Automorphism groups of locally compact connected double loops are locally compact

By

RICHARD BÖDI

It is a well-known fact that the group Σ of all continuous collineations of a compact projective plane is a locally compact transformation group, see [4, §2], [1, Thm. 1], or [2, XI.3.1] (all topological groups in this paper are provided with the compact-open topology). This implies that the automorphism group Γ of a locally compact connected ternary field is locally compact, since that ternary field coordinatizes some compact projective plane [2, XI.3.2]. For "good" ternary fields, e.g. ternary fields having an associative addition or a diassociative multiplication, the automorphism group Γ is even a compact group. However, it is unknown whether the group Γ is compact in general. Considering the more general algebraic structure of a double loop instead of a ternary field, it was also an open problem whether the automorphism group of a locally compact connected double loop \mathcal{D} is locally compact. In this paper, we shall give a positive answer to this question. The proof of the following theorem is based on the ideas of the proof in [4], which shows that the automorphism group of a compact projective plane is locally compact.

Theorem. The automorphism group of a locally compact connected double loop is a locally compact transformation group with respect to the compact-open topology.

Proof. Let $\mathscr{D} = (\mathscr{D}, +, \circ)$ be a locally compact connected double loop and let $\widehat{\mathscr{D}} := \mathscr{D} \cup \{\infty\}$ denote its one-point compactification. Since \mathscr{D} is metrizable and $\widehat{\mathscr{D}}$ is homogeneous by [2, XI.1.2], the space $\widehat{\mathscr{D}}$ is also metrizable by the metrization criterion of Urysohn. So let d be a bounded metric for $\widehat{\mathscr{D}}$. The compact-open topology on $\Gamma = \operatorname{Aut}(\mathscr{D})$ is induced by the supremum metric

$$d^*(\gamma,\lambda) = \sup_{x\in\mathscr{D}} d(x^{\gamma},x^{\lambda}).$$

For convenience we may choose the metric d on $\widehat{\mathscr{D}}$ such that $d(0, \infty) \ge 1$ and $d(0, 1) \ge 1$. For $\varepsilon > 0$ and $x_0 \in \widehat{\mathscr{D}}$ we define closed neighborhoods $U_{\varepsilon}(x_0) := \{x \in \widehat{\mathscr{D}}; d(x, x_0) \le \varepsilon\}$ in $\widehat{\mathscr{D}}$ and $U_{\varepsilon}^* := \{y \in \Gamma; d^*(\mathbf{1}, y) \le \varepsilon\}$ in Γ . In the sequel we shall show that the neighborhood U_{ε}^* is compact if $\varepsilon < 1/4$. By the Arzela-Ascoli theorem we have to verify the equicontinuity of the set U_{ε}^* .

R. Bödi

Assume that the set U_{ε}^* is not equicontinuous for some $\varepsilon < 1/4$. Then there are sequences $(a_n)_{n \in \mathbb{N}}$ in \mathcal{D} and $(\gamma_n)_{n \in \mathbb{N}}$ in U_{ε}^* such that $\lim_{n \to \infty} a_n = a$ and $d(a^{\gamma_n}, a_n^{\gamma_n}) \ge \varepsilon$ hold for all $n \in \mathbb{N}$. Passing to subsequences we may assume by the compactness of $\widehat{\mathcal{D}}$ that $\lim_{n \to \infty} a^{\gamma_n} = b \in \widehat{\mathcal{D}}$ and $\lim_{n \to \infty} a_n^{\gamma_n} = u \in \widehat{\mathcal{D}}$. Since the map $x \mapsto x - b$ is a homeomorphism of $\widehat{\mathcal{D}}$, there is a real number ε' with $0 < \varepsilon' \le \varepsilon$ such that $d(a_n^{\gamma_n} - b, a^{\gamma_n} - b) \ge \varepsilon'$ holds for all $n \in \mathbb{N}$. From the inequality

$$\varepsilon' \leq d(a_n^{\gamma_n} - b, a^{\gamma_n} - b)$$

$$\leq d(a_n^{\gamma_n} - b, a_n^{\gamma_n} - a^{\gamma_n}) + d(a_n^{\gamma_n} - a^{\gamma_n}, 0) + d(0, a^{\gamma_n} - b)$$

we obtain that

$$d((a_n-a)^{\gamma_n}, (a-a)^{\gamma_n}) = d(a_n^{\gamma_n}-a^{\gamma_n}, 0) \ge \varepsilon'/2$$

holds for almost all $n \in \mathbb{N}$. By renaming we thus may assume that $\lim_{n \to \infty} a_n = 0$ and $d(a_n^{\gamma_n}, 0) \ge \varepsilon$ for all $n \in \mathbb{N}$. In particular, we have $\lim_{n \to \infty} a_n^{\gamma_n} = u \neq 0$.

Because the double loop \mathcal{D} is separable by [2, XI.1.2], there exists a countable dense subset $M := \{x_n; n \in \mathbb{N}\}$ of \mathcal{D} which contains the sequence $(a_n)_{n \in \mathbb{N}}$. Next, we inductively choose for every $m \in \mathbb{N}$ subsequences $(\gamma_{m,n})_{n \in \mathbb{N}}$ of $(\gamma_n)_{n \in \mathbb{N}}$ satisfying the conditions

- (i) $\lim_{n \to \infty} x_m^{\gamma_{m,n}} = \tilde{x}_m$ exists in $\hat{\mathscr{D}}$,
- (ii) $(\gamma_{m+1,n})_{n\in\mathbb{N}}$ is a subsequence of $(\gamma_{m,n})_{n\in\mathbb{N}}$.

Set $\gamma'_n := \gamma_{n,n} = \gamma_{k_n}$ and $a'_n := a_{k_n}$ for all $n \in \mathbb{N}$. Since for the rest of the proof we are only considering the diagonal sequence $(\gamma'_n)_{n \in \mathbb{N}}$, no confusion will arise if we now write again $(\gamma_n)_{n \in \mathbb{N}}$ and $(a_n)_{n \in \mathbb{N}}$ instead of $(\gamma'_n)_{n \in \mathbb{N}}$ and $(a'_n)_{n \in \mathbb{N}}$. Then the equality $\lim_{n \to \infty} a_n^{\gamma_n} = u$ still holds and furthermore we have

$$\lim_{n \to \infty} x_m^{\gamma_n} = \tilde{x}_m \in \hat{\mathscr{D}}$$

for any $m \in \mathbb{N}$. Moreover, condition (i) implies that the dense subset M is contained in

$$L:=\left\{x\in\mathscr{D}; \lim_{n\to\infty}x^{\gamma_n} \text{ exists in } \widehat{\mathscr{D}}\right\}.$$

In particular, the set L is also dense in \mathcal{D} . Consider the map $\lambda: L \to \hat{\mathcal{D}}: x \mapsto \hat{x}$. Then, for any elements $x, y \in L$ we have

(*)
$$d(x, y^{\lambda}) \leq d(x, y) + \varepsilon$$
,

since $d(x, y^{\gamma_n}) \leq d(x, y) + d(y, y^{\gamma_n}) \leq d(x, y) + d(\mathbf{1}, \gamma_n) \leq d(x, y) + \varepsilon$ holds for all $n \in \mathbb{N}$. Set $R := \left\{ x \in L; \lim_{n \to \infty} x^{\gamma_n} \in \mathcal{D} \right\}$. It can easily be verified that R is a topological double loop

with respect to the relative topology. Since all double loop operations in \mathscr{D} are continuous, the closure \overline{R} of R in \mathscr{D} is also a (locally compact) topological double loop. Moreover, the double loop \overline{R} contains the neighborhood $U_{\varepsilon}(0)$. To prove this, note that for any element $y \in L \cap U_{\varepsilon}(0)$ we have $d(0, y^{\lambda}) \leq d(0, y) + \varepsilon \leq 2\varepsilon < d(0, \infty)$ by inequality (*). This implies that $y^{\lambda} \neq \infty$ and thus we have $y \in R$. Thus the set R is dense in $U_{\varepsilon}(0)$,

Vol. 61, 1993

293

i.e. the closure \overline{R} contains $U_{\varepsilon}(0)$. Consequently, the sub-double-loop \overline{R} is open in \mathcal{D} , because it contains an open subset (see [3, (3.2)]). Since \mathcal{D} is connected, this implies $\overline{R} = \mathcal{D}$.

In the next step we want to show that $u \neq \infty$. For this, note that for almost all $n \in \mathbb{N}$ the inequalities

- 1) $d(a_n^{\gamma_n}, u) < \varepsilon$,
- 2) $d(a_n, \infty) > 1 \varepsilon$

are satisfied. The first inequality follows from the relation $\lim_{n \to \infty} a_n^{y_n} = u$ and the second can be deduced from $1 \leq d(0, \infty) \leq d(0, a_n) + d(a_n, \infty)$ and $\lim_{n \to \infty} a_n = 0$. Combining these two inequalities, we obtain from

$$d(a_n, \infty) \leq d(a_n, a_n^{\gamma_n}) + d(a_n^{\gamma_n}, u) + d(u, \infty)$$

the estimate

$$d(u, \infty) \ge (1-\varepsilon) - \varepsilon - \varepsilon = 1 - 3\varepsilon > 0,$$

which proves that $u \neq \infty$.

Being the pointwise limit of double loop homomorphisms, the restriction $\lambda|_R : R \to R^{\lambda}$ is also a double loop homomorphism. Thus the sub-double-loop R^{λ} of \mathcal{D} is a topological double loop with respect to the relative topology. Furthermore, the map $\lambda|_R$ is injective. To see this, fix an element $r \in R \setminus \{0\}$. Since R is a dense subset of \mathcal{D} and since the mapping $x \mapsto r \circ x : R \to R$ is a bijection of R, there is an element $s \in R$ such that $r \circ s \in U_{\varepsilon}(1)$. Thus we obtain from (*)

$$d(1, (r \circ s)^{\lambda}) \leq d(1, r \circ s) + \varepsilon \leq 2\varepsilon < 1.$$

Since $d(0, 1) \geq 1$, we infer that $(r \circ s)^{\lambda} \neq 0$. Because $\lambda|_R$ is a multiplicative map, this means that $r^{\lambda} \neq 0$. Hence, the double loop homomorphism $\lambda|_R$ is injective. The loop R is infinite, because R is dense in \mathcal{D} . So, the set R^{λ} is infinite, too, and thus the closure $\overline{R^{\lambda}}$ in $\hat{\mathcal{D}}$ contains an accumulation point v of R^{λ} . Let $(v_n)_{n \in \mathbb{N}}$ be a sequence in R^{λ} which converges to the accumulation point v. Then the sequence $(v_{n+1} - v_n)_{n \in \mathbb{N}}$ is also contained in R^{λ} and converges to the neutral element 0. Hence, there is an element $c \in R \setminus \{0\}$ such that the element $b \in R$ which is uniquely determined by the relation $u \circ b = c^{\lambda}$ is not contained in $U_{3e}(\infty)$. Now let $b_n \in \mathcal{D}$ denote the (unique) solution of the equation $a_n \circ b_n = c$. Then we have $\lim_{n \to \infty} b_n = \infty$, because $\lim_{n \to \infty} a_n = 0$ and $c \neq 0$. Moreover, we have

$$c^{\lambda} = \lim_{n \to \infty} (a_n \circ b_n)^{\gamma_n} = \lim_{n \to \infty} a_n^{\gamma_n} \circ b_n^{\gamma_n}.$$

Thus the limit $\lim_{n \to \infty} b_n^{\gamma_n}$ exists in \mathcal{D} , since $\lim_{n \to \infty} a_n^{\gamma_n} = u$. Because the element b is the unique solution of the equation $u \circ b = c^{\lambda}$, we consequently obtain that

$$\lim_{n \to \infty} b_n^{\gamma_n} = b.$$

So we may choose an integer $n \in \mathbb{N}$ such that $d(b_n, \infty) \leq \varepsilon$ and $d(b, b_n^{\gamma_n}) \leq \varepsilon$. Inequality (*) now yields the contradiction

$$3\varepsilon < d(b, \infty) \leq d(b, b_n^{\gamma_n}) + d(b_n^{\gamma_n}, b_n) + d(b_n, \infty) \leq 3\varepsilon.$$

This contradiction shows that U_{ε}^* is an equicontinuous set. Hence, the closure $\overline{U_{\varepsilon}^*}$ of U_{ε}^* in the space $C(\widehat{\mathcal{D}}, \widehat{\mathcal{D}})$ of all continuous mapping of $\widehat{\mathcal{D}}$ is compact by the Arzela-Ascoli theorem.

To finish the proof, we shall show that $\overline{U_{\varepsilon}^{*}} \subseteq U_{\varepsilon}^{*}$. For that, fix an element $y \in \overline{U_{\varepsilon}^{*}}$. We have to verify that γ is a double loop automorphism. Since there is a sequence $(\gamma_{n})_{n \in \mathbb{N}}$ in U_{ε}^{*} , which converges to γ , the map γ is a double loop homomorphism. Moreover, the sequence $(\gamma_{n}^{-1})_{n \in \mathbb{N}}$ has an accumulation point δ in the compact set $\overline{U_{\varepsilon}^{*}}$, because $U_{\varepsilon}^{*-1} = U_{\varepsilon}^{*} \subseteq \overline{U_{\varepsilon}^{*}}$. Hence, the sequence $(\gamma_{n}\gamma_{n}^{-1})_{n \in \mathbb{N}}$ accumulates at the point $\gamma \delta$. But as $\gamma_{n}\gamma_{n}^{-1} = \mathbf{1}$ holds for each $n \in \mathbb{N}$, this implies that $\gamma \delta = \mathbf{1}$, since composition $C(\widehat{\mathcal{D}}, \widehat{\mathcal{D}})$ is continuous. Similarly, the relation $\delta \gamma = \mathbf{1}$ is verified. Consequently, the map γ is a bijection and also a double loop automorphism.

References

- T. GRUNDHÖFER, Automorphism groups of compact projective planes. Geom. Dedicata 21, 291-298 (1986).
- [2] T. GRUNDHÖFER and H. SALZMANN, Locally compact double loops and ternary fields. In: Quasigroups and Loops: Theory and Applications, O. Chein, H. D. Pflugfelder and J. D. H. Smith, eds. Berlin 1990.
- [3] K. H. HOFMANN, Topologische Loops. Math. Z. 70, 13-37 (1958).
- [4] H. SALZMANN, Homogene kompakte projektive Ebenen. Pacific J. Math. 60, 217–233 (1975).

Eingegangen am 25, 8, 1992

Anschrift des Autors:

Richard Bödi Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen