
Chapter 9
Vulnerabilities Introduced by LLMs
Through Code Suggestions

Sebastiano Panichella

Abstract Code suggestions from generative language models like ChatGPT con-
tain vulnerabilities as they often rely on older code and programming practices,
over-represented in the older code libraries the LLMs rely on for their coding
abilities. Advanced attackers can leverage this by injecting code with known
but hard-to-detect vulnerabilities in the training datasets. Mitigation can include
user education and engineered safeguards such as LLMs trained for vulnera-
bility detection or rule-based checking of codebases. Analysis of LLMs’ code
generation capabilities, including formal verification and source training dataset
(code-comment pairs) analysis, is necessary for effective vulnerability detection and
mitigation.

9.1 Introduction

The landscape of software development has been revolutionized by the emergence
of generative language models such as ChatGPT and GitHub Copilot, which offer
code recommendations and suggestions to developers. However, while these models
provide tremendous convenience and productivity gains, a latent concern exists
surrounding the security implications of their outputs. This chapter delves into the
relationship between generative language models (LLMs) and the security of the
generated code, shedding light on the vulnerabilities that can arise.

Unlike natural language-generating LLMs, where counterfactual text generation
(“hallucinations”) is a major concern, code-generating LLM output undergoes either
compilation or interpretation. As such, code that does not sufficiently adhere to
examples in the model’s training dataset does not pose as much risk, given that
it will most likely fail to execute or lead to an immediately detectable wrong
behavior. Because of that, a much bigger risk for code-generating LLMs is the
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problematic code in their training dataset. Code-generating LLMs are trained from
historical codebases and programming practices, which might be outdated or even
include several vulnerabilities. As a result, the code snippets generated by LLMs
could inadvertently incorporate these vulnerabilities, posing a potential threat to
the security of the resultant software. LLMs tend to favor older code libraries
and repositories for learning, leading to an over-representation of deprecated and
potentially risky coding paradigms.

The vulnerabilities introduced by LLM-generated code open up opportunities
for advanced attackers to exploit the weaknesses in the software. These attackers
can strategically inject malicious code leveraging well-concealed vulnerabilities in
the training datasets. Detecting and countering these vulnerabilities pose significant
challenges due to their elusive nature. Notably, these vulnerabilities might be identi-
fied by humans/developers only with considerable effort, making their identification
a non-trivial task.

Addressing these security concerns necessitates a multifaceted approach. One
avenue for mitigation involves enhancing user education about the potential risks
inherent in relying blindly on LLM-generated code. Additionally, the integration
of engineered safeguards, such as LLMs specialized in vulnerability detection or
rule-based assessments of codebases, can provide an extra layer of protection.
However, the complexity of LLMs and the subtlety of vulnerabilities they introduce
necessitate a more thorough exploration. An in-depth analysis of LLMs’ code
generation capabilities is crucial, encompassing methods like formal verification
and exhaustive examination of the source training datasets, including code-comment
pairs. Such analyses will pave the way for effective vulnerability detection and
mitigation strategies.

Looking ahead, the chapter also delineates future research prospects in the
realm of LLMs and security. Researchers and practitioners are poised to delve
deeper into devising techniques for accurately identifying vulnerabilities in LLM-
generated code and methodologies for generating secure code without stifling
the models’ creative capabilities. Exploring techniques to fine-tune LLMs using
security-focused datasets could also yield models more adept at producing secure
code snippets.

In summary, this chapter not only exposes the risks and challenges associated
with security in the context of LLM-generated code but also sheds some light on the
potential opportunities for enhancing software security through vigilant research,
innovative techniques, and proactive safeguarding measures. It is a compass for
researchers and practitioners navigating the intricate landscape where the promise
of LLMs intersects with the imperative of secure software development.

9.2 Relationship Between LLMs and Code Security

The software development state of the practice has undergone a remarkable
transformation with the advent of LLMs like ChatGPT and GitHub Copilot.
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These cutting-edge LLMs have introduced a revolutionary shift by providing
developers with an array of code recommendations and insightful suggestions [1].
This innovative advancement has effectively transformed the way software is
created and refined. Through their sophisticated capabilities, ChatGPT and GitHub
Copilot have emerged as pivotal tools that empower developers with enhanced
efficiency and creativity, ushering in a new era of collaborative and accelerated
software development processes, including coding [1, 2] and code documentation
activities [3].

9.2.1 Vulnerabilities and Risks Introduced by LLM-Generated
Code

An important and significant risk associated with the utilization of such a model
arises from the fundamental premise that they are trained using historical codebases
and programming practices [4, 5]. This aspect brings to light a multifaceted concern,
wherein the historical context might potentially render the acquired knowledge
outdated or obsolete. It could inadvertently encompass numerous vulnerabilities and
security loopholes within its framework [6, 7].

The crux of this risk lies in the inherent nature of LLMs, which learn from
the vast repository of programming examples that have been amassed over time.
While this repository undoubtedly offers a treasure trove of insights into the
evolution of coding paradigms, it also implies that LLMs are exposed to a wide
array of programming techniques that have potentially been rendered obsolete
due to advancements in technology, shifts in best practices, or the identification
of security flaws [7]. Furthermore, the historical codebases upon which LLMs
are trained might inadvertently harbor vulnerabilities that were unknown or less
prioritized in the past but have since emerged as critical points of concern in
contemporary software development [8]. If ingrained within the model’s learned
patterns, these vulnerabilities could propagate into the code it generates, leading to
inadvertent security breaches or susceptibility to cyberattacks. LLMs tend to favor
older code libraries and repositories for learning, leading to an over-representation
of deprecated and potentially risky coding paradigms.

In the rapidly evolving landscape of technology and cybersecurity, relying
solely on historical programming knowledge to shape the capabilities of LLMs
can be likened to building upon a risky and antiquated foundation. As software
development methodologies adapt to new security standards, coding practices, and
emerging paradigms, the risk of generating code that adheres to outdated or insecure
practices becomes increasingly possible [6, 8].

An additional critical factor that warrants careful consideration is the inherent
vulnerability of LLMs to adversarial attacks. These attacks, which exploit the
intricate nuances of the model’s behavior, raise significant concerns regarding
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the model’s robustness and reliability in real-world applications [9, 10].1 The
susceptibility of LLMs to such attacks underscores the necessity for rigorous
testing [11–16] and fortification of these models to ensure their resilience in the
face of diverse adversarial strategies. Adversarial attacks targeting LLMs involve
subtly manipulating input data that may seem inconsequential to human observers
but can lead to significant distortions in the model’s outputs. This vulnerability
stems from the intricate nature of language understanding and generation, where
slight perturbations can cause LLMs to produce misleading or erroneous results.
Consequently, this susceptibility poses a multifaceted challenge encompassing not
only the theoretical understanding of these vulnerabilities but also the practical
implementation of effective defense mechanisms. The intricate interplay between
LLMs and adversarial attacks introduces a multifaceted challenge that demands
concerted efforts from researchers, practitioners, and policymakers alike [10]. By
delving deeper into the vulnerabilities inherent to these models and collaborating
across disciplines, I can pave the way for the development of LLMs that not only
excel in their linguistic capabilities but also stand resilient against the ever-evolving
landscape of adversarial threats [17, 18].

In essence, while LLMs present remarkable potential in enhancing developer
productivity and catalyzing innovation, a judicious approach to their usage must
be adopted. This involves acknowledging the limitations inherent in training these
models on historical data and proactively addressing the challenges posed by
outdated practices and vulnerabilities. Through a concerted and vigilant effort, the
benefits of LLMs can be harnessed while minimizing the inherent risks, ultimately
leading to a more secure and robust software development landscape. In the next
section, I discuss more in detail potential mitigation strategies for such problems.

9.3 Mitigating Security Concerns With LLM-Generated
Code

Secure LLM-Based Programming with Static, Code, and Change Analysis
Previous work discusses the challenges and benefits of using static analysis tools
to ensure secure programming practices, highlighting the importance of tools and
techniques in identifying vulnerabilities in code, which aligns with the challenges
of detecting vulnerabilities in LLM-generated code [19, 20]. Researchers and
practitioners are called into devising static analysis-based techniques for accurately
identifying vulnerabilities in LLM-generated code, as well as methodologies for
generating secure code without stifling the models’ creative capabilities. Comple-
mentary, exploring techniques to fine-tune LLMs using security-focused datasets
could yield models that are more adept at producing secure code snippets [21, 22].

1 https://github.com/llm-attacks/llm-attacks.
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In a closely related direction, recent studies proposed code-based or static meta-
data-based vulnerability detection or prediction techniques in the context of code
written by developers of open source and mobile applications [23, 24], providing
an overview of techniques that can be applied to assessing LLM-generated code.
Here, the challenge is to study and investigate how much it is possible to generalize
them to LLMs’ generated software. In particular, the concept of vulnerability-
proneness [24] of software applications created on top of LLMs could contribute
to the understanding of vulnerabilities and the potential risks introduced by its code,
which is relevant to the security concerns discussed in the chapter. This notion can
be combined with more exhaustive and expensive techniques from the state-of-the-
art vulnerability detection [23, 25].

Another relevant direction for mitigating security issues with LLM-generated
code concerns the adaptation of change analysis [26–29] and code analysis [30–
34] strategies, to enact monitoring and testing automation for LLM generated-code
behavior [35–38]. Specifically, while such previous research was very timely and
relevant for software and cyber-physical systems, such approaches are intrinsically
insufficient to deal with the evolving, dynamic, and safety-critical nature of code
generated and modified with the support of LLMs. Once security concerns with such
adapted techniques, researchers could explore the opportunity to investigate code
clone techniques [39, 40], which typically target the identification (or monitoring)
of code clones that involve subtle changes or variations of existing similar code, and
that presents vulnerabilities/security risks or issues.

Automated Code Review for LLMs The potential risks associated with using
outdated or vulnerable codebases for training contribute to the need for Modern
Code Review (MCR) practices to address these issues [29, 41, 42].2,3 MCR is a key
process in software development aimed at inspecting (code inspection done typically
by developers) for identifying and rectifying programming and vulnerability issues,
which is relevant to the topic of identifying vulnerabilities and code-related issues
introduced in LLM-generated code. In this, context, recent research proposed
approaches to automate the code review process [31, 43–52], as well as proposed
methods to evaluate them [53]. Hence, similarly to previous empirical research,
this chapter suggests the investigation of MCR practices that are suited for LLM-
generated code. Compared to the previous studies, researchers in the field are
required to manually and/or automatically analyze MCR changes [29, 41, 42].

Monitoring of Adversarial Attacks and Formal verification of LLMs As the
application domains of LLMs continue to expand, ranging from automated content
generation to personalized assistance, it is crucial to establish robust evaluation
benchmarks that account for their susceptibility to adversarial attacks and general

2 https://medium.com/@andrew_johnson_4/the-role-of-large-language-models-in-code-review-
2b74598249ab.
3 https://paperswithcode.com/paper/lever-learning-to-verify-language-to-code/review/?hl=
100085.
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security risks. These benchmarks should encompass a wide array of potential attack
vectors, spanning from syntactic manipulations to more sophisticated semantic
distortions. By subjecting LLMs to a battery of rigorous tests, I can benchmark
their performance under different adversarial scenarios and iteratively refine their
architectures to enhance their defense mechanisms. To mitigate LLMs-related risks,
it becomes imperative to implement comprehensive validation and verification
processes that scrutinize the code generated by LLMs for adherence to current
security standards and best practices. This entails not only ensuring the functional
correctness of the code but also conducting thorough security audits to identify and
rectify potential vulnerabilities that might have been inadvertently woven into the
resulting generated code.

To address the risk of adversarial attacks comprehensively, fostering collabo-
ration between the research community and industry stakeholders is imperative.
By coordinating the research and expertise from diverse fields, including machine
learning, cybersecurity, linguistics, and cognitive science, I can devise innovative
strategies to enhance the resilience of LLMs [17, 18]. These efforts might involve
the development of novel training or repairing techniques [54] that can expose
models to a broader spectrum of adversarial examples during their learning pro-
cess, thereby augmenting their ability to discern subtle deviations and generate
accurate responses. Complementary, addressing these security concerns necessitates
a multifaceted approach, encompassing methods such as formal verification and
exhaustive examination of the source training datasets [55–57], including code-
comment analysis, evolution and consistency [58].

Explainability and Testing in the Era of LLMs An additional crucial challenge
that arises pertains to the intricate realm of explainability, particularly when
utilizing empirical software engineering methodologies [59]. Within the expansive
landscape of Language Model technologies, like LLMs, the task of elucidating
their decision-making processes becomes a paramount concern. The endeavor to
decipher and articulate the rationales behind the outcomes generated by these
models becomes increasingly intricate, requiring sophisticated techniques that can
fathom the complex inner workings of these advanced systems.

Simultaneously, an equally significant facet that necessitates thorough con-
sideration is the rigorous testing of LLMs [11, 60], often referred to as the
oracle problem [60]. This predicament underscores the difficulty of establishing a
reliable and comprehensive benchmark or reference for evaluating the accuracy and
effectiveness of these models’ outputs. Given language’s dynamic and ever-evolving
nature, the challenge of devising a definitive gold standard against which these
models can be measured presents an ongoing obstacle. In essence, the intersection
of these challenges underscores the multidimensional nature of working with
LLMs within the context of software engineering [11, 60]. Addressing the issues
of explainability and testing entails delving into the intricacies of these models,
reconciling their outputs with human logic and language nuances, and crafting
methodologies that can reliably gauge their performance in a field where definitive
truths are often elusive.
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9.4 Conclusion and The Path Forward

In conclusion, this chapter has delved deep into the intricate relationship between
LLMs and the security of the code they produce. The evolution of software devel-
opment, catalyzed by ChatGPT and GitHub Copilot, brings immense advantages in
terms of efficiency and productivity. However, the security implications inherent in
the outputs of these LLMs cannot be ignored.

As highlighted throughout this chapter, the vulnerabilities that can seep into
LLM-generated code present significant challenges for software security. Integrat-
ing outdated programming practices and potential vulnerabilities from historical
codebases raises concerns about the robustness of the resulting software. The
chapter underscores the inherent risks of relying blindly on LLM-generated code,
emphasizing the need for heightened user education and awareness.

The solutions proposed here are multifaceted. Engineered safeguards, tailored
LLMs for vulnerability detection, and rule-based assessments of codebases can
offer an extra layer of protection against exploitable weaknesses. Nevertheless,
the complexity of LLMs and the subtle nature of vulnerabilities necessitate a
more profound investigation. This entails enhanced vulnerability detection and a
comprehensive exploration of techniques to generate secure code without stifling
the creative capabilities of these models.

In essence, this chapter acts as a guiding light for those navigating the dynamic
landscape where LLMs intersect with the imperatives of software security. It
emphasizes the importance of proactive research and safeguarding measures, all
of which are essential to harnessing the potential of LLMs while mitigating the
inherent risks. By taking these insights to heart and advancing the proposed research
directions, the field stands to elevate software security to new heights in an era
defined by transformative linguistic technologies.
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