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Abstract—Symbolic Aggregate approXimation (SAX) is 
a common dimensionality reduction approach for time-
series data which has been employed in a variety of 
domains, including classification and anomaly detection 
in time-series data. Domains also include shape 
recognition where the shape outline is converted into 
time-series data for instance epoch classification of 
archived arrowheads. In this paper we propose a 
dimensionality reduction and shape recognition 
approach based on the SAX algorithm, an application 
which requires responses on cost efficient, IoT-like, 
platforms. The challenge is largely dealing with the 
computational expense of the SAX algorithm in IoT-like 
applications, from simple time-series dimension 
reduction through shape recognition. The approach is 
based on lowering the dimensional space while capturing 
and preserving the most representative features of the 
shape. We present three scenarios of increasing 
computational complexity backing up our statements 
with measurement of performance characteristics. 
 
Keywords—Symbolic Aggregate Approximation, Low 
Energy, IoT, Shape Recognition, Anomaly Detection  
 

I. INTRODUCTION

1. Motivation 

Automated Visual Inspection (AVI) is a common 
technique that uses computer vision to analyze images 
of products in the manufacturing process and detect 
defects and anomalies without human intervention  
[1], [2]. More precisely, it focuses on detecting 
anomalous shapes that deviate from the generally 
suitable silhouette. This plays major role in quality 
control and efficiency in the manufacturing process. 

For optimal energy and latency optimization, the AVI 
should perform directly on the edge. 
Given that edge devices often have high resource 
constraints, it is crucial to design algorithms that are 
both optimized and computationally lightweight [3]. 
Another crucial aspect is the high costs of 
communication pointed out in [4] where despite using 
a low-power, wide-area, networking protocol like 
LoRaWAN for wireless communication consumes 
significantly more energy compared to the local 
processing performed on the edge device. This makes 
performing on-board data processing and abstraction 
for communication a viable approach. Therefore, it is 
most convenient to store and compute resources 
directly on the edge device, ideally at the same 
physical location as the data source.  
Many proposed techniques specifically designed for 
AVI utilize machine learning algorithms and 
convolutional neural networks which are highly 
computationally intensive and not suitable for IoT 
platforms [5], [6], [7].   In general, when dealing with 
image processing tasks, the challenge becomes more 
significant due to their computationally intensive 
calculations. Our main aim is to achieve an effective 
shape classification while maintaining computational 
efficiency, allowing implementation on low-energy 
IoT platforms.  
In the context of low-energy IoT applications, we 
chose to implement our algorithm on a Nordic 
(nRF5340) board [8] as representative of a commonly 
used low-power IoT semi-conductor device. We 
propose an approach for shape classification by 
reducing the images into time-series and down to 
strings utilizing SAX as an effective tool for mapping 
time-series into strings while preserving the crucial 
features of the signal. We then demonstrate the 
suitability of SAX by applying it to a temperature 
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measurement time-series use case and extend it further 
to more complex task such as shape abstraction by 
incorporating two levels of abstraction to decrease the 
computational costs.  

2. Methodology 

The employed dimension reduction method decreases 
the dimensional space while efficiently retaining the 
key features of the shape. This approach relies on two 
abstractions, initially, transitioning from a 2D to a 1D 
space, followed by further reduction through 
conversion into a single string. As a final step, the 
strings are used for shape classification. The entire 
algorithm maintains low computational complexity 
which makes it compatible for deployment on IoT 
platforms. 

II. THE DIMENSIONALITY REDUCTION WORKFLOW 

The algorithm aims to reduce data dimensions by 
mapping 2D image into a string. It comprises two 
primary sequences depicted in Figure 1. Firstly, the 
image is converted into a time-series format and 
secondly the time-series is mapped with a single 
string.

Figure 1. Dimensionality reduction flow 

The algorithm requires a binarized image with a 
specific shape as input. The initial step involves 
converting the 2D image into a 1D time-series, 
accomplished through contour extraction of the shape. 
The values of the time-series represent the distance 
from the shape's center to the contour. Subsequently, 
the time-series is transformed into a symbol string 
(word) of a predefined length using the SAX algorithm 
[9].  

1. Time-series signal extraction from 2D 
images 

By employing the centroid distance function, we 
generate a shape time-series utilizing both, the 
centroid and the contour points to produce the time-
series signal. Shape time-series, which are one-
dimensional functions derived from the shape's 
contour, offer insights into its features. The basis of 
the time-series lies in the centroid distance function, 
which quantifies the distances from the contour points 
to the shape's centroid [10].  
The initial step involves determining the centroid of 
the shape. Here, the shape area comprises the white 
pixels in the image. The shape itself is defined as the 
outline of the object. The centroid coordinates (𝑥𝑥c, 𝑦𝑦𝑐𝑐)  
are calculated by averaging the pixel coordinates 
inside the shape, denoted as N (the number of pixels 
in the shape, i.e., the white pixels), and are computed 
using the relation (1) where 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  are the 
coordinates of the pixels contained in the shape. 

{
𝑥𝑥𝑐𝑐 = 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑦𝑦𝑐𝑐 = 1
𝑁𝑁

∑ 𝑦𝑦𝑖𝑖
𝑁𝑁
𝑖𝑖=1

      (1) 

Once the centroid is obtained, the distance from the 
centroid to the point on the contour for each angle is 
determined as Euclidean distance between the two 
points using the relation (2). 

𝑟𝑟(𝜃𝜃) = √(𝑥𝑥(𝜃𝜃) − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦(𝜃𝜃) − 𝑦𝑦𝑐𝑐)2,  𝜃𝜃 = [0,2𝜋𝜋)      (2) 
One representative point from the contour for each 
angle is considered. The main purpose of this sampling 
step is to get time-series signals of equal length 
allowing the shape comparison and classification later 
on since it is only reasonable to compare words of the 
same length. 
Because the shape time-series relies solely on the 
centroid's position and the contour points, it remains 
unchanged when the shape is translated. However, this 
is not the case when the shape is rotated or scaled 
(expanded or compressed) [11].  

2. SAX algorithm 

The SAX algorithm requires three steps to convert the 
time-series into a string representation [12], [13].  

Step 1. Data normalization step  

Since it is meaningless to compare time-series with 
different offsets and amplitudes, the time-series needs 
to be normalized. 
After the normalization step, the time-series still 
preserves its original shape. The normalization is 
performed utilizing the relation (3) where 𝜇𝜇  is the 
mean value and 𝜎𝜎 (4) is the standard deviation of the 
signal. 

𝑋𝑋′ = 𝑋𝑋 − 𝜇𝜇
𝜎𝜎      (3) 

𝜎𝜎 = √ 1
𝑁𝑁

∑ (𝑥𝑥𝑖𝑖  −  𝜇𝜇)2𝑁𝑁
𝑖𝑖=1      (4) 

Step 2. Dimensionality reduction via PAA  

The Piecewise Aggregate Approximation (PAA) step 
reduces the signal to a desired length. A time-series 𝑇𝑇 
of length 𝑛𝑛 , 𝑇𝑇 =𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛  can be represented in a 𝑤𝑤 -
dimensional space by a 𝑇𝑇′=𝑡𝑡′1, . . . , 𝑡𝑡′𝑤𝑤. Each 𝑡𝑡𝑖𝑖 element 
is calculated applying the relation (5) 

𝑡𝑡𝑖𝑖 = 𝑤𝑤
𝑛𝑛

∑ (𝑡𝑡𝑗𝑗)
𝑛𝑛
𝑤𝑤(𝑖𝑖)
𝑗𝑗=𝑛𝑛

𝑤𝑤(𝑖𝑖−1)+1      (5) 

The data is partitioned into w segments of equal size, 
where n represents the total number of signal samples. 
Within each segment, the mean value of the samples 
is assigned. 

Step 3. Discretization step  

Since SAX is a process which maps the PAA 
representation of the time-series into a sequence of 
letters, the last step of the algorithm is assigning a 
letter to each PAA segment. Each PAA segment gets 
assigned a symbolic letter. In addition to selecting the 
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measurement time-series use case and extend it further 
to more complex task such as shape abstraction by 
incorporating two levels of abstraction to decrease the 
computational costs.  

2. Methodology 

The employed dimension reduction method decreases 
the dimensional space while efficiently retaining the 
key features of the shape. This approach relies on two 
abstractions, initially, transitioning from a 2D to a 1D 
space, followed by further reduction through 
conversion into a single string. As a final step, the 
strings are used for shape classification. The entire 
algorithm maintains low computational complexity 
which makes it compatible for deployment on IoT 
platforms. 
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The algorithm aims to reduce data dimensions by 
mapping 2D image into a string. It comprises two 
primary sequences depicted in Figure 1. Firstly, the 
image is converted into a time-series format and 
secondly the time-series is mapped with a single 
string.

Figure 1. Dimensionality reduction flow 

The algorithm requires a binarized image with a 
specific shape as input. The initial step involves 
converting the 2D image into a 1D time-series, 
accomplished through contour extraction of the shape. 
The values of the time-series represent the distance 
from the shape's center to the contour. Subsequently, 
the time-series is transformed into a symbol string 
(word) of a predefined length using the SAX algorithm 
[9].  

1. Time-series signal extraction from 2D 
images 

By employing the centroid distance function, we 
generate a shape time-series utilizing both, the 
centroid and the contour points to produce the time-
series signal. Shape time-series, which are one-
dimensional functions derived from the shape's 
contour, offer insights into its features. The basis of 
the time-series lies in the centroid distance function, 
which quantifies the distances from the contour points 
to the shape's centroid [10].  
The initial step involves determining the centroid of 
the shape. Here, the shape area comprises the white 
pixels in the image. The shape itself is defined as the 
outline of the object. The centroid coordinates (𝑥𝑥c, 𝑦𝑦𝑐𝑐)  
are calculated by averaging the pixel coordinates 
inside the shape, denoted as N (the number of pixels 
in the shape, i.e., the white pixels), and are computed 
using the relation (1) where 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  are the 
coordinates of the pixels contained in the shape. 
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𝑁𝑁
∑ 𝑥𝑥𝑖𝑖

𝑁𝑁
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𝑁𝑁 ∑ 𝑦𝑦𝑖𝑖

𝑁𝑁
𝑖𝑖=1

      (1) 

Once the centroid is obtained, the distance from the 
centroid to the point on the contour for each angle is 
determined as Euclidean distance between the two 
points using the relation (2). 

𝑟𝑟(𝜃𝜃) = √(𝑥𝑥(𝜃𝜃) − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦(𝜃𝜃) − 𝑦𝑦𝑐𝑐)2,  𝜃𝜃 = [0,2𝜋𝜋)      (2) 
One representative point from the contour for each 
angle is considered. The main purpose of this sampling 
step is to get time-series signals of equal length 
allowing the shape comparison and classification later 
on since it is only reasonable to compare words of the 
same length. 
Because the shape time-series relies solely on the 
centroid's position and the contour points, it remains 
unchanged when the shape is translated. However, this 
is not the case when the shape is rotated or scaled 
(expanded or compressed) [11].  

2. SAX algorithm 

The SAX algorithm requires three steps to convert the 
time-series into a string representation [12], [13].  

Step 1. Data normalization step  

Since it is meaningless to compare time-series with 
different offsets and amplitudes, the time-series needs 
to be normalized. 
After the normalization step, the time-series still 
preserves its original shape. The normalization is 
performed utilizing the relation (3) where 𝜇𝜇  is the 
mean value and 𝜎𝜎 (4) is the standard deviation of the 
signal. 

𝑋𝑋′ = 𝑋𝑋 − 𝜇𝜇
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𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖  −  𝜇𝜇)2𝑁𝑁
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Step 2. Dimensionality reduction via PAA  

The Piecewise Aggregate Approximation (PAA) step 
reduces the signal to a desired length. A time-series 𝑇𝑇 
of length 𝑛𝑛 , 𝑇𝑇 =𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛  can be represented in a 𝑤𝑤 -
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The data is partitioned into w segments of equal size, 
where n represents the total number of signal samples. 
Within each segment, the mean value of the samples 
is assigned. 

Step 3. Discretization step  

Since SAX is a process which maps the PAA 
representation of the time-series into a sequence of 
letters, the last step of the algorithm is assigning a 
letter to each PAA segment. Each PAA segment gets 
assigned a symbolic letter. In addition to selecting the 

          
          

               
      

            
     

PAA size, another parameter that is considered is the 
desired number of distinct letters to be represented in 
the word. 
Let 𝑎𝑎  be the number of symbols 𝑐𝑐1 ,…, 𝑐𝑐𝑎𝑎  which are 
used to discretize the time-series 𝛽𝛽 1, 𝛽𝛽 2,…, 𝛽𝛽 𝑎𝑎−1 where 
𝛽𝛽 1 < 𝛽𝛽 2 < … < 𝛽𝛽 𝑎𝑎−1 are the cuts on the Gaussian curve 
where each interval occupies equal part under the 
distribution curve. Each segment of 𝑡𝑡𝑖𝑖 will be coded as 
a symbol 𝑥𝑥𝑖𝑖 applying the equation (6).  

𝑥𝑥𝑖𝑖 = {
𝑐𝑐1  ,    𝑡𝑡𝑖𝑖 ≤ β1

𝑐𝑐𝑎𝑎  ,    𝑡𝑡𝑖𝑖 > β𝑎𝑎−1
𝑐𝑐𝑘𝑘  ,    β𝑘𝑘−1 < 𝑡𝑡𝑖𝑖 ≤ β𝑘𝑘

     (6) 

The 𝛽𝛽  interval cuts for the normalized signals are 
given with the look-up Table 1. According to the 
alphabet size, the 𝛽𝛽 intervals can be derived.  

                   a 
 
 
 
 

𝛃𝛃 

 3 4 5 6 7 8 
β 1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 

β 2 0.43 0 -0.25 -0.43 -0.57 -0.67 

β 3  0.67 0.25 0 -0.18 -0.32 

β 4   0.84 0.43 0.18 0 

β 5    0.97 0.57 0.32 

β 6     1.07 0.67 

 β 7      1.15 

Table 1. Look-up table for the β intervals 

3. Time-series use-case 

We demonstrate an application of time-series analysis 
in the context of temperature monitoring, for instance 
within buildings. Sensors are employed to gather 
temperature data within approximately one minute 
time intervals. Figure 2 (upper plot) illustrates the raw 
data collected over a two-week period. Now the 
question arises: how much of this data is relevant? 
How can we extract some relevant information from 
this extensive data, while minimizing computational 
resources? 

Figure 2. (Upper plot) Raw time-series. (Bottom plot) SAX time-
series 

We answer the question by utilizing SAX on the time-
series shown on the bottom plot representing the signal 
as a sequence of letters. This approach offers a 
practical means to identify temperature variations. By 
analyzing the letters in the word, we can track each 
change of the letter and interpret it as a temperature 
shift instead of analyzing the whole time-series. 
Specifically, we have the flexibility to choose the 
alphabet size to determine whether we want to capture 
minor or major temperature changes. If we map the 
words with a larger alphabet, we retain sensitivity to 
small temperature fluctuations. Conversely, if we limit 
the alphabet length, as in our example, we focus on 
identifying larger temperature changes. 
This logic extends to the selection of PAA segments 
size as well. Larger PAA segments sacrifice precision 
in temperature change detection that results into more 
efficient dimensionality reduction, while smaller 
segments provide greater precision at the cost of 
longer words. 

4. Shape recognition 

We extend the application of the SAX algorithm to 
shape recognition and classification. The SAX time-
series of three shapes are depicted in Figure 3. The 
horizontal x-axis corresponds to the angles of the 
points on the contour, while the vertical y-axis 
represents the mapped pixel distances from the 
centroid to these points. 

 
Figure 3. SAX time-series for shape recognition 

Each shape is distinctly recognizable and exhibits 
unique characteristics. In the octagon and triangle 
shapes, there are eight and three peaks respectively in 
the amplitude, corresponding to the corners of the 
shapes. However, the time-series for the circle 
resembles noise due to signal normalization, which 
amplifies the small deviations. Nevertheless, this does 
not hinder shape recognition, as it is effectively 
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distinguished from the other two shapes since the 
circle shape exhibits significantly higher frequency 
compared to the frequencies from the rest of the 
shapes.

5. Shape classification 

The SAX algorithm can extract the unique 
characteristics of a shape, producing a SAX word as 
output. However, the algorithm itself is not rotation 
invariant, which means that a rotated shape is assigned 
a different SAX word in relation to the original 
(unrotated) one. When a signal undergoes rotational 
transformations, it leads to subtle shifts in the peaks of 
the signal and/or different values for these amplitude 
peaks. To be more precise, when the image is rotated 
along a single axis, it only causes the peaks to appear 
at different positions within the time-series. In our 
scenario, when the shape undergoes a 3D rotation 
along three axes, it leads to both, shift in the amplitude 
peaks as well as variation of the peak’s values. This 
limitation represents an issue for shape classification 
applications, which should recognize image shapes 
without the rotation of the images affecting the result. 

We address this limitation by generating a distinct set 
of words that captures variations due to rotation. In 
Figure 4, several images from the sets of rotations 
which are used to generate the words are displayed. 
This procedure is repeated for each shape to create a 
set of words, where each set encompasses unique 
words corresponding to various rotations of the shape. 
In addition, these sets are mutually exclusive, ensuring 
that there is no overlap of identical words across 
different shape sets.  

Figure 4. Samples of the rotated shapes sets 

The final step is the classification process which 
involves brute-forcing through all word sets and 
calculating the distance between a candidate word and 
the remaining synthetic words. Algorithm 1 describes 
the distance computation when comparing two words. 
The comparison is conducted letter by letter, where the 
distance between identical or neighboring letters is 
zero. Otherwise, the distance gets assigned with the 
interval between the two letters. When the brute force 

search is done, the shape inherits the class of the word 
with the minimum distance.  

Algorithm: Distance between words computation 
1: dist ← 0         
2: while (n < word_length) do                 
3: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟1,𝑛𝑛 ← 𝑐𝑐𝑖𝑖       → read the letter from the candidate word 
4: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟2,𝑛𝑛 ← 𝑐𝑐𝑗𝑗       → read the letter for the synthetic word 
5: if i = j or abs(i - j) = 1 then  → check if the letters same or neighboring 
6: dist ← dist + 0 
7: else        
8: dist ← dist + (𝛽𝛽 𝑖𝑖 … 𝛽𝛽 𝑗𝑗−1)       → add the intervals between letters  
9: return dist 
10: end procedure 

Algorithm 1. Distance between words computation for classification 

III. RESULTS 

Our primary aim was to implement the algorithm on 
an IoT hardware platform. To achieve this, as 
previously mentioned, we opted for a nRF5340 Nordic 
board due to its low power characteristics. Although 
the board features dual-core functionality, we 
exclusively utilized the application processor, 
operating at a frequency of 64 MHz, accompanied by 
1MB of Flash memory and 512KB of RAM. The 
chosen operating system is Zephyr RTOS.  
The SAX algorithm was deployed across three distinct 
hardware platforms, and the results are summarized in 
Table 2. It is evident that the execution time in C is 
significantly faster, approximately (~ 103) times faster. 

 Clock 
frequency 

Execution 
time in C 

Execution 
time Python 

Difference 

 
 
 

RaspberryPi4 
(Cortex-A72 
32-bits OS) 

 

1.8 GHz 
 

0.03200101s 
 

7.319624554s 
 

7.287623544s 
 

700 MHz 
 

0.08255687s 
 

19.07252964s 
 

18.98997277s 
 

300 MHz 
 

0.1638856s 
 

37.40953774s 
 

37.24565207s 
 

PC (Intel(R) 
Core-TM i7-

1065G7) 
 

 
1.3 GHz 

 
0.01340653s 

 

 
1.216410509s 

 

 
1.203003979s 

 

nRF5340DK 
(ARM 

Cortex-M33) 
 

 
64 MHz 

 
0.09333026s 

 

 
- 

 
- 

Table 2. Performance results of SAX execution on three different 
HW platforms 

IV. CONCLUSIONS 

Considering the computational demands of image 
processing, we utilize SAX as an effective tool for data 
reduction to transform time-series sequence into a 
single word that characterizes the key features of the 
sequence. Therefore, a conversion process to 
transform an image containing a shape to a time-series 
was designed, allowing us to implement the SAX 
algorithm. In such manner, by extracting the essential 
features from the time-series signal, SAX serves as a 
base for the shape classification. We address the issue 
of rotation sensitivity, which we integrate into our 
classification algorithm, by creating 3D rotated 
synthetic signs sets and apply a word-based 
comparison method for shape classification. We then 
validate the feasibility of our approach by integrating 
it into a low-power IoT platform, underscoring its 
potential for application in anomaly detection for 
factory automation. 
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distinguished from the other two shapes since the 
circle shape exhibits significantly higher frequency 
compared to the frequencies from the rest of the 
shapes.

5. Shape classification 

The SAX algorithm can extract the unique 
characteristics of a shape, producing a SAX word as 
output. However, the algorithm itself is not rotation 
invariant, which means that a rotated shape is assigned 
a different SAX word in relation to the original 
(unrotated) one. When a signal undergoes rotational 
transformations, it leads to subtle shifts in the peaks of 
the signal and/or different values for these amplitude 
peaks. To be more precise, when the image is rotated 
along a single axis, it only causes the peaks to appear 
at different positions within the time-series. In our 
scenario, when the shape undergoes a 3D rotation 
along three axes, it leads to both, shift in the amplitude 
peaks as well as variation of the peak’s values. This 
limitation represents an issue for shape classification 
applications, which should recognize image shapes 
without the rotation of the images affecting the result. 

We address this limitation by generating a distinct set 
of words that captures variations due to rotation. In 
Figure 4, several images from the sets of rotations 
which are used to generate the words are displayed. 
This procedure is repeated for each shape to create a 
set of words, where each set encompasses unique 
words corresponding to various rotations of the shape. 
In addition, these sets are mutually exclusive, ensuring 
that there is no overlap of identical words across 
different shape sets.  

Figure 4. Samples of the rotated shapes sets 

The final step is the classification process which 
involves brute-forcing through all word sets and 
calculating the distance between a candidate word and 
the remaining synthetic words. Algorithm 1 describes 
the distance computation when comparing two words. 
The comparison is conducted letter by letter, where the 
distance between identical or neighboring letters is 
zero. Otherwise, the distance gets assigned with the 
interval between the two letters. When the brute force 

search is done, the shape inherits the class of the word 
with the minimum distance.  

Algorithm: Distance between words computation 
1: dist ← 0         
2: while (n < word_length) do                 
3: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟1,𝑛𝑛 ← 𝑐𝑐𝑖𝑖       → read the letter from the candidate word 
4: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟2,𝑛𝑛 ← 𝑐𝑐𝑗𝑗       → read the letter for the synthetic word 
5: if i = j or abs(i - j) = 1 then  → check if the letters same or neighboring 
6: dist ← dist + 0 
7: else        
8: dist ← dist + (𝛽𝛽 𝑖𝑖 … 𝛽𝛽 𝑗𝑗−1)       → add the intervals between letters  
9: return dist 
10: end procedure 

Algorithm 1. Distance between words computation for classification 

III. RESULTS 

Our primary aim was to implement the algorithm on 
an IoT hardware platform. To achieve this, as 
previously mentioned, we opted for a nRF5340 Nordic 
board due to its low power characteristics. Although 
the board features dual-core functionality, we 
exclusively utilized the application processor, 
operating at a frequency of 64 MHz, accompanied by 
1MB of Flash memory and 512KB of RAM. The 
chosen operating system is Zephyr RTOS.  
The SAX algorithm was deployed across three distinct 
hardware platforms, and the results are summarized in 
Table 2. It is evident that the execution time in C is 
significantly faster, approximately (~ 103) times faster. 

 Clock 
frequency 

Execution 
time in C 

Execution 
time Python 

Difference 

 
 
 

RaspberryPi4 
(Cortex-A72 
32-bits OS) 

 

1.8 GHz 
 

0.03200101s 
 

7.319624554s 
 

7.287623544s 
 

700 MHz 
 

0.08255687s 
 

19.07252964s 
 

18.98997277s 
 

300 MHz 
 

0.1638856s 
 

37.40953774s 
 

37.24565207s 
 

PC (Intel(R) 
Core-TM i7-

1065G7) 
 

 
1.3 GHz 

 
0.01340653s 

 

 
1.216410509s 

 

 
1.203003979s 

 

nRF5340DK 
(ARM 

Cortex-M33) 
 

 
64 MHz 

 
0.09333026s 

 

 
- 

 
- 

Table 2. Performance results of SAX execution on three different 
HW platforms 

IV. CONCLUSIONS 

Considering the computational demands of image 
processing, we utilize SAX as an effective tool for data 
reduction to transform time-series sequence into a 
single word that characterizes the key features of the 
sequence. Therefore, a conversion process to 
transform an image containing a shape to a time-series 
was designed, allowing us to implement the SAX 
algorithm. In such manner, by extracting the essential 
features from the time-series signal, SAX serves as a 
base for the shape classification. We address the issue 
of rotation sensitivity, which we integrate into our 
classification algorithm, by creating 3D rotated 
synthetic signs sets and apply a word-based 
comparison method for shape classification. We then 
validate the feasibility of our approach by integrating 
it into a low-power IoT platform, underscoring its 
potential for application in anomaly detection for 
factory automation. 
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