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The first systematic study of topological loops and double loops was presented by 
K.H. Hofmann in a series of papers at the end of the 50's. He considered double 
loops in the framework of topological algebra. For a comprehensive survey on the 
theory of loops and double loops the reader is referred to [7], in particular to chapters 
IX and XI. In a more geometrical setting, topological double loops appear together 
with coordinate domains of topological planes: every topological ternary field (T, ~-) 
yields a double loop (T, +, o) by setting x + y = T(X, 1, y) and x o y = ~-(x, y, 0). In 
general, the ternary operation ~- cannot be reconstructed from the underlying double 
loop operations + and o, see [1] and [29]. Little can be said about topological double 
loops in general, but locally compact connected double loops have a rich topological 
structure (see the appendix of this paper). By a deep result due to R. L6wen ([16] and 
[12]), their dimension can only be 1, 2, 4, 8, or, possibly, cx~. The classical examples 
of locally compact connected double loops are the real and complex numbers, the 
quaternions and the octonions. 

In the work of H. Salzmann on compact connected projective planes, double 
loops and their automorphism groups are treated from a geometrical point of view. 
Salzmann's classification program of such planes is mainly based on the size of their 
automorphism groups. Since the automorphism group A of a compact connected 
projective plane . ~  is locally compact with respect to the compact-open topology 
[23, w the (covering) dimension serves as a useful measure for the size of A. Any 
quadrangle Q in : ~  leads to a locally compact connected ternary field TQ and every 
(continuous) automorphism of TQ corresponds to some (continuous) automorphism 
of .~1 ~ which fixes the quadrangle Q pointwise. In particular, F = Aut TQ is locally 
compact. This result happens to be true also for the automorphism group of a double 
loop [3]. 

It is known that a one-dimensional double loop is rigid, i.e. it possesses no non- 
trivial automorphism (for a proof see [12, XI.9.1]). Similarly, the group of continuous 
automorphisms of a two-dimensional double loop contains at most two elements, see  
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[12, XI.9.3]. For eight-dimensional ternary fields, H. Salzmann proved in [24] that 
either the connected component of the automorphism group F is isomorphic to the 
compact simple exceptional Lie group G2 as in the classical case, or F has dimension 
at most 13. It is unknown, however, whether or not this result can be extended to 
automorphism groups of eight-dimensional double loops. 

In dimension four, the classical example is the field of quaternions, with automor- 
phism group SO3iR. Thus it is natural to expect that the automorphism group F of an 
arbitrary four-dimensional locally compact connected double loop has dimension at 
most 3, This is true, in fact, if F is compact [12, XI.9.71. Without the last assumption, 
H. Salzmann proved dim F _< 5 for ternary fields; no bound was known so far for 
double loops. 

In this paper, we show that dim F _< 4 holds in general for automorphism groups 
F of four-dimensional locally compact connected double loops. This result simplifies 
many arguments about eight-dimensional compact projective planes. 

1 Definitions and notation 

A quasigroup ~ = (L, o) is a set L together with a binary operation o on L such 
that the equations a o x = b and y o a = b always have unique solutions x and 9. 
These solutions are denoted by x = a/b and y = a\b. A loop ~ = ( L , l , o )  is a 
quasigroup (L ,o )  with a neutral element 1 6 L, i.e. 1 o x  = x = z o  1 for every 
x 6 L. A loop ~ is called topological iff L is a topological space which is neither 
discrete nor antidiscrete, such that the binary operations o , / ,  and \ are continuous on 
L • L. A topological double loop ~ = (D, 0, 1, +, o) is a topological space D such 
that (D, 0, +) and (D\{0} ,  1, o) are topological loops, x o 0 = 0 = 0 o x holds for all 
z 6 D,  the multiplication o is continuous on D • D, and the mappings x ~ ;c o a 
and x ~-~ a o x are homeomorphisms of D for every 0 r ~ 6 D. 

Throughout this paper, let ~ be a four-dimensional locally compact connected 
double loop and let F be a closed subgroup of  the full automorphism group of 
~ .  By [3], this group is a locally compact transformation group with respect to 
the compact-open topology. Thus the covering dimension as well as the small and 
the large inductive dimension coincide for F .  Since we are only interested in the 
topological dimension of  F ,  we may assume throughout the paper that the group F 
is connected (see the sum theorem in [21, 3.2.5]). 

For a subset M C ~ ,  the smallest closed sub-doubleAoop of ~ containing M is 
denoted by (M) .  If M = {0, 1 } we shall call • := (M) the prime double loop of ~ .  
For any subgroup ~ of F we denote by , ~  the set of all those elements of ~ that 
are fixed by every automorphism 93 E ~b. Clearly, ,74 is a closed sub-double-loop of 

A 

~ .  The one-point compactification ~ U {oc} of ~ is denoted by ~ .  All homology 
groups are assumed to be singular homology groups, whereas the cohomology groups 
are used in the sense of Alexander-Spanier-I~ech (see e.g. [28, Chap.6, Sect. 4] or 
[17, Chap. IX, w Reduced (co-)homology groups are written with a tilde on top. 
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2 Dimensions of automorphism groups 

For compact groups F the sharp bound dim F < 3 was proved by H. Salzmann in 
[12, XI.9.7]. For non-compact groups F the inequality dim F _< 4 can be verified at 
once if we assume that the double loop . ~  of fixed elements is connected. 

L e m m a  2.1 I f  the double loop .~-TT of  f ixed elements is connected, then we have 
dim F < 4. 

Proof .  We may assume that .7-'~1. r ~ .  Since .7c  is connected, we thus have 1 < 
dim.TT _< 2 by (3.1) and (3.3). Hence there exist no zero-dimensional double loops 
in ~ ,  see [12, XI.9.2] and the proof of [12, XI.9.1]. In particular, the prime double 
loop ~ is connected. Consequently we have dim (c) > 2 for any element c ~ ~ \ .  ~7"c 
since ~ < It).  If dim @) = 4 we have I~, = ~ and thus d i m F  _< dim ~ = 4 by [13]. 
Thus by (3.3), we may assume that dim (e) = 2 for every c C ~ \ . ~ ,  and we may 
choose elements c,d E ~ \ , ~ ,  such that (c ,d)  = ~-/. By [25, w (6)] the orbits c I' 
and d r are at most two-dimensional. Note that [25, w (6)] is formulated for four- 
dimensional ternary fields rather than for double loops, but the proof only uses the fact 
that a two-dimensional ternary subfield has at most two continuous automorphisms. 
This is also true for two-dimensional double loops (see [12, XI.9.3]). Applying [13] 
we therefore obtain the desired inequality 

dim F = dim F,. + dim cJ' = dim [~:,d + dim d F~ + dim c r < 0 + 2 + 2 = 4. 

Combining this result with Lemma (3.5) of the appendix and [12, XI.9.2] we get 
the following very useful corollary. 

Coro l la ry  2.2 I f  i ~ contains a non-trivial element of  finite order, then the dimension 
of the group F is at most four. 

In the next step we shall study the dimension o f / "  in the case where F is semi- 
simple. 

Coro l la ry  2.3 A non-trivial quasi-simple automorphism group F is three-dimensional. 

Proof .  The quotient group F* := F / Z ( F  ) is a simple Lie group, where the center 
Z(F)  is a zero-dimensional group. Assume that dim F > 3. Then, by the classification 
of quasi-simple Lie groups we have dim F = dim F* _> 6 and there is a non-trivial 
compact connected subgroup ~* of F* which is covered by a compact connected Lie 
subgroup ~b of F .  The Lie group ~ contains a torus subgroup and thus has non-trivial 
elements of finite order. Hence the assertion follows by Corollary (2.2). 

In order to show that a semi-simple automorphism group F of ~ is in fact 
quasi-simple, we first need information about subgroups of F centralizing each other. 

Lemma 2.4 I f  ~, tp are two non-trivial connected subgroups of  F centralizing each 
other, then the inequality dim ~/' _< 4 holds. Furthermore, if dim ~b = 4, then we have 
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d i m , ~  = 2, ~b is a Lie group, ~ is homeomorphic to II~ 4, and ~ is homeomorphic to 
IR 3 x 72, where 72 denotes the circle group. 

Proof .  Since the connected group �9 leaves , ~  invariant and the dimension of ,7~ 
is at most 2, the group ~b must fix ,~rt~ elementwise. Interchanging the roles of cb and 
k~, it follows that , ~  := . ~  = , ~ .  For any e C c , j \ . ~  we have (c ~) = ~ by [12, 
XI.9.1, XI.9.3], since ~ is a non-trivial connected group. Because ~b centralizes if', 
we obtain ~c = 1, i.e. the group ~b acts freely on ~ \ . . ~ r .  Hence dim ~b _< dim ~ = 4 
holds. Now let dim q5 = 4. Then ~b acts transitively on ~ \ . ~ z -  by Corollary (3.6) of 
the appendix. Hence ~ is a Lie group and ~ is a topological manifold by [19, (6.3)]. 
Thus ~ is homeomorphic to ~ 4  by (3.2). Having a non-trivial maximal compact 
subgroup by [25, w (11)], the group �9 contains a non-trivial element c~ of odd order. 
Since �9 acts freely on ~ \ . ~ ,  we have d i m , ~  = d i m , ~  = 2 by (3.5). Next we shall 
determine the topological structure of the group �9 by using Alexander duality. Note 
first that by [12, XI.9.6] the group �9 cannot contain a two-dimensional torus group. 
Being a four-dimensional non-compact Lie group with a non-trivial maximal compact 
subgroup, the group �9 is thus homeomorphic to one of thefollowing spaces: R 3 x ~, 

• P3~, or ~ x ~3. Since the one-point compactification ~ of . ~  is homeomorphic 
to the 2-sphere by [12, XI.8.2.c] we obtain from Alexander duality the relation 

for 0 < k < 3. Now the relations H 2 (gz) ~ ~ and ~3-~  (~2) = 0 for k r 1 exclude 
all but one of the spaces mentioned above. The remaining space is just N3 x ~, which 
finishes the proof. 

Theorem 2.5 A non-trivial semi-simple automorphism group F is a three-dimensional 
quasi-simple group. 

Proof.  Since F is semi-simple, the center Z of F is zero-dimensional and the quotient 
group F / Z  can be written as a product 

r/z = rI   kZ/z, 
k 

where the factors ~ := k~kZ/z are connected simple Lie groups centralizing each 
other. Note that the groups ~k are coverings of  the groups k~. By Corollary (2.3), 
we may assume that we have at least two distinct non-trivial factors k~t I and ~2. If 
both of the groups Ol* and ~ are compact, their coverings k~ and Oz are compact 
quasi-simple Lie groups. This would imply that F contains a two-dimensional torus, 
which is impossible by [12, XI.9.7]. Hence we may assume that k~* contains a closed 
one-parameter subgroup R* ~ I~. This subgroup is trivially covered in k~l by a closed 
one-parameter subgroup R ~ I~ which is centralized by ~2. Applying Lemma (2.4) 
with �9 = R k~2 and kv = R to the product R k~2, we infer that this group is a Lie 
group homeomorphic to ~3 x 72. In particular, the group F contains a non-trivial 
element of finite order and by Corollary (2.2) we conclude that dim F _< 4. On the 
other hand, the group F contains the two quasi-simple factors q/n and g'2 and thus we 
have dim F _> 6, which is a contradiction. Hence the automorphism group [ '  must be 
quasi-simple and the theorem follows by Corollary (2.3). 
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The following lemma will play the key role in the proof of the inequality dim F _< 
4. As an immediate consequence of this lemma we have dim F _< 5. 

Lemma 2.6 If F is a non-semisimple automorphism group of ~ with dim F~ >_ 2for 
some e C ~ \ . ~ ,  then dim F < 4. 

Proof. Being non-semisimple, the group F contains a minimal connected commutative 
normal subgroup S .  If the normal subgroup S is compact, then S lies in the center of 
F, since the connected group F induces isomorphic automorphism groups on both S 
and the discrete dual S* (see e.g. [14, (26.20) Theorem.]). This implies dim F _< 4 by 
(2.4). Hence we may assume S to be non-compact. Minimality of  S now implies that 
S ~ R n. Let Z be the center of F and set O := C F S .  Since S is a normal subgroup 
in F,  the fix-double-loop , ~  of S is F-invariant. This implies that . ~  = . ~ ,  for 
otherwise F would act non-trivially on , ~  and therefore d i m . ~  >_ 4 would hold 
by [12, XI.9.1, XI.9.3]. Hence , ~  = ~ ,  which is impossible. In particular, we have 
e s ~ c and as before we infer that (c s } = ~ .  Thus the stabilizer O~ is trivial. Now 
let H < S be a minimal F~-invariant subspace, where F~ denotes the connected 
component of  the stabilizer F~ containing the identity. Arguing as before, we get 
(e n} = ~ and therefore F~ must act faithfully and irreducibly on H. Furthermore, 
the stabilizer F~ is a Lie group by the argument of [24, (3.3)] a n d / ~  is a reductive 
group by [11, w w or [4, Chap. I, 6.4., Prop. 5, p.56]. In particular, there is 
a linear semi-simple Lie group S (possibly S = n) such that S _< F~] _< S C  • . Since 
we have dim F~ > 2 by hypothesis, the group F~ must contain a torus subgroup. 
Thus the assertion of the lemma follows from Corollary (2.2). 

We are now able to prove the main result of this paper. 

Theorem 2.7 The full automorphism group F of a four-dimensional locally compact 
double loop ~ is of dimension at most four. 

Proof. In view of Theorem (2.5) we may assume F to be a non-semisimple group. 
Then Lemma (2.6) implies that dim F _< 5, so we may assume in the sequel that 
dim F = 5. In this case all orbits c r" for c 6 c g \ . ~  are four-dimensional by Lemma 
(2.6). Hence, these orbits are open subsets of ~ and the group F acts transitively 
on the complement cr~ \ , ~  by Lemma (3.4), since ~ is a Cantor manifold by [26, 
Thin.A]. Furthermore, the group F is a Lie group und ~ is homeomorphic to R 4, 
compare the proof of (2.4). By Corollary (2.2) the group F cannot contain a non- 
trivial element of finite order and thus the maximal compact subgroup of  F is trivial. 
By the Malcev-Iwasawa theorem (see [15, Thm. 13, p. 549]) this implies that F is 
homeomorphic to •5. Finally, we may assume by Proposition (2.1) that the double 
loop ,Tr  of fixed elements is zero-dimensional. Now, by (3.1) we know that 
is locally connected and we may apply Lemma (3.4) to obtain that F / F  c ,.~ c r = 
~ \ , ~ .  To obtain a contradiction in this situation, we shall show that the homotopy 
groups of  F / F  c and of ~\,~;~F are different. 

We first note that the reduced cohomology group H0 ( . ~ )  does not vanish, because 

�9 ~ is totally disconnected and contains at least three elements, namely the elements 
f 

0, 1, and ~ .  Moreover, the higher cohomology groups H k (,'Tr) do vanish for k > 0, 
f A 

since d i m , ~  = 0. Applying Alexander duality to ~ and .'Tr, we obtain for 0 < k < 3 
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the isomorphism 

nk ( r / r , . )  ~ f~k (c r) ~ nk ( ~ \ . ~ )  ~ n3-~ (.~,). 

Note that for formulating Alexander duality for non-manifolds .7c  we have to take 
Alexander-Spanier cohomology groups, see e.g. [17, Th. 6.6, p.222-223] or [8, VIII, 
8.15]. Hence we have H~: (F/F~) = 0 if 0 < k < 2 and H3 ( F / I  ~) r O. Because the 
complement ~ \ , ~  is simply connected by [2], we can apply the Hurewicz isomorphy 
(see e.g. [28, Chap.7, Sect.5, Thin.4, p. 397]) to get the relations 7rk(F/F,.) = n if 

0 < k < 2 and 7r3(F/F~:) r n. On the other hand, the short exact sequence 

o --~ r , - - ~  r ~ F / ~  - ~  o 

induces a long exact sequence in homotopy 

Because the group F is homeomorphic to ~5 and the stabilizer I'~I is homeomorphic 
to IP~, all homotopy groups of F and F(, vanish for n _> 1. In particular, the exactness 
of the homotopy sequence implies that rc3(F/1.)  ~ 7r3(I~:) = ~, which contradicts 
the previous result obtained from Alexander duality. Hence the assumption dim F = 5 
is contradictory, and therefore the inequality dim F < 4 must hold. 

3 Appendix 

The results in this section hold for locally compact connected double loops of arbitrary 
dimension. 

Theorem 3.1 A locally compact double loop r/y is a doubly homogeneous separable 
complete metric space which is or-compact but not compact and has a countable basis. 
Moreover, ~ is either connected or totally disconnected. I f  ~ is totally disconnected, 

then the one-point compactification ~ of ~ is homeomorphic to the Cantor set. If 
is connected, then it is locally connected and path connected as well as locally and 
globally contractible. Furthermore, in this case we have dim ~ > 0. 

For a proof see XI.1.2 to XI.I.5 and XI.8.1, XI.8.3, XI.8.4 of [12]. 

Theorem 3.2 Let ~ be a locally compact connected double loop of finite covering 
dimension n. Then ~ is a Cantor manifold and an ANR which has domain invariance. 
Moreover, any closed n-dimensional subset of ~ contains inner points. I f  ~ is a 
topological manir then it is homeomorphic to IU ~. 

The proofs of these statements can be found in [16] and [26], cp. also [12, XI.8]. For 
the last assertion see [22, 7.12] and [16, 5.2]. 

Theorem 3.3 Let ~ be a locally compact connected double loop of finite covering 

dimension n. Then ~ is an 'n-dimensional homology and cohomoIogy manifold over 
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an arbitrary principal ideal domain L. and n is also the cohomological dimension o f  

( / .  Moreover, ~ is a homotopy n-sphere and we have n = 2 ~ with g < 3. 

Proof .  In [16, Thm. 2a] it is proved that a locally compact connected ternary field 
is an n-dimensional homology manifold over Z. Since the proof of this fact only 
uses the double loop structure of a ternary field this result applies to double loops as 
well (cp. [12, p.334]). By definition, a locally contractible space is c l c~  for every 
principal ideal domain L (see [5, Def. 16.1, p.76]). Moreover, the stalk .Y~,~(~; L) 
is constant over ~ by [16, Lemma 6.1 and p. 113], which implies that ~ is an 
f~-dimensional homology manifold over an arbitrary principal ideal domain L (see 
[5, 15.2, p.240] and [6, p. 469]). Finally, the notions of a homology manifold and a 
cohomology manifold coincide for locally contractible spaces, see [16, p. 114]. The 
last assertion is proved in [16] and [12, XI.8.5]. 

L e m m a  3.4 Let I '  be a locally compact LindelSf group acting on a separable metric 
space M which is locally compact, locally homogeneous, and locally contractible. 
l f  dim a ~ = d i m M f o r  some a ~ M ,  then the orbit a I" is open in M and a r is 
homeomorphic to the homogeneous space F / I ~ .  In particular this holds for  a locally 
compact connected automorphism gt~)up o f  a locally compact connected double loop. 

Proof .  Let /2 C F be an arbitrary compact neighborhood. Because F is a LindelOf 
group, there exist elements %~ ~ F (n ~ ~ )  such that 

?C F rLC~ 

By the sum theorem (see [21, 3.2.5]) there is thus an integer 7n C l~ satisfying 
dim a l~ = d im( /~ ' ' ~ .  Since y,~ is a homeomorphism, we conclude that d i m a  r~ = 
dim a ~?~'~ = dim a F = dim M .  The compactness of o(? implies the compactness of a s? 
and by [26, Thm.C] the orbit a s~ contains inner points. In particular, the orbit a F 
contains inner points, and since F acts transitively on a j ' ,  this orbit is an open set. 
Thus the set a f' is locally compact and [10] implies that ? ~-~ (D' : F --+ a ~ is an 
open map. Since this map is also closed (note that F is locally compact), we finally 
have a 1' ~ F / F~. 

L e m m a  3.5 I f  ~ r "7 ~ F is an element c~'finite order, then d i m . ~  > 1. Moreover, 
if  h~ is not an involution, then d i m . ~  is even. 

A 

Praof .  Because ~ is a compact n-dimensional cohomology manifold over Zp as 
well as an n-dimensional cohomology sphere for every prime number p by Theorem 

(3.3), we may apply [18, Thm.C, p. 463] to the group (q.) acting on ~ and obtain that 
�9 /~  is a (co-)homology-k-sphere.  Note that by setting oc~ = oc, the automorphism -y 

becomes a homeomorphism on ~ .  Since a homology-0-sphere only consists of two 
points and since -~ fixes the three distinct points 0, 1, and oc, we conclude that k > 0. 
By [18], this implies the connectedness of . ~ .  For the second part of the lemma see 
[9, Thm. 5.2]; compare also [27, p. 404t. 
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Lemma 3.6 I f  d i m c  r = d i m e ; J  f o r  all  c C ~ \ . ~ r ,  then c F = c 9 ~ \ . ~ ,  and  F is not  

compact .  

P r o o f .  By [26, Thm.A] we know that ~ is a Cantor manifold. Since dim c j  = 2 m > 4 
by [12, XI.8.5], we have d i m . ~  _ d i m ~  - 2 and thus the complement ~ \ . ~ r  ist 
connected. By (3.4) and the hypothesis, the complement ~ \ . = ~ r  is a union of open 
F-orbi ts .  Thus c r = ~ \ , ~ r  since ~ \ ~ r  is connected. In particular, the orbit c r 
is locally compact and by Lemma (3.4) we have c r ~ F / F  c. If we assume that the 

group F is compact,  then the orbit c r = c,.~\,~r would be compact too. But this would 
imply that the set ~ \ , ~ r  is open and closed in ~ ,  contradicting the connectedness 
of ~,~. 

References 

1. Artzy, R.: Linear Geometry. Addison-Wesley, 3rd corr. ed., 1974 
2. B6di, R.: On the Embedding of Zero-Dimensional Double Loops in Locally Euclidean Double Loops. 

Resultate der Math. 22, 657-666 (1992) 
3. B6di, R.: Automorphism Groups of Locally Compact Connected Double Loops are Locally Compact. 

Arch. Math. 61, 291-294 (1993) 
4. Bourbaki, N.: Lie groups and Lie algebras, Part I. Paris: Hermann 1975 
5. Bredon, G.E.: Sheaf Theory. New York, 1967 
6. Bredon, G.E.: Generalized manifolds, revisited. Proc. Univ. of Georgia topology of manifolds institute, 

1969, Athens, Georgia, p. 461-469. Chicago: Markham Publ. Comp. 1970 
7. Chein, O., Pflugfelder, H.D., Smith, J.D.H. (eds.) Quasigroups and Loops : Theory and Applications. 

Berlin: Heldermann 1990 
8. Dold, A.: Lectures on Algebraic Topology. Berlin Heidelberg New York: Springer 1972 
9. Floyd, E.E.: On periodic maps and the Euler characteristic of associated spaces. Trans. Am. Math. 

Soc. 72, 138-147 (1952) 
10. Freudenthal, H.: Einige Satze fiber topologische Gruppen. Ann. of Math. (2) 37, 46-56 (1936) 
11. Freudenthal, H., de Vries, H.: Linear Lie Groups. New York-London: Academic Press, 1969 
12. Grundh6fer, T., Salzmann, H.: Locally compact double loops and ternary fields. In: O. Chein, H.D. 

Pflugfelder, J.D.H. Smith (eds.) Quasigroups and Loops : Theory and Applications, Berlin: Helder- 
mann 1990 

13. Halder, H.R.: Dimension der Bahn lokal kompakter Gruppen. Arch. Math. 22, 302-303 (1971) 
14. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I, 2nd ed. Berlin Heidelberg New York: Springer 

1979 
15. Iwasawa, K.: On some types of topological groups. Ann. of Math. 50, 507-558 (1949) 
16. L6wen, R.: Topology and dimension of stable planes : On a conjecture of H. Freudenthal. J. Reine 

Angew. Math. 343, 109-122 (1983) 
17. Massey, W.S.: Singular Homology Theory. Berlin Heidelberg New York: Springer 1980 
18. Montgomery, D., Mostow, G.D.: Toroid transformation groups on euclidean space. Illinois J. Math. 

2, 459-481 (1958) 
19. Montgomery, D., Zippin, L.: Topological Transformation Groups. New York: Wiley 1955 
21. Pears, A.R.: Dimension theory of general spaces. Cambridge University Press 1975 
22. Salzmann, H.: Topological planes. Adv. Math. 2, 1-60 (1967) 
23. Salzmann, H.: Homogene kompakte projektive Ebenen. Pacific J. Math. 60, 217-234 (1975) 
24. Salzmann, H.: Automorphismengruppen achtdimensionaler Temiirk6rper. Math. Z. 166, 265-275 

(1979) 
25, Salzmann, H.: Compact 8-dimensional projective planes with large collineation groups. Geom. Ded- 

icata 18, 139-161 (1979) 
26. Seidel, H.-P.: Locally homogeneous ANR-spaces. Arch. Math. 44, 79-81 (1985) 



On the dimensions of automorphism groups of four-dimensional double loops 97 

27. Smith, P.A.: New results and old problems in linite transformation groups. Bull. Am. Math. Soc. 66, 
402-415 (1960) 

28. Spanier, E.H.: Algebraic Topology. New York: McGraw-Hill 1966 
29. Tschetweruchin, N.: Eine Bemerkung zu den Nicht-Desarguesschen Liniensystemen. Jber. Deutsch. 

Math. Verein. 36, 134-136 (1927), Fortschritte d. Math. 53, 540 (1927) 

This article was processed by the author 
using the Spfinger-Verlag TEX PJourlg macro package 1991. 


