
QardEst: Using Quantum Machine Learning for
Cardinality Estimation of Join Queries

Florian Kittelmann
Zurich University of Applied Sciences

Switzerland

Pavel Sulimov
Zurich University of Applied Sciences

Switzerland

Kurt Stockinger
Zurich University of Applied Sciences

Switzerland

ABSTRACT
Classical and learned query optimizers (LQOs) use cardinality es-
timations as one of the critical inputs for query planning. Thus,
accurately predicting the cardinality of arbitrary queries plays a vi-
tal role in query optimization. A recent boom in novel deep learning
methods stimulated not only the rise of LQOs but also contributed
to the appearance of learned cardinality estimators (LCEs). How-
ever, the majority of them are based on classical neural networks,
ignoring that multivariate correlations between attributes across
different tables could be naturally represented via entanglements
in quantum circuits.

In this paper, we introduce QardEst - Quantum Cardinality Es-
timator - a novel quantum neural network approach to estimate
the cardinality of join queries. Our experiments conducted with a
similar number of trainable parameters suggest that quantum neural
networks executed on a quantum simulator outperform classical
neural networks in terms of mean squared error as well as the
q-error.
ACM Reference Format:
Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger. 2024. QardEst: Us-
ing Quantum Machine Learning for Cardinality Estimation of Join Queries.
In Workshop on Quantum Computing and Quantum-Inspired Technology for
Data-Intensive Systems and Applications (Q-Data ’24), June 9, 2024, Santiago,
AA, Chile. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3665225.3665444

1 INTRODUCTION
Cardinality estimation algorithms predict the returned numbers of
rows, i.e. the result set size, of a database query without executing it.
The query optimizer then uses this information about how selective
different filters or joins are to choose the type of scans (e.g. index
or sequential ones) or the type and order of joins for selecting an
optimal query plan. Hence, the quality of cardinality estimation
has a critical impact on the performance of the query optimizer
[22, 23, 48].

The majority of relational database management systems use
classical cardinality estimation methods. To get an understanding
of single attribute "behavior" under different filters, they sample a
portion of the data from a database and, based on it, evaluate either
statistical characteristics like histograms of distributions [7, 9, 14,
30, 41, 47] (used, e.g. in PostgreSQL [1] and SQLServer [49]), or the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Q-Data ’24, June 9, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0553-3/24/06
https://doi.org/10.1145/3665225.3665444

number of pages of certain indexes [16, 19, 24, 25, 56] (used, e.g.
in MySQL [6] and MariaDB [5]). In order to enable more complex
cardinality measurements in the case of multiple attributes of the
same table, additional calculations are required, e.g. calculations
of functional dependencies between attributes, multivariate most-
common value lists, and multivariate distinct counts [2].

Although the aforementionedmethods already suffer from imper-
fect sampling misestimations and clusterization of single attribute
errors, evaluation difficulties become even more severe when it
comes to cardinality prediction for N -table joins. The problem is
that, e.g., having N tables and M attributes in each table, requires
to learn 𝑂 (𝑀𝑁) correlations - so it is both about learning compli-
cated joint distributions and computational complexity. Learned
cardinalities estimators (LCEs) are exactly attempting to mitigate
these issues with the help of machine learning methods. Although
deep learning seems to give significant improvement compared to
classical methods on datasets with more complicated data distri-
butions and join schemas, it still requires hundreds of millions of
learnable parameters that are often hard to tune [15].

However, quantum neural networks (QNNs) not only perform as
universal function approximators, i.e., they can learn arbitrary joint
non-linear correlations, the same as classical neural networks [50]
but using fewer learnable parameters. Moreover, due to the phenom-
ena of quantum entanglement [11], QNNs can do it with smaller
amounts of trainable parameters. So, in our approach, we take
the recent state-of-the-art architectures of neural networks used
for cardinality estimation and replace a part of it with a quantum
circuit.

The contributions of this paper are as follows:
• We develop a novel quantum neural network called QardEst
for cardinality estimation based on an existing classical archi-
tecture, namely the multi-set convolutional network (MSCN)
[21].

• We perform a detailed performance comparison of QardEst
against a classical neural network baseline and show that
when using a similar number of parameters, the quantum
approach executed on a quantum simulator outperforms the
classical baseline.

The source code of this paper is publicly available at: https://drive.
google.com/file/d/1sqrIwCAKt2SRTCJjV-kmJ-zdbMDTLlh5/view?
usp=drive_link

2 RELATEDWORK
Quantum computing has recently gained traction due to the rapid
development of quantum hardware [8, 36]. Typical applications in
quantum computing are currently in optimization [29], machine
learning [44] or in specific domains such as material science or
chemistry [28].

https://doi.org/10.1145/3665225.3665444
https://doi.org/10.1145/3665225.3665444
https://doi.org/10.1145/3665225.3665444
https://drive.google.com/file/d/1sqrIwCAKt2SRTCJjV-kmJ-zdbMDTLlh5/view?usp=drive_link
https://drive.google.com/file/d/1sqrIwCAKt2SRTCJjV-kmJ-zdbMDTLlh5/view?usp=drive_link
https://drive.google.com/file/d/1sqrIwCAKt2SRTCJjV-kmJ-zdbMDTLlh5/view?usp=drive_link

Q-Data ’24, June 9, 2024, Santiago, AA, Chile Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger

The cardinality estimation problem for database queries has
recently been tackled using mainly classical machine learning algo-
rithms [20]. While the results of these methods are more accurate
than traditional non-machine learning-based approaches, they still
suffer from high training and inference costs while learning multi-
variate correlations [15, 48], and can mitigate these "side effects"
only when using single-table statistics as an input [51]. This is
still an unsolved problem, and therefore, it is uncertain if such
models will prevail in real databases, especially in dynamic envi-
ronments [48]. In general, foregoing approaches to learning the
cardinalities could be split into query-driven [10, 21, 53] and data-
driven [17, 52, 54, 55, 57] groups. While query-driven approaches
learn the cardinalities directly from the SQL queries, data-driven
approaches use the data in the database to learn and estimate the
cardinalities [15].

Applications of quantum computing for database problems are
currently arising more and more, for instance, in multiple query
optimization [12, 45], as well as join ordering (e.g. using novel
quantum-inspired encoding [40] or digital annealing [39]). In the
sub-area of cardinality estimation, the usage of quantum technolo-
gies is meanwhile tailored to the quantum natural language pro-
cessing model, predicting the query execution time and cardinality
straight from SQL [46]. This approach frames cardinality estimation
as a multi-class classification problem, where cardinality estimates
are within 2 or 4 ranges. In contrast, our approach treats cardi-
nality estimation as a regression problem and thus allowing more
fine-grained estimates.

In our optics, an intuitive approach to solving the cardinality
estimation problem using quantum computing could be to learn
the histograms of the data in database tables using a quantum
generative adversarial network (qGAN) [58]. Unfortunately, the ad-
vantages compared to traditional histograms and sampling methods
are small until nonexistent because training a qGAN is computa-
tionally expensive.

Thus, instead of using qGANs, we suggest designing a hybrid
quantum neural network approach that leverages classical neural
networks and only implements part of the neural network using
quantum circuits while still taking the quantum advantage. In one
of the most recent LCE papers [35], it was shown how embedding
machine learning heuristics into one of the fundamental LCE meth-
ods based on MSCN [21] can give a significant increase in accuracy
under training procedure constraints. For our QardEst approach,
we stick to using the same MSCN architecture as a baseline but
extend it with novel improvements by injecting quantum elements.

3 LEARNED CARDINALITY ESTIMATION
BASELINE

In this paper we compare our novel quantum cardinality estima-
tion approach against a classical neural network baseline that is
both well-understood and performs well in different cardinality
estimation benchmarks. This classical baseline is called MSCN [21]
- Multi-Set Convolutional Neural Network. We have chosen this
approach since it is considered the state-of-the-art technique for
learned query-driven cardinality estimation. Moreover, the input
encoding can be straightforwardly applied also for our quantum

approach with a limited number of qubits. Finally, we propose a
few optimizations on the input encoding of MSCN.

We will now explain the MSCN approach in more detail.

3.1 Query and Data Encoding
Let us first discuss how to encode a query given a specific database
such that a neural network can be trained for cardinality estimation.
The easiest way would be to use one-hot encoding where each table
and column that is part of a query is set to 1 - and to 0 if these tables
and columns are not part of the query. The size of the encoding
vector thus corresponds to the total number of tables and columns
of the underlying database. In addition, the information about the
distribution of the underlying data needs to be encoded along with
specific query details such as joins, filters, etc.

Figure 1 shows how a specific SQL query is encoded in MSCN
[21] using our own optimization. In particular, we removed the
redundant table set information 𝑇𝑞 to make the encoding more
compact1.

Now, let us analyze the encoding in more detail. Figure 1 (a)
shows the query to be encoded. Figure 1 (b) shows the join set 𝐽𝑞
to describe which attribute takes part in a join of the query. 𝐽𝑞
uses a one-hot vector for the first join attribute, a separate one-hot
vector for the second join attribute, etc. In our example we assume
a database with 18 primary/foreign key combinations and thus 18
possible joins. Here, the attribute c.UserID (1/18) is joined with the
attribute b.UserID (3/18).

Figure 1 (c) shows how the predicate set 𝑃𝑞 is encoded for a
database with 43 columns. 𝑃𝑞 contains a one-hot vector for each
attribute to be encoded and a one-hot vector for each of the 5
possible operators. Finally, the predicate values are encoded using
simple normalization as shown in Equation 1

𝑥 ′ = 𝑥 −min(𝑥)
max(𝑥) −min(𝑥) (1)

where x is a value of the respective attribute.

3.2 Classical Neural Network
The neural network architecture of MSCN is shown in Figure 2. At
the bottom we see a module for the Join Set as well as a module
for the Predicate Set. At the top we see the output layer. The neural
networks for the join module and the predicate module are applied
for each table that is part of the join and each predicate that is part
of the query. Afterwards the two neural networks are averaged,
concatenated and fed to the output neural network.

An example of how the MSCN processes a query is given in
Figure 1.

4 QUANTUM CARDINALITY ESTIMATION
In this section, we first describe some foundations of quantum com-
puting. Afterwards, we introduce our novel approach to quantum
cardinality estimation.

1Since the original join set 𝐽𝑞 contains already information about the used tables of
SQL, our more compact encoding does not lose any information.

QardEst: UsingQuantum Machine Learning for
Cardinality Estimation of JoinQueries Q-Data ’24, June 9, 2024, Santiago, AA, Chile

SELECT COUNT(*) FROM comments as c, badges as b
WHERE c.UserId = b.UserId AND c.Score=0 AND b.Date<=’2014-09-11 14:33:06’

a)

1.0 0.0
0.0 0.0
0.0 1.0
...

...

,

0.0 0.0
0.0 0.0
0.0 0.0
...

...

, · · ·

𝑐.𝑈𝑠𝑒𝑟𝐼𝑑 →
𝑝.𝐼𝑑 →

𝑏.𝑈𝑠𝑒𝑟𝐼𝑑 →
...

{[1
18

3
18
]
,

[
0.0 0.0

]
, · · ·}Join set 𝐽𝑞 =

0.0
1.0
...

0.0
1.0
...

[
0.0

]

,

1.0
0.0
...

1.0
0.0
...

[
0.99

]

,

0.0
0.0
...

0.0
0.0
...

[
0.0

]

, · · ·

𝑏.𝐷𝑎𝑡𝑒 →
𝑐.𝑆𝑐𝑜𝑟𝑒 →

...
<=→
=→

...
𝑥 ′ →

2
43
2
5
0.0

,

1
43
1
5

0.99

,

0.0
0.0
0.0

, · · ·

Predicate set 𝑃𝑞 =

43 columns
in database

5 operators18 primary and foreign
keys in database

b) c)

Figure 1: Query and data encoding as input for a neural network to estimate the cardinality of a query. a) SQL query to be
encoded. b) Join set 𝐽𝑞 with zero-padding encoded as a vector. The size of the vector corresponds to the number of possible
PK/FK joins in the database. The light blue matrixes refer to potential PK/FK-joins that are not used in the example query. c)
Predicate set 𝑃𝑞 encoded as 3 vectors to represent (1) the query attribute, (2) the query operator and (3) the value of the query
attribute. The light blue matrixes refer to attributes not used in the example queries.

ReLu

Linear

ReLu

Linear

ReLu

Linear

ReLu

Linear

Sigmoid

Linear

ReLu

Linear

Avg. Pool Avg. Pool

Concat

Join Set 𝐽𝑞 Predicates Set 𝑃𝑞

Cardinality prediction �̂�

Figure 2:Multi-set convolutional networkmodel architecture
as defined in [21] with the absence of the table set.

4.1 Quantum Computing Foundations
Quantum computing is based on physical effects described in quan-
tum mechanics, and the research area already has produced some
promising quantum algorithms with significant speed-up compared
to classical computers (e.g. the factorization of prime numbers [43]).

Superposition and entanglement are the main physical effects,
which are used in quantum computing. They bring completely
different characteristics to the development of algorithms.

Qubits are used as the smallest computing unit, which can be
visualized in a Bloch sphere as shown in Figure 3. The vector show-
ing to the north pool is state |1⟩, while state |0⟩ is shown on the
south pool. All the other parts of the Bloch sphere are states in
superposition of |0⟩ and |1⟩.

By rotations about the x-, y- and z-axis, the qubit can be put in
another state. When a measurement is executed, the quantum state
is destroyed and collapses to either a 0 or 1. If the quantum algorithm
is executed multiple times, a probability distribution 𝑃 (𝑥) of the
states |0⟩ and |1⟩ can be observed, which is physically described by
the square of the quantum state |𝜓 ⟩ as shown in Equation 2.

𝑃 (𝑥) = |𝜓 ⟩2 (2)

One execution of the algorithm is typically called shot, and there-
fore, the number of shots needs to be configured high enough
to obtain a good quality of the probability distribution 𝑃 (𝑥). In
quantum mechanics, the probability distribution 𝑃 (𝑥) describes the
probability of finding the particle (e.g. photon or electron) in a cer-
tain position. Therefore, the probability characteristics in quantum

Q-Data ’24, June 9, 2024, Santiago, AA, Chile Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger

|1⟩

|0⟩

x
y

Figure 3: Bloch sphere of a single qubit in a superposition
of the states |0⟩ and |1⟩. Because the vector in red points to
the equator of the Bloch sphere, the probability is 50% to
receive a resulting 1 and 50% to receive a resulting 0 on a
measurement of the qubit.

computing are derived from the wave-particle duality in quantum
mechanics.

Entanglement is the second essential physical effect, which is
used in quantum computing. When one of the two entangled qubits
is measured, the result of the measurement of the second qubit
is known without needing to measure the second qubit. They are
entangled, and therefore, colloquially speaking, they share infor-
mation. Entangled qubits can not be visualized anymore in a Bloch
sphere.

4.2 Quantum Neural Network - High Level View
The architecture of our quantum approach QCardEst has the same
principal structure as the classical MSCN described in Section 3.2.
However, the classical neural network layers are replaced with
quantum neural networks (see Figure 4).

Let us now analyze the specifics of the quantum neural network
architecture from bottom to top. The inputs of the quantum circuits
are rescaled to the range of [0.0, 2·𝜋−0.05] to cover the whole Bloch
sphere as shown in Figure 4. Afterwards, the quantum circuits are
executed. We will describe the internals of these circuits in Section
4.3.

Next, we measure the probability distribution 𝑃 (𝑥) of the quan-
tum circuits using 100 shots. The output of the 100 shots for the Join
Set as well as the Predicate Set are combined using average pooling
(Avg. Pool). Finally, the results of the Join Set are concatenated
(Concat) with the results of the Predicate Set and fed to the output
quantum neural network. The input values for the output quan-
tum neural network are therefore again rescaled to the range of
[0.0, 2 · 𝜋 − 0.05] and its output is then fed to one single perceptron
followed by a sigmoid function to obtain values in the range of
[0.0, 1.0].

4.3 Quantum Circuits - Detailed View
Now, let us analyze the quantum circuits in more detail. The param-
eterized quantum circuits (PQC) of the quantum neural network
are shown in Figure 5. The first circuit encodes the Join Set and uses

Measurement
𝑃 (𝑥) from 100 shots

Quantum Circuit

Rescale
[0.0, 2 · 𝜋 − 0.05]

Measurement
𝑃 (𝑥) from 100 shots

Quantum Circuit

Rescale
[0.0, 2 · 𝜋 − 0.05]

Sigmoid

Classical Perceptron

Rescale [−1.0, +1.0]

Measurement
𝑃 (𝑥) from 100 shots

Quantum Circuit

Rescale
[0.0, 2 · 𝜋 − 0.05]

Avg. Pool Avg. Pool

Concat

Join Set Predicates Set

Cardinality prediction �̂�

Figure 4: Multi-set convolutional network architecture for
the quantum neural network.

angle encoding of the parameters 𝑥𝑖 followed by rotation blocks
with trainable parameters 𝜃𝑖 . To represent the analogous of multiple
layers in a neural network, we have chosen the parameters 𝑘 and 𝑙
to vary the depth of the quantum circuit. By performing multiple
repetitions with the parameter 𝑙 , the input part of the quantum
circuit gets applied multiple times inside the circuit with the same
inputs 𝑥𝑖 , while the trainable parameters 𝜃𝑖 are not shared when
the parameter 𝑘 is increased.

The second circuit uses angle encoding to encode the Predicate
Set by two 𝑅𝑧 rotation blocks, followed by a controlled 𝑅𝑦 gate. We
designed the trainable part with the parameters 𝜃𝑖 , 𝑙 and 𝑘 equal
to the first circuit. On both circuits, the measurement is executed
on both qubits, which results in two probability distributions of 4
states.

In the last circuit, the architecture of the output layer is shown,
which uses 3 qubits to encode the concatenated probability distribu-
tion values using 8 rotation blocks. The trainable part of the output
layer uses full entanglement.

In general, this design of the circuits was chosen, because it
seemed to be an ideal approach to encode the whole data while
the numbers of qubits can be kept small. This results in a feasible
training time of about 10 days for 500 epochs using the parameters

QardEst: UsingQuantum Machine Learning for
Cardinality Estimation of JoinQueries Q-Data ’24, June 9, 2024, Santiago, AA, Chile

𝑙 = 4 and 𝑘 = 2. We discuss more details in the experiment section.
Note that we avoided using an𝑅𝑥 gate after a Hadmard gate because
it does not encode the data into the Bloch sphere. Therefore, we
chose 𝑅𝑧 rotation blocks in the input encoding because this ensures
the data is encoded in the phase of the qubit.

4.4 Discussion about Nonlinearity and Output
Encoding

For fulfilling the Universal Approximation Theorem [18], nonlinear-
ities play a major role in approximating complex functions. While
classical neural networks use activation functions to add nonlin-
earities, the best approach in quantum neural networks remains
unclear. Because recent papers propose a redundancy of the input
encoding in the circuits [13, 26, 38] for a good approximation of
functions, the parameter 𝑙 was introduced to repeat the input layer
of the circuit.

Regarding output encoding, quantum circuits are predestined
to solve classification tasks because of their output as a probabil-
ity distribution. Unfortunately, this output brings challenges for
solving regression tasks by e.g. using the expected value 𝐸 [𝑥] of
the probability distribution 𝑃 (𝑥). The reason is that on a random
initialized PQC the chances in a Bloch sphere are quite small to
predict exactly the value 0.0 or 1.0. In our experiments, we observed
that values close to 0.0 and 1.0 were somewhat challenging to reach
for a quantum neural network. Therefore, we decided to use values
from the probability distribution 𝑃 (𝑥) and input them in a single
perceptron to set aside this restriction.

5 EXPERIMENTS
We now describe the experiments for evaluating the effectiveness
of QCardEst - our novel quantum cardinality estimation algorithm.
The main research questions are (1) to find out if this quantum
algorithm can outperform the classical counterpart and (2) to see how
the performance per trainable parameter compares to the classical
neural network.

5.1 Experimental Setup
Dataset: For all our experiments we use the STATS-CEB dataset
[15] - a commonly used benchmark for evaluating cardinality esti-
mation algorithms. Because the query file of the STATS-CEB dataset
did not contain any cardinality information, we imported the data
of the STATS-CEB database into our local MySQL database and
executed all SQL queries to retrieve their cardinalities. The final
dataset contains 2,627 SQL queries and their cardinalities without
duplicated SQL queries.

Because the cardinalities of the SQL queries in the STATS-CEB
dataset contain outliers, the labels were rescaled (𝑦𝑟) by a logarithm
as shown in Equation 3:

𝑦𝑟 = 𝑙𝑜𝑔10 (𝐶𝑇) (3)

In other words, we normalized the true cardinalities𝐶𝑇 as shown
in Equation 5 by𝑦𝑚𝑎𝑥 (see Equation 4), which is the highest rescaled
cardinality 𝑦𝑟 in the dataset.

𝑦𝑚𝑎𝑥 = max(𝑦𝑟) = 11.05 (4)

𝑦 =
𝑦𝑟

𝑦𝑚𝑎𝑥
(5)

The value 𝑦𝑚𝑎𝑥 = 11.05 was observed in the dataset and is used
to calculate the estimated cardinality 𝐶𝐸 from the neural network
prediction 𝑦 after inference (see Equation 6).

𝐶𝐸 = 10�̂� ·𝑦𝑚𝑎𝑥 = 1011.05·�̂� (6)
The advantage of choosing logarithmic rescaling is that high

cardinality outliers are more compressed while patterns in small
cardinalities are preserved. However, a disadvantage is that when
predicting the result set size of SQL queries with high cardinalities,
the error in the neural network prediction 𝑦 leads to an exponential
increase of the error for the estimated cardinality 𝐶𝐸 (see Equation
6).

Evaluation Metric: For every experimental run, we applied a
random train/validation split of 80%/20% on the dataset and trained
the samples using batches. While in the classical neural network,
we used a batch size of 64, we evaluated the optimal batch size for
the quantum model (see details in Section 5.2).

After a successful forward pass of a single batch, the mean
squared error (MSE) as shown in Equation 7 is calculated and the
gradients for all the parameters are computed in the backward pass
of the neural network.

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (7)

For the quantum neural network, the parameter-shift rule [37]
was used to evaluate analytically the gradients with respect to the
parameters and quantum circuits inputs.

The quantum neural networks described in Section 4.2 were
evaluated using the 𝑙 parameter with values of 2, 3, 4 and the 𝑘
parameter with values of 1, 2. Each combination was run 5 times
(having different train/validation split) to obtain a mean value 𝜇
and standard deviation 𝜎 of the MSE loss after 500 epochs.

While the trainings were computed using 100 shots for each
quantum circuit, for the evaluations of the models 1,000 shots were
used. By using a higher shot size, the values were better repro-
ducible when repeating the evaluations.

From the best training result of the 5 runs, the q-error (see Equa-
tion 8) was evaluated from the reconstructed 𝐶𝐸 (see Equation
6) to quantitatively compare the performance of the model as a
cardinality estimation method.

Q-Error = max
(
𝐶𝐸

𝐶𝑇
,
𝐶𝑇

𝐶𝐸

)
(8)

Note that for cardinality estimation the q-error is a commonly
used metric because it penalizes both overestimation and underes-
timation of the true cardinality 𝐶𝑇 [15].

Software: Every quantum circuit in the forward and backward
pass was configured to run with 100 shots on the Statevector Aer-
Simulator [4, 33] to obtain the resulting probability distribution and
AMSGrad [34] was used to process the optimization steps after each
batch computation. The quantum circuits were implemented using
Qiskit [33] combined with the TorchConnector from the Qiskit

Q-Data ’24, June 9, 2024, Santiago, AA, Chile Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger

Quantum Circuit of the Join Set 𝐽𝑞 Quantum Circuit of the Predicate Set 𝑃𝑞
repeated 𝑙 times

repeated 𝑘 times

q[0] 𝐻 𝑅𝑍 (𝑥1) 𝑅𝑋 (𝜃1) 𝑅𝑋 (𝜃3)

q[1] 𝐻 𝑅𝑍 (𝑥2) 𝑅𝑋 (𝜃2) 𝑅𝑋 (𝜃4)

meas

repeated 𝑙 times

repeated 𝑘 times

q[0] 𝐻 𝑅𝑍 (𝑥1) 𝑅𝑋 (𝜃1) 𝑅𝑋 (𝜃3)

q[1] 𝐻 𝑅𝑍 (𝑥2) 𝑅𝑌 (𝑥3) 𝑅𝑋 (𝜃2) 𝑅𝑋 (𝜃4)

meas

Quantum Circuit for the Output Layer

repeated 𝑙 times

repeated 𝑘 times

q[0] 𝐻 𝑅𝑍 (𝑥1) 𝑅𝑍 (𝑥6) 𝑅𝑋 (𝜃1) 𝑅𝑋 (𝜃4)

q[1] 𝐻 𝑅𝑍 (𝑥2) 𝑅𝑋 (𝑥4) 𝑅𝑍 (𝑥7) 𝑅𝑋 (𝜃2) 𝑅𝑋 (𝜃5)

q[2] 𝐻 𝑅𝑍 (𝑥3) 𝑅𝑋 (𝑥5) 𝑅𝑍 (𝑥8) 𝑅𝑋 (𝜃3) 𝑅𝑋 (𝜃6)

meas

first join attribute

second join attribute

attribute of predicate

operator of predicate value of predicate

Figure 5: Quantum circuits for the Join Set 𝐽𝑞 , the Predicate Set 𝑃𝑞 and the output layer. The variables 𝑥𝑖 indicate the input
values, while the 𝜃𝑖s are the trainable parameters of the quantum neural network.

Machine Learning library [3, 33] to perform the training procedure
with PyTorch [31].

Hardware: Our experiments showed that simulations of small
quantum circuits were faster computed on a CPU rather than a
GPU. Therefore, we executed the cardinality estimation experi-
ments either on a MacBook Pro, Apple M2 Max CPU with 32 GB
RAM, a Virtual Linux Server with 16 Intel VCPUs and 64 GB RAM or
a Linux Server with 2 Intel Xeon Platinum 8270 CPUs (26 cores each)
with 384 GB RAM. However, since in our experiments are focused
on cardinality estimations and not on query execution times, the
results are not affected by the hardware.

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 32 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64

𝑙𝑟
Train Loss
in 10−3

Val Loss
in 10−3

Train Loss
in 10−3

Val Loss
in 10−3

10−1 8.22 7.76 6.99 7.97
10−2 6.52 6.64 5.59 5.62
10−3 5.97 7.10 7.22 5.53
10−4 7.56 8.26 8.73 8.97

Table 1: Mean squared error (MSE) after 500 epochs of train-
ing one QardEst model.

5.2 Hyperparameter Tuning
Firstly, we evaluated the optimal hyperparameters for the quantum
neural network before analyzing the performance of the models.

The best hyperparameters for a certain batch size and learning
rate 𝑙𝑟 were evaluated on the architecture using 𝑙 = 3 and 𝑘 = 1. The
models were trained using batch sizes of 32 and 64 with learning
rates of 10−1, 10−2, 10−3 and 10−4. Each of these combinations was

trained once. The MSE losses of the train and validation dataset
after 500 epochs are shown in Table 1.

0 100 200 300 400 500

1

1.5

2 ·10−2

M
SE

Lo
ss

Train Set

batch size = 32, lr = 10−2

batch size = 64, lr = 10−2

batch size = 32, lr = 10−3

batch size = 64, lr = 10−3

0 100 200 300 400 500

1

1.5

2 ·10−2

Epochs

M
SE

Lo
ss

Validation Set

batch size = 32, lr = 10−4

batch size = 64, lr = 10−4

batch size = 32, lr = 10−1

batch size = 64, lr = 10−1

Figure 6: QardEst MSE loss with hyperparameter-tuning for
the train set (top) and the validation set (bottom).

QardEst: UsingQuantum Machine Learning for
Cardinality Estimation of JoinQueries Q-Data ’24, June 9, 2024, Santiago, AA, Chile

Table 1 shows that a learning rate 𝑙𝑟 = 10−2 has the best results
with batch size = 32 and batch size = 64. In general, smaller learn-
ing rates 𝑙𝑟 seem to have a better MSE loss with a batch size = 32
(see Table 1 and Figure 6). Therefore, pragmatically it was decided to
choose the hyperparameters 𝑙𝑟 = 10−2 and batch size = 32 for fur-
ther evaluations, even if the hyperparameters 𝑙𝑟 = 10−2, batch size =
64 showed the best results after 500 epochs. Furthermore, qualita-
tivelywe observed that themodels converge fasterwith a batch size =
32 (see Figure 6).

0 500 1,000 1,500 2,000 2,500 3,000
0

0.5

1

1.5
·10−2

Epochs

M
SE

Lo
ss

Train and Validation Set

Train - 3 neurons
Val - 3 neurons
Train - 256 neurons
Val - 256 neurons

Figure 7: Train and validation MSE loss using the classical
multi-set convolutional network architecture (MSCN) with 3
respectively 256 neurons in each hidden layer.

5.3 Performance of the Classical Neural
Network - The Baseline

Let us first analyze the performance of the classical neural net-
work that we consider as the classical baseline. We evaluated the
multi-set convolutional network (MSCN) architecture, including
our adjustments by training the model with the hyperparameters
batch size = 64 and 𝑙𝑟 = 10−3. Figure 7 shows the results with 3
and 256 neurons inside of each linear layer. We can observe that
the models converge after about 100 and 500 epochs, respectively.

5.4 Performance of the Quantum Neural
Network

We now describe the performance of our quantum neural network
and compare it against the performance of the classical neural net-
work baseline. In the first set of experiments we chose the classical
neural network such that it has the same number of parameters as
the quantum neural network.

On the classical neural network with 3 neurons in each hidden
layer, an average MSE loss of 9.27 · 10−3 was observed on the
training dataset (see Table 2). The smallest quantum neural network
(𝑙 = 2, 𝑘 = 1) has an average train MSE loss of 6.86 · 10−3, which is
an improvement of 26.0%. On the validation dataset, the quantum
neural network has an average MSE loss of 7.04 · 10−3 and the
classical neural network an average MSE loss of 9.57 · 10−3, which
is an improvement of 26.44%.

These results indicate that a quantum neural network can
improve the MSE loss using fewer trainable parameters: the
quantum neural network with 𝑙 = 2 and 𝑘 = 1 holds 37 and the clas-
sical neural network with 3 neurons has 70 trainable parameters.
The quantum neural network with 𝑙 = 4 and 𝑘 = 2 has 93 train-
able parameters and shows the best result of the quantum models
with an average train MSE loss of 5.68 · 10−3 and an average
validation MSE loss of 6.25 · 10−3. Nevertheless, the classical neu-
ral network with 256 neurons in each hidden layer still achieved
a better mean MSE loss with 0.29 · 10−3 on the training dataset
and 0.83 · 10−3 on the validation dataset, but it consists of 264, 961
trainable parameters, i.e. it has 2,849 times more parameters than
the largest quantum neural network.

We now analyze how well the classical and the quantum neural
networks predict the cardinalities of the queries. Figures 8 and 9
show the true cardinalities (labels 𝑦) and the predicted cardinalities
(𝑦). The results are sorted by the labels 𝑦 for each SQL query. We
can observe that the classical neural network with 256 neurons
in each hidden layer learns the cardinalities from the SQL queries
qualitatively well. The quantum neural network (𝑙 = 4, 𝑘 = 2), in
comparison, approximates the function, but has much higher errors
to the real cardinalities. Therefore, the quantum model is feasible
to approximate the complex function for cardinality estimation but
still needs to be improved to obtain the same results as the classical
neural network with 256 neurons in each hidden layer.

Classical Neural Network

0 1,000 2,000

0.2

0.4

0.6

0.8

1

SQLs in Dataset

Ca
rd
in
al
ity

(re
sc
al
ed

an
d
no

rm
al
iz
ed
)

Train Dataset

model prediction - 𝑦 label - 𝑦

0 200 400
SQLs in Dataset

Validation Dataset

Figure 8: True cardinalities 𝑦 and predicted cardinalities 𝑦 of
the classical neural network with 256 neurons in each hidden
layer (after 500 epochs).

6 ENHANCEMENT OF THE QUANTUM
NEURAL NETWORK ARCHITECTURE

The previous results showed the possibility for the quantum neural
network to outperform the classical neural network when both use
a similar number of parameters. Nevertheless, a classical neural
network with 256 neurons in each hidden layer has still the best
performance. Therefore, it raises the question of how the quantum

Q-Data ’24, June 9, 2024, Santiago, AA, Chile Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger

Quantum Neural Network Classical Neural Network

k=1 k=2
Train
in 10−3

Val
in 10−3

Train
in 10−3

Val
in 10−3

Train
in 10−3

Val
in 10−3

layers (#params) 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 # neurons (#params) 𝜇 𝜎 𝜇 𝜎

𝑙 = 2, (37; 51) 6.86 0.379 7.04 0.773 6.64 0.405 6.44 0.342 𝑛 = 3, (70) 9.27 2.946 9.57 3.361
𝑙 = 3, (51; 72) 6.30 0.412 6.04 0.514 5.52 0.167 5.56 0.432 𝑛 = 4, (109) 7.18 0.243 7.62 0.440
𝑙 = 4, (65; 93) 5.32 0.311 6.48 0.710 4.58 0.145 5.35 0.587 𝑛 = 8, (345) 6.15 0.604 6.84 0.264

𝑛 = 16, (1, 201) 5.33 0.744 6.05 0.712
𝑛 = 32, (4, 449) 2.81 0.290 3.48 0.332

𝑛 = 256, (264, 961) 0.29 0.036 0.83 0.115
Table 2: MSE loss of the quantum neural network trained N=5 times after 500 epochs and comparison to a classical neural
network. #neurons gives the number of classical neurons per hidden layer in the classical MSCN approach shown in Figure 2.
#params indicates the number of trainable parameters of the respective model. The underlined parameters show when the
best quantum neural network is surpassed by the classical counterpart, i.e. 93 vs 4,449.

Quantum Neural Network

Figure 9: True cardinalities 𝑦 and predicted cardinalities 𝑦
of the quantum neural network with 𝑙 = 4, 𝑘 = 2 (after 500
epochs).

neural network can be extended to perform better. Firstly, the results
already indicate, that an increase of parameters 𝑘 and 𝑙 improves the
results. In particular, we experimented with the following approach
to enhance the quantum neural network model architecture further:

Increasing degrees of freedom in quantumneural network:
So far, we only used 𝑅𝑥 rotation blocks in the parameterizable
quantum circuit (PQC). Because a qubit can be visualized on the
Bloch sphere, it can be assumed that a PQC performs better if
rotations about all the axes are used. Therefore, we used a model
with circuits as shown in Figure 5. However, instead of 𝑅𝑥 rotation
blocks, we experimented with a sequence of 𝑅𝑥 -𝑅𝑦-𝑅𝑧 and another
model with a sequence of 𝑅𝑥 -𝑅𝑦 rotation blocks. Theoretically, with
2 degrees of freedom (DoF) the whole Bloch sphere can be explored.

Removing measurements after the Join Set 𝐽𝑞 and Predi-
cate Set 𝑃𝑞 circuits and creating a combined circuit: A mea-
surement destroys the quantum state and therefore information
is lost. Hence, we developed and evaluated a combined quantum
model as shown in Figure 10. This new model can be applied to
combine the Predicate Set and Join Set. If the two sets have different
lengths, we used zero padding and in the output of the combined
model we applied an average pool, followed by a single perceptron
and a sigmoid activation function.

Spreading input encoding on more qubits using entangle-
ments:We extended the circuits for the Join Set 𝐽𝑞 and Predicate
Set 𝑃𝑞 to 4 qubits, while the output circuit was extended to 8 qubits.
The input information is spread by entanglements to all the qubits
and we trained a model using the parameters 𝑙 = 2 and 𝑘 = 1 with
different learning rates 𝑙𝑟 .

Figure 11 shows, that this way of extension does not improve the
results and the training can not improve the minima as the model
with 2 qubits. It seems, that at about a train MSE loss of 1.6 · 10−2
the models with 4 qubits reach a plateau and improve quite slowly
from there.

Barren plateaus, which are majorly influenced by the chosen en-
tanglement strategy and the largeness of the circuit, are areas in the
loss function where no clear direction for optimization exists, and
usually, it happens at random initialization of the model [26, 27].
Research within this area indicates that quantum convolutional
neural networks are immune [26, 32], while dissipative quantum
neural networks suffer from barren plateau [26, 42]. Our experi-
ments using a dissipative quantum neural network and a quantum
convolution neural network show, that the dissipative model can
reach similar performances to the original quantum neural network
with 𝑙 = 2, 𝑘 = 1 on two qubits (see Figure 12). However, the quan-
tum convolutional neural network shows quite a bad performance.
Therefore, we can not conclude that we observed a barren plateau
because it contradicts the results in the literature.

QardEst: UsingQuantum Machine Learning for
Cardinality Estimation of JoinQueries Q-Data ’24, June 9, 2024, Santiago, AA, Chile

Figure 10: Quantum circuit of the combined model.

0 50 100 150 200
0.5

1

1.5

2

2.5

3
·10−2

Epochs

M
SE

Lo
ss

Train MSE Losses

4 Qubits 𝑙𝑟 = 10−2

4 Qubits 𝑙𝑟 = 10−3

4 Qubits 𝑙𝑟 = 10−4

4 Qubits 𝑙𝑟 = 10−5
2 Qubits 𝑙 = 2, 𝑘 = 1

Figure 11: MSE losses of the quantum neural network model
with 4 qubits.

7 OVERALL PERFORMANCE COMPARISON
We will now compare the overall performance of quantum neural
networks with classical neural networks as a function of the number
of parameters used by each model.

7.1 MSE Loss
Figure 13 shows the mean MSE losses for the train and validation
dataset depending on the number of trainable parameters in the
model. Let us focus our attention on the MSE loss of the valida-
tion dataset (right side of Figure 13). We observe that the classical
neural network using 3 neurons in hidden layers with 70 trainable
parameters has a mean MSE validation loss of 9.57 · 10−3, while
the quantum neural network using 𝑙 = 3, 𝑘 = 2 with 72 trainable
parameters has anMSE Loss of 5.56 ·10−3, which is an improvement
of 41.9%. We can also see that the best quantum neural network
is the one with 𝑙 = 4, 𝑘 = 2. In other words, the best quantum
neural network has only 93 parameters and outperforms

0 20 40 60 80 100 120
0.5

1

1.5

2

·10−2

Epochs

Tr
ai
n
M
SE

Lo
ss

Train MSE losses

Quantum Convolutional 𝑙𝑟 = 10−3

Quantum Convolutional 𝑙𝑟 = 10−2

Quantum Dissipative 𝑙𝑟 = 10−3

Quantum Dissipative 𝑙𝑟 = 10−2
2 Qubits 𝑙 = 2, 𝑘 = 1

Figure 12: MSE losses of the quantum dissipative neural net-
work and the quantum convolutional neural network.

the classical neural networks up to 16 neurons having 1,201
parameters.

Quantum neural networks with an increased 𝑙 tend to have
better MSE losses compared to a model with the same number
of trainable parameters but a lower 𝑙 parameter. For instance, the
model 𝑙 = 3, 𝑘 = 1 has an improved validation MSE loss of 6.21%
compared to the model with 𝑙 = 2, 𝑘 = 2 and the same number of
trainable parameters.

Due to the overfitting of the model with 𝑙 = 4, 𝑘 = 1, the same
tendency can not be observed for the models with 𝑙 = 4, 𝑘 = 1 and
𝑙 = 3, 𝑘 = 2. Generally, it can be said that models having 𝑙 = 4 tend
to overfit more than the other models.

Furthermore, the model with 𝑅𝑥 -𝑅𝑦 sequences compared with
the 𝑙 = 2, 𝑘 = 1 model containing just 𝑅𝑥 rotation blocks improves
the average validation MSE loss by 16.8% from 7.04 · 10−3 to 5.86 ·
10−3. However, appending an additional 𝑅𝑧 rotation block just
increases the validation MSE loss by 4.22% to 6.11 · 10−3. This
could be explained by the fact, that two different rotation blocks

Q-Data ’24, June 9, 2024, Santiago, AA, Chile Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger

Figure 13: Mean MSE loss (N=5) on the training dataset (left) and validation dataset (right) of quantum neural networks and
classical neural networks plotted as a function of the trainable parameters. The scale of themeanMSE loss (y-axis) is logarithmic
until a value of 4 · 10−3, afterwards, the scale is linear. In contrast, the scale of the trainable parameters (x-axis) is linear until a
value of 102, afterwards, the scale is logarithmic.

are already enough degrees of freedom to reach every point in the
Bloch sphere.

7.2 Q-Error
Let us conclude our analysis with an evaluation of the q-error
for all models. For our experiments we evaluated the q-errors of
the best quantum model 𝑙 = 4, 𝑘 = 2 based on 5 different runs
of train/validation splits. We also evaluated the q-errors of the
best classical neural networks with up to 256 neurons on the same
train/validation splits as the quantum model. Afterwards, we calcu-
lated the 50%-, 90%- and 99%-percentiles.

In Table 3 we can see that the quantum neural network with
𝑙 = 4, 𝑘 = 2 achieves better q-error results on the 50%-, 90%- and
99%-percentiles than the classical neural network with 3, 4 and
partially 8 neurons in each hidden layer. Starting from 16 neurons,
the classical neural network shows lower q-errors.

8 CONCLUSIONS
In this paper we introduced QardEst - a novel quantum natural net-
work to estimate the cardinality of join queries. QardEst is based on
the multi-set convolutional network architecture [21] and replaces

Q-Errors

Train Dataset Validation Dataset
Model 50% 90% 99% 50% 90% 99%

Classical Neural Networks
3 neurons 3.12 36.67 775.69 3.09 26.90 400.10
4 neurons 3.40 32.53 455.15 3.28 20.88 349.14
8 neurons 2.60 21.96 629.29 2.55 17.11 164.65
16 neurons 2.14 12.35 132.30 2.11 10.52 73.83
256 neurons 1.26 1.91 3.44 1.40 2.77 9.57

Quantum Neural Networks
𝑙 = 4, 𝑘 = 2 2.74 13.85 170.21 2.74 15.35 189.37

Table 3: Q-error percentile comparison of the best quantum
neural network to classical neural networks.

parts of the layers with quantum circuits. Our experiments demon-
strate that QardEst executed on a quantum simulator outperforms

QardEst: UsingQuantum Machine Learning for
Cardinality Estimation of JoinQueries Q-Data ’24, June 9, 2024, Santiago, AA, Chile

classical neural networks with up to 16 neurons but uses about 13
times fewer parameters than the classical counterpart.

However, it is noteworthy that classical neural networks with
256 neurons in each hidden layer outperform all assessed quan-
tum neural networks. If quantum neural networks should match
the performance of a classical neural network with 256 neurons,
it would require a quantum neural network with an equivalent
number of trainable parameters. Unfortunately, simulating a quan-
tum neural network with 264, 961 trainable parameters within a
reasonable timeframe is currently unfeasible given the hardware
we had for our experiments. Nevertheless, the study revealed that
the performance of quantum neural networks can be improved
through the re-uploading of the input encodings and the adoption
of a dissipative design for the quantum circuits.

Interesting future research directions are to implement the quan-
tum neural networks on real quantum hardware and perform ex-
tensive scalability experiments to better understand both the theo-
retical as well as practical limitations of quantum neural network
architectures for cardinality estimation.

ACKNOWLEDGMENTS
The project has received funding from the Swiss National Science
Foundation under grant number 1921052.

REFERENCES
[1] PostgreSQL Documentation 2023. 76.1. Row Estimation Examples. PostgreSQL

Documentation. https://www.postgresql.org/docs/16/row-estimation-examples.
html

[2] PostgreSQL Documentation 2023. 76.2. Multivariate Statistics Examples. Post-
greSQL Documentation. https://www.postgresql.org/docs/16/multivariate-
statistics-examples.html

[3] Qiskit Community 2023. Qiskit-Community/Qiskit-Machine-Learning. Qiskit
Community. https://github.com/qiskit-community/qiskit-machine-learning

[4] Qiskit 2023. Qiskit/Qiskit-Aer. Qiskit. https://github.com/Qiskit/qiskit-aer
[5] MariaDB KnowledgeBase 2024. InnoDB Persistent Statistics. MariaDB Knowl-

edgeBase. https://mariadb.com/kb/en/innodb-persistent-statistics/
[6] 2024. MySQL :: MySQL 8.0 Reference Manual :: 15.8.10.1 Configuring Persistent Op-

timizer Statistics Parameters. https://dev.mysql.com/doc/refman/8.0/en/innodb-
persistent-stats.html

[7] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multi-
dimensional Workload-Aware Histogram. ACM SIGMOD Record 30, 2 (2001),
211–222. https://doi.org/10.1145/376284.375686

[8] Davide Castelvecchi. 2023. IBM quantum computer passes calculation milestone.
Nature 618 (06 2023). https://doi.org/10.1038/d41586-023-01965-3

[9] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. 2001. Independence Is
Good: Dependency-Based Histogram Synopses for High-Dimensional Data. ACM
SIGMOD Record 30, 2 (2001), 199–210. https://doi.org/10.1145/376284.375685

[10] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates Using
Lightweight Models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–1057.
https://doi.org/10.14778/3329772.3329780

[11] A. Einstein, B. Podolsky, and N. Rosen. 1935. Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete? Phys. Rev. 47 (May 1935),
777–780. Issue 10. https://doi.org/10.1103/PhysRev.47.777

[12] Tobias Fankhauser, Marc E Solèr, Rudolf M Füchslin, and Kurt Stockinger. 2023.
Multiple Query Optimization Using a Gate-Based Quantum Computer. IEEE
Access (2023).

[13] Francisco Javier Gil Vidal and Dirk Oliver Theis. 2020. Input Redundancy for
Parameterized Quantum Circuits. Frontiers in Physics 8 (2020), 297. https:
//doi.org/10.3389/fphy.2020.00297

[14] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeniconi.
2005. Selectivity Estimators for Multidimensional Range Queries over Real
Attributes. The VLDB Journal 14, 2 (2005), 137–154. https://doi.org/10.1007/
s00778-003-0090-4

[15] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai
Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou,
Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A Compre-
hensive Benchmark Evaluation. Proceedings of the VLDB Endowment 15, 4 (2021),

752–765. https://doi.org/10.14778/3503585.3503586
[16] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-Tuning, GPU-

Accelerated Kernel Density Models for Multidimensional Selectivity Estima-
tion. In Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data (Melbourne Victoria Australia). ACM, 1477–1492. https:
//doi.org/10.1145/2723372.2749438

[17] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, Not from Queries!
Proceedings of the VLDB Endowment 13, 7 (2020), 992–1005. https://doi.org/10.
14778/3384345.3384349

[18] Kurt Hornik. 1991. Approximation Capabilities of Multilayer Feedforward Net-
works. Neural Networks 4, 2 (1991), 251–257. https://doi.org/10.1016/0893-
6080(91)90009-T

[19] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities Using Bandwidth-Optimized Kernel DensityModels. Proceedings
of the VLDB Endowment 10, 13 (2017), 2085–2096. https://doi.org/10.14778/
3151106.3151112

[20] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. In
Proceedings of the 2022 International Conference on Management of Data (Philadel-
phia, PA, USA) (SIGMOD ’22). Association for Computing Machinery, New York,
NY, USA, 1214–1227. https://doi.org/10.1145/3514221.3526154

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. 2018. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. CIDR (2018). https://doi.org/10.48550/ARXIV.1809.00677

[22] Claude Lehmann, Pavel Sulimov, and Kurt Stockinger. 2024. Is Your Learned
Query Optimizer Behaving As You Expect? A Machine Learning Perspective.
Proc. VLDB Endow. 17(7): 1565-1577 (2024).

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.
2850594

[24] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-based Join Sampling..
In CIDR.

[25] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Ag-
gregation via Random Walks. In Proceedings of the 2016 International Confer-
ence on Management of Data (San Francisco California USA). ACM, 615–629.
https://doi.org/10.1145/2882903.2915235

[26] S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, and C. Macchiavello. 2021. Quantum
Computing Models for Artificial Neural Networks. Europhysics Letters 134, 1
(2021), 10002. https://doi.org/10.1209/0295-5075/134/10002

[27] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and
Hartmut Neven. 2018. Barren Plateaus in Quantum Neural Network Training
Landscapes. Nature Communications 9, 1 (2018), 4812. https://doi.org/10.1038/
s41467-018-07090-4

[28] D.A. McQuarrie. 2007. Quantum Chemistry. Viva Books Private Limited. https:
//books.google.es/books?id=2VLpQwAACAAJ

[29] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross,
Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn,
Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis,
John Smolin, Ivano Tavernelli, and Kristan Temme. 2018. Quantum optimization
using variational algorithms on near-term quantum devices. Quantum Science
and Technology 3, 3 (jun 2018), 030503. https://doi.org/10.1088/2058-9565/aab822

[30] M. Muralikrishna and David J. DeWitt. 1988. Equi-Depth Multidimensional
Histograms. ACM SIGMOD Record 17, 3 (1988), 28–36. https://doi.org/10.1145/
971701.50205

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
Soumith Chintala, H. Wallach, H. Larochelle, A. Beygelzimer, prefix=d’Alché-
useprefix=true family=Buc, given=F., E. Fox, and R. Garnett. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. Curran Associates,
Inc. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[32] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff, Andrew T. Sornborger,
and Patrick J. Coles. 2021. Absence of Barren Plateaus in Quantum Convolutional
Neural Networks. Physical Review X 11, 4 (2021), 041011. https://doi.org/10.
1103/PhysRevX.11.041011

[33] Qiskit contributors. 2023. Qiskit: An Open-Source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2573505

[34] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. 2019. On the Convergence of
Adam and Beyond. (2019). https://doi.org/10.48550/ARXIV.1904.09237

[35] Silvan Reiner and Michael Grossniklaus. 2024. Sample-Efficient Cardinality
Estimation Using Geometric Deep Learning. Proc. VLDB Endow. 17, 4 (mar 2024),
740–752. https://doi.org/10.14778/3636218.3636229

https://www.postgresql.org/docs/16/row-estimation-examples.html
https://www.postgresql.org/docs/16/row-estimation-examples.html
https://www.postgresql.org/docs/16/multivariate-statistics-examples.html
https://www.postgresql.org/docs/16/multivariate-statistics-examples.html
https://github.com/qiskit-community/qiskit-machine-learning
https://github.com/Qiskit/qiskit-aer
https://mariadb.com/kb/en/innodb-persistent-statistics/
https://dev.mysql.com/doc/refman/8.0/en/innodb-persistent-stats.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-persistent-stats.html
https://doi.org/10.1145/376284.375686
https://doi.org/10.1038/d41586-023-01965-3
https://doi.org/10.1145/376284.375685
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.1007/s00778-003-0090-4
https://doi.org/10.1007/s00778-003-0090-4
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.1145/2723372.2749438
https://doi.org/10.1145/2723372.2749438
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.14778/3151106.3151112
https://doi.org/10.14778/3151106.3151112
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.48550/ARXIV.1809.00677
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1209/0295-5075/134/10002
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://books.google.es/books?id=2VLpQwAACAAJ
https://books.google.es/books?id=2VLpQwAACAAJ
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1145/971701.50205
https://doi.org/10.1145/971701.50205
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/ARXIV.1904.09237
https://doi.org/10.14778/3636218.3636229

Q-Data ’24, June 9, 2024, Santiago, AA, Chile Florian Kittelmann, Pavel Sulimov, and Kurt Stockinger

[36] Alessandro Romito. 2023. Quantum hardware measures up to the challenge.
Nature Physics 19 (06 2023). https://doi.org/10.1038/s41567-023-02090-8

[37] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Kil-
loran. 2019. Evaluating Analytic Gradients on Quantum Hardware. Physi-
cal Review A 99, 3 (2019), 032331. https://doi.org/10.1103/PhysRevA.99.032331
arXiv:1811.11184 [quant-ph]

[38] Maria Schuld, Ryan Sweke, and Johannes JakobMeyer. 2021. Effect of Data Encod-
ing on the Expressive Power of Variational Quantum-Machine-Learning Models.
Physical Review A 103, 3 (2021), 032430. https://doi.org/10.1103/PhysRevA.103.
032430

[39] Manuel Schönberger, Immanuel Trummer, and Wolfgang Mauerer. 2023.
Quantum-Inspired Digital Annealing for Join Ordering. In Proceedings of the
VLDB Endowment, Vol. 17. https://doi.org/10.14778/3632093.3632112

[40] Manuel Schönberger, Immanuel Trummer, and Wolfgang Mauerer. 2023. Quan-
tum Optimisation of General Join Trees. In Proceedings of the International Work-
shop on Quantum Data Science and Management (QDSM ’23).

[41] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data - SIGMOD ’79 (Boston, Massachusetts). ACM Press, 23. https://doi.org/
10.1145/582095.582099

[42] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles. 2022. Trainability
of Dissipative Perceptron-Based Quantum Neural Networks. Physical Review
Letters 128, 18 (2022), 180505. https://doi.org/10.1103/PhysRevLett.128.180505

[43] Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Rev. 41, 2 (1999), 303–332.
https://doi.org/10.1137/S0036144598347011

[44] Ricardo Daniel Monteiro Simões, Patrick Huber, Nicola Meier, Nikita Smailov,
Rudolf M Füchslin, and Kurt Stockinger. 2023. Experimental evaluation of quan-
tum machine learning algorithms. IEEE Access 11 (2023), 6197–6208.

[45] Immanuel Trummer and Christoph Koch. 2016. Multiple Query Optimization
on the D-Wave 2X Adiabatic Quantum Computer. Proceedings of the VLDB
Endowment 9, 9 (2016).

[46] Valter Uotila. 2023. SQL2Circuits: Estimating Metrics for SQL Queries with A
Quantum Natural Language Processing Method. arXiv:2306.08529 [cs.DB]

[47] Hai Wang and Kenneth C. Sevcik. 2003. A Multi-Dimensional Histogram for
Selectivity Estimation and Fast Approximate Query Answering. In Proceedings of
the 2003 Conference of the Centre for Advanced Studies on Collaborative Research
(Toronto, Ontario, Canada) (CASCON ’03). IBM Press, 328–342.

[48] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready for Learned Cardinality Estimation? Proceedings of the VLDB
Endowment 14, 9 (2021), 1640–1654. https://doi.org/10.14778/3461535.3461552

[49] WilliamDAssafMSFT. 2024. Cardinality Estimation (SQL Server) - SQL
Server. https://learn.microsoft.com/en-us/sql/relational-databases/performance/
cardinality-estimation-sql-server?view=sql-server-ver16

[50] Yadong Wu, Juan Yao, Pengfei Zhang, and Hui Zhai. 2021. Expressivity of
quantum neural networks. Physical Review Research 3, 3 (Aug. 2021). https:
//doi.org/10.1103/physrevresearch.3.l032049

[51] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. Proc. ACM Manag. Data 1, 1, Article 41 (may 2023), 27 pages. https:
//doi.org/10.1145/3588721

[52] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.
2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.
(2020). https://doi.org/10.48550/ARXIV.2012.14743

[53] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai
Zeng, and Jingren Zhou. 2021. A Unified Transferable Model for ML-Enhanced
DBMS. (2021). https://doi.org/10.48550/ARXIV.2105.02418

[54] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proceedings
of the VLDB Endowment 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.
3421432

[55] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
Unsupervised Cardinality Estimation. Proceedings of the VLDB Endowment 13, 3
(2019), 279–292. https://doi.org/10.14778/3368289.3368294

[56] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In Proceedings of the 2018 International Conference
on Management of Data (Houston TX USA). ACM, 1525–1539. https://doi.org/
10.1145/3183713.3183739

[57] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proceedings of the VLDB Endowment 14, 9 (2021),
1489–1502. https://doi.org/10.14778/3461535.3461539

[58] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. 2019. Quantum Generative
Adversarial Networks for Learning and Loading Random Distributions. npj
Quantum Information 5, 1 (2019), 103. https://doi.org/10.1038/s41534-019-0223-2

https://doi.org/10.1038/s41567-023-02090-8
https://doi.org/10.1103/PhysRevA.99.032331
https://arxiv.org/abs/1811.11184
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.1137/S0036144598347011
https://arxiv.org/abs/2306.08529
https://doi.org/10.14778/3461535.3461552
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://doi.org/10.1103/physrevresearch.3.l032049
https://doi.org/10.1103/physrevresearch.3.l032049
https://doi.org/10.1145/3588721
https://doi.org/10.1145/3588721
https://doi.org/10.48550/ARXIV.2012.14743
https://doi.org/10.48550/ARXIV.2105.02418
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1145/3183713.3183739
https://doi.org/10.1145/3183713.3183739
https://doi.org/10.14778/3461535.3461539
https://doi.org/10.1038/s41534-019-0223-2

	Abstract
	1 Introduction
	2 Related Work
	3 Learned Cardinality Estimation Baseline
	3.1 Query and Data Encoding
	3.2 Classical Neural Network

	4 Quantum Cardinality Estimation
	4.1 Quantum Computing Foundations
	4.2 Quantum Neural Network - High Level View
	4.3 Quantum Circuits - Detailed View
	4.4 Discussion about Nonlinearity and Output Encoding

	5 Experiments
	5.1 Experimental Setup
	5.2 Hyperparameter Tuning
	5.3 Performance of the Classical Neural Network - The Baseline
	5.4 Performance of the Quantum Neural Network

	6 Enhancement of the Quantum Neural Network Architecture
	7 Overall Performance Comparison
	7.1 MSE Loss
	7.2 Q-Error

	8 Conclusions
	Acknowledgments
	References

