretical Model for Validating Information 
Systems Design Methods. In: ECIS 2003 Proceedings. pp. 79–96 (2003). 

31. van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric (GQM) Ap-
proach. In: Encyclopedia of Software Engineering. John Wiley & Sons, Inc., Hoboken, NJ, 
USA (2002).  

  




