
www.embedded-world.eu

[3] Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of
features from tiny images.", Tech Report 2009
[4] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context."
Computer Vision–ECCV 2014
[5] Howard, Andrew, et al. "Searching for mobilenetv3." IEEE/CVF ICCV
2019
[6] Chen, Yunpeng, et al. "Dual path networks." NeurIPS (2017)
[7] Benmeziane, Hadjer, et al. "A comprehensive survey on hardware-aware
neural architecture search." arXiv preprint arXiv:2101.09336 (2021)
[8] He, Kaiming, et al. "Deep residual learning for image recognition." IEEE
CVPR 2016.
[9] He, Kaiming, et al. "Identity mappings in deep residual networks."
Computer Vision–ECCV 2016
[10] Cai, Han, Ligeng Zhu, and Song Han. "Proxylessnas: Direct neural
architecture search on target task and hardware." arXiv preprint
arXiv:1812.00332 (2018)
[11] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search
for mobile." IEEE CVPR 2019
[12] Wang, Kuan, et al. "Haq: Hardware-aware automated quantization with
mixed precision." IEEE CVPR 2018
[13] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional
networks for large-scale image recognition." arXiv preprint arXiv:1409.1556
(2014).
[14] Glenn Jocher et al. ”YoloV8 Ultralytics”
https://github.com/ultralytics/ultralytics, 2023

Performance Examination of Symbolic Aggregate

Approximation in IoT Applications

Suzana Veljanovska

Institute of Embedded Systems
ZHAW School of Engineering

Winterthur, Switzerland
veln@zhaw.ch

Hans Dermot Doran
Institute of Embedded Systems
ZHAW School of Engineering

Winterthur, Switzerland
donn@zhaw.ch

Abstract—Symbolic Aggregate approXimation (SAX) is
a common dimensionality reduction approach for time-
series data which has been employed in a variety of
domains, including classification and anomaly detection
in time-series data. Domains also include shape
recognition where the shape outline is converted into
time-series data for instance epoch classification of
archived arrowheads. In this paper we propose a
dimensionality reduction and shape recognition
approach based on the SAX algorithm, an application
which requires responses on cost efficient, IoT-like,
platforms. The challenge is largely dealing with the
computational expense of the SAX algorithm in IoT-like
applications, from simple time-series dimension
reduction through shape recognition. The approach is
based on lowering the dimensional space while capturing
and preserving the most representative features of the
shape. We present three scenarios of increasing
computational complexity backing up our statements
with measurement of performance characteristics.

Keywords—Symbolic Aggregate Approximation, Low
Energy, IoT, Shape Recognition, Anomaly Detection

I. INTRODUCTION

1. Motivation

Automated Visual Inspection (AVI) is a common
technique that uses computer vision to analyze images
of products in the manufacturing process and detect
defects and anomalies without human intervention
[1], [2]. More precisely, it focuses on detecting
anomalous shapes that deviate from the generally
suitable silhouette. This plays major role in quality
control and efficiency in the manufacturing process.

For optimal energy and latency optimization, the AVI
should perform directly on the edge.
Given that edge devices often have high resource
constraints, it is crucial to design algorithms that are
both optimized and computationally lightweight [3].
Another crucial aspect is the high costs of
communication pointed out in [4] where despite using
a low-power, wide-area, networking protocol like
LoRaWAN for wireless communication consumes
significantly more energy compared to the local
processing performed on the edge device. This makes
performing on-board data processing and abstraction
for communication a viable approach. Therefore, it is
most convenient to store and compute resources
directly on the edge device, ideally at the same
physical location as the data source.
Many proposed techniques specifically designed for
AVI utilize machine learning algorithms and
convolutional neural networks which are highly
computationally intensive and not suitable for IoT
platforms [5], [6], [7]. In general, when dealing with
image processing tasks, the challenge becomes more
significant due to their computationally intensive
calculations. Our main aim is to achieve an effective
shape classification while maintaining computational
efficiency, allowing implementation on low-energy
IoT platforms.
In the context of low-energy IoT applications, we
chose to implement our algorithm on a Nordic
(nRF5340) board [8] as representative of a commonly
used low-power IoT semi-conductor device. We
propose an approach for shape classification by
reducing the images into time-series and down to
strings utilizing SAX as an effective tool for mapping
time-series into strings while preserving the crucial
features of the signal. We then demonstrate the
suitability of SAX by applying it to a temperature

468

measurement time-series use case and extend it further
to more complex task such as shape abstraction by
incorporating two levels of abstraction to decrease the
computational costs.

2. Methodology

The employed dimension reduction method decreases
the dimensional space while efficiently retaining the
key features of the shape. This approach relies on two
abstractions, initially, transitioning from a 2D to a 1D
space, followed by further reduction through
conversion into a single string. As a final step, the
strings are used for shape classification. The entire
algorithm maintains low computational complexity
which makes it compatible for deployment on IoT
platforms.

II. THE DIMENSIONALITY REDUCTION WORKFLOW

The algorithm aims to reduce data dimensions by
mapping 2D image into a string. It comprises two
primary sequences depicted in Figure 1. Firstly, the
image is converted into a time-series format and
secondly the time-series is mapped with a single
string.

Figure 1. Dimensionality reduction flow

The algorithm requires a binarized image with a
specific shape as input. The initial step involves
converting the 2D image into a 1D time-series,
accomplished through contour extraction of the shape.
The values of the time-series represent the distance
from the shape's center to the contour. Subsequently,
the time-series is transformed into a symbol string
(word) of a predefined length using the SAX algorithm
[9].

1. Time-series signal extraction from 2D
images

By employing the centroid distance function, we
generate a shape time-series utilizing both, the
centroid and the contour points to produce the time-
series signal. Shape time-series, which are one-
dimensional functions derived from the shape's
contour, offer insights into its features. The basis of
the time-series lies in the centroid distance function,
which quantifies the distances from the contour points
to the shape's centroid [10].
The initial step involves determining the centroid of
the shape. Here, the shape area comprises the white
pixels in the image. The shape itself is defined as the
outline of the object. The centroid coordinates (𝑥𝑥c, 𝑦𝑦𝑐𝑐)
are calculated by averaging the pixel coordinates
inside the shape, denoted as N (the number of pixels
in the shape, i.e., the white pixels), and are computed
using the relation (1) where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the
coordinates of the pixels contained in the shape.

{
𝑥𝑥𝑐𝑐 = 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑦𝑦𝑐𝑐 = 1
𝑁𝑁

∑ 𝑦𝑦𝑖𝑖
𝑁𝑁
𝑖𝑖=1

 (1)

Once the centroid is obtained, the distance from the
centroid to the point on the contour for each angle is
determined as Euclidean distance between the two
points using the relation (2).

𝑟𝑟(𝜃𝜃) = √(𝑥𝑥(𝜃𝜃) − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦(𝜃𝜃) − 𝑦𝑦𝑐𝑐)2, 𝜃𝜃 = [0,2𝜋𝜋) (2)
One representative point from the contour for each
angle is considered. The main purpose of this sampling
step is to get time-series signals of equal length
allowing the shape comparison and classification later
on since it is only reasonable to compare words of the
same length.
Because the shape time-series relies solely on the
centroid's position and the contour points, it remains
unchanged when the shape is translated. However, this
is not the case when the shape is rotated or scaled
(expanded or compressed) [11].

2. SAX algorithm

The SAX algorithm requires three steps to convert the
time-series into a string representation [12], [13].

Step 1. Data normalization step

Since it is meaningless to compare time-series with
different offsets and amplitudes, the time-series needs
to be normalized.
After the normalization step, the time-series still
preserves its original shape. The normalization is
performed utilizing the relation (3) where 𝜇𝜇 is the
mean value and 𝜎𝜎 (4) is the standard deviation of the
signal.

𝑋𝑋′ = 𝑋𝑋 − 𝜇𝜇
𝜎𝜎 (3)

𝜎𝜎 = √ 1
𝑁𝑁

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1 (4)

Step 2. Dimensionality reduction via PAA

The Piecewise Aggregate Approximation (PAA) step
reduces the signal to a desired length. A time-series 𝑇𝑇
of length 𝑛𝑛 , 𝑇𝑇 =𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛 can be represented in a 𝑤𝑤 -
dimensional space by a 𝑇𝑇′=𝑡𝑡′1, . . . , 𝑡𝑡′𝑤𝑤. Each 𝑡𝑡𝑖𝑖 element
is calculated applying the relation (5)

𝑡𝑡𝑖𝑖 = 𝑤𝑤
𝑛𝑛

∑ (𝑡𝑡𝑗𝑗)
𝑛𝑛
𝑤𝑤(𝑖𝑖)
𝑗𝑗=𝑛𝑛

𝑤𝑤(𝑖𝑖−1)+1 (5)

The data is partitioned into w segments of equal size,
where n represents the total number of signal samples.
Within each segment, the mean value of the samples
is assigned.

Step 3. Discretization step

Since SAX is a process which maps the PAA
representation of the time-series into a sequence of
letters, the last step of the algorithm is assigning a
letter to each PAA segment. Each PAA segment gets
assigned a symbolic letter. In addition to selecting the

469

measurement time-series use case and extend it further
to more complex task such as shape abstraction by
incorporating two levels of abstraction to decrease the
computational costs.

2. Methodology

The employed dimension reduction method decreases
the dimensional space while efficiently retaining the
key features of the shape. This approach relies on two
abstractions, initially, transitioning from a 2D to a 1D
space, followed by further reduction through
conversion into a single string. As a final step, the
strings are used for shape classification. The entire
algorithm maintains low computational complexity
which makes it compatible for deployment on IoT
platforms.

II. THE DIMENSIONALITY REDUCTION WORKFLOW

The algorithm aims to reduce data dimensions by
mapping 2D image into a string. It comprises two
primary sequences depicted in Figure 1. Firstly, the
image is converted into a time-series format and
secondly the time-series is mapped with a single
string.

Figure 1. Dimensionality reduction flow

The algorithm requires a binarized image with a
specific shape as input. The initial step involves
converting the 2D image into a 1D time-series,
accomplished through contour extraction of the shape.
The values of the time-series represent the distance
from the shape's center to the contour. Subsequently,
the time-series is transformed into a symbol string
(word) of a predefined length using the SAX algorithm
[9].

1. Time-series signal extraction from 2D
images

By employing the centroid distance function, we
generate a shape time-series utilizing both, the
centroid and the contour points to produce the time-
series signal. Shape time-series, which are one-
dimensional functions derived from the shape's
contour, offer insights into its features. The basis of
the time-series lies in the centroid distance function,
which quantifies the distances from the contour points
to the shape's centroid [10].
The initial step involves determining the centroid of
the shape. Here, the shape area comprises the white
pixels in the image. The shape itself is defined as the
outline of the object. The centroid coordinates (𝑥𝑥c, 𝑦𝑦𝑐𝑐)
are calculated by averaging the pixel coordinates
inside the shape, denoted as N (the number of pixels
in the shape, i.e., the white pixels), and are computed
using the relation (1) where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the
coordinates of the pixels contained in the shape.

{
𝑥𝑥𝑐𝑐 = 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑦𝑦𝑐𝑐 = 1
𝑁𝑁 ∑ 𝑦𝑦𝑖𝑖

𝑁𝑁
𝑖𝑖=1

 (1)

Once the centroid is obtained, the distance from the
centroid to the point on the contour for each angle is
determined as Euclidean distance between the two
points using the relation (2).

𝑟𝑟(𝜃𝜃) = √(𝑥𝑥(𝜃𝜃) − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦(𝜃𝜃) − 𝑦𝑦𝑐𝑐)2, 𝜃𝜃 = [0,2𝜋𝜋) (2)
One representative point from the contour for each
angle is considered. The main purpose of this sampling
step is to get time-series signals of equal length
allowing the shape comparison and classification later
on since it is only reasonable to compare words of the
same length.
Because the shape time-series relies solely on the
centroid's position and the contour points, it remains
unchanged when the shape is translated. However, this
is not the case when the shape is rotated or scaled
(expanded or compressed) [11].

2. SAX algorithm

The SAX algorithm requires three steps to convert the
time-series into a string representation [12], [13].

Step 1. Data normalization step

Since it is meaningless to compare time-series with
different offsets and amplitudes, the time-series needs
to be normalized.
After the normalization step, the time-series still
preserves its original shape. The normalization is
performed utilizing the relation (3) where 𝜇𝜇 is the
mean value and 𝜎𝜎 (4) is the standard deviation of the
signal.

𝑋𝑋′ = 𝑋𝑋 − 𝜇𝜇
𝜎𝜎 (3)

𝜎𝜎 = √ 1
𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑁𝑁

𝑖𝑖=1 (4)

Step 2. Dimensionality reduction via PAA

The Piecewise Aggregate Approximation (PAA) step
reduces the signal to a desired length. A time-series 𝑇𝑇
of length 𝑛𝑛 , 𝑇𝑇 =𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛 can be represented in a 𝑤𝑤 -
dimensional space by a 𝑇𝑇′=𝑡𝑡′1, . . . , 𝑡𝑡′𝑤𝑤. Each 𝑡𝑡𝑖𝑖 element
is calculated applying the relation (5)

𝑡𝑡𝑖𝑖 = 𝑤𝑤
𝑛𝑛 ∑ (𝑡𝑡𝑗𝑗)

𝑛𝑛
𝑤𝑤(𝑖𝑖)
𝑗𝑗=𝑛𝑛

𝑤𝑤(𝑖𝑖−1)+1 (5)

The data is partitioned into w segments of equal size,
where n represents the total number of signal samples.
Within each segment, the mean value of the samples
is assigned.

Step 3. Discretization step

Since SAX is a process which maps the PAA
representation of the time-series into a sequence of
letters, the last step of the algorithm is assigning a
letter to each PAA segment. Each PAA segment gets
assigned a symbolic letter. In addition to selecting the

PAA size, another parameter that is considered is the
desired number of distinct letters to be represented in
the word.
Let 𝑎𝑎 be the number of symbols 𝑐𝑐1 ,…, 𝑐𝑐𝑎𝑎 which are
used to discretize the time-series 𝛽𝛽 1, 𝛽𝛽 2,…, 𝛽𝛽 𝑎𝑎−1 where
𝛽𝛽 1 < 𝛽𝛽 2 < … < 𝛽𝛽 𝑎𝑎−1 are the cuts on the Gaussian curve
where each interval occupies equal part under the
distribution curve. Each segment of 𝑡𝑡𝑖𝑖 will be coded as
a symbol 𝑥𝑥𝑖𝑖 applying the equation (6).

𝑥𝑥𝑖𝑖 = {
𝑐𝑐1 , 𝑡𝑡𝑖𝑖 ≤ β1

𝑐𝑐𝑎𝑎 , 𝑡𝑡𝑖𝑖 > β𝑎𝑎−1
𝑐𝑐𝑘𝑘 , β𝑘𝑘−1 < 𝑡𝑡𝑖𝑖 ≤ β𝑘𝑘

 (6)

The 𝛽𝛽 interval cuts for the normalized signals are
given with the look-up Table 1. According to the
alphabet size, the 𝛽𝛽 intervals can be derived.

 a

𝛃𝛃

 3 4 5 6 7 8
β 1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15

β 2 0.43 0 -0.25 -0.43 -0.57 -0.67

β 3 0.67 0.25 0 -0.18 -0.32

β 4 0.84 0.43 0.18 0

β 5 0.97 0.57 0.32

β 6 1.07 0.67

 β 7 1.15

Table 1. Look-up table for the β intervals

3. Time-series use-case

We demonstrate an application of time-series analysis
in the context of temperature monitoring, for instance
within buildings. Sensors are employed to gather
temperature data within approximately one minute
time intervals. Figure 2 (upper plot) illustrates the raw
data collected over a two-week period. Now the
question arises: how much of this data is relevant?
How can we extract some relevant information from
this extensive data, while minimizing computational
resources?

Figure 2. (Upper plot) Raw time-series. (Bottom plot) SAX time-
series

We answer the question by utilizing SAX on the time-
series shown on the bottom plot representing the signal
as a sequence of letters. This approach offers a
practical means to identify temperature variations. By
analyzing the letters in the word, we can track each
change of the letter and interpret it as a temperature
shift instead of analyzing the whole time-series.
Specifically, we have the flexibility to choose the
alphabet size to determine whether we want to capture
minor or major temperature changes. If we map the
words with a larger alphabet, we retain sensitivity to
small temperature fluctuations. Conversely, if we limit
the alphabet length, as in our example, we focus on
identifying larger temperature changes.
This logic extends to the selection of PAA segments
size as well. Larger PAA segments sacrifice precision
in temperature change detection that results into more
efficient dimensionality reduction, while smaller
segments provide greater precision at the cost of
longer words.

4. Shape recognition

We extend the application of the SAX algorithm to
shape recognition and classification. The SAX time-
series of three shapes are depicted in Figure 3. The
horizontal x-axis corresponds to the angles of the
points on the contour, while the vertical y-axis
represents the mapped pixel distances from the
centroid to these points.

Figure 3. SAX time-series for shape recognition

Each shape is distinctly recognizable and exhibits
unique characteristics. In the octagon and triangle
shapes, there are eight and three peaks respectively in
the amplitude, corresponding to the corners of the
shapes. However, the time-series for the circle
resembles noise due to signal normalization, which
amplifies the small deviations. Nevertheless, this does
not hinder shape recognition, as it is effectively

470

distinguished from the other two shapes since the
circle shape exhibits significantly higher frequency
compared to the frequencies from the rest of the
shapes.

5. Shape classification

The SAX algorithm can extract the unique
characteristics of a shape, producing a SAX word as
output. However, the algorithm itself is not rotation
invariant, which means that a rotated shape is assigned
a different SAX word in relation to the original
(unrotated) one. When a signal undergoes rotational
transformations, it leads to subtle shifts in the peaks of
the signal and/or different values for these amplitude
peaks. To be more precise, when the image is rotated
along a single axis, it only causes the peaks to appear
at different positions within the time-series. In our
scenario, when the shape undergoes a 3D rotation
along three axes, it leads to both, shift in the amplitude
peaks as well as variation of the peak’s values. This
limitation represents an issue for shape classification
applications, which should recognize image shapes
without the rotation of the images affecting the result.

We address this limitation by generating a distinct set
of words that captures variations due to rotation. In
Figure 4, several images from the sets of rotations
which are used to generate the words are displayed.
This procedure is repeated for each shape to create a
set of words, where each set encompasses unique
words corresponding to various rotations of the shape.
In addition, these sets are mutually exclusive, ensuring
that there is no overlap of identical words across
different shape sets.

Figure 4. Samples of the rotated shapes sets

The final step is the classification process which
involves brute-forcing through all word sets and
calculating the distance between a candidate word and
the remaining synthetic words. Algorithm 1 describes
the distance computation when comparing two words.
The comparison is conducted letter by letter, where the
distance between identical or neighboring letters is
zero. Otherwise, the distance gets assigned with the
interval between the two letters. When the brute force

search is done, the shape inherits the class of the word
with the minimum distance.

Algorithm: Distance between words computation
1: dist ← 0
2: while (n < word_length) do
3: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟1,𝑛𝑛 ← 𝑐𝑐𝑖𝑖 → read the letter from the candidate word
4: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟2,𝑛𝑛 ← 𝑐𝑐𝑗𝑗 → read the letter for the synthetic word
5: if i = j or abs(i - j) = 1 then → check if the letters same or neighboring
6: dist ← dist + 0
7: else
8: dist ← dist + (𝛽𝛽 𝑖𝑖 … 𝛽𝛽 𝑗𝑗−1) → add the intervals between letters
9: return dist
10: end procedure

Algorithm 1. Distance between words computation for classification

III. RESULTS

Our primary aim was to implement the algorithm on
an IoT hardware platform. To achieve this, as
previously mentioned, we opted for a nRF5340 Nordic
board due to its low power characteristics. Although
the board features dual-core functionality, we
exclusively utilized the application processor,
operating at a frequency of 64 MHz, accompanied by
1MB of Flash memory and 512KB of RAM. The
chosen operating system is Zephyr RTOS.
The SAX algorithm was deployed across three distinct
hardware platforms, and the results are summarized in
Table 2. It is evident that the execution time in C is
significantly faster, approximately (~ 103) times faster.

 Clock
frequency

Execution
time in C

Execution
time Python

Difference

RaspberryPi4
(Cortex-A72
32-bits OS)

1.8 GHz

0.03200101s

7.319624554s

7.287623544s

700 MHz

0.08255687s

19.07252964s

18.98997277s

300 MHz

0.1638856s

37.40953774s

37.24565207s

PC (Intel(R)
Core-TM i7-

1065G7)

1.3 GHz

0.01340653s

1.216410509s

1.203003979s

nRF5340DK
(ARM

Cortex-M33)

64 MHz

0.09333026s

-

-

Table 2. Performance results of SAX execution on three different
HW platforms

IV. CONCLUSIONS

Considering the computational demands of image
processing, we utilize SAX as an effective tool for data
reduction to transform time-series sequence into a
single word that characterizes the key features of the
sequence. Therefore, a conversion process to
transform an image containing a shape to a time-series
was designed, allowing us to implement the SAX
algorithm. In such manner, by extracting the essential
features from the time-series signal, SAX serves as a
base for the shape classification. We address the issue
of rotation sensitivity, which we integrate into our
classification algorithm, by creating 3D rotated
synthetic signs sets and apply a word-based
comparison method for shape classification. We then
validate the feasibility of our approach by integrating
it into a low-power IoT platform, underscoring its
potential for application in anomaly detection for
factory automation.

471

distinguished from the other two shapes since the
circle shape exhibits significantly higher frequency
compared to the frequencies from the rest of the
shapes.

5. Shape classification

The SAX algorithm can extract the unique
characteristics of a shape, producing a SAX word as
output. However, the algorithm itself is not rotation
invariant, which means that a rotated shape is assigned
a different SAX word in relation to the original
(unrotated) one. When a signal undergoes rotational
transformations, it leads to subtle shifts in the peaks of
the signal and/or different values for these amplitude
peaks. To be more precise, when the image is rotated
along a single axis, it only causes the peaks to appear
at different positions within the time-series. In our
scenario, when the shape undergoes a 3D rotation
along three axes, it leads to both, shift in the amplitude
peaks as well as variation of the peak’s values. This
limitation represents an issue for shape classification
applications, which should recognize image shapes
without the rotation of the images affecting the result.

We address this limitation by generating a distinct set
of words that captures variations due to rotation. In
Figure 4, several images from the sets of rotations
which are used to generate the words are displayed.
This procedure is repeated for each shape to create a
set of words, where each set encompasses unique
words corresponding to various rotations of the shape.
In addition, these sets are mutually exclusive, ensuring
that there is no overlap of identical words across
different shape sets.

Figure 4. Samples of the rotated shapes sets

The final step is the classification process which
involves brute-forcing through all word sets and
calculating the distance between a candidate word and
the remaining synthetic words. Algorithm 1 describes
the distance computation when comparing two words.
The comparison is conducted letter by letter, where the
distance between identical or neighboring letters is
zero. Otherwise, the distance gets assigned with the
interval between the two letters. When the brute force

search is done, the shape inherits the class of the word
with the minimum distance.

Algorithm: Distance between words computation
1: dist ← 0
2: while (n < word_length) do
3: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟1,𝑛𝑛 ← 𝑐𝑐𝑖𝑖 → read the letter from the candidate word
4: 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑟𝑟2,𝑛𝑛 ← 𝑐𝑐𝑗𝑗 → read the letter for the synthetic word
5: if i = j or abs(i - j) = 1 then → check if the letters same or neighboring
6: dist ← dist + 0
7: else
8: dist ← dist + (𝛽𝛽 𝑖𝑖 … 𝛽𝛽 𝑗𝑗−1) → add the intervals between letters
9: return dist
10: end procedure

Algorithm 1. Distance between words computation for classification

III. RESULTS

Our primary aim was to implement the algorithm on
an IoT hardware platform. To achieve this, as
previously mentioned, we opted for a nRF5340 Nordic
board due to its low power characteristics. Although
the board features dual-core functionality, we
exclusively utilized the application processor,
operating at a frequency of 64 MHz, accompanied by
1MB of Flash memory and 512KB of RAM. The
chosen operating system is Zephyr RTOS.
The SAX algorithm was deployed across three distinct
hardware platforms, and the results are summarized in
Table 2. It is evident that the execution time in C is
significantly faster, approximately (~ 103) times faster.

 Clock
frequency

Execution
time in C

Execution
time Python

Difference

RaspberryPi4
(Cortex-A72
32-bits OS)

1.8 GHz

0.03200101s

7.319624554s

7.287623544s

700 MHz

0.08255687s

19.07252964s

18.98997277s

300 MHz

0.1638856s

37.40953774s

37.24565207s

PC (Intel(R)
Core-TM i7-

1065G7)

1.3 GHz

0.01340653s

1.216410509s

1.203003979s

nRF5340DK
(ARM

Cortex-M33)

64 MHz

0.09333026s

-

-

Table 2. Performance results of SAX execution on three different
HW platforms

IV. CONCLUSIONS

Considering the computational demands of image
processing, we utilize SAX as an effective tool for data
reduction to transform time-series sequence into a
single word that characterizes the key features of the
sequence. Therefore, a conversion process to
transform an image containing a shape to a time-series
was designed, allowing us to implement the SAX
algorithm. In such manner, by extracting the essential
features from the time-series signal, SAX serves as a
base for the shape classification. We address the issue
of rotation sensitivity, which we integrate into our
classification algorithm, by creating 3D rotated
synthetic signs sets and apply a word-based
comparison method for shape classification. We then
validate the feasibility of our approach by integrating
it into a low-power IoT platform, underscoring its
potential for application in anomaly detection for
factory automation.

ACKNOWLEDGMENT

I would like to thank Carlos Rafael Tordoya
Taquichiri for providing the results in Table 2.

REFERENCES

[1] O. Rippel and D. Merhof, “Anomaly Detection
for Automated Visual Inspection: A Review,” in
Bildverarbeitung in der Automation, V. Lohweg,
Ed., Berlin, Heidelberg: Springer, 2023, pp. 1–13.
doi: 10.1007/978-3-662-66769-9_1.

[2] “Anomaly detection for real-world industrial
applications: benchmarking recent self-
supervised and pretrained methods | IEEE
Conference Publication | IEEE Xplore.”
Accessed: Apr. 17, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/9943437

[3] J. H. Khor, M. Sidorov, and P. Y. Woon, “Public
Blockchains for Resource-Constrained IoT
Devices—A State-of-the-Art Survey,” IEEE
Internet Things J., vol. 8, no. 15, pp. 11960–
11982, Aug. 2021, doi:
10.1109/JIOT.2021.3069120.

[4] M. Boebel, F. Frei, F. Blumensaat, C. Ebi, M. L.
Meli, and A. Rüst, “Batteryless Sensor Devices
for Underground Infrastructure—A Long-Term
Experiment on Urban Water Pipes,” J. Low
Power Electron. Appl., vol. 13, no. 2, Art. no. 2,
Jun. 2023, doi: 10.3390/jlpea13020031.

[5] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T.
Brox, and P. Gehler, “Towards Total Recall in
Industrial Anomaly Detection.” arXiv, May 05,
2022. Accessed: Apr. 17, 2024. [Online].
Available: http://arxiv.org/abs/2106.08265

[6] D. Gudovskiy, S. Ishizaka, and K. Kozuka,
“CFLOW-AD: Real-Time Unsupervised
Anomaly Detection with Localization via
Conditional Normalizing Flows.” arXiv, Jul. 26,
2021. Accessed: Apr. 17, 2024. [Online].
Available: http://arxiv.org/abs/2107.12571

[7] T. Defard, A. Setkov, A. Loesch, and R. Audigier,
“PaDiM: a Patch Distribution Modeling
Framework for Anomaly Detection and
Localization.” arXiv, Nov. 17, 2020. Accessed:
Apr. 17, 2024. [Online]. Available:
http://arxiv.org/abs/2011.08785

[8] “nRF5340 Development Kit.” Accessed: Apr. 19,
2024. [Online]. Available:
https://www.nordicsemi.com/Products/Develop
ment-hardware/nRF5340-DK

[9] L. Wei, E. Keogh, and X. Xi, “SAXually Explicit
Images: Finding Unusual Shapes,” in Sixth
International Conference on Data Mining
(ICDM’06), Hong Kong, China: IEEE, Dec.
2006, pp. 711–720. doi:
10.1109/ICDM.2006.138.

[10] V. Ilić, J. Lindblad, and N. Sladoje, “Signature of
a Shape Based on Its Pixel Coverage
Representation,” in Discrete Geometry for
Computer Imagery, N. Normand, J. Guédon, and
F. Autrusseau, Eds., Cham: Springer
International Publishing, 2016, pp. 181–193. doi:
10.1007/978-3-319-32360-2_14.

[11] M. Yang, K. Kpalma, and J. Ronsin, “A Survey
of Shape Feature Extraction Techniques,” vol. 15,
Nov. 2007, doi: 10.5772/6237.

[12] Y. Zhang, G. He, Y. Yu, and G. Li, “A Data
Processing Method of Symbolic Approximation,”
in 2022 Prognostics and Health Management
Conference (PHM-2022 London), London,
United Kingdom: IEEE, May 2022, pp. 378–383.
doi: 10.1109/PHM2022-
London52454.2022.00072.

[13] N. Q. V. Hung and D. T. Anh, “Combining SAX
and Piecewise Linear Approximation to Improve
Similarity Search on Financial Time Series,” in
2007 International Symposium on Information
Technology Convergence (ISITC 2007), Jeonju,
Korea: IEEE, Nov. 2007, pp. 58–62. doi:
10.1109/ISITC.2007.24.

472

